F-315 (Mecânica Geral I) Aula 13

Prof. Mário Noboru Tamashiro Departamento de Física Aplicada, prédio A-5, sala 7

ramal 3521-5339

e-mail: mtamash@ifi.unicamp.br

http://www.ifi.unicamp.br/~mtamash/f315_mecgeral_i

Slides do prof. Antonio Vidiella Barranco: http://www.ifi.unicamp.br/~vidiella/aulas.html

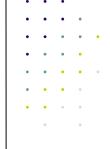
Problema

G seção 5.7, pg. 220 (precessão lenta)

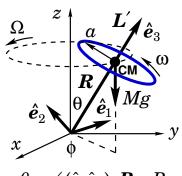
1) Um giroscópio possui sua massa M concentrada na borda do volante (anel) de raio a. O seu centro de massa se encontra a uma distância R do ponto de apoio O, localizado na origem. O giroscópio, colocado no campo gravitacional, é posto a girar rapidamente com velocidade angular $\dot{\psi} = \omega$, num cone que forma um ângulo θ (fixo) com a vertical. Calcule aproximadamente a velocidade angular de precessão $\dot{\phi} = \Omega$ do eixo do giroscópio.

http://www.youtube.com/watch?v=GeyDf4ooPdo

http://www.youtube.com/watch?v=8H98BgRzpOM



S problema 4.11, pg. 230; G seção 5.7, pg. 220



$$\theta = \angle (\hat{\boldsymbol{z}}, \hat{\boldsymbol{e}}_3), \boldsymbol{R} = R \boldsymbol{e}_3$$

$$L = R \times P + L' \approx L', \ \dot{L} \approx \dot{L}'$$

Momento angular do anel:

$$\boldsymbol{L}' = \sum_{i} \boldsymbol{r}'_{i} \times m_{i} \dot{\boldsymbol{r}}'_{i} \approx M a^{2} \omega \, \hat{\boldsymbol{e}}_{3}$$

$$\dot{\boldsymbol{L}}' = \boldsymbol{\Omega} \times \boldsymbol{L}' = \Omega L' (\hat{\boldsymbol{z}} \times \hat{\boldsymbol{e}}_3) \rightarrow$$

 \boldsymbol{L}' descreve um cone de raio

 $L'|\hat{\boldsymbol{z}}\times\hat{\boldsymbol{e}}_3|=L'\operatorname{sen}\theta$ em torno

do eixo fixo \hat{z}

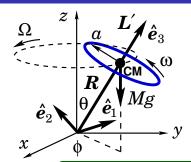
$$\dot{\boldsymbol{L}} = \sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{F}_{i}^{\text{ext}} = -\boldsymbol{R} \times Mg\,\hat{\boldsymbol{z}} = MgR\,(\hat{\boldsymbol{z}} \times \hat{\boldsymbol{e}}_{3})$$

G pg. 220, precessão lenta

 $\dot{\boldsymbol{L}} \approx \dot{\boldsymbol{L}}' \rightarrow \Omega \approx \frac{gR}{\sigma^2 \omega}$, vale para $\Omega \ll \omega$

 $T' = \frac{1}{2}Ma^2\omega^2 \gg$ $V_{\rm CM} = MgR\cos\theta$

S problema 4.11, pg. 230; G seção 5.7, pg. 220



Momentos de inércia (anel):

$$I_1 = I_2 = M(R^2 + \frac{1}{2}\alpha^2), I_3 = M\alpha^2$$

Equação completa ($I \equiv I_1 - I_3$):

$$I\Omega^2\cos\theta - I_3\omega\Omega + MgR = 0$$

S eq. (11.63), pg. 497; TM eq. (11.168), pg. 458

$$\Omega_{\pm} = rac{I_3 \omega}{2I \cos heta} \left(1 \pm \sqrt{1 - rac{4 MgRI \cos heta}{I_3^2 \omega^2}} \,
ight)$$

precessão rápida

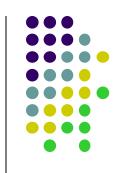
$$\Omega_{+} \approx \frac{I_3 \omega}{I \cos \theta} = \frac{2a^2 \omega}{(2R^2 - a^2)\cos \theta}$$

precessão lenta

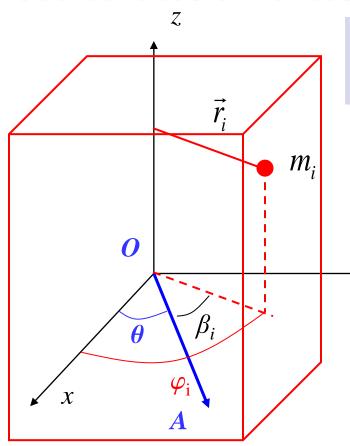
$$\Omega_{-} pprox rac{MgR}{I_3\omega} = rac{gR}{a^2\omega}$$

aula 13

Dinâmica de um corpo rígido: rotação em torno de z



Coordenadas cilíndricas



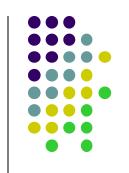
Importante: notar que r_i denota agora a distância da partícula de massa m_i ao eixo z

Ângulo de referência θ $\varphi_i = \theta + \beta_i$

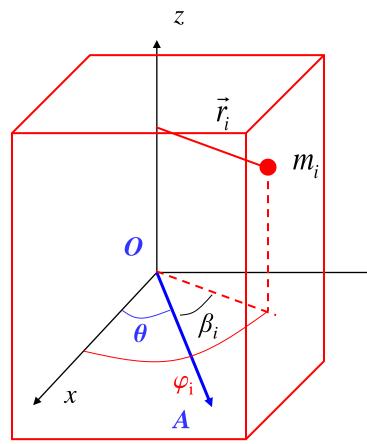
 \vec{y} Como o ângulo $oldsymbol{eta}$ é fixo, $\dot{oldsymbol{arphi}}_i = oldsymbol{ heta}$

A i-ésima partícula executará um movimento circular de raio r_i em torno do eixo z

Dinâmica de um corpo rígido: rotação em torno de z



Coordenadas cilíndricas



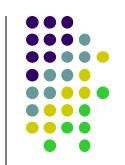
Momento Angular (componente z)

$$L_z = \sum_i m_i r_i^2 \dot{\varphi}_i = \sum_i m_i r_i^2 \dot{\theta}$$

y Momento de inércia em relação a z

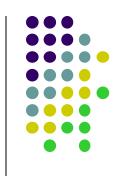
$$I_z = \sum_i m_i r_i^2$$

Rotação de um corpo rígido em torno do eixo z



Movimento em 1D	Rotação em torno de z
Posição x	Posição angular $ heta$
Velocidade $v = \dot{x}$	Velocidade angular $\omega = \dot{\theta}$
Aceleração $a = \ddot{x}$	Aceleração angular $\alpha = \ddot{\theta}$
Força F	Torque $ au_z$
Massa m	Momento de Inércia I_z
Momento linear $p = m\dot{x}$	Momento angular $L_z = I_z \dot{ heta}$
2ª Lei $\frac{dp}{dt} = m\ddot{x} = F$	$\frac{dL_z}{dt} = I_z \ddot{\theta} = \tau_z$
Energia cinética $T = mv^2/2$	Energia cinética $T = I_z \omega^2 / 2$

Distribuições contínuas de massa – 1D, 2D, 3D



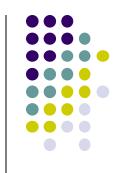
Definição: densidade média de massa

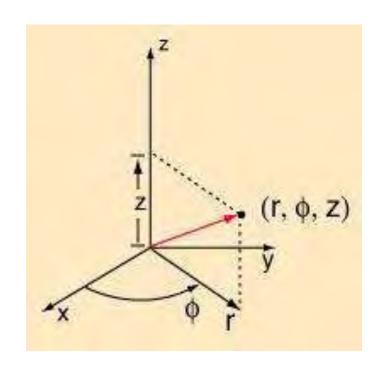
Uma dimensão:
$$\lambda = \frac{dm}{dx}$$

Duas dimensões:
$$\sigma = \frac{dm}{dxdy}$$

Três dimensões:
$$\rho = \frac{dm}{dxdydz}$$

Coordenadas cilíndricas





$$x = r\cos\phi$$

$$y = r \operatorname{sen} \phi$$

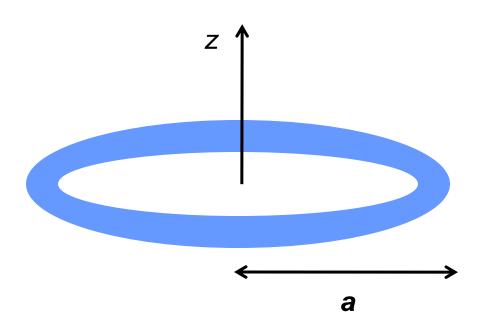
$$z = z$$

Elemento de área: $dA = rd\phi dz$

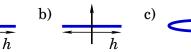
Elemento de volume: $dV = dAdr = rd\phi dzdr$

Exemplo:

Calcular o momento de inércia de um anel circular homogêneo fino de raio **a** e massa total **M** em relação ao eixo z, que passa pelo centro do anel, perpendicularmente ao mesmo.



Momento de inércia: exemplos de cálculo em 1-D



a) haste, eixo \perp que passa pela extremidade: $\lambda = \frac{M}{h}$ $I_z = \int_0^h x^2 dM = \lambda \int_0^h x^2 dx = \frac{M}{h} \frac{h^3}{3} = \frac{1}{3}Mh^2$

b) haste, eixo
$$\perp$$
 que passa pelo seu CM:

$$I_z = \int_{-h/2}^{h/2} x^2 \, \mathrm{d}M = \lambda \int_{-h/2}^{h/2} x^2 \, \mathrm{d}x = \frac{M}{h} \, \frac{2}{3} \left(\frac{h}{2}\right)^3 = \frac{1}{12} M h^2$$

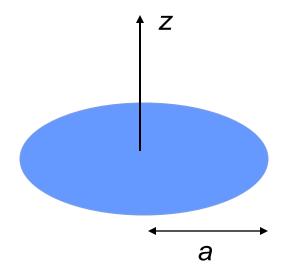
c) anel, eixo pelo CM, \perp ao plano do anel: $\lambda = \frac{M}{2\pi a}$ $I_z = \int (x^2 + y^2) dM = a^2 \lambda \int_0^{2\pi} a d\varphi = a^2 \frac{M}{2\pi a} 2\pi a = Ma^2$

d) anel, eixo pelo CM, || ao plano do anel:

$$I_y = \int x^2 dM = \int_0^{2\pi} (a\cos\varphi)^2 \lambda a d\varphi = a^3 \frac{M}{2\pi a} \pi = \frac{1}{2} M a^2$$

Exemplo:

Calcular o momento de inércia de um disco circular homogêneo fino de raio **a** e massa total **M** em relação ao eixo z, que passa pelo centro do disco, perpendicularmente ao mesmo. Obs: considere o disco como um conjunto de anéis finos concêntricos.



Momento de inércia: exemplos de cálculo em 2-D

a) disco circular, eixo pelo CM, \perp ao disco: $\sigma = \frac{M}{\pi a^2}$

$$I_z = \int (x^2 + y^2) \, dM = \sigma \int_0^a r^2 \, dr \int_0^{2\pi} r \, d\varphi = \frac{M}{\pi a^2} 2\pi \frac{a^4}{4} = \frac{1}{2} M a^2$$

Disco como composto de vários anéis concêntricos, cada anel de raio α tem massa $dM(\alpha) = \sigma dA = 2\pi\sigma\alpha d\alpha$:

$$I_z = \int (x^2 + y^2) dM(\alpha) = 2\pi\sigma \int_0^a \alpha^3 d\alpha = 2\pi \frac{M}{\pi a^2} \frac{a^4}{4} = \frac{1}{2}M\alpha^2$$

b) disco circular, eixo pelo CM, \parallel ao disco:

$$I_{y} = \int x^{2} dM = \sigma \int_{0}^{2\pi} r d\varphi \int_{0}^{a} (r \cos \varphi)^{2} dr = \frac{M}{\pi a^{2}} \pi \frac{a^{4}}{4} = \frac{1}{4} M a^{2}$$

Disco como composto de vários anéis concêntricos:

$$I_y = \frac{1}{2} \int_0^a \alpha^2 dM(\alpha) = \frac{1}{2} \int_0^a \alpha^2 2\pi \sigma \alpha d\alpha = \pi \frac{M}{\pi a^2} \frac{a^4}{4} = \frac{1}{4} M \alpha^2$$