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Surface S

Volume V

FIGURE 1-23 The differential da is an element of area on a surface S that surrounds
a closed volume V.

Surface S

Contour C /

FIGURE 1-24 A contour path Cdefines an open surface S. A line integral around the

path Cand a surface integral over the surface §is required for Stokes’s
theorem.

is hoped, a simpler line integral (one dimensional). Both Gauss’s and Stokes’s
theorems have wide application in vector calculus. In addition to mechanics,
they are also useful in electromagnetic applications and in potential theory.

PROBLEMS

l'ln

14.

Find the transformation matrix that rotates the axis x; of a rectangular coordinate
system 45° toward x, around the x-axis.

Prove Equations 1.10 and 1.11 from trigonometric considerations.
Find the transformation matrix that rotates a rectangular coordinate system
through an angle of 120° about an axis making equal angles with the original three

coordinate axes,

Show
(a) (AB)! = B'A! (b) (AB)"! =B 'A!

Show by direct expansion that |A|? = 1. For simplicity, take A to be a two-
dimensional orthogonal transformation matrix.
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1-8.

1-10.

1-11.

1-12.

1-13.

1 / MATRICES, VECTORS, AND VECTOR CALCULUS

Show that Equation 1.15 can be obtained by using the requirement that the trans-
formation leaves unchanged the length of a line segment.

Consider a unit cube with one corner at the origin and three adjacent sides lying
along the three axes of a rectangular coordinate system. Find the vectors describ-
ing the diagonals of the cube. What is the angle between any pair of diagonals?

Let A be a vector from the origin to a point P fixed in space. Let r be a vector from
the origin to a variable point Q(x;, x5, x3). Show that
A-r= A2
is the equation of a plane perpendicular to A and passing through the point P.
For the two vectors

A=i+2—k B=-2+3j+k

find
(@ A— Band |A — B| (b) component of BalongA (c) angle between A and B
(dAXB (¢) (A— B) X (A+ B)

A particle moves in a plane elliptical orbit described by the position vector
r = 2bsin wti + bcos wtj

(a) Find v, a, and the particle speed.
(b) What is the angle between v and a at time ¢ = 7 /2w?

Show that the triple scalar product (A X B) * C can be written as
4 Ay 4
(AXxB)-C=|B, B, B
G G G

Show also that the product is unaffected by an interchange of the scalar and vector
product operations or by a change in the order of A, B, C, as long as they are in
cyclic order; that is,

AXB)'C=A-BXC)=B-(CxXxA)=(CxA)-B, etc.

We may therefore use the notation ABC to denote the triple scalar product. Finally,
give a geometric interpretation of ABC by computing the volume of the paral-
lelepiped defined by the three vectors A, B, C.

Let a, b, ¢ be three constant vectors drawn from the origin to the points A, B, C.
What is the distance from the origin to the plane defined by the points A, B, C?
What is the area of the triangle ABC?

X is an unknown vector satisfying the following relations involving the known vec-
tors A and B and the scalar ¢,
AXX=B, A-X=¢.

Express X in terms of A, B, ¢, and the magnitude of A.
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1-14.

1-15.

1-16.

1-17.

1-18.

1-19.

1-20.

1-21.

1-22.

Consider the following matrices:

1 2 -1 2 1 O 2 1
A=10 3 1, B={0 -1 2|, €=14 3
2 0 1 1 1 3 1 0

Find the following
(a) |AB| (b) AC (c) ABC (d) AB — BA’

Find the values of a needed to make the following transformation orthogonal.

1 0 0
0 a -«
0 a a
What surface is represented by r-a = const. that is described if a is a vector of con-

stant magnitude and direction from the origin and r is the position vector to the
point P(x,, x5, x3) on the surface?

Obtain the cosine law of plane trigonometry by interpreting the product (A — B) -
(A — B) and the expansion of the product.

Obtain the sine law of plane trigonometry by interpreting the product A X B and
the alternate representation (A — B) X B.

Derive the following expressions by using vector algebra:

(a) cos (@ — B) = cos @ cos B + sin a sin

(b) sin (&« — B) = sin @ cos B — cos a sin B

Show that

(a) %8‘:’* 6,] =0 (b) j,zks‘jh Eljk = 26” (C) g;ksijk sijk =6

Show (see also Problem 1-11) that

ABC = UE_JE,)‘*A" ‘B] Ck

Evaluate the sum ;s,ﬁsm (which contains 3 terms) by considering the result for

all possible combinations of i, j, , m; that is,
@i=j (b)yi=1 (c)i=m dj;j=1 (€)j=m i=m
g iF lorm (h)j# lorm

Show that
Eksijkslmk = 6.‘16,'". - aimajl

and then use this result to prove

AX (BXxC)=(AC)B— (A*B)C
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1.23.

1-24.

1-25.

1-26.

1-27.

1-28.

1-29.

1-30.

1-31.

1-32.

1-33.

1 / MATRICES, VECTORS, AND VECTOR CALCULUS

Use the ¢,; notation and derive the identity
(A X B) X (C xD)=(ABD)C — (ABC)D
Let A be an arbitrary vector, and let e be a unit vector in some fixed direction. Show

that
A=e(A'e) TeX (AXe)

What is the geometrical significance of each of the two terms of the expansion?
Find the components of the acceleration vector a in spherical coordinates.

A particle moves with v = const. along the curve r = k(1 + cos ) (a cardioid). Find
f-e, = a-e,|al,andé.

Ifr and # = v are both explicit functions of time, show that

%{r X (vXxn]=ra+ (rev)v— (v2+r-a)r

Show that

V(n|rl) =%

Find the angle between the surfaces defined by r?2 = 9 and x + y + 22 = 1 at the
point (2, —2, 1).

Show that V(¢y) = Vi + V.

Show that
d 1
(a) Vi = nri»=2r (b) Vf(r) = l—;d—{ (c) V¥(Inr) = =

Show that

J(?ar-i’ + 2bt-#)dt = ar? + b¥2 + const.

where r is the vector from the origin to the point (x,, x,, X3). The quantities rand ¥
are the magnitudes of the vectors r and f, respectively, and aand & are constants.

J(f—r—g)dt=f+c
r r r

where C is a constant vector.

Show that
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1-34.

1-35.

1-36.

1-37.

1-38.

1-39.

1-40.

141.

Evaluate the integral

JA X Adt

Show that the volume common to the intersecting cylinders defined by x* + y? = a?
and x2 + 22 = a%is V= 164%/3.

Find the value of the integral f[;A - da, where A = xi — yj + zk and Sis the closed
surface defined by the cylinder ¢2 = x? + y% The top and bottom of the cylinder
are at z = dand 0, respectively.

Find the value of the integral [jA - da, where A = (x? + y? + 22)(xi + yj + zk) and
the surface § is defined by the sphere R? = x? + y2 + 22 Do the integral directly
and also by using Gauss’s theorem.

Find the value of the integral [s(V X A) - da if the vector A = yi + zj + xkand Sis
the surface defined by the paraboloid z = 1 — x? — y% where z = 0.

A plane passes through the three points (x, y, z) = (1, 0, 0), (0, 2, 0), (0, 0, 3).

(a) Find a unit vector perpendicular to the plane. (b) Find the distance from the
point (1, 1, 1) to the closest point of the plane and the coordinates of the closest
point.

The height of a hill in meters is given by z = 2xy — 3x* — 4y — 18x + 28y + 12,
where x is the distance east and y is the distance north of the origin. (a) Where is
the top of the hill and how high is it? (b) How steep is the hill at x = y = 1, that is,
what is the angle between a vector perpendicular to the hill and the z axis? (c) In
which compass direction is the slope at x = y = 1 steepest?

For what values of a are the vectors A = 2ai — 2j + akand B = ai + 24j + 2k
perpendicular?
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Newtonian mechanics is therefore subject to fundamental limitations when
small distances or high velocities are encountered. Difficulties with Newtonian me-
chanics may also occur when massive objects or enormous distances are involved.
A practical limitation also occurs when the number of bodies constituting the sys-
tem is large. In Chapter 8, we see that we cannot obtain a general solution in
closed form for the motion of a system of more than two interacting bodies even
for the relatively simple case of gravitational interaction. To calculate the motion in
a three-body system, we must resort to a numerical approximation procedure.
Although such a method is in principle capable of any desired accuracy, the labor
involved is considerable. The motion in even more complex systems (for exam-
ple, the system composed of all the major objects in the solar system) can like-
wise be computed, but the procedure rapidly becomes too unwieldy to be of
much use for any larger system. To calculate the motion of the individual mole-
cules in, say, a cubic centimeter of gas containing = 10'° molecules is clearly out
of the question. A successful method of calculating the average properties of such
systems was developed in the latter part of the nineteenth century by Boltzmann,
Maxwell, Gibbs, Liouville, and others. These procedures allowed the dynamics
of systems to be calculated from probability theory, and a statistical mechanics was
evolved. Some comments regarding the formulation of statistical concepts in
mechanics are found in Section 7.13.

PROBLEMS

2-1. Suppose that the force acting on a particle is factorable into one of the following
forms:
(@) Kx;, ) = f(x)g(®)  (b) Kx;, ) = f(k)g()  (c) Ax;, %) = f(x)g(x,)

For which cases are the equations of motion integrable?

2-2. A particle of mass m is constrained to move on the surface of a sphere of radius R
by an applied force F(6, ¢). Write the equation of motion.

2-3. If a projectile is fired from the origin of the coordinate system with an initial veloc-
ity vp and in a direction making an angle a with the horizontal, calculate the time
required for the projectile to cross a line passing through the origin and making an
angle B < a with the horizontal.

24. A clown is juggling four balls simultaneously. Students use a video tape to deter-
mine that it takes the clown 0.9 s to cycle each ball through his hands (including
catching, transferring, and throwing) and to be ready to catch the next ball. What
is the minimum vertical speed the clown must throw up each ball?

2-5. A jet fighter pilot knows he is able to withstand an acceleration of 9g before black-
ing out. The pilot points his plane vertically down while traveling at Mach 3 speed
and intends to pull up in a circular maneuver before crashing into the ground.
(a) Where does the maximum acceleration occur in the maneuver? (b) What is the
minimum radius the pilot can take?
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2-6.

2-7.

2-8.

2-9.

2-10.

2-11.

2-12.

2-13.

In the blizzard of ’88, a rancher was forced to drop hay bales from an airplane to
feed her cattle. The plane flew horizontally at 160 km/hr and dropped the bales
from a height of 80 m above the flat range. (a) She wanted the bales of hay to land
30 m behind the cattle so as to not hit them. Where should she push the bales out
of the airplane? (b) To not hit the cattle, what is the largest time error she could
make while pushing the bales out of the airplane? Ignore air resistance.

Include air resistance for the bales of hay in the previous problem. A bale of hay
has a mass of about 30 kg and an average area of about 0.2 m2 Let the resistance be
proportional to the square of the speed and let ¢y = 0.8. Plot the trajectories with a
computer if the hay bales land 30 m behind the cattle for both including air resis-
tance and not. If the bales of hay were released at the same time in the two cases,
what is the distance between landing positions of the bales?

A projectile is fired with a velocity v, such that it passes through two points both a
distance % above the horizontal. Show that if the gun is adjusted for maximum
range, the separation of the points is

d= 0% — 4gh
g

Consider a projectile fired vertically in a constant gravitational field. For the same
initial velocities, compare the times required for the projectile to reach its maxi-
mum height (a) for zero resisting force, (b) for a resisting force proportional to the
instantaneous velocity of the projectile.

Repeat Example 2.4 by performing a calculation using a computer to solve
Equation 2.22. Use the following values: m = 1 kg, v, = 10 m/s, x, = 0, and k =
0.1 s~1. Make plots of v versus ¢, x versus ¢, and v versus x. Compare with the results
of Example 2.4 to see if your results are reasonable.

Consider a particle of mass m whose motion starts from rest in a constant gravita-
tional field. If a resisting force proportional to the square of the velocity (i.e., kmv?)
is encountered, show that the distance s the particle falls in accelerating from v, to

v, is given by
1 g~ kv}
s(vg—> 1) = 2—kln -

A particle is projected vertically upward in a constant gravitational field with an
initial speed v,. Show that if there is a retarding force proportional to the square
of the instantaneous speed, the speed of the particle when it returns to the initial
position is

YoY;

Vv3 + v?
where v, is the terminal speed.

A particle moves in a medium under the influence of a retarding force equal to
mk(v® + a?v), where k and a are constants. Show that for any value of the initial
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2-14.

2-15.

2-16.

2-17.

2-18.

2-19.

2-20.

2-21.

2-22.

2 / NEWTONIAN MECHANICS—SINGLE PARTICLE

speed the particle will never move a distance greater than 7/2ka and that the parti-
cle comes to rest only for ¢ — oco.

A projectile is fired with initial speed v, at an elevation angle of a up a hill of slope
B(a > B).

(a) How far up the hill will the projectile land?

(b) At what angle a will the range be a maximum?

(c) What is the maximum range?

A particle of mass mslides down an inclined plane under the influence of gravity. If
the motion is resisted by a force f= kmv?, show that the time required to move a
distance d after starting from rest is

= cosh ™ 1(e*)
V kg sin 6

where 6 is the angle of inclination of the plane.

A particle is projected with an initial velocity v, up a slope that makes an angle o
with the horizontal. Assume frictionless motion and find the time required for the
particle to return to its starting position. Find the time for v, = 2.4 m/s and a = 26°.

A strong softball player smacks the ball at a height of 0.7 m above home plate. The
ball leaves the player’s bat at an elevation angle of 35° and travels toward a fence 2
m high and 60 m away in center field. What must the initial speed of the softball be
to clear the center field fence? Ignore air resistance.

Include air resistance proportional to the square of the ball’s speed in the previous
problem. Let the drag coefficient be ¢y = 0.5, the softball radius be 5 cm and the
mass be 200 g. (a) Find the initial speed of the softball needed now to clear the
fence. (b) For this speed, find the initial elevation angle that allows the ball to most
easily clear the fence. By how much does the ball now vertically clear the fence?

If a projectile moves such that its distance from the point of projection is always in-
creasing, find the maximum angle above the horizontal with which the particle
could have been projected. (Assume no air resistance.)

A gun fires a projectile of mass 10 kg of the type to which the curves of Figure 2-3
apply. The muzzle velocity is 140 m/s. Through what angle must the barrel be ele-
vated to hit a target on the same horizontal plane as the gun and 1000 m away?
Compare the results with those for the case of no retardation.

Show directly that the time rate of change of the angular momentum about the ori-
gin for a projectile fired from the origin (constant g) is equal to the moment of
force (or torque) about the origin.

The motion of a charged particle in an electromagnetic field can be obtained from
the Lorentz equation* for the force on a particle in such a field. If the electric field
vector is E and the magnetic field vector is B, the force on a particle of mass m that

*See, for example, Heald and Marion, Classical Electromagnetic Radiation (95, Section 1.7).
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carries a charge gand has a velocity v is given by
F=gE +gvXB
where we assume that v << c¢(speed of light).
(a) If there is no electric field and if the particle enters the magnetic field in a di-

rection perpendicular to the lines of magnetic flux, show that the trajectory is a
circle with radius

mu v
r —_— T —

:qB_wc

where w, = gB/m is the cyclotron frequency.
(b) Choose the z-axis to lie in the direction of B and let the plane containing E and
B be the yz—plane. Thus

B=Bk, E=Ej+Ek

Show that the zcomponent of the motion is given by
. 9k
Z(t) = ZO + ZOt + “"‘Et2
2m

where
2(0) =z, and %(0) = %,

(c) Continue the calculation and obtain expressions for x(f) and j(Z). Show that the
time averages of these velocity components are

(Show that the motion is periodic and then average over one complete period.)
(d) Integrate the velocity equations found in (c) and show (with the initial condi-
tions x(0) = —A/w,, x(0) = E,/B, y(0) = 0, (0) = A) that

(0 t yt (t) = i t
COs w F— 5 = ——SsSin
¢ ‘ B Y w, ¢

x(t) =

These are the parametric equations of a trochoid. Sketch the projection of the
trajectory on the xy— plane for the cases (i) A > |E,/B|, (ii) A < |E,/B|, and
(iii) A = |E, /Bl. (The last case yields a cycloid.)

2-23. A particle of mass m = 1 kg is subjected to a one-dimensional force F(1) = kte™*,
where k= 1 N/sand a = 0.5 s 1. If the particle is initially at rest, calculate and plot
with the aid of a computer the position, speed, and acceleration of the particle as a
function of time.

2-24. A skier weighing 90 kg starts from rest down a hill inclined at 17°. He skis 100 m
down the hill and then coasts for 70 m along level snow until he stops. Find the coef-
ficient of kinetic friction between the skis and the snow. What velocity does the skier
have at the bottom of the hill?
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2-25.

2-26.

2-27.

2-28.

2-29.

2-30.

2 / NEWTONIAN MECHANICS—SINGLE PARTICLE

A block of mass m = 1.62 kg slides down a frictionless incline (Figure 2-A). The

block is released a height 2 = 3.91 m above the bottom of the loop.

(a) What is the force of the inclined track on the block at the bottom (point A)?

(b) What is the force of the track on the block at point B?

(c) At what speed does the block leave the track?

(d) How far away from point A does the block land on level ground?

(e) Sketch the potential energy U(x) of the block. Indicate the total energy on the
sketch.

FIGURE 2-A Problem 2-25.

A child slides a block of mass 2 kg along a slick kitchen floor. If the initial speed is 4
m/s and the block hits a spring with spring constant 6 N/m, what is the maximum
compression of the spring? What is the result if the block slides across 2 m of a
rough floor that has u, = 0.2?

A rope having a total mass of 0.4 kg and total length 4 m has 0.6 m of the rope
hanging vertically down off a work bench. How much work must be done to place
all the rope on the bench?

A superball of mass M and a marble of mass m are dropped from a height & with the
marble just on top of the superball. A superball has a coefficient of restitution of
nearly 1 (i.e., its collision is essentially elastic). Ignore the sizes of the superball and
marble. The superball collides with the floor, rebounds, and smacks the marble,
which moves back up. How high does the marble go if all the motion is vertical?
How high does the superball go?

An automobile driver traveling down an 8% grade slams on his brakes and skids 30
m before hitting a parked car. A lawyer hires an expert who measures the coeffi-
cient of kinetic friction between the tires and road to be u; = 0.45. Is the lawyer
correct to accuse the driver of exceeding the 25-MPH speed limit? Explain.

A student drops a waterfilled balloon from the roof of the tallest building in town
trying to hit her roommate on the ground (who is too quick). The first student
ducks back but hears the water splash 4.021 s after dropping the balloon. If the
speed of sound is 331 m/s, find the height of the building, neglecting air resistance.



PROBLEMS 95

2-31.

2-32.

2-33.

2-34.

2-35.

2-36.

In Example 2.10, the initial velocity of the incoming charged particle had no com-
ponent along the x-axis. Show that, even if it had an x component, the subsequent
motion of the particle would be the same—that only the radius of the helix would
be altered.

Two blocks of unequal mass are connected by a string over a smooth pulley (Figure
2-B). If the coefficient of kinetic friction is u;, what angle 6 of the incline allows the
masses to move at a constant speed?

6

FIGURE 2-B Problem 2-32.

Perform a computer calculation for an object moving vertically in air under gravity

and experiencing a retarding force proportional to the square of the object’s speed

(see Equation 2.21). Use variables m for mass and rfor the object’s radius: All the

objects are dropped from rest from the top of a 100-m-tall building. Use a value of

cw = 0.5 and make computer plots of height y, speed v, and acceleration a versus ¢

for the following conditions and answer the questions:

(a) A baseball of m = 0.145 kg and r = 0.0366 m.

(b) A ping-pong ball of m = 0.0024 kg and r = 0.019 m.

(c) A raindrop of r = 0.003 m.

(d) Do all the objects reach their terminal speeds? Discuss the values of the termi-
nal velocities and explain their differences.

(e) Why can a baseball be thrown farther than a ping-pong ball even though the
baseball is so much more massive?

(f) Discuss the terminal speeds of big and small raindrops. What are the terminal
speeds of raindrops having radii 0.002 m and 0.004 m?

A particle is released from rest (y = 0) and falls under the influence of gravity and
air resistance. Find the relationship between v and the distance of falling y when
the air resistance is equal to (a) avand (b) Bv2

Perform the numerical calculations of Example 2.7 for the values given in Figure
2-8. Plot both Figures 2-8 and 2-9. Do not duplicate the solution in Appendix H;
compose your own solution.

A gun is located on a bluff of height % overlooking a river valley. If the muzzle ve-
locity is vy, find the expression for the range as a function of the elevation angle of
the gun. Solve numerically for the maximum range out into the valley for a given £
and v,
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2-37.

2-38.

2-39.

240.

241.

2-42.

243.

2-44.

2 / NEWTONTAN MECHANICS—SINGLE PARTICLE

A particle of mass m has speed v = a/x, where x s its displacement. Find the force
H(x) responsible.

The speed of a particle of mass m varies with the distance x as v(x) = ax™". Assume
v(x = 0) = 0att= 0. (a) Find the force F(x) responsible. (b) Determine x(z) and
(c) F@).

A boat with initial speed v, is launched on a lake. The boat is slowed by the water by
a force F= —aeP". (a) Find an expression for the speed v(f). (b) Find the time and
(c) distance for the boat to stop.

A particle moves in a two-dimensional orbit defined by

x(t) = A(2at — sin at)
y(t) = A(1 — cos ai)

(a) Find the tangential acceleration a; and normal acceleration a,, as a function of
time where the tangential and normal components are taken with respect to the
velocity.

(b) Determine at what times in the orbit a, has a maximum.

A train moves along the tracks at a constant speed «. A woman on the train throws
a ball of mass m straight ahead with a speed v with respect to herself. (a) What is the
kinetic energy gain of the ball as measured by a person on the train? (b) by a per-
son standing by the railroad track? (¢) How much work is done by the woman
throwing he ball and (d) by the train?

A solid cube of uniform density and sides of 4is in equilibrium on top of a cylinder
of radius R (Figure 2-C). The planes of four sides of the cube are parallel to the axis
of the cylinder. The contact between cube and sphere is perfectly rough. Under
what conditions is the equilibrium stable or not stable?

FIGURE 2-C Problem 2-42.

A particle is under the influence of a force F = —kx + kx3/a?, where k and a are
constants and k is positive. Determine U(x) and discuss the motion. What happens
when E = (1/4)ka?®

Solve Example 2.12 by using forces rather than energy. How can you determine
whether the system equilibrium is stable or unstable?
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245.

2-46.

247.

2-48.

2-49.

2-50.

2-51.

2-52.

2-53.

2-54.

Describe how to determine whether an equilibrium is stable or unstable when
(d?U/dx?), = 0.

Write the criteria for determining whether an equilibrium is stable or unstable
when all derivatives up through order =, (d"U/dx™), = 0.

Consider a particle moving in the region x > 0 under the influence of the potential

wm=m@+3

where U, = 1 J and @ = 2 m. Plot the potential, find the equilibrium points, and
determine whether they are maxima or minima.

Two gravitationally bound stars with equal masses m, separated by a distance d, re-
volve about their center of mass in circular orbits. Show that the period t is propor-
tional to @32 (Kepler’s Third Law) and find the proportionality constant.

Two gravitationally bound stars with unequal masses m, and m,, separated by a dis-
tance d, revolve about their center of mass in circular orbits. Show that the period 7
is proportional to d*2 (Kepler’s Third Law) and find the proportionality constant.

According to special relativity, a particle of rest mass m, accelerated in one dimen-
sion by a force F obeys the equation of motion dp/dt = E Here p = myv/(1 —
v2/c?) /2 is the relativistic momentum, which reduces to m,v for v¥/¢* << 1. (a) For
the case of constant F and initial conditions x(0) = 0 = v(0), find x(¢) and v(%).
(b) Sketch your result for v(#). (c) Suppose that F/m, = 10 m/s? ( = g on Earth).
How much time is required for the particle to reach half the speed of light and of
99% the speed of light?

Let us make the (unrealistic) assumption that a boat of mass m gliding with initial
velocity v, in water is slowed by a viscous retarding force of magnitude bv?, where b
is a constant. (a) Find and sketch v(#). How long does it take the boat to reach a
speed of v,/1000? (b) Find x(#). How far does the boat travel in this time? Let m =
200 kg, vy = 2m/s,and b = 0.2 Nm~%2

A particle of mass m moving in one dimension has potential energy U(x) =
Uy[2(x/a)? — (x/a)*], where U, and a are positive constants. (a) Find the force
F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and
unstable equilibrium. (c) What is the angular frequency w of oscillations about the
point of stable equilibrium? (d) What is the minimum speed the particle must have
at the origin to escape to infinity? (e) At ¢ = 0 the particle is at the origin and its ve-
locity is positive and equal in magnitude to the escape speed of part (d). Find x(%)
and sketch the result.

Which of the following forces are conservative? If conservative, find the potential
energy Ulr). @) F, = ayz + bx + ¢, Fy, = axz + by, F, = axy + by. (b) F, =
—z¢ 5, F, =Inz, F,= ¢ *+ y/z. (c) F = e.a/r(a, b, care constants).

A potato of mass 0.5 kg moves under Earth’s gravity with an air resistive force of
—kmu. (a) Find the terminal velocity if the potato is released from rest and &k =
0.01 s~ . (b) Find the maximum height of the potato if it has the same value of &,
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but it is initially shot directly upward with a student-made potato gun with an initial
velocity of 120 m/s.

2-55. A pumpkin of mass 5 kg shot out of a student-made cannon under air pressure at
an elevation angle of 45° fell at a distance of 142 m from the cannon. The students
used light beams and photocells to measure the initial velocity of 54 m/s. If the air
resistive force was F= — kmv, what was the value of k?
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PROBLEMS

3-1. A simple harmonic oscillator consists of a 100-g mass attached to a spring whose
force constant is 10* dyne/cm. The mass is displaced 3 cm and released from rest.
Calculate (a) the natural frequency v, and the period 7, (b) the total energy, and
(c) the maximum speed.

3-2. Allow the motion in the preceding problem to take place in a resisting medium.
After oscillating for 10 s, the maximum amplitude decreases to half the initial
value. Calculate (a) the damping parameter 8, (b) the frequency v; (compare with
the undamped frequency ), and (c) the decrement of the motion.

3-3. The oscillator of Problem 3-1 is set into motion by giving it an initial velocity of
1 cm/s at its equilibrium position. Calculate (a) the maximum displacement and
(b) the maximum potential energy.

34. Consider a simple harmonic oscillator. Calculate the time averages of the kinetic
and potential energies over one cycle, and show that these quantities are equal.
Why is this a reasonable result? Next calculate the space averages of the kinetic and
potential energies. Discuss the results.

3-5. Obtain an expression for the fraction of a complete period that a simple harmonic
oscillator spends within a small interval Ax at a position x. Sketch curves of this
function versus x for several different amplitudes. Discuss the physical significance
of the results. Comment on the areas under the various curves.

3-6. 'Two masses m; = 100 g and m, = 200 g slide freely in a horizontal frictionless track
and are connected by a spring whose force constant is £ = 0.5 N/m. Find the fre-
quency of oscillatory motion for this system.

3-7. A body of uniform crossssectional area A = 1 cm? and of mass density p = 0.8
g/cm? floats in a liquid of density p, = 1 g/cm® and at equilibrium displaces a vol-
ume V= 0.8 cm?®. Show that the period of small oscillations about the equilibrium
position is given by

T=2rVV/gA

where gis the gravitational field strength. Determine the value of 7.

3-8. A pendulum is suspended from the cusp of a cycloid* cut in a rigid support (Figure
3-A). The path described by the pendulum bob is cycloidal and is given by

x=a(¢d —singd), y=a(cosd —1)

where the length of the pendulum is [ = 44, and where ¢ is the angle of rotation
of the circle generating the cycloid. Show that the oscillations are exactly isochro-
nous with a frequency w, = V g/l, independent of the amplitude.

*The reader unfamiliar with the properties of cycloids should consult a text on analytic geometry.
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3-9.

3-10.

3-11.

3-12.

3-13.

3-14.

3-15.

3-16.

-\

FIGURE 3-A Problem 3-8,

A particle of mass m is at rest at the end of a spring (force constant = k) hanging
from a fixed support. At ¢t = 0, a constant downward force Fis applied to the mass
and acts for a time ¢,. Show that, after the force is removed, the displacement of the
mass from its equilibrium position (x = x, where xis down) is

F
X— Xy = i [coswy(t — ty) — cosw,t]
where w? = k/m.

If the amplitude of a damped oscillator decreases to 1/¢ of its initial value after
n periods, show that the frequency of the oscillator must be approximately
[1 — (87 2n?)7!] times the frequency of the corresponding undamped oscillator.

Derive the expressions for the energy and energy-loss curves shown in Figure 3-8
for the damped oscillator. For a lightly damped oscillator, calculate the average rate
at which the damped oscillator loses energy (i.e., compute a time average over one
cycle).

A simple pendulum consists of a mass m suspended from a fixed point by a weight-
less, extensionless rod of length [. Obtain the equation of motion and, in the
approximation that sin # = 6, show that the natural frequencyis w, = \/E, where g
is the gravitational field strength. Discuss the motion in the event that the motion
takes place in a viscous medium with retarding force 2m\/g7 0.

Show that Equation 3.43 is indeed the solution for critical damping by assuming a
solution of the form x(¢) = y(t)exp(—B¢) and determining the function y(z).

Express the displacement x(f) and the velocity x(¢) for the overdamped oscillator in
terms of hyperbolic functions.

Reproduce Figures 3-10b and c for the same values given in Example 3.2, but
instead let 8 = 0.1 s 7! and & = 7 rad. How many times does the system cross the x =
0 line before the amplitude finally falls below 1072 of its maximum value? Which
plot, b or ¢, is more useful for determining this number? Explain.

Discuss the motion of a particle described by Equation 3.34 in the event that 5 < 0
(i.e., the damping resistance is negative).
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3-17.

3-18.

3-19.

3-20.

3-21.

3-22.

3-23.

3-24.

3-25.

3 / OSCILLATIONS

For a damped, driven oscillator, show that the average kinetic energy is the same at
a frequency of a given number of octaves* above the kinetic energy resonance as at
a frequency of the same number of octaves below resonance.

Show that, if a driven oscillator is only lightly damped and driven near resonance,
the Q of the system is approximately

9 X Total energy

= 27 .

Q (Energy loss during one perlod)

For a lightly damped oscillator, show that Q = wy/Aw (Equation 3.65).

Plot a velocity resonance curve for a driven, damped oscillator with Q = 6, and show
that the full width of the curve between the points corresponding to %,/ V2is ap-
proximately equal to w /6.

Use a computer to produce a phase space diagram similar to Figure 3-11 for the
case of critical damping. Show analytically that the equation of the line that the
phase paths approach asymptotically is X = —fBx. Show the phase paths for at least
three initial positions above and below the line.

Let the initial position and speed of an overdamped, nondriven oscillator be xyand
vy, respectively.

(a) Show that the values of the amplitudes A; and Ay in Equation 3.44 have the values

x, + v Xg t v
A1=§_2_0_—_—0andA2= —El—o’—’g‘”hereﬂl35_“’23“({'82:34_0)2'

B2~ B B2 — B
(b) Show that when A; = 0, the phase paths of Figure 3-11 must be along the

dashed curve given by £ = —f,x, otherwise the asymptotic paths are along the
other dashed curve given by x = —f,x. Hint: Note that 89 > B, and find the
asymptotic paths when ¢— oco.

To better understand underdamped motion, use a computer to plot x(#) of Equation
3.40 (with A = 1 m) and its two components [¢ #? and cos(w;¢ — 8)] and compar-
isons (with 8 = 0) on the same plot as in Figure 3-6. Let w, = 1 rad/s and make sep-
arate plots for B%w§ = 0.1, 0.5, and 0.9 and for & (in radians) = 0, 7/2, and 7. Have
only one value of & and 8 on each plot (i.e., nine plots). Discuss the results.

For B = 0.2 s, produce computer plots like those shown in Figure 3-15 for a sinu-
soidal driven, damped oscillator where x,(¢), x.(¢), and the sum x(¢) are shown. Let
k= 1kg/s?and m = 1 kg. Do this for values of w/w, of 1/9,1/3, 1.1, 3, and 6. For
the x,(¢) solution (Equation 3.40), let the phase angle 8 = 0 and the amplitude
A = —1 m. For the x,(f) solution (Equation 3.60), let A = 1 m/s? but calculate 8.
What do you observe about the relative amplitudes of the two solutions as w in-
creases? Why does this occur? For w/w, = 6, let A = 20 m/s? for x,(#) and produce
the plot again.

Forvalues of 8 = 15”1, k = 1kg/s? and m = 1 kg, produce computer plots like those
shown in Figure 3-15 for a sinusoidal driven, damped oscillator where x,(?), x.(?),

*An octave is a frequency interval in which the highest frequency is just twice the lowest frequency.
q Y g q Y18] q Y-
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3-26.

3-27.

3-28.

3-29.

3-30.

3-31.

and the sum x(t) are shown. Do this for values of w/w, 0of 1/9,1/3, 1.1, 3, and 6. For
the critically damped x,(?) solution of Equation 3.43,let A= —1 mand B= 1 m/s.
For the x,(?) solution of Equation 3.60, let A = 1 m/ s2 and calculate 8. What do you
observe about the relative amplitudes of the two solutions as w increases? Why does
this occur? For w/w, = 6,let A = 20 m/s? for x,(z) and produce the plot again.,

Figure 3-B illustrates a mass m; driven by a sinusoidal force whose frequency is w.
The mass m, is attached to a rigid support by a spring of force constant k and slides
on a second mass m,. The frictional force between m; and m, is represented by the
damping parameter b,, and the frictional force between m, and the support is rep-
resented by b,. Construct the electrical analog of this system and calculate the
impedance.

FIGURE 3-B Problem 3-26.

Show that the Fourier series of Equation 3.89 can be expressed as
1 o0
Kt = §a0 + 21 c,cos(nwt — ¢b,,)
Relate the coefficients ¢, to the a,and &, of Equation 3.90.

Obtain the Fourier expansion of the function

-1, —me<it<O
i =
Ho {+1, 0<i< 7mw

in the interval —7/w < t < m/w. Take w = 1 rad/s. In the periodical interval, cal-
culate and plot the sums of the first two terms, the first three terms, and the first
four terms to demonstrate the convergence of the series.

Obtain the Fourier series representing the function

Ry = 0, -2/ < t< 0
) sinwt 0< i< 2n/w

Obtain the Fourier representation of the output of a full-wave rectifier. Plot the first
three terms of the expansion and compare with the exact function.

A damped linear oscillator, originally at rest in its equilibrium position, is subjected
to a forcing function given by
0, t<0
Ry _
—=S%ax (t/7), 0<it<T
m
a, t>T

Find the response function. Allow 7 — 0 and show that the solution becomes that
for a step function.
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3-32.

3-33.

3.34.

3-35.

3-36.

3.37.

3-38.

3-39.

3-40.

341.
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Obtain the response of a linear oscillator to a step function and to an impulse func-
tion (in the limit 7 — 0) for overdamping. Sketch the response functions.

Calculate the maximum values of the amplitudes of the response functions shown
in Figures 3-22 and 3-24. Obtain numerical values for 8 = 0.2w, when a = 2 m/s?,
w, = 1rad/s,and ¢, = 0.

Consider an undamped linear oscillator with a natural frequency w, = 0.5 rad/s
and the step function 2 = 1 m/s 2, Calculate and sketch the response function for
an impulse forcing function acting for a time 7 = 27/w,. Give a physical interpre-
tation of the results.

Obtain the response of a linear oscillator to the forcing function

0, <0

140 .

7= asinwt, 0<{< 7/w
0, t> m/w

Derive an expression for the displacement of a linear oscillator analogous to
Equation 3.110 but for the initial conditions x(Zy) = x,and x(¢,) = %,.

Derive the Green’s method solution for the response caused by an arbitrary forcing
function. Consider the function to consist of a series of step functions-—that is, start
from Equation 3.105 rather than from Equation 3.110.

Use Green’s method to obtain the response of a damped oscillator to a forcing
function of the form
0 t<0
) = {

Foe V'sinwt t> 0

Consider the periodic function

R = sinwt, 0<:t< 7/w
0, /o < t < 2m/w

which represents the positive portions of a sine function. (Such a function repre-
sents, for example, the output of a half-wave rectifying circuit.) Find the Fourier
representation and plot the sum of the first four terms.

An automobile with a mass of 1000 kg, including passengers, settles 1.0 cm closer to
the road for every additional 100 kg of passengers. It is driven with a constant hori-
zontal component of speed 20 km/h over a washboard road with sinusoidal bumps.
The amplitude and wavelength of the sine curve are 5.0 cm and 20 cm, respectively.
The distance between the front and back wheels is 2.4 m. Find the amplitude of
oscillation of the automobile, assuming it moves vertically as an undamped driven
harmonic oscillator. Neglect the mass of the wheels and springs and assume that
the wheels are always in contact with the road.

(a) Use the general solutions x(?) to the differential equation d?x/d¢? + 2Bdx/dt +
w}x = 0 for underdamped, critically damped, and overdamped motion and choose
the constants of integration to satisfy the initial conditions x = x;and v = v, = 0 at
t = 0. (b) Use a computer to plot the results for x()/x, as a function of w ¢ in the
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three cases 8 = (1/2)w,, B = wy, and B = 2w,. Show all three curves on a single
plot.

3-42. An undamped driven harmonic oscillator satisfies the equation of motion m(d?x/dt>+
w,%x) = F(t). The driving force F(f) = F; sin(w?) is switched on at ¢ = 0. (a) Find x(t)
for ¢ > 0 for the initial conditions x = 0 and v = 0 at ¢ = 0. (b) Find x(?) for w = w,
by taking the limit @ — @ in your result for part (a). Sketch your result for x(z).
Hint: In part (a) look for a particular solution of the differential equation of the
form x = Asin(w?) and determine A. Add the solution of the homogeneous equa-
tion to this to obtain the general solution of the inhomogeneous equation.

3-43. A point mass m slides without friction on a horizontal table at one end of a massless
spring of natural length a and spring constant k as shown in Figure 3-C. The spring
is attached to the table so it can rotate freely without friction. The net force on the
mass is the central force F(r) = —k(r — a). (a) Find and sketch both the potential
energy U(r) and the effective potential U.4(7). (b) What angular velocity @, is re-
quired for a circular orbit with radius 7¢? (c) Derive the frequency of small oscillations
 about the circular orbit with radius r,. Express your answers for (b) and (c) in terms

of k, m, ry, and a.

FIGURE 3-C Problem 3-43.

3-44. Consider a damped harmonic oscillator. After four cycles the amplitude of the os-
cillator has dropped to 1/e of its initial value. Find the ratio of the frequency of the
damped oscillator to its natural frequency.

345. A grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A
mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of
the pendulum oscillation steady at 0.03 rad. What is the Q of the system?
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Tidal distortion
(highly exaggerated)

Earth

FIGURE 5-13 Some effects cause the high tides to not be exactly along
the Earth-Moon axis.

Tidal friction between water and Earth leads to a significant amount of energy
loss on Earth. Earth is not rigid, and it is also distorted by tidal forces.

In addition to the effects just discussed, remember that as Earth rotates, the
Moon is also orbiting Earth. This leads to the result that there are not quite ex-
actly two high tides per day, because they occur once every 12 h and 26 min
(Problem 5-19). The plane of the moon’s orbit about Earth is also not perpendi-
cular to Earth’s rotation axis. This causes one high tide each day to be slightly
higher than the other. The tidal friction between water and land mentioned pre-
viously also results in Earth “dragging” the ocean with it as Earth rotates. This
causes the high tides to be not quite along the Earth-Moon axis, but rather sev-
eral degrees apart as shown in Figure 5-13.

PROBLEMS

5-1. Sketch the equipotential surfaces and the lines of force for two point masses sepa-
rated by a certain distance. Next, consider one of the masses to have a fictitious
negative mass —M. Sketch the equipotential surfaces and lines of force for this
case. To what kind of physical situation does this set of equipotentials and field
lines apply? (Note that the lines of force have direction; indicate this with appropri-
ate arrows.)

5-2. If the field vector is independent of the radial distance within a sphere, find the
function describing the density p = p(7) of the sphere.
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5'3.

54.

5'5.

5-8.

5-9.

5-10.

5-11.

5-12.

5-13.

Assuming that air resistance is unimportant, calculate the minimum velocity a par-
ticle must have at the surface of Earth to escape from Earth’s gravitational field.
Obtain a numerical value for the result. (This velocity is called the escape velocity.)

A particle at rest is attracted toward a center of force according to the relation F =
—mk?*/x’. Show that the time required for the particle to reach the force center
from a distance dis d?/k.

A particle falls to Earth starting from rest at a great height (many times Earth’s
radius). Neglect air resistance and show that the particle requires approximately %
of the total time of fall to traverse the first half of the distance.

Compute directly the gravitational force on a unit mass at a point exterior to a ho-
mogeneous sphere of matter.

Calculate the gravitational potential due to a thin rod of length / and mass M at a
distance R from the center of the rod and in a direction perpendicular to the rod.

Calculate the gravitational field vector due to a homogeneous cylinder at exterior
points on the axis of the cylinder. Perform the calculation (a) by computing the
force directly and (b) by computing the potential first.

Calculate the potential due to a thin circular ring of radius a and mass M for points
lying in the plane of the ring and exterior to it. The result can be expressed as an
elliptic integral.* Assume that the distance from the center of the ring to the field
point is large compared with the radius of the ring. Expand the expression for the
potential and find the first correction term.

Find the potential at off-axis points due to a thin circular ring of radius @ and mass
M. Let R be the distance from the center of the ring to the field point, and let 8 be
the angle between the line connecting the center of the ring with the field point
and the axis of the ring. Assume R>> a so that terms of order (a/R)? and higher
may be neglected.

Consider a massive body of arbitrary shape and a spherical surface that is exterior
to and does not contain the body. Show that the average value of the potential due
to the body taken over the spherical surface is equal to the value of the potential at
the center of the sphere.

In the previous problem, let the massive body be inside the spherical surface. Now
show that the average value of the potential over the surface of the sphere is equal
to the value of the potential that would exist on the surface of the sphere if all the
mass of the body were concentrated at the center of the sphere.

A planet of density p, (spherical core, radius R;) with a thick spherical cloud of
dust (density py, radius Ry) is discovered. What is the force on a particle of mass m
placed within the dust cloud?

*See Appendix B for a list of some elliptic integrals.
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5-14.

5'15.

5-16.

5-17.

5-18,

5-19.

5-20.

5-21.
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Show that the gravitational self-energy (energy of assembly piecewise from infinity)
of a uniform sphere of mass M and radius Ris

3 GM?
U= -2~
5 R

A particle is dropped into a hole drilled straight through the center of Earth.
Neglecting rotational effects, show that the particle’s motion is simple harmonic if
you assume Earth has uniform density. Show that the period of the oscillation is
about 84 min.

A uniformly solid sphere of mass M and radius R is fixed a distance k above a thin
infinite sheet of mass density p, (mass/area). With what force does the sphere at-
tract the sheet?

Newton’s model of the tidal height, using the two water wells dug to the center of
Earth, used the fact that the pressure at the bottom of the two wells should be the
same. Assume water is incompressible and find the tidal height difference &,
Equation 5.55, due to the Moon using this model. (Hint: [;™pg,dy = [;™pg.dx;
h = Xpax = Ymax Where X, + Yo = 2Rear, and Ry, is Earth’s median radius.)

Show that the ratio of maximum tidal heights due to the Moon and Sun is given by
M m REs 3
M\ D

and that this value is 2.2. R, is the distance between the Sun and Earth, and M is
the Sun’s mass.

The orbital revolution of the Moon about Earth takes about 27.3 days and is in the
same direction as Earth’s rotation (24 h). Use this information to show that high
tides occur everywhere on Earth every 12 h and 26 min.

A thin disk of mass M and radius R lies in the (x, y) plane with the z-axis passing
through the center of the disk. Calculate the gravitational potential ¢ (z) and the
gravitational field g(z) = —V®(z) = —kd®(z)/dz on the z-axis.

A point mass m is located a distance D from the nearest end of a thin rod of mass M
and length L along the axis of the rod. Find the gravitational force exerted on the
point mass by the rod.
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PROBLEMS

6-1. Consider the line connecting (x4, y;) = (0, 0) and (xy, y9) = (1, 1). Show explicitly
that the function y(x) = x produces a minimum path length by using the varied
function y(a, x) = x + a sin (1 — x). Use the first few terms in the expansion of
the resulting elliptic integral to show the equivalent of Equation 6.4.

6-2. Show that the shortest distance between two points on a plane is a straight line.

6-3. Show that the shortest distance between two points in (three-dimensional) space is
a straight line.

64. Show that the geodesic on the surface of a right circular cylinder is a segment of a
helix.

6-5. Consider the surface generated by revolving a line connecting two fixed points
(%1, y1) and (xq, y9) about an axis coplanar with the two points. Find the equation
of the line connecting the points such that the surface area generated by the revo-
lution (i.e., the area of the surface of revolution) is a minimum. Obtain the solu-
tion by using Equation 6.39.

6-6. Reexamine the problem of the brachistochrone (Example 6.2) and show that the
time required for a particle to move (frictionlessly) to the minimum point of the cy-
cloid is mV a/g, independent of the starting point.

6-7. Consider light passing from one medium with index of refraction n; into another

medium with index of refraction ny (Figure 6-A). Use Fermat’s principle to mini-
mize time, and derive the law of refraction: n; sin 6; = n, sin 0,.

n

(ng > ny)

FIGURE 6-A Problem 6-7.

6-8. Find the dimensions of the parallelepiped of maximum volume circumscribed by
(a) a sphere of radius R; (b) an ellipsoid with semiaxes a, b, c.

6-9. Find an expression involving the function ¢(x;, x9, x3) that has a minimum average
value of the square of its gradient within a certain volume V of space.
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6-10.

6-11.

6-12.

6-13.

6'140

6-15.

6-16.

6-17.

6-18.

Find the ratio of the radius R to the height H of a right-circular cylinder of fixed
volume V that minimizes the surface area A.

A disk of radius R rolls without slipping inside the parabola y = ax? Find the equa-
tion of constraint. Express the condition that allows the disk to roll so that it con-
tacts the parabola at one and only one point, independent of its position.

Repeat Example 6.4, finding the shortest path between any two points on the sur-
face of a sphere, but use the method of the Euler equations with an auxiliary con-
dition imposed.

Repeat Example 6.6 but do not use the constraint that the y = 0 line is the bottom
part of the area. Show that the plane curve of a given length, which encloses a max-
Imum area, is a circle.

Find the shortest path between the (x, y, z) points (0, —1, 0) and (0, 1, 0) on the
conical surface z = 1 — V x? + 2 What is the length of the path? Note: this is the
shortest mountain path around a volcano.

(a) Find the curve y(x) that passes through the endpoints (0, 0) and (1, 1) and min-
imizes the functional I[y] = f§[(dy/dx)? — y?]dx. (b) What is the minimum value
of the integral? (c) Evaluate I[y] for a straight line y = x between the points (0, 0)
and (1, 1).

(a) What curve on the surface z = x%? joining the points (x, y, z) = (0, 0, 0) and
(1, 1, 1) has the shortest arc length? (b) Use a computer to produce a plot showing
the surface and the shortest curve on a single plot.

The corners of a rectangle lie on the ellipse (x/a) 2 + (y/b)? = 1. (a) Where should
the corners be located in order to maximize the area of the rectangle? (b) What
fraction of the area of the ellipse is covered by the rectangle with maximum area?

A particle of mass m is constrained to move under gravity with no friction on the
surface xy = z. What is the trajectory of the particle if it starts from rest at (x, y, z) =
(1, —1, —1) with the z-axis vertical?
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If the particles have a gravitational interaction, then n = —2, and
1
T)=-5W), n=-2

This relation is useful in calculating, for example, the energetics in planetary
motion.

PROBLEMS

7-1. A disk rolls without slipping across a horizontal plane. The plane of the disk re-
mains vertical, but it is free to rotate about a vertical axis. What generalized coordi-
nates may be used to describe the motion? Write a differential equation describing
the rolling constraint. Is this equation integrable? Justify your answer by a physical
argument. Is the constraint holonomic?

7-2. Work out Example 7.6 showing all the steps, in particular those leading to
Equations 7.36 and 7.41. Explain why the sign of the acceleration a cannot affect
the frequency w. Give an argument why the signs of a2 and g2 in the solution of w?
in Equation 7.42 are the same.

7-3. A sphere of radius p is constrained to roll without slipping on the lower half of the
inner surface of a hollow cylinder of inside radius R. Determine the Lagrangian
function, the equation of constraint, and Lagrange’s equations of motion. Find the
frequency of small oscillations.

74. A particle moves in a plane under the influence of a force f= —Ar®~! directed to-
ward the origin; A and a (> 0) are constants. Choose appropriate generalized co-
ordinates, and let the potential energy be zero at the origin. Find the Lagrangian
equations of motion. Is the angular momentum about the origin conserved? Is the
total energy conserved?

7-5. Consider a vertical plane in a constant gravitational field. Let the origin of a coor-
dinate system be located at some point in this plane. A particle of mass m moves in
the vertical plane under the influence of gravity and under the influence of an ad-
ditional force f= —Ar*~! directed toward the origin (r is the distance from the
origin; A and a [# 0 or 1] are constants). Choose appropriate generalized coordi-
nates, and find the Lagrangian equations of motion. Is the angular momentum
about the origin conserved? Explain.

76. A hoop of mass m and radius R rolls without slipping down an inclined plane of
mass M, which makes an angle a with the horizontal. Find the Lagrange equations
and the integrals of the motion if the plane can slide without friction along a hori-
zontal surface.

7-7. A double pendulum consists of two simple pendula, with one pendulum suspended
from the bob of the other. If the two pendula have equal lengths and have bobs of
equal mass and if both pendula are confined to move in the same plane, find
Lagrange’s equations of motion for the system. Do not assume small angles.
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7-8.

7-9.

7-10.

7-11.

7-12.

7-13.

7-14.

7-15.

7-16.

7-17.

Consider a region of space divided by a plane. The potential energy of a particle in
region 1 is U; and in region 2 it is Us. If a particle of mass m and with speed v in re-
gion 1 passes from region 1 to region 2 such that its path in region 1 makes an
angle 6, with the normal to the plane of separation and an angle 6, with the normal
when in region 2, show that

sin 6; (l + U — IJ2)1/2

sin 6, Ty

where T} = %mv? What is the optical analog of this problem?
A disk of mass M and radius R rolls without slipping down a plane inclined from
the horizontal by an angle a. The disk has a short weightless axle of negligible ra-
dius. From this axis is suspended a simple pendulum of length { < Rand whose bob
has a mass m. Consider that the motion of the pendulum takes place in the plane of
the disk, and find Lagrange’s equations for the system.

Two blocks, each of mass M, are connected by an extensionless, uniform string of
length /. One block is placed on a smooth horizontal surface, and the other block
hangs over the side, the string passing over a frictionless pulley. Describe the mo-
tion of the system (a) when the mass of the string is negligible and (b) when the
string has a mass m.

A particle of mass m is constrained to move on a circle of radius R. The circle rotates
in space about one point on the circle, which is fixed. The rotation takes place in
the plane of the circle and with constant angular speed w. In the absence of a gravi-
tational force, show that the particle’s motion about one end of a diameter passing
through the pivot point and the center of the circle is the same as that of a plane
pendulum in a uniform gravitational field. Explain why this is a reasonable result.

A particle of mass m rests on a smooth plane. The plane is raised to an inclination
angle 6 at a constant rate @ (6 = 0 at ¢ = 0), causing the particle to move down the
plane. Determine the motion of the particle.

A simple pendulum of length # and bob with mass m is attached to a massless sup-
port moving horizontally with constant acceleration a. Determine (a) the equations
of motion and (b) the period for small oscillations,

A simple pendulum of length # and bob with mass m is attached to a massless sup-
port moving vertically upward with constant acceleration a. Determine (a) the
equations of motion and (b) the period for small oscillations.

A pendulum consists of a mass m suspended by a massless spring with unextended
length b and spring constant k. Find Lagrange’s equations of motion.

The point of support of a simple pendulum of mass m and length & is driven hori-
zontally by x = asin wt. Find the pendulum’s equation of motion.

A particle of mass m can slide freely along a wire AB whose perpendicular distance
to the origin Ois h (see Figure 7-A, page 282). The line OC rotates about the origin
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FIGURE 7-A Problem 7-17.

at a constant angular velocity 6 = w. The position of the particle can be described
in terms of the angle 6 and the distance ¢ to the point C. If the particle is subject to
a gravitational force, and if the initial conditions are

6(0) =0, ¢0)=0, ¢0)=0
show that the time dependence of the coordinate gis
) = £ (coshwt — cos wi)
7 202

Sketch this result. Compute the Hamiltonian for the system, and compare with the
total energy. Is the total energy conserved?

A pendulum is constructed by attaching a mass m to an extensionless string of
length L The upper end of the string is connected to the uppermost point on a ver-
tical disk of radius R (R < I/m) as in Figure 7-B. Obtain the pendulum’s equation
of motion, and find the frequency of small oscillations. Find the line about which
the angular motion extends equally in either direction (i.e., 8, = 65).

FIGURE 7-B Problem 7-18.
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7-19.

7-20.

7'2 10

7-22.

7-23.

7-24.

7-25.

7'26.

7-27.

Two masses m; and my (m; # my) are connected by a rigid rod of length d and of
negligible mass. An extensionless string of length / is attached to m; and con-
nected to a fixed point of support P. Similarly, a string of length 4 (4 # L) con-
nects m; and P. Obtain the equation describing the motion in the plane of m,;, m,,
and P, and find the frequency of small oscillations around the equilibrium position.

A circular hoop is suspended in a horizontal plane by three strings, each of length
[, which are attached symmetrically to the hoop and are connected to fixed points
lying in a plane above the hoop. At equilibrium, each string is vertical. Show that
the frequency of small rotational oscillations about the vertical through the center
of the hoop is the same as that for a simple pendulum of length L

A particle is constrained to move (without friction) on a circular wire rotating with
constant angular speed @ about a vertical diameter. Find the equilibrium position
of the particle, and calculate the frequency of small oscillations around this posi-
tion. Find and interpret physically a critical angular velocity w = w, that divides the
particle’s motion into two distinct types. Construct phase diagrams for the two cases
w<owandoew > o,

A particle of mass m moves in one dimension under the influence of a force
k
= — (1)
F(x, 1) 2 e

where k and T are positive constants. Compute the Lagrangian and Hamiltonian
functions. Compare the Hamiltonian and the total energy, and discuss the conser-
vation of energy for the system.

Consider a particle of mass m moving freely in a conservative force field whose po-
tential function is U. Find the Hamiltonian function, and show that the canonical
equations of motion reduce to Newton’s equations. (Use rectangular coordinates.)

Consider a simple plane pendulum consisting of a mass m attached to a string of
length {. After the pendulum is set into motion, the length of the string is short-
ened at a constant rate

dl

= —a = constant
dt

The suspension point remains fixed. Compute the Lagrangian and Hamiltonian
functions. Compare the Hamiltonian and the total energy, and discuss the conser-
vation of energy for the system.

A particle of mass m moves under the influence of gravity along the helix z = k6, r =
constant, where k is a constant and z is vertical. Obtain the Hamiltonian equations
of motion.

Determine the Hamiltonian and Hamilton’s equations of motion for (a) a simple
pendulum and (b) a simple Atwood machine (single pulley).

A massless spring of length & and spring constant k connects two particles of masses
my and my. The system rests on a smooth table and may oscillate and rotate.
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7-28.

7'290

7-30.

7-31.

7-32.
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(a) Determine Lagrange’s equations of motion.
(b) What are the generalized momenta associated with any cyclic coordinates?
(c) Determine Hamilton’s equations of motion.

A particle of mass m is attracted to a force center with the force of magnitude k/ r2,
Use plane polar coordinates and find Hamilton’s equations of motion.

Consider the pendulum described in Problem 7-15. The pendulum’s point of sup-
port rises vertically with constant acceleration a.

(a) Use the Lagrangian method to find the equations of motion.

(b) Determine the Hamiltonian and Hamilton’s equations of motion.

(c) What is the period of small oscillations?

Consider any two continuous functions of the generalized coordinates and mo-
menta g(g;, pp) and k(q;, p;). The Poisson brackets are defined by

og 0h  Og oh
[ghl =2 (= — ==
k \0gy 0P, 9Py 0q,

Verify the following properties of the Poisson brackets:
dg og . .
(a)EtZ[g,H] +E (b)q,-Z[q,-,H], szu’j,H]

© o, p1 =0, (g, g1 =0 (@) [q, p1 = 8y

where A is the Hamiltonian. If the Poisson bracket of two quantities vanishes, the
quantities are said to commute. If the Poisson bracket of two quantities equals unity,
the quantities are said to be canonically conjugate. () Show that any quantity that
does not depend explicitly on the time and that commutes with the Hamiltonian is
a constant of the motion of the system. Poisson-bracket formalism is of consider-
able importance in quantum mechanics.

A spherical pendulum consists of a bob of mass m attached to a weightless, exten-
sionless rod of length I The end of the rod opposite the bob pivots freely (in all di-
rections) about some fixed point. Set up the Hamiltonian function in spherical co-
ordinates. (If p, = 0, the result is the same as that for the plane pendulum.)
Combine the term that depends on p, with the ordinary potential energy term to
define as effective potential V(6, p,). Sketch V as a function of 6 for several values of
P Including p, = 0. Discuss the features of the motion, pointing out the differ-
ences between p, = 0 and p, # 0. Discuss the limiting case of the conical pendu-
lum (6 = constant) with reference to the V-6 diagram.

A particle moves in a spherically symmetric force field with potential energy given
by U(r) = —k/r. Calculate the Hamiltonian function in spherical coordinates, and
obtain the canonical equations of motion. Sketch the path that a representative
point for the system would follow on a surface A = constant in phase space. Begin
by showing that the motion must lie in a plane so that the phase space is four di-
mensional (7, 6, p,, ps, but only the first three are nontrivial). Calculate the projec-
tion of the phase path on the r-p, plane, then take into account the variation with 6.
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7-33.

7-34.

7-35.

7-36.

7-317.

7-38.

7-39.

Determine the Hamiltonian and Hamilton’s equations of motion for the double
Atwood machine of Example 7.8.

A particle of mass m slides down a smooth circular wedge of mass M as shown in
Figure 7-C. The wedge rests on a smooth horizontal table. Find (a) the equation of
motion of m and M and (b) the reaction of the wedge on m.

FIGURE 7-C Problem 7-34.

Four particles are directed upward in a uniform gravitational field with the follow-
ing initial conditions:

1) 2(0) = z¢; £.(0) = o
(2) 2(0) =20+ Az p(0) = o
(3) z(0) = zo; $:.(0) = po + Apy

@) 2(0) =z + Az;  p.(0) = po + Apy

Show by direct calculation that the representative points corresponding to these
particles always define an area in phase space equal to Az Apy. Sketch the phase
paths, and show for several times ¢> 0 the shape of the region whose area remains
constant.

Discuss the implications of Liouville’s theorem on the focusing of beams of
charged particles by considering the following simple case. An electron beam of
circular cross section (radius R,) is directed along the z-axis. The density of elec-
trons across the beam is constant, but the momentum components transverse to
the beam (p, and p,) are distributed uniformly over a circle of radius g in momen-
tum space. If some focusing system reduces the beam radius from R, to Ry, find the
resulting distribution of the transverse momentum components. What is the physi-
cal meaning of this result? (Consider the angular divergence of the beam.)

Use the method of Lagrange undetermined multipliers to find the tensions in both
strings of the double Atwood machine of Example 7.8.

The potential for an anharmonic oscillator is U = kx%/2 + bx*/4 where k and b are
constants. Find Hamilton’s equations of motion.

An extremely limber rope of uniform mass density, mass m and total length 5 lies on
a table with a length z hanging over the edge of the table. Only gravity acts on the
rope. Find Lagrange’s equation of motion.
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7-40. A double pendulum is attached to a cart of mass 2m that moves without friction on
a horizontal surface. See Figure 7-D. Each pendulum has length & and mass bob m.
Find the equations of motion.

\,

3

-

:—: : |—>Uo

FIGURE 7-D Problem 7-40.

741. A pendulum of length # and mass bob m is oscillating at small angles when the
length of the pendulum string is shortened at a velocity of a (db/dt = —a). Find
« Lagrange’s equations of motion.
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We integrate the last term using the definite integral, [In x dx = xIn x — x, to
obtain after collecting terms,

g(my — mf)2 u ms

If we insert the numbers from the last example, we find the same answer for the
burnout height.
The speed at burnout can be determined directly from Equation 9.165.

My
Uy = —gT + uln “'n?,

_ B (@) (9.168)

a mf

PROBLEMS

9-1. Find the center of mass of a hemispherical shell of constant density and inner ra-
dius r; and outer radius 7.

9-2. Find the center of mass of a uniformly solid cone of base diameter 2a and height A.

9-3. Find the center of mass of a uniformly solid cone of base diameter 2z and height &
and a solid hemisphere of radius a where the two bases are touching.

94. Find the center of mass of a uniform wire that subtends an arc 8 if the radius of the
circular arc is a, as shown in Figure 9-A.

y

FIGURE 9-A Problem 9-4.

9-5. The center of gravity of a system of particles is the point about which external grav-
itational forces exert no net torque. For a uniform gravitational force, show that
the center of gravity is identical to the center of mass for the system of particles.

9-6. Consider two particles of equal mass m. The forces on the particles are F;, = 0 and
Fy; = K. If the particles are initially at rest at the origin, what is the position, veloc-
ity, and acceleration of the center of mass?
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9-7. A model of the water molecule HyO is shown in Figure 9-B. Where is the center of
mass?

\.H

FIGURE 9-B Problem 9-7.

9-8. Where is the center of mass of the isosceles right triangle of uniform areal density
shown in Figure 9-C?

FIGURE 9-C Problem 9-8.

9-9. A projectile is fired at an angle of 45° with initial kinetic energy E,. At the top of its
trajectory, the projectile explodes with additional energy E, into two fragments.
One fragment of mass m; travels straight down. What is the velocity (magnitude
and direction) of the second fragment of mass m, and the velocity of the first?
What is the ratio of m;/my when m; is a maximum?

9-10. A cannon in a fort overlooking the ocean fires a shell of mass M at an elevation
angle 6 and muzzle velocity v,. At the highest point, the shell explodes into two
fragments (masses m; + mg = M), with an additional energy E, traveling in the
original horizontal direction. Find the distance separating the two fragments when
they land in the ocean. For simplicity, assume the cannon is at sea level.

9-11. Verify that the second term on the right-hand side of Equation 9.9 indeed vanishes
for the case n = 3.

9-12. Astronaut Stumblebum wanders too far away from the space shuttle orbiter while
repairing a broken communications satellite. Stumblebum realizes that the orbiter
is moving away from him at 3 m/s. Stumblebum and his maneuvering unit have a
mass of 100 kg, including a pressurized tank of mass 10 kg. The tank includes only
2 kg of gas that is used to propel him in space. The gas escapes with a constant ve-
locity of 100 m/s.
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9-13.

9-14.

9-15.

9-16.

9-17.

9-18.

9-19.
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(a) Will Stumblebum run out of gas before he reaches the orbiter?
(b) With what velocity will Stumblebum have to throw the empty tank away to reach
the orbiter?

Even though the total force on a system of particles (Equation 9.9) is zero, the net
torque may not be zero. Show that the net torque has the same value in any coordi-
nate system.

Consider a system of particles interacting by magnetic forces. Are Equations 9.11
and 9.31 valid? Explain.

A smooth rope is placed above a hole in a table (Figure 9-D). One end of the rope
falls through the hole at ¢ = 0, pulling steadily on the remainder of the rope. Find
the velocity and acceleration of the rope as a function of the distance to the end of
the rope x. Ignore all friction. The total length of the rope is L.

FIGURE 9D Problem 9-15.

For the energy-conserving case of the falling chain in Example 9.2, show that the
tension on either side of the bottom bend is equal and has the value px?/4.

Integrate Equation 9.17 in Example 9.2 numerically and make a plot of
the speed versus the time using dimensionless parameters, %/ \/2? vs. t/V2b/g
where V2b/g is the free fall time, tg., gy. Find the time it takes for the free end to
reach the bottom. Define natural units by r =tV g/2b o = x/2b and integrate
dr/da from @ = & (some small number greater than 0) to a = 1/2. One can’t in-
tegrate numerically from @ = 0 because of a singularity in dr/da. The expression

dr/da is
dr _ [ 1~ 2a
da 2a(1 — a)

Use a computer to make a plot of the tension versus time for the falling chain in
Example 9.2. Use dimensionless parameters (7/Mg) versus tg.cy, Where
treetn = V2b/g. Stop the plot before T/ Mg becomes greater than 50.

A chain such as the one in Example 9.2 (with the same parameters) of length b and
mass pbis suspended from one end at a point that is a height »above a table so that
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9-20.

9-21.

9-22.

9-23.

9-24.

9-25.

the free end barely touches the tabletop. At time ¢ = 0, the fixed end of the chain is
released. Find the force that the tabletop exerts on the chain after the original
fixed end has fallen a distance x.

A uniform rope of total length 24 hangs in equilibrium over a smooth nail. A very
small impulse causes the rope to slowly roll off the nail. Find the velocity of the
rope as it just clears the nail. Assume the rope is prevented from lifting off the nail
and is in free fall.

A flexible rope of length 1.0 m slides from a frictionless table top as shown in Figure
9-E. The rope is initially released from rest with 30 cm hanging over the edge of the
table. Find the time at which the left end of the rope reaches the edge of the table.

FIGURE 9-E Problem 9-21.

A deuteron (nucleus of deuterium atom consisting of a proton and a neutron) with
speed 14.9 km/s collides elastically with a neutron at rest. Use the approximation
that the deuteron is twice the mass of the neutron. (a) If the deuteron is scattered
through a LAB angle ¢4 = 10°, what are the final speeds of the deuteron and neu-
tron? (b) What is the LAB scattering angle of the neutron? (c¢) What is the maxi-
mum possible scattering angle of the deuteron?

A particle of mass m; and velocity u, collides with a particle of mass m, at rest. The
two particles stick together. What fraction of the original kinetic energy is lost in
the collision?

A particle of mass m at the end of a light string wraps itself about a fixed vertical
cylinder of radius a (Figure 9-F). All the motion is in the horizontal plane (disre-
gard gravity). The angular velocity of the cord is @, when the distance from the par-
ticle to the point of contact of the string and cylinder is 4. Find the angular velocity
and tension in the string after the cord has turned through an additional angle 6.

FIGURE 9-F Problem 9-24.

Slow-moving neutrons have a much larger absorption rate in ?**U than fast neu-
trons produced by 2°U” fission in a nuclear reactor. For that reason, reactors con-
sist of moderators to slow down neutrons by elastic collisions. What elements are
best to be used as moderators? Explain.
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9-26.

9-27.

9-28.

9-29.

9-30.

9-31.
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The force of attraction between two particles is given by
r » »
fro =k (rg— 1)) — % (g — ¥y)

where kis a constant, v, is a constant velocity, and r = |r2 — r,|. Calculate the internal
torque for the system; why does this quantity not vanish? Is the system conservative?

Derive Equation 9.90.

A particle of mass m, elastically collides with a particle of mass mq at rest. What is
the maximum fraction of kinetic energy loss for m;? Describe the reaction.

Derive Equation 9.91.

A tennis player strikes an incoming tennis ball of mass 60 g as shown in Figure 9-G.

The incoming tennis ball velocity is uv; = 8 m/s, and the outgoing velocity is

v = 16 m/s.

(a) What impulse was given to the tennis ball?

(b) If the collision time was 0.01 s, what was the average force exerted by the tennis
racket?

FIGURE 9-G Problem 9-30.

Derive Equation 9.92.

9-32. A particle of mass m and velocity %; makes a head-on collision with another particle

9-33.

of mass 2m at rest. If the coefficient of restitution is such to make the loss of total ki-
netic energy a maximum, what are the velocities v, and v, after the collision?

Show that 7}/ T; can be expressed in terms of my/m; = a and cos ¢ = yas

T,
A=(1+a)2(B2+a?-1+2Va2+2—1)

Ty

Plot Ty/T, as a function of ¢ for @ = 1, 2, 4, and 12. These plots correspond to the
energies of protons or neutrons after scattering from hydrogen (a = 1), deuterium
(a = 2), helium (a = 4), and carbon (a = 12), or of alpha particles scattered from
helium (a = 1), oxygen (a = 4), and so forth.
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9-34.

9-35.

9-36.

9-37.

9'380

A billiard ball of initial velocity u, collides with another billiard ball (same mass) initially
at rest. The first ball moves off at ¢4 = 45°. For an elastic collision, what are the veloci-
ties of both balls after the collision? At what LAB angle does the second ball emerge?

A particle of mass m, with initial laboratory velocity u, collides with a particle of mass m,
at rest in the LAB system. The particle m, is scattered through a LAB angle ¢y and has a
final velocity v;, where v; = v, (). Find the surface such that the time of travel of the
scattered particle from the point of collision to the surface is independent of the scat-
tering angle. Consider the cases (a) my = my, (b) mo = 2my, and (c) m, = 0o. Suggest
an application of this result in terms of a detector for nuclear particles.

In an elastic collision of two particles with masses m; and m,, the initial velocities
are uy and uy = au,. If the initial kinetic energies of the two particles are equal,
find the conditions on u;/u, and m;/m, such that m, is at rest after the collision.
Examine both cases for the sign of a.

When a bullet fires in a gun, the explosion subsides quickly. Suppose the force on
the bullet is F = (360 — 107 £2572) N until the force becomes zero (and remains
zero). The mass of the bulletis 3 g.

(a) What impulse acts on the bullet?

(b) What is the muzzle velocity of the gun?

Show that
I _ mi 9
To (m + my)?
where
cos (6 — ¢r)

9-39. A particle of mass m strikes a smooth wall at an angle 6 from the normal. The coef-

9-40.

ficient of restitution is &. Find the velocity and the rebound angle of the particle
after leaving the wall.

A particle of mass m; and velocity v, strikes head-on a particle of mass m, at rest.
The coefficient of restitution is . Particle my is tied to a point a distance a away as
shown in Figure 9-H. Find the velocity (magnitude and direction) of m; and m,
after the collision.

o {Om
_. R
7
7
7

4
4
4
4

251

my

FIGURE 9-H Problem 940.
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941.

942,

9-43.

945,

946.

9-47.

9-49.

9-50.

9-51.
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A rubber ball is dropped from rest onto a linoleum floor a distance %, away. The
rubber ball bounces up to a height A. What is the coefficient of restitution? What
fraction of the original kinetic energy is lost in terms of &?

A steel ball of velocity 5 m/s strikes a smooth, heavy steel plate at an angle of 30°
from the normal. If the coefficient of restitution is 0.8, at what angle and velocity
does the steel ball bounce off the plate?

A proton (mass m) of kinetic energy 7, collides with a helium nucleus (mass 4m) at
rest. Find the recoil angle of the helium if ¢y = 45° and the inelastic collision has

Q = —T/6.

. A uniformly dense rope of length »and mass density u is coiled on a smooth table.

One end is lifted by hand with a constant velocity v,. Find the force of the rope
held by the hand when the rope is a distance @ above the table (b > a).

Show that the equivalent of Equation 9.129 expressed in terms of 6 rather than ¢ is

1+ xcos@
(1 +2xcos @ + x2)3?

() = oY)+

Calculate the differential cross section o(f) and the total cross section o, for the

elastic scattering of a particle from an impenetrable sphere; the potential is given
by

0 r> a
Un =3
) {oo, r<a

Show that the Rutherford scattering cross section (for the case m; = m,) can be ex-
pressed in terms of the recoil angle as

L

T3 cos3{

ras(f) =

. Consider the case of Rutherford scattering in the event that m; > m,. Obtain an ap-

proximate expression for the differential cross section in the LAB coordinate system.

Consider the case of Rutherford scattering in the event that my => m,. Obtain an
expression of the differential cross section in the CM system that is correct to first
order in the quantity m,/ms. Compare this result with Equation 9.140.

A fixed force center scatters a particle of mass m according to the force law
F(r) = k/7. If the initial velocity of the particle is uy, show that the differential scat-
tering cross section is

kn*(m — 0)
mu36?(2m — 6)? sin 6

o) =

It is found experimentally that in the elastic scattering of neutrons by protons
(m,= m,) at relatively low energies, the energy distribution of the recoiling pro-
tons in the LAB system is constant up to a maximum energy, which is the energy of
the incident neutrons. What is the angular distribution of the scattering in the CM
system?
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9-52.

9-53.

9-54.

9-55.

9-56.

9-57.

9-59.

9-60.

Show that the energy distribution of particles recoiling from an elastic collision is
always directly proportional to the differential scattering cross section in the CM
system,

The most energetic a-particles available to Ernest Rutherford and his colleagues
for the famous Rutherford scattering experiment were 7.7 MeV. For the scatter-
ing of 7.7 MeV a-particles from 23U (initially at rest) at a scattering angle in the
lab of 90° (all calculations are in the LAB system unless otherwise noted), find
the following:

(a) the recoil scattering angle of 28U.

(b) the scattering angles of the a-particle and #%U in the CM system.

(c) the kinetic energies of the scattered a-particle and 2U.

(d) the impact parameter b.

(e) the distance of closest approach r_. .

(f) the differential cross section at 90°.

(g) the ratio of the probabilities of scattering at 90° to that of 5°.

A rocket starts from rest in free space by emitting mass. At what fraction of the ini-
tial mass is the momentum a maximum?

An extremely well-constructed rocket has a mass ratio (my/m) of 10. A new fuel is
developed that has an exhaust velocity as high as 4500 m/s. The fuel burns at a con-
stant rate for 300 s. Calculate the maximum velocity of this single-stage rocket, as-
suming constant acceleration of gravity. If the escape velocity of a particle from the
earth is 11.3 km/s, can a similar single-stage rocket with the same mass ratio and ex-
haust velocity be constructed that can reach the moon?

A water droplet falling in the atmosphere is spherical. Assume that as the droplet
passes through a cloud, it acquires mass at a rate equal to kA where k is a con-
stant(>0) and A its cross-sectional area. Consider a droplet of initial radius 7, that
enters a cloud with a velocity 7. Assume no resistive force and show (a) that the ra-
dius increases linearly with the time, and (b) that if % is negligibly small then the
speed increases linearly with the time within the cloud.

A rocket in outer space in a negligible gravitational field starts from rest and accel-
erates uniformly at ¢ until its final speed is v. The initial mass of the rocket is m.
How much work does the rocket’s engine do?

. Consider a single-stage rocket taking off from Earth. Show that the height of the

rocket at burnout is given by Equation 9.166. How much farther in height will the
rocket go after burnout?

A rocket has an initial mass of m and a fuel burn rate of o (Equation 9.161). What is
the minimum exhaust velocity that will allow the rocket to lift off immediately after
firing?

A rocket has an initial mass of 7 X 10* kg and on firing burns its fuel at a rate of 250
kg/s. The exhaust velocity is 2500 m/s. If the rocket has a vertical ascent from rest-
ing on the earth, how long after the rocket engines fire will the rocket lift off? What
is wrong with the design of this rocket?
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9-62.

9-63.

9-64.

9-65.

9-66.

9-67.
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Consider a multistage rocket of # stages, each with exhaust speed u. Each stage of
the rocket has the same mass ratio at burnout (k = m;/m;). Show that the final
speed of the nth stage is nu In k.

To perform a rescue, a lunar landing craft needs to hover just above the surface of
the moon, which has a gravitational acceleration of g/6. The exhaust velocity is
2000 m/s, but fuel amounting to only 20 percent of the total mass may be used.
How long can the landing craft hover?

A new projectile launcher is developed in the year 2023 that can launch a 10* kg
spherical probe with an initial speed of 6000 m/s. For testing purposes, objects are
launched vertically.

(a) Neglect air resistance and assume that the acceleration of gravity is constant.
Determine how high the launched object can reach above the surface of Earth.

(b) If the object has a radius of 20 cm and the air resistance is proportional to the
square of the object’s speed with ¢, = 0.2, determine the maximum height
reached. Assume the density of air is constant.

(c) Now also include the fact that the acceleration of gravity decreases as the object
soars above Earth. Find the height reached.

(d) Now add the effects of the decrease in air density with altitude to the calcula-
tion. We can very roughly represent the air density by log,o(p) = — 0.05% + 0.11
where p is the air density in kg/m3? and % is the altitude above Earth in km.
Determine how high the object now goes.

A new single-stage rocket is developed in the year 2023, having a gas exhaust veloc-
ity of 4000 m/s. The total mass of the rocket is 10° kg, with 90% of its mass being
fuel. The fuel burns quickly in 100 s at a constant rate. For testing purposes, the
rocket is launched vertically at rest from Earth’s surface. Answer parts (a) through
(d) of the previous problem.

In a typical model rocket (Estes Alpha III) the Estes C6 solid rocket engine provides
a total impulse of 8.5 N-s. Assume the total rocket mass at launch is 54 g and that it
has a rocket engine of mass 20 g that burns evenly for 1.5 s. The rocket diameter is
24 mm. Assume a constant burn rate of the propellent mass (11 g), a rocket exhaust
speed 800 m/s, vertical ascent, and drag coefficient ¢, = 0.75. Determine

(a) The speed and altitude at engine burnout,

(b) Maximum height and time it occurs,

(¢) Maximum acceleration,

(d) Total flight time, and

(e) Speed at ground impact.

Produce a plot of altitude and speed versus time. For simplicity, because the pro-
pellent mass is only 20% of the total mass, assume a constant mass during rocket
burning.

For the previous problem, take into account the change of rocket mass with time
and omit the effect of gravity. (a) Find the rocket’s speed at burn out. (b) How far
has the rocket traveled at that moment?

Complete the derivation for the burnout height Hj, in Example 9.13. Use the num-
bers for the Saturn Vrocket in Example 9.12 and use Equations 9.167 and 9.168 to
determine the height and speed at burnout.
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114.

11-5.

11'6-

11-7.

11-8.

11-9.

11-10.

Calculate the moments of inertia I;, I, and I; for a homogeneous sphere of radius
Rand mass M. (Choose the origin at the center of the sphere.)

Calculate the moments of inertia I, I, and I for a homogeneous cone of mass
Mwhose heightis 2and whose base has a radius R. Choose the x;-axis along the
axis of symmetry of the cone. Choose the origin at the apex of the cone, and
calculate the elements of the inertia tensor. Then make a transformation such
that the center of mass of the cone becomes the origin, and find the principal
moments of inertia.

Calculate the moments of inertia 1, I, and I; for a homogeneous ellipsoid of mass
M with axes’ lengths 2a > 25> 2¢.

Consider a thin rod of length { and mass m pivoted about one end. Calculate the
moment of inertia. Find the point at which, if all the mass were concentrated, the
moment of inertia about the pivot axis would be the same as the real moment of
inertia. The distance from this point to the pivot is called the radius of gyration.

(a) Find the height at which a billiard ball should be struck so that it will roll with
no initial slipping. (b) Calculate the optimum height of the rail of a billiard table.
On what basis is the calculation predicated?

Two spheres are of the same diameter and same mass, but one is solid and the
other is a hollow shell. Describe in detail a nondestructive experiment to deter-
mine which is solid and which is hollow.

A homogeneous disk of radius Rand mass M rolls without slipping on a horizontal
surface and is attracted to a point a distance d below the plane. If the force of at-
traction is proportional to the distance from the disk’s center of mass to the force
center, find the frequency of oscillations around the position of equilibrium.

A door is constructed of a thin homogeneous slab of material: it has a width of 1
m. If the door is opened through 90°, it is found that on release it closes itself in 2
s. Assume that the hinges are frictionless, and show that the line of hinges must
make an angle of approximately 3° with the vertical.

A homogeneous slab of thickness a is placed atop a fixed cylinder of radius R
whose axis is horizontal. Show that the condition for stable equilibrium of the
slab, assuming no slipping, is R > a/2. What is the frequency of small oscillations?
Sketch the potential energy U as a function of the angular displacement 8. Show
that there is a minimum at 8 = 0 for R > a/2 but not for R< a/2.

A solid sphere of mass M and radius R rotates freely in space with an angular ve-
locity w about a fixed diameter. A particle of mass m, initially at one pole, moves
with a constant velocity valong a great circle of the sphere. Show that, when the par-
ticle has reached the other pole, the rotation of the sphere will have been retarded
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a=wTl1- |—2M
IM+ 5m

where T is the total time required for the particle to move from one pole to the
other.

by an angle

A homogeneous cube, each edge of which has alength / is initially in a position of
unstable equilibrium with one edge in contact with a horizontal plane. The cube
is then given a small displacement and allowed to fall. Show that the angular ve-
locity of the cube when one face strikes the plane is given by

M=A§h@—ﬂ

where A = 3/2 if the edge cannot slide on the plane and where A = 12/5 if slid-
ing can occur without friction.

Show that none of the principal moments of inertia can exceed the sum of the
other two.

A three-particle system consists of masses m; and coordinates (%, xy, X3) as follows:
m, = 3m, (b,0, b)
mg = 4m, (b, b, —b)
mg = 2m, (—b b, 0)

Find the inertia tensor, principal axes, and principal moments of inertia.

Determine the principal axes and principal moments of inertia of a uniformly
solid hemisphere of radius # and mass m about its center of mass.

If a physical pendulum has the same period of oscillation when pivoted about ei-
ther of two points of unequal distances from the center of mass, show that the
length of the simple pendulum with the same period is equal to the sum of sepa-
rations of the pivot points from the center of mass. Such a physical pendulum,
called Kater’s reversible pendulum, at one time provided the most accurate way
(to about 1 part in 105) to measure the acceleration of gravity.* Discuss the advan-
tages of Kater’s pendulum over a simple pendulum for such a purpose.

Consider the following inertia tensor:

1 1 )
» —(A+B) -(A-B 0
2( ) 2( )

v

m=<l, 1
2(A B) 2(A+B) 0

0 0 C

\ 7

*First used in 1818 by Captain Henry Kater (1777-1835), but the method was apparently suggested
somewhat earlier by Bohnenberger. The theory of Kater’s pendulum was treated in detail by
Friedrich Wilhelm Bessel (1784-1846) in 1826.
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11-18.

11-19.

11-20.

11-21.

Perform a rotation of the coordinate system by an angle 8 about the xs-axis.
Evaluate the transformed tensor elements, and show that the choice 8 = 7 /4 ren-
ders the inertia tensor diagonal with elements A, B, and C.

Consider a thin homogeneous plate that lies in the x,-x; plane. Show that the in-
ertia tensor takes the form

A —C 0

{h=4-C B 0
0 0 A+ B

If, in the previous problem, the coordinate axes are rotated through an angle 6
about the x3-axis, show that the new inertia tensor is
A" —C 0
=4-C B’ 0
0 0 A"+ H
where

A'=Acos?8 — Csin 20 + Bsin? 0

B' = Asin?20 + Csin 20 + B cos? 8
1 .
C' = Ccos 28 —§(B—A)sm29

and hence show that the x;- and xy-axes become principal axes if the angle of rota-

tion is
1 2C
8 = —tan™!
9 1 (B—A)

Consider a plane homogeneous plate of density p bounded by the logarithmic spi-
ral r = ke®® and the radii @ = 0 and @ = 7. Obtain the inertia tensor for the origin
at r = 0 if the plate lies in the x-x; plane. Perform a rotation of the coordinate
axes to obtain the principal moments of inertia, and use the results of the previ-
ous problem to show that they are

I =pkP(Q—R), IL=pkP(Q+ R, L=1L+15

where

etmae — 1

1+ 4a?
Q=——" R=V1+ 4

P= 16(1 + 4a?)’ %

A uniform rod of length b stands vertically upright on a rough floor and then tips
over. What is the rod’s angular velocity when it hits the floor?

The proof represented by Equations 11.54-11.61 is expressed entirely in the sum-
mation convention. Rewrite this proof in matrix notation.
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The trace of a tensor is defined as the sum of the diagonal elements:
uefl} = Ek‘Ikh

Show, by performing a similarity transformation, that the trace is an invariant
quantity. In other words, show that

tr{l} = te{l'}

where {I} is the tensor in one coordinate system and {1}’ is the tensor in a coord;i-
nate system rotated with respect to the first system. Verify this result for the differ-
ent forms of the inertia tensor for a cube given in several examples in the text.

Show by the method used 1n the previous problem that the determinant of the ele-
ments of a tensor is an invariant quantity under a similarity transformation. Verify
this result also for the case of the cube.

Find the frequency of small oscillations for a thin homogeneous plate if the mo-
tion takes place in the plane of the plate and if the plate has the shape of an equi-
lateral triangle and 1s suspended (a) from the midpoint of one side and (b) from
one apex.

Consider a thin disk composed of two homogeneous halves connected along a di-
ameter of the disk. If one half has density p and the other has density 2p, find the
expression for the Lagrangian when the disk rolls without slipping along a hori-
zontal surface. (The rotation takes place in the plane of the disk.)

Obtain the components of the angular velocity vector @ (see Equation 11.102) di-
rectly from the transformation matrix A (Equation 11.99).

A symmetric body moves without the influence of forces or torques. Let x; be the
symmetry axis of the body and L be along x3. The angle between @ and x5 is a. Let
o and Linitially be in the x3-x; plane. What is the angular velocity of the symmetry
axis about L in terms of [, L, w, and a?

Show from Figure 11-9c that the components of w along the fixed (x;) axes are

wl'=0'cosd>+fpsin95ind>
wy = 6sin ¢ — i sin O cos ¢

w§=a,'bcose+q:;

Investigate the motion of the symmetric top discussed in Section 11.11 for the
case in which the axis of rotation is vertical (i.e., the x3- and x3-axes coincide).
Show that the motion is either stable or unstable depending on whether the quan-
tity 41, Mhg/I%w3% is less than or greater than unity. Sketch the effective potential
V(6) for the two cases, and point out the features of these curves that determine
whether the motion is stable. If the top is set spinning in the stable configuration,
what is the effect as friction gradually reduces the value of ws? (This is the case of
the “sleeping top.”)
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11-30.

11-31.

11-32.

11-33.

11-34.

Refer to the discussion of the symmetric top in Section 11.11. Investigate the equa-
tion for the turning points of the nutational motion by setting § = 0 in Equation
11.162. Show that the resulting equation is a cubic in cos 6 and has two real roots
and one imaginary root for 6.

Consider a thin homogeneous plate with principal momenta of inertia

I, along the principal axis x
L, > I, along the principal axis x;

L = L + L, along the principal axis x5

Let the origins of the x; and x; systems coincide and be located at the center of
mass O of the plate. At time ¢ = 0, the plate is set rotating in a force-free manner
with an angular velocity {2 about an axis inclined at an angle « from the plane of
the plate and perpendicular to the xy-axis. If I,/I, = cos 2a, show that at time ¢
the angular velocity about the x,-axis is

wy(t) = {2cos a tanh ({2 ¢ sin a)

Solve Example 11.2 for the case when the physical pendulum does not undergo
small oscillations. The pendulum is released from rest at 67° at time ¢ = 0. Find
the angular velocity when the pendulum angle is at 1°. The mass of the pendulum
is 340 g, the distance L is 13 cm, and the radius of gyration kis 17 cm.

Do a literature search and explain how a cat can always land on its feet when
dropped from a position at rest with its feet pointing upward. Estimate the mini-
mum height a cat needs to fall in order to execute such a maneuver.

Consider a symmetrical rigid body rotating freely about its center of mass. A fric-
tional torque (N; = —bw) acts to slow down the rotation. Find the component of
the angular velocity along the symmetry axis as a function of time.





