

Universidade Estadual de Campinas

IF - INSTITUTO DE FÍSICA

F 609 – Tópicos de Ensino de Física I Coordenador: Prof. Dr. José Joaquín Lunazzi 1º Semestre 2008

RELATÓRIO FINAL

Transcrição de Vídeos

Aluno: Wilson José da Mota RA: 047032 **e-mail:** w047032@dac.unicamp.br

Orientador: Prof. Dr. José Joaquín Lunazzi **e-mail:** lunazzi@ifi.unicamp.br

Campinas, 09 de junho de 2008

Índice

1. Projeto
1.1. Descrição
1.2. Importância didática do trabalho
1.2. Lista de materiais03
2. Resultados Obtidos
2. 1. Da execução do projeto 04
2. 2. Das configurações de transcrição04
2. 3. Da fragmentação dos temas
3. Dificuldades Encontradas
4. Pesquisas realizadas
5. Conclusão
6. Referências Utilizadas
7. Apêndice
7.1. Padrão de compressão de vídeo MPEG1
7.1.1 Técnicas de Compressão1
7.1.2 Sensibilidade do Olho Humano13
7.1.3 Camada de Sistema13
7.1.4 Camada de Vídeo1
7.1.5 Processo de Compressão MPEG

1. Projeto

1.1. Descrição

Este projeto visa à digitalização de produções "cinematográficas" de experimentos envolvendo temas de física – realizados na disciplina de F 609 do IFGW sob coordenação de J. J. Lunazzi. A digitalização consiste na transferência do conteúdo de fitas de vídeo para o computador (em formato digital), onde serão utilizados: um dispositivo externo de conversão (USB), softwares de transferência e edição de vídeos.

1.2. Importância didática do trabalho

Além de assegurar que os registros (vídeos) dos trabalhos gerados na disciplina sejam preservados, o presente projeto permitirá que os vídeos sejam distribuídos aos interessados, podendo ainda, servir de material de apoio a professores e estudantes em diversos níveis de ensino.

1.3. Lista de materiais

Serão utilizados um computador (processador 1,6 GHz,), os softwares PCTV da Pinnacle e VideoStudio 10 da Ulead, uma filmadora Sony e um dispositivo USB de conversão da Pinnacle (Figura 1).

a)

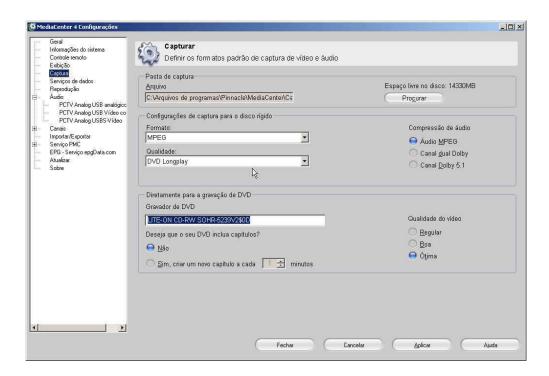
Figura 1 – (a) Dispositivo USB de conversão da Pinnacle, (b) Filmadora Sony, (c) dispositivos montados no computador.

2. Resultados Obtidos

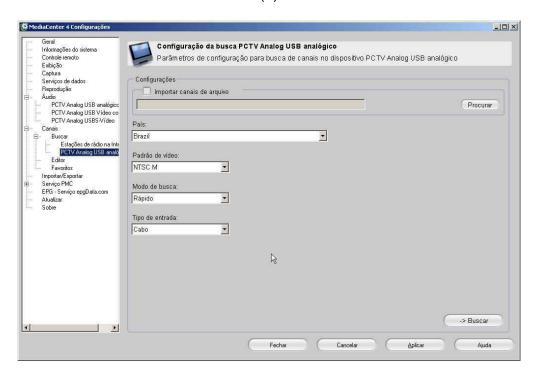
2. 1. Da execução do projeto

O projeto foi executado da seguinte forma: Inicialmente foram instalados os softwares e drives do dispositivo USB Pinnacle (PCTV) - que incluem os programas MediaCenter e Configurações do MediaCenter. Posteriormente, como veremos a seguir, foram programadas as configurações que possibilitariam uma conversão com qualidade.

Nesta passagem, os dispositivos foram interligados, de acordo com o esquema representado na *Figura 2*, onde a fita é colocada na filmadora e esta é conectada ao dispositivo de captura (PCTV), que, por sua vez, é ligado a uma entrada USB do computador e, apartir deste, obtém-se o DVD com os vídeos.


Figura 2 - Interligação dos dispositivos utilizados

Na etapa de edição, que se seguiu após as conversões, fora utilizado o software VídeoStudio 10 da Ulead. Este programa possibilita a "fragmentação" (consisti em recortes feitos no conteúdo e a geração de arquivos menores a partir destes) dos vídeos de acordo com os temas gravados.


O professor Lunazzi prestou toda assessoria quanto aos requisitos técnicos e disponibilizou a filmadora, o dispositivo de captura e os cabos para realização do trabalho. Foram transcritas ao todo quatro fitas de VHS contendo registros de diversos trabalhos desenvolvidos na disciplina.

2. 2. Das configurações de transcrição

Os vídeos foram capturados no formato MPEG-2 (Apêndice), com qualidade DVD Longplay, compressão de áudio MPEG e padrão de vídeo NTSC (decodificador de vídeo) - tanto o padrão NTSC (usado nos EUA) quanto o padrão PAL-M (usado no Brasil) trabalham com o mesmo padrão de imagem (freqüência horizontal de 15.750 Hz, freqüência vertical de 60 Hz, varredura de 525 linhas, canais de 6 MHz). A diferença entre os dois está na maneira com que a cor é codificada e transmitida -, como mostrado na *Figura 3 (a)-(b)*. A qualidade obtida pode ser verificada na *Figura 4*.

(a)

(b)

Figura 3 – (a) Configuração de captura (formato, qualidade e compressão de áudio); (b) Configuração do padrão de vídeo, modo de busca e tipo de entrada.

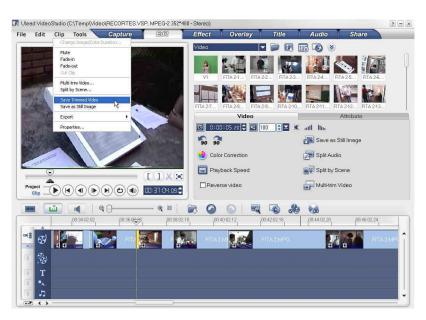
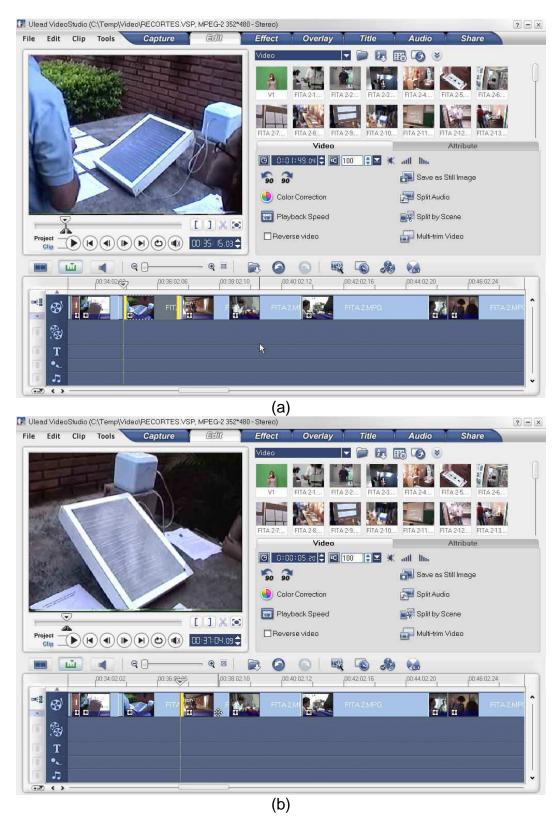


Figura 4 – Qualidade dos vídeos transcritos (na tela do MediaCenter)


2. 3. Da fragmentação dos temas

Os fragmentos contidos nas fitas estavam distribuídos em vários temas, os quais foram separados em arquivos menores. Para tanto se fez o uso do VideoStudio 10 da Ulead. Nesta etapa, o conteúdo de cada fita (arquivo capturado da filmadora) foi acessado através do VideoStudio, onde se dá a verificação dos instantes iniciais e finais de cada tema, bem como os recortes nestes locais - Na *Figura 6* são mostradas estas etapas.

Apartir de cada recorte, um arquivo é gerado em formato MPEG-2 como mostrado na *Figura 5*.

Figura 5 – Procedimento para gerar o arquivo MPEG-2 de um fragmento do vídeo – seleciona-se o fragmento e tecla-se "Clip" e em "Save Trimmed Video".

Figura 6 – Os instantes inicial **00:35:15:03** (a) e final **00:37:04:09** (b) de um determinado tema são visualizados e recortados para que um novo arquivo seja gerado.

3. Dificuldades Encontradas

As principais dificuldades neste tipo de trabalho estão relacionadas com a configuração do computador e com as configurações da captura. Cada mudança na configuração pode alterar drasticamente a qualidade do vídeo capturado (para melhor ou para pior – dependendo do tipo de mudança). A configuração do computador utilizado para este trabalho está apresentada na *Figura 7.*

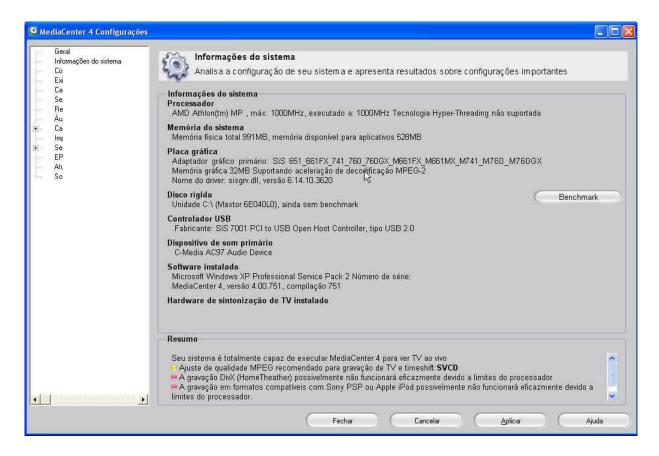


Figura 7 – Informações computador utilizado neste trabalho geradas pelo MediaCenter.

Esse processador apresentou-se bastante limitado nessa tarefa, executando as tarefas com certa lentidão e travando com muita freqüência - dependendo do comando utilizado e da configuração de captura. Dentre os problemas, estiveram "aberrações" diversas nos vídeos (chuviscos, linhas verticais, transversais e horizontais, etc...).

Após configurar acertadamente de acordo com a descrição feita na seção 2.2, foi possível concluir o trabalho sem maiores problemas.

4. Pesquisas realizadas

•	Detalhes sobre conversão de vídeos	[1]
	o Palavras chaves: conversão de vídeos, transcrição de vídeos.	
•	Sobre captura e conversão de vídeos	[2]
	o Palavras chaves: conversão de vídeos, transcrição de vídeos.	
•	Tutorial do VídeoStudio 10	[3]
	o Palavras chaves: tutorial vídeoStudio	
•	Tutorial do VídeoStudio 10	[4]
	o Palavras chaves: tutorial vídeoStudio 10	
•	Solução de problemas na captura com PCTV	[5]
	o Palavras chaves: pctv, pinnacle pctv, config pctv	
•	Padrão de compressão MPEG	[6]
	o Palavras chaves: NTSC, SECAM, decodificadores de vídeo.	

5. Conclusão

O trabalho de transcrição de vídeos é bastante simples - em relação à operação dos programas e manipulação dos dispositivos -, no entanto, entender os conceitos deste processo facilita a obtenção de vídeos com melhor qualidade. Na internet existe inúmeros fóruns e artigos, que trazem dicas e discussões sobre o tema e ajudam a entender melhor, as dinâmicas envolvidas no referido processo.

Os temas transcritos constituem-se num rico material didático, o qual pode ser utilizado em diversas abordagens, tanto no nível médio de ensino, quanto no superior.

6. Referências Utilizadas

[1] - http://www.forumpcs.com.br/viewtopic.php?t=171943
[2] – http://pcworld.uol.com.br/dicas/2006/08/31/idgnoticia.2006-08-31.1997819335/
[3] - http://forum.clubedohardware.com.br/tutorial-video-studio/122113?s=1bbac5959 cab562357d795de70f39877&
[4] - http://www.ulead.com/learning/vs.htm
[5] - www.pinnacleal.com/site_portugues/produtos/pctv-config.htm
[6] – MARGI, C. B., Um mecanismo para distribuição segura de vídeo MPEG, in.: Dissertação apresentada à Escola Politécnica da Universidade de São Paulo, São Paulo, 2000

7. Apêndice

7.1. Padrão de compressão de vídeo MPEG

Introdução: Este apêndice explica o padrão de compressão MPEG, discutindo os princípios fundamentais para a compressão de vídeo, e como esta funciona.

O comitê MPEG (*Moving Picture Experts Group*) foi criado pela ISO (*International Organization for Standardization*), em 1988, com o intuito de criar um padrão para armazenamento e transmissão de vídeo, a partir de um consenso entre representantes de diferentes setores (telecomunicações, computação, cinema e TV, universidades) [LeGall 91].

O padrão MPEG-1, criado em 1991 e publicado sob número de referência ISO11172, foi desenvolvido para armazenar sinais digitais de áudio e vídeo colorido com qualidade VCR (Vídeo Cassete Records) em CD-ROM. A taxa de transmissão é de 1,5 Mbps, sendo o canal de áudio de 200 à 250 Kbps e o canal de vídeo de 1,15 à 1,2 Mbps. O padrão MPEG-2 [Mitchel 96] apresenta as mesmas características do padrão MPEG-1, com algumas melhorias que permitem a sua operação em ambientes suscetíveis a erros. MPEG-2 mantém a mesma sintaxe de vídeo, porém acrescenta algumas extensões.

O padrão MPEG trata separadamente vídeo e áudio, especificando como estes sinais são associados e sincronizados, possuindo assim três partes: a camada de sistema, a camada de vídeo e a camada de áudio. Estas camadas serão discutidas em itens posteriores. Como o volume de dados de vídeo é muito grande (1 segundo de vídeo na resolução de 640 x 480 resulta em 27 MB), torna-se necessário utilizar técnicas de compressão [Silveira 98].

7.1.1 Técnicas de Compressão

Existem dois tipos principais de compressão: a compressão livre de perdas e a compressão com perdas. A informação submetida a um processo de compressão livre de perdas não sofre nenhuma alteração em relação à informação original após a sua descompressão. No caso da compressão com perdas (ou compressão irreversível), a informação obtida após a descompressão é diferente da informação original.

A codificação MPEG é baseada na percepção do olho humano, então é possível utilizar a compressão irreversível sem que o observador note qualquer diferença.

As técnicas de compressão, segundo [Silveira 98], podem ser classificadas em:

- Codificação por entropia;
- Codificação dependente da fonte.

Na codificação por entropia a natureza dos dados a serem comprimidos não é considerada, como ocorre na Supressão de Caracteres Repetidos (usada no padrão MPEG) e na Codificação Estatística.

No caso da codificação dependente da fonte, a compressão aproveita as características específicas do tipo de informação. Por exemplo a Compressão por Transformadas, ou a Compressão Diferencial ou a Quantização Diferencial. A compressão de vídeo consiste em eliminar as informações redundantes (correlatas).

Estas correlações podem aparecer de duas formas:

- correlação espacial
- correlação temporal.

A correlação espacial é observada em uma mesma imagem, ou seja, são as informações redundantes, como por exemplo a cor de fundo de uma cena. Para eliminar a correlação espacial, o padrão MPEG utiliza a Transformada Discreta de Coseno (DCT), seguida da quantização dos coeficientes obtidos.

Já a correlação temporal é observada em dois quadros consecutivos; por exemplo a primeira cena mostra uma sala com móveis e uma pessoa, enquanto na segunda cena aparece a mesma sala, porém a pessoa mudou de lugar. Para eliminar a correlação temporal, o padrão MPEG utiliza o processo chamado de Compensação de Movimento, que é o emprego da técnica DPCM, codificando apenas as diferenças encontradas entre os quadros.

A *Tabela 7.1.1* ilustra o ganho obtido utilizando técnicas de compressão de vídeo para uma resolução de 640 x 480 [Silveira 98].

Tabela 7.1.1: Ganho obtido com compressão

	1 segundo	1 minuto	1 hora
1:1	27 Mb	1,6 Gb	97 Gb
3: 1	9 Mb	540 Mb	32 Gb
100:1	270 Kb	16 Mb	97 Mb

Os algoritmos de compressão permitem definir o grau de compressão desejado.

7.1.2 Sensibilidade do Olho Humano

A resposta do olho humano em relação à sensibilidade luminosa varia com a luminância e a crominância. A luminância é a resposta cumulativa dos olhos a todos os comprimentos de onda contidos em uma fonte luminosa; seus componentes são o contraste (impressão de branco ou preto) e o brilho (impressão de escuro ou brilhante).

A crominância é a resposta dos olhos às cores, ou seja, a cada um dos comprimentos de onda específicos. O olho humano é mais sensível ao comprimento de onda correspondente ao verde, seguido do vermelho e então o azul, sendo mais sensível a luminância que a crominância [Silveira 98] [Mitchel 96].

De acordo com as características do olho humano, os três sinais de cores utilizados pelos sistemas de vídeo (RGB ou CMY) são convertidos em dois sinais de crominância e um sinal de luminância. O padrão MPEG-1 define um formato para sub-amostragem (SIF – Standard Interchange Format) que determina o número de amostras por linha e o número de linhas por quadro para a luminância e para a crominância:

- Luminância: 352 amostras por linha; 240 linhas por quadro para o NTSC e 288 linhas por quadro para o PAL/SECAM.
- Crominância: 176 amostras por linha; 120 linhas por quadro para o NTSC e 144 linhas por quadro para o PAL/SECAM.

O uso do SIF permite uma redução de 50% na taxa de transmissão sem degradação da qualidade da imagem.

7.1.3 Camada de Sistema

A camada de sistema MPEG é responsável pelas informações de tempo para a reprodução do vídeo MPEG-1. Ou seja, especifica como os fluxos de informação de áudio e de vídeo devem ser multiplexados em um único canal de transmissão ou no local de armazenamento. Além disso, deve sincronizar estes dois fluxos de dados.

7.1.4 Camada de Vídeo

A camada de vídeo MPEG é dividida em seis camadas [Mitchel 96]: Camada de Seqüência de Vídeo, Camada de Grupos de Imagens (GOP), Camada de Imagem, Camada de slice, Camada de Macroblocos e Camada de Blocos, conforme observa-se na *Figura 7.1.1*.

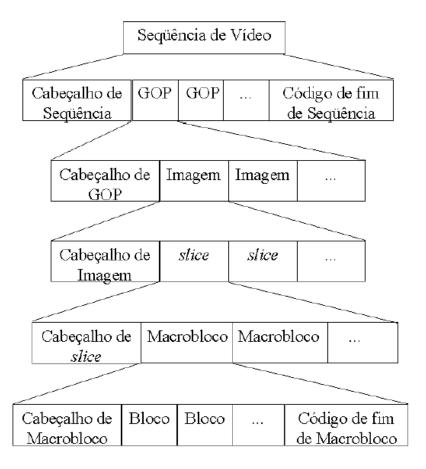


Figura 7.1.1: Estrutura da Camada de Vídeo MPEG

Cada uma destas camadas é identificada pelo seu cabeçalho, cujos valores podem ser observados na *Tabela 7.1.2*.

Tabela 7.1.2: Códigos de início de vídeos MPEG

Nome do Código de Início	Valor em Hexadecimal
Extension_start code	000001B5
Group_start_code	000001B8
Picture_start_code	00000100
Reservado	000001B0
Reservado	000001B1
Reservado	000001B6
Sequence_end_code	000001B7
Sequence_error_code	000001B4
Sequence_header_code	000001B3
Slice_start_code 1	00000101
Slice_start_code 175	000001AF

Em MPEG-1 a imagem é dividida em blocos de 16 x 16 amostras para luminância, e blocos de 8 x 8 amostras para cada sinal de crominância. Um macrobloco é composto por um bloco de luminância (4 x (8 x 8) amostras) e dois blocos de crominância (1x (8 x 8) + 1x (8 x 8) amostras). O vetor de movimento indica a translação espacial de um bloco para o outro, sendo utilizado na Compensação de Movimento para eliminar a correlação temporal.

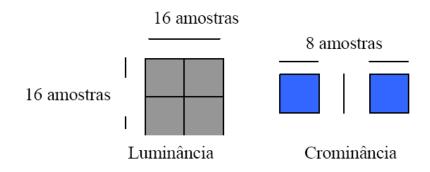


Figura 7.1. 2: Constituição do Macrobloco MPEG

As cadeias de vídeo podem ter três tipos de quadros:

- quadro I (intra-frame): é um quadro codificado somente com informações da imagem, não dependendo de qualquer quadro passado ou futuro;
- **quadro P** (*forward predicted frame*): este quadro é codificado relativamente ao quadro de referência precedente mais próximo (quadro I ou quadro P);
- quadro B (bi-directional predicted frame): sua codificação é feita relativa ao quadro de referência precedente mais próximo (quadros I ou P), ou ao quadro de referência sucessivo mais próximo, ou a ambos.

Uma seqüência típica de quadros MPEG é apresentada na *Figura 7.1.3*, onde a dependência entre os quadros I, P e B pode ser observada. Note que se um quadro I não é decodificado corretamente, todos os quadros seguintes apresentarão erros, até a decodificação do próximo quadro I.

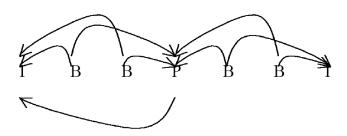


Figura 7.1.3: Interdependência de Quadros para uma Següência MPEG

7.1.5 Processo de Compressão MPEG

O processo de compressão MPEG segue os seguintes passos:

- processo de identificação dos quadros;
- preparação dos blocos de dados;
- codificação: transformada discreta de coseno (DTC), quantização, supressão de seqüências repetidas (aplicada em zig-zag) e codificação de Huffman.

Coeficiente DCT c(i j)

			•		, ,	(3/	
1	1	1	1	1	4	8	16
1	1	1	1	4	4	8	16
1	1	1	2	4	4	8	16
2	8	8	8	8	16	16	16
4	8	8	8	8	16	16	32
4	8	8	8	16	16	16	32
4	8	8	8	16	16	32	32
8	8	8	16	16	32	32	64

Tabela de Quantização Q(i j)

Coeficiente Quantizado q(i j)

168	45	7	3	2	0	0	0
67	20	3	3	2	0	0	0
12	5	5	2	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

$$q(i j) = c(i j) / Q(i j)$$

Figura 7.1.4: Exemplo de Quantização

Com a Transformada Discreta de Coseno (DCT), os blocos são transformados do domínio espacial para o domínio das freqüências, o que irá facilitar a compressão dos dados. Inicialmente, cada bloco é composto por 64 valores que representam a amplitude do sinal amostrado para o componente considerado. Após a transformada DCT, estes 64 valores representam as freqüências dos sinais amostrados.

A quantização consiste em dividir cada um dos coeficientes obtidos através da Transformada Discreta de Coseno por valores da Tabela de Quantização, de modo a obter a Tabela de Coeficientes Quantizados. Os valores da Tabela de Quantização variam de 1 a 255, e determinam quais coeficientes serão descartados após a quantização. Quanto maior o valor do coeficiente, maior será a taxa de compressão, o que reduz a fidelidade da imagem resultante.

Após a quantização muitos coeficientes são nulos, conforme observa-se na *Figura 7.1.4*. Este fato permite o emprego da técnica de supressão de caracteres repetidos ou nulos, que é aplicada em zig-zag para umentar a probabilidade de encontrar seqüências

repetidas, conforme observa-se na *Figura 7.1.5*. A Técnica de Supressão de Caracteres Repetidos ou Nulos consiste em, detectar as seqüências repetidas ou nulas, e substituílas por um código seguido do número de vezes que o caracter ocorreu.

Figura 7.1.5: Aplicação em Zig-zag da técnica de supressão de caracteres

FIM