Ist International Conference on Molecules, Polymers and Material Physics

MP2-UFAM Aug. 26-29, 14 Manaus, AM

Low energy electron scattering data for chemical plasma treatment of biomass

by

Marco A. P. Lima Unicamp

2

MAPLima

Motivation I: large scale use of ethanol in engines

Brazilian Sales of light fleet Vehicles (1975-2010)

Ethanol as Fuel: Plasma Ignition for Vehicle Engines

Theoretical support for an application project working on:

 Investigation of processes occurring during the ignition of plasma and its consequences in post-discharge for an internal combustion engine;

• The proper parameters to be applied in cars that operate on "poor mixtures" reducing pollutants released into the atmosphere, especially considering the spark plug discharge.

4

MAPLima

Low-energy electron scattering from methanol and ethanol

PHYSICAL REVIEW A 77, 042705 (2008)

Integral elastic scattering cross sections for CH₃OH. Legend: \bullet : present experiment; ——: SMCPP SEP; —: SMC SEP; ---- (short dashes): SMC SE which is similar to SMCPP SE; and ----- (long dashes): *R*-matrix ICSs of Bouchiha *et al.* (without Born correction) [10]. × Total cross section measurements of Szmytkowski and Krzysztofowicz [24] and — \bullet — of Schmieder [22]. ----- (short dashes) are from the SMCPP SE which is similar to SMC SE.

NSF/CNPq project (experiments from Morty Khakoo's group)

Integral elastic cross sections for electron collisions with *n*-propanol and *n*-butanol. Red circles are experimental values, thin blue lines with squares results from all-electron calculations, and thick green lines with diamonds results from pseudopotential calculations. Open symbols and solid lines are propanol data; solid symbols and dashed lines are butanol data.

5

MAPLima

NSF/CNPq project (experiments from Morty Khakoo's group)

Motivation II: large scale production of ethanol

Motivation II: large scale production of ethanol

MP2-UFAM Aug. 26-29, 14 Manaus, AM

MAPLima

Biomass: a source of energy and carbon

8

MAPLima

Motivation II: large scale production of ethanol

Biomass: a source of energy and carbon

Motivation II: large scale production of ethanol

First generation ethanol: crushing the cane for the juice

Bagasse piles at the mill.

2nd generation ethanol? **Other high value** bioproducts?

Biomass: a source of energy and carbon

MP2-UFAM Aug. 26-29, 14 **Biomass is Made Up with Fermentable Sugars** Manaus, AM **Biomass Feedstock Plant Residues and Energy Crops** cellobiose β-D-glucose o deFisica Geb Watagh bit argument ais and F. Zeiger, (b) Macrofibril Primary wall Secondary wall - Plasma membrane Primary cell.wall 11 MAPLima

12

MAPLima

Lignocellulose is Resistant to Hydrolysis

Pretreatment: bio- and physicalchemical processes to expose the cellulose fibers

Lothar Klarhöfer¹, Wolfgang Viöl^{2,3,*} and Wolfgang Maus-Friedrichs¹

Holzforschung, Vol. 64, pp. 331-336, 2010

Dielectric Barrier Discharge (DBD): electron flux on substrate ~10⁸ cm⁻² s⁻¹

Sugarcane Bagasse Plasma Pretreatment

Treatment conditions

- ~ 25 g of dry sugarcane bagasse (50% moisture) milled at $500 \mu m$
- Gas flow Mixture: 95% Ar (1.9 SLM) and 5% O_2 (0.1 SML)
 - $\Delta t_{treatment} = 3h$

Biomass Chemical Analysis

Lignin concentration (%) of raw bagasse and samples related to plasma torch treatment and washing procedure by water and NaOH 1% solution at room temperature.

Samples	Soluble Lignin (%)	Insoluble Lignin (%)	Total of Lignin remaining (%)
raw bagasse	1.58 ±0.01	20.3 ± 0.1	21.9 ± 0.1
Washed by H ₂ O	2.4 ± 0.9	21.4 ± 0.9	23.8 ± 0.9
Washed by NaOH 1%	1.3 ± 0.9	12.6 ± 0.9	13.9 ± 0.9

About 40% of original lignin was removed!!!

Jayr Amorim, Carlos Oliveira, Jorge A. Souza-Correa, Marco A. Ridenti Plasma Process. Polym. 2013, DOI: 10.1002/ppap.201200158

Electron-Induced Damage to Biomolecules

Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons

Badia Boudaïffa, Pierre Cloutier, Darel Hunting, Michael A. Huels,* Léon Sanche

Science, **287** 1658 (2000)

BIOLOGICAL CHEMISTRY Beyond radical thinking

Léon Sanche

Radiation-induced DNA damage has been attributed to hydroxyl radicals, which form when water absorbs high-energy photons or charged particles. But another product of water's radiolysis might be the real culprit.

Sanche, Nature 461, 358 (2009)

JACS COMMUNICATIONS

Chun-Rong Wang, Jenny Nguyen, and Qing-Bin Lu*

J. AM. CHEM. SOC. 2009, 131, 11320-11322

To see this animations, visit: http://www.embd.be/quantummechanics/

Theoretical background

17

MAPLima

Scattering theory

Schrödinger equation

$$H\Psi_{\vec{k}_{m}}^{(\pm)}(\vec{r}_{1},\cdots,\vec{r}_{N+1}) = E\Psi_{\vec{k}_{m}}^{(\pm)}(\vec{r}_{1},\cdots,\vec{r}_{N+1})$$

Asymptotic condition

$$\Psi_{\vec{k}_{i}}^{(\pm)}(\vec{r}_{1},\cdots,\vec{r}_{N+1}) \xrightarrow{r_{N+1}\rightarrow\infty} S_{\vec{k}_{i}} + \sum_{f}^{open} f_{i\rightarrow f}^{B}(\vec{k}_{i},\vec{k}_{f})\Phi_{f} \frac{e^{\pm ik_{f}r_{N+1}}}{r_{N+1}}$$
$$S_{\vec{k}_{i}} = \Phi_{i}e^{i\vec{k}_{i}\cdot\vec{r}_{N+1}}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}^{i \to f}(\vec{k}_{i},\vec{k}_{f}) = \frac{\mathrm{k}_{f}}{\mathrm{k}_{i}} \left| \mathbf{f}_{i \to f}^{\mathrm{L}}(\vec{k}_{i},\vec{k}_{f}) \right|^{2}$$

Theoretical background

18

MAPLima

Scattering theory

Schrödinger differential equation

$$\mathbf{H}\Psi_{\vec{k}_{m}}^{(\pm)} = \left[H_{N} + T_{N+1} + V\right]\Psi_{\vec{k}_{m}}^{(\pm)} = E\Psi_{\vec{k}_{m}}^{(\pm)}$$

Lippmann-Schwinger integral equation

$$\Psi_{\vec{k}_{m}}^{(\pm)} = S_{\vec{k}_{m}} + G_{o}^{(\pm)} V \Psi_{\vec{k}_{m}}^{(\pm)}$$
$$S_{\vec{k}_{m}} = \Phi_{m} e^{i\vec{k}_{m} \cdot \vec{r}_{N+1}}$$

)

Free-particle Green's function (Source of uncertainty – controllable)

$$G_{o}^{(\pm)} = \frac{1}{E - T_{N+1} - H_{N} \pm i\epsilon} = \lim_{\epsilon \to 0} \int_{m} \int d^{3}k \frac{|\Phi_{m}\vec{k}\rangle\langle\vec{k}\Phi_{m}|}{\frac{k_{m}^{2}}{2} - \frac{k^{2}}{2} \pm i\epsilon}$$

The Schwinger Variational method serves to get a scattering amplitude free of first order errors for a scattering process that respect the equations

$$A^{(\pm)}|\Psi_{\mathbf{k}}^{(\pm)}\rangle = V|S_{\mathbf{k}}\rangle \text{ and } \begin{cases} f_{\mathbf{k_f},\mathbf{k_i}} = \langle S_{\mathbf{k_f}}|V|\Psi_{\mathbf{k_i}}^{(+)}\rangle \\ f_{\mathbf{k_f},\mathbf{k_i}} = \langle \Psi_{\mathbf{k_f}}^{(-)}|V|S_{\mathbf{k_i}}\rangle \\ f_{\mathbf{k_f},\mathbf{k_i}} = \langle \Psi_{\mathbf{k_f}}^{(-)}|A^{(+)}|\Psi_{\mathbf{k_i}}^{(+)}\rangle \end{cases} \text{ and } A^{(\pm)} = V - VG_0^{(\pm)}V$$

The bilinear form of the variational principle for the scattering amplitude is $[f_{\mathbf{k_f},\mathbf{k_i}}] = \langle S_{\mathbf{k_f}} | V | \Psi_{\mathbf{k_i}}^{(+)} \rangle + \langle \Psi_{\mathbf{k_f}}^{(-)} | V | S_{\mathbf{k_i}} \rangle - \langle \Psi_{\mathbf{k_f}}^{(-)} | A^{(+)} | \Psi_{\mathbf{k_i}}^{(+)} \rangle \text{ where arbitrary and}$ independent variations with respect to $\begin{cases} \langle \delta \Psi_{\mathbf{k_f}}^{(-)} | (V | S_{\mathbf{k_i}} \rangle - A^{(+)} | \Psi_{\mathbf{k_i}}^{(+)} \rangle) = 0 \\ (\langle S_{\mathbf{k_f}} | V - \langle \Psi_{\mathbf{k_f}}^{(-)} | A^{(+)} \rangle | \delta \Psi_{\mathbf{k_i}}^{(+)} \rangle = 0 \end{cases}$ $\begin{cases} \langle V | S_{\mathbf{k_i}} \rangle - A^{(+)} | \Psi_{\mathbf{k_i}}^{(+)} \rangle = 0 \Rightarrow A^{(+)} | \Psi_{\mathbf{k_i}}^{(+)} \rangle = V | S_{\mathbf{k_i}} \rangle \end{cases}$

lead to
$$\begin{cases} V|S_{\mathbf{k}_{\mathbf{i}}}\rangle - A^{(+)}|\Psi_{\mathbf{k}_{\mathbf{i}}}^{(+)}\rangle = 0 \Rightarrow A^{(+)}|\Psi_{\mathbf{k}_{\mathbf{i}}}^{(+)}\rangle = V|S_{\mathbf{k}_{\mathbf{i}}}\rangle \\ \langle S_{\mathbf{k}_{\mathbf{f}}}|V - \langle \Psi_{\mathbf{k}_{\mathbf{f}}}^{(-)}|A^{(+)} = 0 \Rightarrow A^{(-)}|\Psi_{\mathbf{k}_{\mathbf{f}}}^{(-)}\rangle = V|S_{\mathbf{k}_{\mathbf{f}}}\rangle \text{ with } A^{(+)^{\dagger}} = A^{(-)} \end{cases}$$

 $A^{(\pm)}|\Psi_{\mathbf{k}}^{(\pm)}\rangle = V|S_{\mathbf{k}}\rangle$ must be equivalent to $H|\Psi_{\mathbf{k}}^{(\pm)}\rangle = E|\Psi_{\mathbf{k}}^{(\pm)}\rangle$ with proper boundary conditions

K. Takatsuka and V. McKoy, Phys. Rev. A 24, 2473 (1981

20

MAPLima

Schwinger Multichannel Method for electron scattering

In this formalism the operator
$$A^{(+)}$$
 was redefined as:

$$A^{(+)} = \frac{1}{2}(PV + VP) - VG_{P}^{(+)}V + \frac{1}{N+1}\left[\hat{H} - \frac{N+1}{2}(\hat{H}P + P\hat{H})\right]$$
where $P \equiv \sum_{\ell=1}^{\text{open}} |\Phi_{\ell}\rangle\langle\Phi_{\ell}|$ and $\hat{H} = E - H$
(Channel coupling: source of uncertainty – uncontrollable)

W

All electrons are identical. So, an expansion of the scattering wave function must be done in a basis $\{\chi_{\mu}\}$ of anti-symmetric functions (Slater determinants):

$$| \Psi_{\vec{k}_{m}}^{(\pm)} \rangle = \sum_{\mu} a_{\mu}^{(\pm)}(\vec{k}_{m}) | \chi_{\mu} \rangle \quad \text{where} \quad \{ | \chi_{\mu} \rangle \} = \{ a_{N+1} | \Phi_{i} \rangle \otimes | \phi_{j} \rangle \}$$
(N+I wave-function expansion: source of uncertainty – controllable)
The final form of the scattering amplitude is equal to the one of the Schwinger Variational principle

$$f_{\vec{k}_{i},\vec{k}_{f}} = -\frac{1}{2\pi} \sum_{mn} \langle S_{\vec{k}_{f}} | V | \chi_{m} \rangle (d^{-1})_{mn} \langle \chi_{n} | V | S_{\vec{k}_{i}} \rangle$$

with

$$\mathbf{d}_{mn} = \langle \chi_m \mid \mathbf{A}^{(+)} \mid \chi_n \rangle \text{ and } \mathbf{S}_{\vec{k}_i} \equiv \Phi_i(\vec{r}_1, \dots, \vec{r}_N) \mathbf{e}^{i\vec{K}_i \cdot \vec{r}_{N+1}}$$

Coupling level

- Elastic scattering with and without polarization effects
- Open channel Projector has only one state

$$P = |\Phi_{o}\rangle\langle\Phi_{o}|$$

 $\Phi_{\rm o}$ is molecular target ground state obtained in Hartree-Fock approximation

(Target description: source of uncertainty – program limitation)

Onfiguration space is made of

(N+I wave-function expansion: source of uncertainty – controllable)

$$|\chi_{\mu}\rangle = \begin{cases} a_{N+1} |\Phi_{o}\rangle \otimes |\phi_{i}\rangle \\ a_{N+1} |\Phi_{j}\rangle \otimes |\phi_{k}\rangle, j \ge 2 \end{cases}$$

Doublet states made of products of target triplet and singlet states by ϕ_{k}

φ_i are one-particle wave functions
 (square integrable molecular orbitals) used in description of the continuum

21

Coupling level

Inelastic scattering with and without polarization

 Open channel projector contains channels of our choice (truncation means approximation)

$$\mathsf{P} = \sum_{\ell}^{\text{open}} |\Phi_{\ell}\rangle \langle \Phi_{\ell}| \quad \blacksquare$$

 $|\Phi_\ell
angle$ are molecular target states obtained with single configuration interaction

Again the configuration space is made of

$$|\chi_{\mu}\rangle = \begin{cases} a_{N+1} |\Phi_{o}\rangle \otimes |\phi_{i}\rangle \\ a_{N+1} |\Phi_{j}\rangle \otimes |\phi_{k}\rangle, j \ge 2 \end{cases}$$

Doublet states made of products of target triplet and singlet states by $\phi_{\textbf{k}}$

Polarization effects are included with j greater than the number of open channels

R. F. da Costa, F. J. da Paixão and M.A. P. Lima, J. Phys. B **38**, 4363 (2005)

22

Electron scattering by large molecules

Pseudopotential formalism (source of uncertainty – optional for light molecules)
[D. R. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)]

- 1 The pseudo-state energy is equal to the real eigenvalue for a given configuration;
- Provide the second s
- The normalized pseudo wave function is equal to the real one beyond the core radius r_c and it is soft and without nodes
- 4 The integrals from 0 to r of the real and pseudo functions agree for $r > r_c$ for each valence state:

$$-\frac{1}{2}\left[\left(r\Psi\right)^{2}\frac{d}{dE}\frac{d}{dr}\ln\Psi\right]_{r>r_{c}} = \int_{0}^{r>r_{c}}\Psi^{2}r^{2}dr$$

"Norm Conservation"

23

Theoretical co-authors

Eliane M. de Oliveira (posdoc) Alexandra Natalense Marco A. P. Lima

Sergio d'A. Sanchez Márcio H. F. Bettega

Romarly F. da Costa

Márcio T. do N. Varella (coordinator)

Shape resonances are related to angular momentum traps

4

uidenside Mataghin 1001CAMP

Low energy elastic electron scattering from pirrole

de Oliveira EM, Lima MAP, Bettega MHF, Sanchez SD, da Costa RF, and Varella MTD, J. Chem. Phys. **132**, 204301 (2010)

29

π* (LUMO+1)

Phenol: Calculations, ET spectra and DEA data indicate H elimination from π^*/σ^* coupling.

Guaiacol: Methoxilation is expected to give rise to other dissociation channels. н elimination should be also observed.

31

MAPLima

Theoretical team on electron-scattering of microsolvated molecules

Sylvio Canuto (microsolvation) Kaline Coutinho (microsolvation) Márcio T. do N. Varella

Eliane M. de Oliveira (scattering of solvated phenol) Marco A. P. Lima

Thiago C. Freitas (his Ph.D. Thesis) Márcio H. F. Bettega (coordinator)

Electron Collisions with the CH₂O-H₂O complex

PHYSICAL REVIEW A 80, 062710 (2009)

33

Communication: Transient anion states of phenol , 2) complexes: Search for (H2O) n (n = 1

ELECTRONIC EXCITATION

Theoretical co-authors

Eliane M. de Oliveira (posdoc) Marco A. P. Lima

Márcio H. F. Bettega

Márcio T. do N. Varella

Romarly F. da Costa (coordinator)

F. da Costa, F. J. da Paixão and M. A. P. Lima.

Ř

41

Electronic excitation of H_2 by electron impact

Manaus, AM

TABLE I. Calculated and experimental excitation energies for ethylene. Up to 20, 30 and 50 eV, the FSCI spectrum is composed by 138, 260 and 402 electronically excited states, respectively. The MOBSCI calculations at these energies were performed with 45 excited states, where 17 of them are physical excited singlets or triplets states and the others are pseudostates.

	Energy (eV)				
	FSCI	MOBSCI	Expt.		
TRIPLET	3.56	3.60	4.36^{a}		
	6.90	6.92	6.98^{a}		
	7.73	7.75	7.79^{a}		
	8.48	8.83	8.15^{b}		
	8.80	9.08	8.57^{b}		
	9.06	9.19			
	9.42	9.58			
	9.48	9.73			
	9.54	9.74			
SINGLET	7.11	7.13	7.11^{b}		
	7.83	7.85	7.80^{b}		
	7.88	8.55	7.90^{b}		
	8.99	9.28	8.28^{a}		
	9.24	9.37	8.62^{b}		
	9.25	9.54	$8.90^{a,b}$		
	9.63	9.71	9.10^{a}		
			9.33^{a}		
			$9.51^{a,c}$		
			9.62^{a}		

^a Experimental data from Ballard *et al.* [24].

 b Experimental data from Do $et\ al.$ [16].

 c For this energy were found two states.

R. F. da Costa, M. H. F. Bettega, M. T. do N. Varella, E. M. de Oliveira and M. A. P. Lima, *Phys. Rev. A*, in preparation (2014)

61

MAPLima

MP2-UFAM

Aug. 26-29, 14 Manaus, AM

FIG. 4. (Color online) Total and integral cross sections for the energy region 0-50 eV. Thin (blue) line: 1-channel coupling plus polarization (optical theorem gives the same as the elastic transision); dashed (orange) line: elastic transitions for 2-channel coupling plus polarization; full (orange) line: total cross section for 2-channel coupling plus polarization; thick dashed (black) line: elastic transitions for 45-channel coupling plus polarization; thick full (black) line: total cross section for 45-channel coupling plus polarization; dot-dashed (indico) line: ionization cross sections using BEB aproximation; dot-dot-dashed (indico) line: total cross sections 45-channel coupling plus polarization; full (black) circles, full (red) squares, full (green) diamonds, full (blue) triangles up and full (yelow) triangles down: experiments of Refs. [1–5], respectively.

074314-4 Jones et al.

MP2-UFAM

Aug. 26-29, 14 Manaus, AM

D. B. Jones, G. B. da Silva, R. F. C. Neves, H.V. Duque, L. Chiari, E. M. de Oliveira, M. C. A. Lopes, R. F. da Costa, M.T. do N. Varella, M. H. F. Bettega, M.A. P. Lima, and M. J. Brunger J. Chem. Phys. **141**, 074314 (2014)

62

MAPLima

J. Chem. Phys. 141, 074314 (2014)

Electronic excitation of Phenol by electron impact: TABLE I. Experimental and calculated excitation energies, assignments, dominant configurations, and optical oscillator strengths (f₀).

			TD-DFT		MOB-SCI		Full-SCI		
Band	Expt. energy (eV)	State	Energy (eV)	Dominant excitation(s)	f_0	Energy (eV)	f_0	Energy (eV)	f_0
I 3.4-4.3	3.4-4.3	³ A'	3.71	$3a'' \rightarrow 5a''; 4a'' \rightarrow 6a''$	0	3.57	0	3.29	0
		³ A'	4.10	4a″→5a″	0	4.73	0	4.49	0
II 4.3–5.	4.3-5.4	³ A′	4.53	$3a'' \rightarrow 5a''; 4a'' \rightarrow 6a''$	0	4.90	0	4.78	0
		$^{1}A'$	4.99	$3a'' \rightarrow 6a''; 4a'' \rightarrow 5a''$	0.0312	6.09	0.0248	5.82	0.0381
		³ A″	5.06	4a″→22a′	0	6.16	0	5.94	0
		$^{1}A''$	5.13	4a″→22a′	0.0001	6.21	0.0001	6.06	0.0001
		³ A′	5.30	3a″→6a″	0	6.03	0	5.73	0
Ш	5.4-6.3	³ A″	5.53	4a″→23a′	0	6.78	0	6.53	0
		$^{1}A''$	5.57	4a″→23a′	0.0034	6.86	0.0274	6.68	0.0177
		$^{1}A'$	5.76	$3a'' \rightarrow 5a''; 4a'' \rightarrow 6a''$	0.0328	6.80	0.0031	6.12	0.0025
		³ A″	5.90	$3a'' \rightarrow 22a'; 4a'' \rightarrow 24a'$	0	6.92	0	6.73	0
		$^{1}A''$	5.92	$4a'' \rightarrow 24a'$	0				
		³ A″	5.95	$3a'' \rightarrow 22a''; 4a'' \rightarrow 24a'$	0				
		$^{1}A''$	5.98	3a″→22a′	0.0021	6.99	0	6.86	0.0020
		³ A″	6.27	$4a'' \rightarrow 25a'$	0				
IV	6.3-7.3	$^{1}A''$	6.31	4a″→25a′	0.0115				
		³ A″	6.32	3a″→23a′	0		0	ur scat	tering
		$^{1}A''$	6.35	3a″→23a′	0.0010			ui scut	
		³ A″	6.52	4a″→26a′	0		calc	ulation	s have 5
		$^{1}A''$	6.54	$4a'' \rightarrow 26a'$	0				
		³ A″	6.63	3a″→24a′	0	S	ingle	ets and	7 triplets
		$^{1}A'$	6.66	3a″→6a″	0.3744				
		¹ A″	6.66	3a″→24a′	0.0202		belo	ow 7eV	in good
		$^{1}A'$	6.71	$3a'' \rightarrow 5a''; 4a'' \rightarrow 6a''$	0.5827				0
		³ A″	6.84	$4a'' \rightarrow 27a'; 4a'' \rightarrow 28a'$	0	a	reer	nent w	ith the fu
		³ A'	6.85	$2a'' \rightarrow 5a''$	0				
		3A'	6.93	4a"→7a"	0		singl	e conti	guration
		¹ A"	6.93	$4a'' \rightarrow 27a'; 4a'' \rightarrow 28a'$	0.0009				
		¹ A'	7.01	$4a'' \rightarrow 7a''$	0.0148		inter	action.	We also
		³ A"	7.07	$3a'' \rightarrow 25a'$	0	•			
		1 A″ 3 A /	7.08	$3a'' \rightarrow 25a'$	0		ncluc	led 20 a	additional
		⁻³ A' 3 A''	7.11	$2a'' \rightarrow 6a''$	0				
		- A''	7.19	$4a^{-} \rightarrow 2/a^{+}; 4a^{-} \rightarrow 28a^{-}$	0 0005		pse	euao st	ates as
		3 A //	1.22	$4a \rightarrow 2/a^{+}; 4a^{-} \rightarrow 28a^{-}$	0.0005				
		³ Δ″	7.27	$21a \rightarrow 3a''$ $3a'' \rightarrow 26a'$	0	р	OSSID	ie opei	n cnannels
	7.3–8.6	A	7.29	$Ja \rightarrow 20a$	0 0000	1.	+-+-	J 6 22	channels
v		' A″	7.32	$3a'' \rightarrow 26a'$	0.0002	(2		11 01 33	channels
		' A″	7.57	$21a' \rightarrow 5a''$	0.0043	-			
		3 A″	7.58	$4a'' \rightarrow 29a'$	0				
		- 'A''	7.59	$3a'' \rightarrow 27a'; 3a'' \rightarrow 28a'$	0				

Thank you very much for your attention

A copy of this presentation is at http://www.ifi.unicamp.br/~maplima/maplima-MP2-UFAM.pdf

