Relatório Final de Iniciação Científica – F590

CARACTERIZAÇÃO TÉRMICA DE VIDORS DE BOROSSILICATO DOPADOS COM PbTe

<u>Aluna</u>: Andréa Teixeira Ustra (RA 992647)

Orientador: Antonio Manoel Mansanares

Data: 28/06/02

1. OBJETIVOS

Utilizar a Técnica Fotoacústica para a determinação da difusividade térmica de vidros de borossilicato dopados com PbTe e submetidos a tratamento térmico em diferentes temperaturas (abaixo do ponto de fusão) e por diversos períodos. Com o tratamento térmico, o PbTe dentro da matriz vítrea forma agregados através de processos de nucleação e coalescência. Os agregados assim formados têm dimensões da ordem dos comprimentos de onda dos portadores de carga no semicondutor, e conseqüentemente produzem confinamento quântico (pontos quânticos). O tempo e a temperatura de tratamento definem o tamanho destes grãos, já caracterizados por microscopia eletrônica de transmissão e por espectroscopia de absorção óptica [1]. A importância desse trabalho reside tanto na caracterização da matriz de borossilicato como do semicondutor PbTe, visto que não há resultados em materiais similares na literatura.

2. TÉCNICA FOTOACÚSTICA

A técnica fotoacústica é um método muito utilizado na caracterização térmica de materiais sólidos. Consiste em uma fonte de luz (laser de Ar^+) modulada por um *chopper*, que através da janela de quartzo da câmara fotoacústica incide na amostra. Um microfone está ligado à célula e a um amplificador *lock-in*. A radiação atinge a amostra que a absorve convertendo-a em calor, que se propaga tanto para o interior da amostra quanto para o ar da vizinhança. Como a luz é modulada, o calor gerado é modulado também, produzindo uma

elevação de pressão dentro da célula, de forma periódica, que é detectada pelo microfone. O microfone transforma esse sinal fotoacústico em um sinal elétrico que é amplificado pelo *lock-in*. O *lock-in* mede também a diferença de fase entre a incidência da luz e a geração do sinal [2,3].

2.1 Determinação da difusividade térmica através da Técnica Fotoacústica: técnica dos dois feixes

A difusividade térmica de um material é uma importante propriedade na sua caracterização térmica, pois a partir de seu valor é possível obter outras propriedades térmicas, como a condutividade térmica. Além disso, ela está intimamente ligada às propriedades estruturais do material, e revela a modificação das estruturas em função de diferentes formas de preparação e tratamento das amostras. A difusividade térmica α é o parâmetro de transporte de calor em regime de freqüência, e se liga à condutividade térmica k (parâmetro relevante no caso de fluxo estacionário) por:

$$\alpha = \frac{k}{\rho c} \tag{1}$$

onde ρ é a densidade e c é o calor específico a pressão constante.

Os métodos experimentais para a determinação da difusividade térmica podem ser divididos em dois grupos: os métodos transientes e os métodos periódicos, dependendo da natureza do transporte de calor medido. O primeiro método periódico foi introduzido em 1861 por Angstron [4]. O método baseia-se na medida da diferença de fase entre a oscilação térmica de dois pontos de uma barra aquecida periodicamente em uma de suas extremidades. Touloukian *et al* fazem uma revisão dos métodos de determinação da difusividade térmica [5].

O efeito fotoacústico é uma técnica conveniente para a determinação da difusividade térmica, dede que se conheça a espessura da amostra. Adams e Kirkbright determinaram a difusividade térmica de várias amostras (pintadas com uma fina camada de esmalte preto, para garantir a absorção superficial), medindo a fase do sinal fotoacústico com incidência traseira em função da freqüência de modulação [6].

Para a obtenção da difusividade térmica neste trabalho faremos uso de medidas da diferença de fase entre incidência dianteira e traseira na amostra, para uma mesma freqüência de modulação.

A técnica dos dois feixes foi desenvolvida pelo grupo de fotoacústica da UNICAMP [7], e baseia-se na medida da diferença de fase entre o sinal gerado por incidência dianteira e aquele gerado por incidência traseira de luz na amostra.

A montagem experimental usada é apresentada na Figura1. Um laser de Ar^+ é modulado em intensidade por uma pá mecânica (*chopper*), e incide na amostra colocada numa célula fotoacústica. Esta célula pode ser girada em torno do seu eixo permitindo que tanto a face dianteira da amostra (voltada para o interior da câmara fotoacústica) quanto a face traseira sejam iluminadas. O sinal do microfone é analisado por um amplificador *lock-in* que fornece a amplitude e a fase do mesmo. Estes dados são armazenados num computador que controla a freqüência de modulação através de uma tensão enviada pelo *lock-in* ao *chopper*.

Figura 1: Diagrama da montagem experimental.

No caso de absorção superficial, a temperatura na interface amostra-gás $\theta(0)$, para incidência dianteira (D)e traseira (T), é dada pelas expressões abaixo, respectivamente:

$$\theta(0) = \frac{\beta_D I_D}{\kappa_s \sigma_s} \frac{\cosh(\sigma_s \ell)}{\sinh(\sigma_s \ell)}$$
(2)

$$\theta(0) = \frac{\beta_T I_T}{\kappa_s \sigma_s} \frac{1}{\sinh(\sigma_s \ell)}$$
(3)

onde β' é o coeficiente de absorção óptica superficial, κ_s é a condutividade térmica, σ_s é o coeficiente complexo de difusão térmica, *l* é a espessura da amostra e *I* é a intensidade da luz. A variação da pressão na câmara fotoacústica, que é detectada pelo microfone, é dada por:

$$\delta P = \frac{\gamma P_0 \theta(0) e^{-j\frac{\pi}{4}}}{\sqrt{2} T_0 \ell_s a_s} \tag{4}$$

onde γ é a razão entre os calores específicos do gás a pressão e volume constantes, P_0 e T_0 são a pressão e temperatura ambiente, respectivamente, l_g é o comprimento da coluna de gás da célula (ar) e a_g é o coeficiente de difusão térmica do gás.

Fazendo-se a razão entre as expressões (2) e (3), e escrevendo na forma de amplitude e fase, encontramos:

$$S_{D} / S_{T} = \frac{\beta_{D}' I_{D}}{\beta_{T}' I_{T}} \sqrt{\cosh^{2}\left(a_{s}l\right) - \sin^{2}\left(a_{s}l\right)}$$
(5)

$$\tan(\varphi_{D} - \varphi_{T}) = \tanh(a_{s}l)\tan(a_{s}l)$$
(6)

onde $S_D(S_T)$ e $\varphi_D(\varphi_T)$ são amplitude e fase do sinal fotoacústico com incidência dianteira (traseira). A técnica dos dois feixes usa a expressão para a diferença de fase dada acima,

que para uma única freqüência de modulação f, fornece o produto $a_s l$. Conhecendo-se a espessura da amostra l, obtém-se a_s e por conseguinte, a difusividade térmica α_s , pois:

$$a_{s} = \sqrt{\frac{\pi f}{\alpha_{s}}} \tag{7}$$

No caso de amostras transparentes, como é o caso dos vidros que serão caracterizados neste projeto, a condição de absorção superficial é satisfeita pela deposição de 150 nm de alumínio em cada face da amostra. Para amostras com baixa difusividade térmica, quando comparada à do alumínio ($\alpha_{Al} = 0.90 cm^2 / s$), o uso do alumínio introduz uma atenuação na amplitude a atraso na fase desprezíveis em relação aos da própria amostra.

A figura 2 mostra uma célula fotoacústica projetada para este tipo de experimento, que permite a incidência dianteira e traseira de luz na amostra. Nota-se que a própria amostra forma uma das paredes da célula. A câmara fotoacústica tem forma cilíndrica, com raio de2 mm e comprimento 2 mm. A abertura da célula onde a amostra é colocada tem o mesmo raio.

Figura 2: Célula fotoacústica utilizada na Técnica dos dois feixes.

3. AMOSTRAS

Os vidros usados neste estudo foram obtidos esfriando abruptamente ("quenching") a composição dopada e tratando termicamente ao ar livre em várias temperaturas para causar a precipitação controlada de partículas de semicondutor. Utilizamos duas composições, a primeira contém SiO₂:B₂O₃:ZnO:K₂O (BSZK) dopada com 2% de PbO e Te, a segunda contém SiO₂:B₂O₃:ZnO:PbO:Na₂O (BSZPN) com 2% de Te. Na sua preparação, os vidros foram derretidos em um forno a 1350 °C para a primeira, e 1200 °C para a segunda composição e moldados em formas de disco. Os discos foram então cortados em tamanhos convenientes e tratados isotermicamente em um forno coberto em temperaturas entre 600 e 670 °C por períodos de 10 min a 5 hrs para o BSZK. Para o BSZPN as temperaturas são entre 510 e 550 °C e a duração do tratamento entre 30 min e 43 hrs.

As figuras 3a e 3b ilustram o espectro de absorção óptico do PbTe. Os picos se deslocam para maiores comprimentos de onda com o aumento do tamanho dos agregados, pois o grau de confinamento diminui. As figuras 4a e 4b ilustram como o tamanho desses agregados varia com o tratamento.

Figura 3a: Espectro de absorção do PbTe na matriz BSZK tratada em 650 °C por (a) como moldada (b) 5 min (c) 10 min (d) 30 min (e) 50 min e (f) 120 min.

Figura 3b: Espectro de absorção do PbTe na matriz BSZPN tratada em 510 °C por (a) 10 hrs (b) 16 hrs (c) 20 hrs (d) 34 hrs e (e) 43 hrs.

Figura 4a: Dependência do raio médio do nanocristal de PbTe na matriz BSZK como função da raiz quadrada do tempo de tratamento.

Figura 4b: Dependência do raio médio do nanocristal de PbTe na matriz BSZPN como função da raiz quadrada do tempo de tratamento.

4. RESULTADOS EXPERIMENTAIS

As medidas do sinal fotoacústico foram realizadas fazendo a varredura de freqüência do chopper de 10 a 20 Hz, para assegurar que o mecanismo predominante de geração do sinal é a difusão térmica. Para cada freqüência calculou-se um valor de α .

O comportamento típico do sinal gerado pelas amostras e da fase é ilustrado na figura5. As tabelas 1a e 1b contém os dados de cada amostra e sua difusividade térmica calculada.

Figura 5: Gráficos da amplitude e fase do sinal fotoacústico para incidência dianteira e traseira de uma amostra de borossilicato dopada com PbTe, com 210 μ m de espessura, aquecida em 510°C por 20h e 5min.

Temperatura (° C)	Tempo (hrs)	Espessura (µm)	α (* 10 ⁻³ cm ² /s)
510	20:05	210	$4,20 \pm 0,10$
520	02:00	200	$3,80 \pm 0,05$
520	04:05	200	$4,60 \pm 0,06$
520	06:30	200	$3,57 \pm 0,06$
550	01:35	195	$3,75 \pm 0,05$
550	01:45	200	$4,\!40 \pm 0,\!06$

Tabela 1a: Medidas da difusividade térmica (α) das amostras da composição BSZPN.

Temperatura (° C)	Tempo (hrs)	Espessura (µm)	α (* 10 ⁻³ cm ² /s)
600	16:00	220	$5,\!24 \pm 0,\!07$
600	20:00	200	$4,50 \pm 0,10$
620	24:00	290	$4,40 \pm 0,10$
660	00:20	230	$4,40 \pm 0,10$

Tabela 1b: Medidas da difusividade térmica (α) das amostras da composição BSKZ.

5. DISCUSSÃO DOS RESULTADOS E CONCLUSÃO

Na realização das medidas de cada amostra, o sinal fotoacústico e a fase se comportam sempre da maneira ilustrada pela figura5. Para toda as amostras o sinal dianteiro comporta-se da forma $S = S_0 f^{-1}$, como era previsto pela teoria.

Todos os valores de α obtidos são compatíveis com o valor típico da difusividade térmica de vidros, que é 5*10⁻³ cm²/s. No entanto obtivemos valores da difusividade diferentes para a maioria das amostras. Como temos dois parâmetros que variam (temperatura de tratamento e tempo de tratamento) e duas composições diferentes, é difícil especificar como eles influenciam na variação do valor de α .

Sabemos que o tamanho dos agregados aumenta com a temperatura e com o tempo de tratamento, e sabemos também que a quantidade de Pb e Te é a mesma para a composição BSZK, mas não é a mesma na composição BSZPN, pois esta segunda composição contém Pb na própria matriz.

O que já pode ser concluído é que a difusividade térmica é um parâmetro sensível a dopagem e tratamento, caso contrário não mudaria de amostra para amostra.

6. REFERÊNCIAS

- 1. A. F. Craievich, O. L. Alves, L. C. Barbosa, J. Appl. Phys. **30**, 623 (1997).
- 2. A. M. Mansanares, Tese de Doutorado, IFGW-UNICAMP, 1991.
- 3. C. L. Cesar, Tese de Doutorado, IFGW-UNICAMP, 1985.
- 4. A. J. Angstron, Annaler der Physik **64**, 513 (1861).
- 5. Y. S. Touloukian, R. W. Powell, C. Y. Ro, M. C. Nicolaou, *Thermal diffusivity*, Plenum, New York, 1973.
- 6. M. J. Adams, G. F. Kirkbright, Analyst **102**, 281 (1997).
- O. Pessoa Jr., C. L. Cesar, N. A. Patel, H. Vargas, C. C. Ghizoni, L. C. M. Miranda, J. Appl. Phys. 59 (4), 1316 (1986).