Universidade Estadual de Campinas Unicamp Instituto de Física Gleb Wataghin – IFGW

F-609 Tópicos de Ensino de Física I

PROJETO: EXPERIMENTOS COM SIFÃO

MARIA DEL ROSARIO B. TRULLENQUE

ORIENTADOR: PROF. Dr. RICHARD LANDERS

COORDENADOR DA DISCIPLINA: PROF. Dr. JOSÉ J. LUNAZZI

CAMPINAS 2° SEMESTRE DE 2007

PROJETO

EXPERIMENTOS COM SIFÃO

Nesta prática de ensino propõe-se a comprovação da Equação de Bernoulli, aplicando-a a um sifão construído com materiais de fácil aquisição. O experimento se destina a todos os níveis de instrução.

Descrição

Basicamente o sifão é formado por um tubo flexível, um reservatório onde é armazenado o líquido e um recipiente menor de volume conhecido, montados de acordo com a Figura 1.



Figura 1

Material utilizado:

Reservatório 1, de área de superfície livre, A1.

Reservatório 2, de volume conhecido, V2.

Mangueira flexível de diâmetro interno d, portanto área de seção transversal $A_t = \pi d^2/4$, ($A1 >> A_t$) Relógio com cronômetro.

Escalas indicadoras de h1 e h2.

Termômetro.

Tabela de propriedades do fluido em função da temperatura.

Inicialmente mede-se a temperatura do fluido, para obter o peso específico.

Também pode-se utilizar uma mangueira em forma de U contendo um fluido imiscível, de massa específica conhecida e adicionar o fluido do experimento. Medindo as colunas equilibradas, calculase a massa e peso específicos desse fluido.

Ao se estabelecer o escoamento, mede-se h1 e h2. Constata-se que a velocidade de descida da superfície livre, no reservatório 1 é muito menor que a velocidade de escoamento na saída da mangueira, caracterizando então escoamento em regime permanente, pelo menos no intervalo de duração da medição.

Obtém-se a vazão volumétrica cronometrando-se o tempo em que o reservatório 2 é enchido.

Pela Equação da Continuidade, conhecendo-se a vazão volumétrica, calcula-se a velocidade do fluido na mangueira, podendo-se conferir que a velocidade de descida da superfície livre é, em comparação, extremamente pequena.

Comprova-se o Princípio de Conservação da Energia, através da Equação de Bernoulli entre duas seções, a superfície livre do reservatório 1 e a saída da mangueira. Se a mangueira apresentar rugosidade significativa, viscosidade considerável e for longa, a diferença entre os dois lados da equação permite calcular a perda de carga total, ou seja, a energia dissipada por unidade de peso, (Nm/N).

Modificando as alturas h1 e h2 varia-se a vazão e, portanto a velocidade. É interessante mostrar que o escoamento cessa quando a saída da mangueira estiver ao mesmo nível da superfície livre do reservatório R1, e também quando o valor de h1 provocar a cavitação.

Pode-se modificar a pressão sobre a superfície livre, colocando-se uma tampa sobre o reservatório R1 e vedando-a totalmente. Ar pode ser introduzido para aumentar a pressão, usando-se uma bomba de ar para encher pneu de bicicleta ou compressor utilizado em aquários.

É possível efetuar cálculo do Número de Reynolds e verificar visualmente as condições de escoamento laminar ou turbulento ao se introduzir com uma seringa um fluido de contraste na mangueira.

IMPORTÂNCIA DIDÁTICA DO TRABALHO

Este experimento, bastante acessível em termos materiais, introduz de forma forma simples conceitos fundamentais da Mecânica dos Fluidos, apropriados a diversos níveis educacionais. Por meio dele, com algumas modificações, pode-se verificar e compreender conceitos de pressão estática, pressão dinâmica, pressão atmosférica, velocidade de escoamento, vazão volumétrica, vazão em massa, conservação da massa, conservação da energia, energia dissipada, escoamento permanente e transiente, número de Reynolds em conduto fechado e outros.

ORIGINALIDADE

O sifão é bem conhecido desde a antiguidade. Apesar disso em laboratórios de ensino não é devidamente explorado, sendo mais usado como demonstração e raramente fazendo medições e cálculos.

REFERÊNCIAS

Livros:

- 1. MOTT, R.L. Applied Fluid Mechanics, 4^a Ed. Prentice Hall, New Jersey, 1994.
- 2. MUNSON, B. R; YOUNG, D.F e OKIISHI, T.H. *Fundamentos da Mecânica dos Fluidos*, vol.1. 2ª Ed. Editora Edgard Blucher Ltda. São Paulo, SP 1997.

Na internet:

- 1. http://en.wikipedia.org/wiki/Siphon#Explanation-using-Bernoulli.27s equation
- 2. http://isaac.exploratorium.edu/~pauld/physics/syphon/syphonphysics.htm
- 3. http://arxiv.org/ftp/physics/papers/0310/0310039.pdf
- 4. http://www.spray.com/applications/application_reference/Injector_Training_Guide.pdf
- 5. http://people.sinclair.edu/dougbradleyhutchison/phy208/siphon.pdf
- 6. http://www.answers.com/syphon?cat=biz-fin
- 7. http://www.tvcultura.com.br/x-tudo/experiencia/01/exsifao.htm
- 8. http://www.uq.edu.au/ School Science Lessons/UNPh12.html#12.4.0head
- 9. http://w3.ualg.pt/~pjsilva/guias/Guia%20do%20Sif%E3o1.htm

Universidade Estadual de Campinas Unicamp Instituto de Física Gleb Wataghin – IFGW

F-609 Tópicos de Ensino de Física I

RELATÓRIO PARCIAL: EXPERIMENTOS COM SIFÃO

MARIA DEL ROSARIO B. TRULLENQUE

ORIENTADOR: PROF. Dr. RICHARD LANDERS

COORDENADOR DA DISCIPLINA: PROF. Dr. JOSÉ J. LUNAZZI

CAMPINAS 5 DE OUTUBRO DE 2007

RESULTADOS ATINGIDOS

- 1. Aquisição do material da montagem:
 - a) Recipiente utilizado: Garrafa plástica de seção transversal circular e parede uniforme, de 8,3 cm de diâmetro.

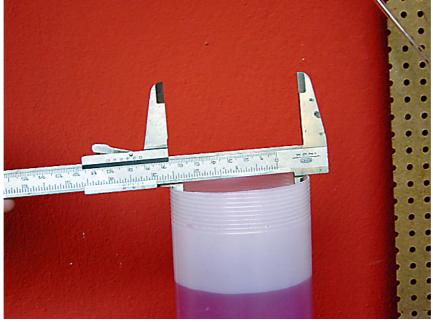


Foto 1

b) Recipiente coletor: corpo de seringa de plástico com sua extremidade inferior vedada, fixada em posição vertical. A capacidade da seringa é de 4 cm³.

Foto 2

c) Mangueiras flexíveis: mangueira de aquário, mangueira de equipo de soro dotada de bocal, mangueira de látex. A foto mostra o diâmetro da mangueira de aquário.

Foto 3

- d) Placa perfurada para fixação do suporte para variação da altura máxima do sifão.
- e) Régua de plástico, para medição do desnível da superfície de líquido e da saída da mangueira.
- f) Relógio com cronômetro.

MONTAGEM E FUNCIONAMENTO

Inicialmente desenvolvemos a montagem voltada para o público em geral, portanto usamos água colorida com suco de beterraba. A mangueira é totalmente inserida no líquido, evitando a formação de bolhas de ar. A extremidade da mesma é tampada com massa de modelar e então a mangueira é puxada para fora do líquido e colocada no suporte de arame preso na placa perfurada. Mede-se o desnível entre a superfície de líquido e a saída do bocal. A seguir a massa é removida e inicia-se a contagem do tempo necessário para encher o volume indicado na seringa. A foto 4 mostra o experimento em realização.

Foto 4

Observa-se facilmente a cessação do escoamento quando o nível da saída do bocal é idêntico ao da superfície de líquido do reservatório.

Medições preliminares indicam que é possível verificar uma perda de carga considerável, devido ao comprimento da mangueira utilizada.

DIFICULDADES ENCONTRADAS

- 1. A montagem necessita de melhor fixação dos componentes.
- 2. As mangueiras, a não ser a de latex, permanecem enroladas ao serem retirada do reservatório; isto poderá ser melhorado utilizando-se um reservatório de maiores dimensões.
- 3. A seringa de coleta tem capacidade pequena, produzindo incertezas na medição da vazão. Será portanto substituida por uma maior.