F 609 Relatório Final Trilho de ar sem atrito.

Nome do aluno: Douglas Maziero da Silva

E-mail: douglasm-ziero-@msn.con(retirar os traços) Nome do orientador: Prof. Dr. Richard Landers

E-mail: http://portal.ifi.unicamp.br/br/mapas-contatos/128-professores/439-7

Introdução

O estudo do movimento e das leis da mecânica clássica são muito complexas para serem tratadas de maneira integral no ensino médio e o assunto abordado é uma simplificação do sistema onde para se facilitar o entendimento matemático, são retirados do sistema fatores que interferem no movimento tais como o atrito com a superfície e a resistência do ar.

Com o intuito de estudar experimentalmente o movimento, se construiu um equipamento capaz de minimizar o atrito de modo que este não possa ser percebido durante o experimento, desse modo tornando mais palpável ao aluno as relações entre a teoria e o mundo real, uma vez que o atrito está presente na vida cotidiana do aluno e os movimentos sem atrito não.

Desenvolvimento e Construção

O Projeto pode ser dividido basicamente em três partes: Pesquisa, Planejamento e Construção.

-Pesquisa

equipamento construído existe 0 comercialmente no mercado, então não foi nenhum desafio encontrar referências para o projeto, no entanto um equipamento comercial pode custar de R\$5.800,00 até R\$ 7.000,00, devido a isso foi feita uma pesquisa orçamentária para avaliar a viabilidade do projeto, essa pesquisa mostrou que seria possível construir orçamento equipamento com um aproximadamente R\$ 250,00, com esse problema resolvido iniciou-se o planejamento para a construção.

-Planejamento

Com um desenho simples o projeto não representou um grande desafio basicamente será feito com tubo de secção quadrada com uma série de furos de dois dos lados do tubo que terá as duas extremidades tampadas, uma conexão de ar pressurizado será colocada para que tenhamos um fluxo de ar através dos furos, o tubo será montado em uma base regulável para que o nível do trilho esteja perpendicular ao campo gravitacional (afim de que este não interfira no experimento), o fluxo

de ar que passará pelos furos ira sustentar um vagão suspenso no ar, o vagão irá se deslocar pelo trilho sem atritar com ele, nas extremidades do trilho, serão colocadas molas que farão com que o vagão mude de direção e mantenha a velocidade média.

A furação do trilho será feita de acordo com o croqui abaixo.

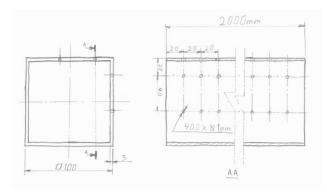


Figura 1:desenho da furação do trilho.

No projeto o levantamento de dados sobre a viabilidade da fabricação foi feito e decidiu-se fabricar todos os componentes nas oficinas da Unicamp.

-Construção e adequação ao material disponível.

O instrumento é relativamente simples de ser construído, porque é composto por um tubo quadrado com furações em faces adjacentes, dois suportes para manter o trilho na posição, caneletas de aço para construção dos vagões e dos limitadores de movimento e por fim o aspirador de pó e as vedações para a pressurização de ar no sistema. (ver fotos abaixo)

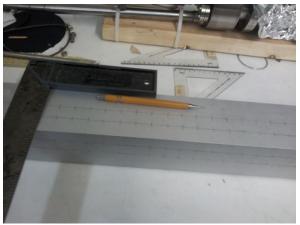


Foto1: marcação para a furação.



Foto2: furação.

Foto3: suporte do trilho.

Foto4: aspirador de pó.

Foto5: sistema provisório de vedação.

Foto6: vagão.

Foto7: imã usado para colisão e repulsão magnética.

Foto8: montagem para colisão.

Foto9: montagem para colisão.

Medidas

Há grande variedade de fenômenos possíveis de serem estudados com esse equipamento, que são: movimento uniforme, movimento uniformemente variado, aceleração da gravidade, força de arrasto, conservação de momento, conservação de energia, colisão elástica, colisão inelástica, oscilador, etc.

Para esse trabalho escolhemos apenas dois, colisões e oscilador magnético.

Colisão:

Fazendo uso de dois vagões para fazer estudos de colisões elásticas, verificou-se o comportamento do momento (q) e da energia cinética (E).

(obs.: desconsiderou-se o efeito magnético que atua a longa distância e em velocidades mais elevadas uma vez que a força cai com $(1/S^2)$.)

Vagão 1 com massa de 0,3054 kg. Vagão 2 com massa de 0,4756 kg.

Com o uso de um vídeo foram tirados os dados da tabela abaixo. Em amarelo estão marcados os pontos de colisão.

Tabela1: (S) por (t).

Vagão 1		Vagão 2		
t (s)	S (cm)	t (s)	S (cm)	
0	0	0	128	
2	4	2	130	
8	20	8	120	
11	30	11	108	
15	40	15	90	
16	48	16	76	
18	52	18	66	
19	56	19	60	
20	50	20	58	
22	48	22	59	
24	38	24	60	
25	21	25	60	
26	10	26	60	
28	0	28	59	
29	10	29	59	
30	22	30	59	
31	32	31	58	
32	50	32	52	
33	48	33	59	
34	42	34	68	
35	35	35	78	
36	30	36	90	
39	14	39	102	

Gráfico 1 S x t: vagão 1 azul e vagão 2 verde.

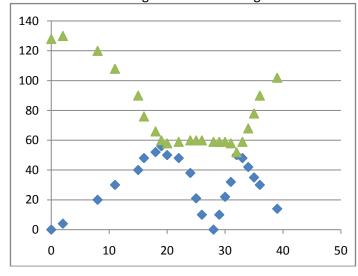


Tabela de momento e energia no SI:

v1	v2	q1	q2	qt	E1	E2	Et
0,030	-0,056	0,009	-0,026	-0,017	0,0001	0,0007	0,0009
-0,067	-0,001	-0,020	0,000	-0,021	0,0007	0,0000	0,0007
0,122	-0,035	0,037	-0,017	0,021	0,0023	0,0003	0,0026
-0,056	0,075	-0,017	0,036	0,018	0,0005	0,0013	0,0018

Oscilador:

Na montagem do sistema percebeu-se que devido à ausência de atrito os imãs usados para substituir as molas nas colisões influenciavam o movimento dos vagões em baixas velocidades e criavam forças restauradoras que faziam o vagão oscilar, abaixo estão os dados de oscilação para o vagão de 0,4756kg em duas amplitudes de oscilação 75cm e 30cm, e também se observou que o período de oscilação para as duas amplitudes era de aproximadamente 45s.

Tabela2: oscilador com A de 75cm

t (s)	S (cm)
23	44
30	55
33	66
37	72
39	80
44	91
48	100
51	104
55	108

59	110	
65	106	
69	100	
72	96	
74	90	
78	80	
82	70	
86	60	
91	50	
94	44	
97	40	
106	35	
112	38	
115	42	
118	47	
120	52	
123	60	
127	72	
131	80	
133	90	
139	102	
146	110	
150	112	
157	108	
162	100	
167	90	
171	80	
174	70	
178	60	
182	50	
188	40	
191	36	
203	38	
206	40	
211	52	
214	60	
218	70	
220	80	
224	90	
228	102	
235	110	
246	100	
250	90	

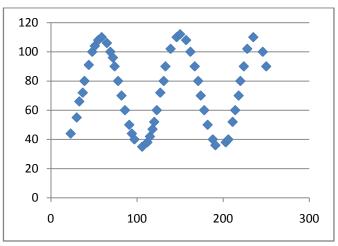


Gráfico 2: Sxt

Tabela3: oscilador com A de 30cm

Tabelas, oscilador (
t (s)	S (cm)			
2	62			
7	68			
10	72			
17	80			
21	84			
28	88			
32	90			
40	88			
46	84			
50	80			
56	74			
62	66			
72	60			
80	60			
85	64			
90	70			
95	76			
101	84			

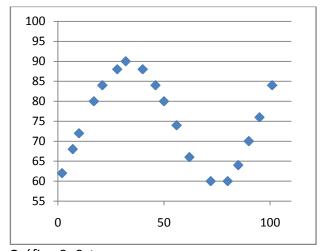


Gráfico 3: Sxt

Dificuldades e Conclusão

A maior dificuldade encontrada até foi a realização da furação com cerca de 400 furos de 1mm de diâmetro, mesmo assim foram gastas 7 horas de trabalho para completar a furação.

Por fim o instrumento construído para o estudo de fenômenos sem atrito mostrou-se satisfatório no ponto em que tornou possível o a observação dos efeitos da ausência de uma força de atrito no sistema e também abre a possibilidade de uso no estudo de diversos fenômenos relacionado ao ensino de física no ensino médio com já foi mencionado anteriormente.

Opinião do Professor Orientador

Meu orientador concorda com o expressado neste relatório final e deu a seguinte opinião:

"O aluno fez um trabalho minucioso, obtendo um aparelho adequado e eficiente ao ensino de física. O relatório permite a qualquer pessoa replicar este instrumento."

Referências

Ref.1: Relatório de F 809, Trilho de ar, orientador Profº Dr. Y.E. Nagai, aluno Joel Ferreira de Brito

(http://www.ifi.unicamp.br/~lunazzi/F530_F59 0_F690_F809_F895/F809/F809_sem1_2005/JoelB Nagai-RF1.pdf)

- Ref.2: Catálogo impresso de produtos da Pasco (2003, Physics, Worldwide Catalog and Experiment Guide).
- Ref.3: Fundamentos de **Física** 1 8ª Ed. 2012. **Halliday**, David; Walker, Jearl; Resnick, Robert / LTC.
- Ref.4: Fundamentos de **Física** 2 8ª Ed. 2012. **Halliday**, David; Walker, Jearl; Resnick, Robert / LTC.