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(For brevity we have set V;=0 and V,=V,—V,.) Using the
same logic as in Sec. II the well-known results
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Heat and efficiency calculations for negatively sloping, straight-line paths in PV diagrams seem to
be consistently misleading or incorrect in many introductory physics texts. The source of the error
is identified and thoroughly explored with several examples.

L. INTRODUCTION

Almost everyone teaching freshman/sophomore introduc-
tory thermodynamics encounters PV-diagram cycles similar
to Fig. 1. The constant-volume and constant-pressure pro-
cesses are straightforward; it is the negatively sloping,
straight-line path 1—2 that requires some thought. The in-
ventors of these problems typically pick simple, whole-
number factors for the volume and pressure changes. Figure
1 uses a factor of 2 for P and V so that the end points of the
sloping path are at equal temperatures, T .

Given the cycle in Fig. 1, and assuming ideal gases, stu-
dents are generally asked questions about the work done and
the heat involved (we prefer the single word “heat” to refer
to energy transferred due to temperature differences, rather
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than the somewhat redundant but widely used phrase “heat
flow”). Along path 1—2 the work is simply the area under
the path, W;,=(3/4)P,V,. The heat is found from the First
Law: Q,,=AU,,+W;,=W,, since the end points of the
path are at the same temperature. Although physically unre-
alistic, this type of problem is invented for the pedagogic
value of having students apply the First Law. However, it is
the often misleading implications about the heat involved in
such a problem that concerns us. In addition, we believe
textbooks have missed an opportunity to discuss some inter-
esting physics.

Students can also be asked to compute the thermal effi-
ciency of a cycle similar to Fig. 1, although this problem is
much less frequently encountered. We ask readers of this
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Fig. 1. A PV diagram of a reversible cycle.

article who teach thermodynamics to stop for a moment and
compute the efficiency of an ideal, monatomic gas undergo-
ing the reversible cycle shown in Fig. 1.

We have asked some of our colleagues to solve the same
problem. All who responded to us got the answer wrong. We
have examined the introductory texts on our bookshelves for
problems similar to Fig. 1. The few texts that we found give
wrong answers to their own problems, although one text!
seems to have gotten the essence of everything correct, but
nevertheless provides the wrong answer for the efficiency.
From our unscientific survey we would guess that many
readers of this article attempting the problem of Fig. 1 also
computed an incorrect value of £=1/6 for the efficiency. The
correct value is £=16/97.

I1. ANALYSIS

To begin the investigation into the source of the com-
monly made error in this type of problem we first consider a
different reversible cycle, as shown in Fig. 2. Here the
straight-line path ends at P,=0.315P, and V,=2V;; these
values have been chosen so that the return curve can be an

Fig. 2. A reversible cycle using a straight path and an adiabatic.
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Fig. 3. Comparison of path 1—2 of Fig. 1 and various isotherms. Only one
isotherm is tangent to the path and it gives the maximum temperature at-
tained.

adiabatic. If the new cycle is analyzed in the same manner as
is typically done for the first case, then the heat along the
straight-line path is Q,,=0.102PV,. The dilemma occurs
when computing the efficiency, e=1—-0Q,,/Qi,=1, since Q
must apparently be zero. Either we have here an engine of
100% efficiency and an astounding discovery has been made,
or else there is something wrong with the analysis; of course,
the above simple-minded analysis is wrong.

The difficulty must occur for the sloping straight-line path,
and in particular because the slope is negative. Textbook
problems>* also exist for triangular cycles with positively
sloping straight-line paths, but in these cases naive assump-
tions yield the correct result. This forms the basis for our
earlier statement about the misleading nature of a negatively
sloping, straight-line process: @, is positive and therefore
the assumption is almost always made that Q is positive
along the entire path 1—2. Returning to Fig. 2, it must be
obvious that path 1—-2 of Fig. 2 involves both Q;, and Q,,
otherwise the Second Law is violated. If straight paths of
negative slope are to be used for student assignments then
we encourage instructors and authors to explore with their
students the correct thermodynamic processes occurring, and
in particular how to determine whether there is Q;, or Q,,,
along the path. This is explored below.

For the discussion that follows we will return to the cycle
of Fig. 1. Even though the end points of path 1—2 are at
equal temperatures, the path is obviously not isothermal. Fig-
ure 3 is a plot of path 1-2 along with a number of iso-
therms. Only one isotherm is tangent to the path; the point of
tangency gives the maximum temperature encountered along
the path. The actual gas temperature can be determined from
the ideal gas law, T=(T,/P,V,)PV. The pressure for a
straight-line path can be written as P=mV+ b, with slope m
and intercept b. For the case of Fig. 1 the values are
m=—(1/2)P/V, and b=(3/2)P;. Finally, T=(T,/
PV )(bV+mV)=(T,/2V,)(3V,V—V?); Figure 4 shows
the variation in temperature with volume. Figures 3 and 4
both show that the temperature is a maximum at
Vr=(3/2)V,. Since the temperature decreases beyond V7,
one might naively conclude that dQ reverses sign at this
point along the path. But this is not the case. We will rewrite
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Fig. 4. Temperature along path 1—2 of Fig. 1. The maximum temperature is
(9/8)T at volume (3/2)V;.

the First Law, dQ=dU+dW, in terms of dV. By the defi-
nition of an ideal gas, dU=nCy dT=n(r/2)R dT, where r
is the number of degrees of freedom. Differentiating the ideal
gas law we have: nR dT=P dV+V dP=(mV+b)dV
+V(m dV). Thus dU=(r/2)[2mV+b]dV. Similarly, dW
=P dV=(mV+b)dV. Finally, the First Law becomes

(r+2)
dQ=[ 5 b+m(r+1)V}dV, (1a)
_ 13(r:2)—(r;;ll) V}dv (1b)

Figure 5 is a plot of Eq. (1b), while Fig. 6 is a plot of Q, as
V varies from V; to 2V,. For the specific case of Fig. 1 the
change in internal energy is AU,=0 and thus @, must be
independent of r, as shown in Fig. 6.

We now define V, as the volume at which Q is a maxi-
mum. V, can be found from Eq. (1) by setting dQ=0. The
result agrees with Figs. 5 and 6

(r+2)b

VAz—W—) , (2a)

Fig. 5. Change in heat as a function of volume for the path 12 of Fig. 1;
r=number of degrees of freedom.
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\
Fig. 6. Heat along the path 1—2 of Fig. 1.
_3(r+2) ob
241y (20)

The significance of V, is found by considering adiabatics.
Every point in a PV diagram has only one adiabatic that
passes through it. Figure 7 shows a random point, its associ-
ated adiabatic, and various paths leading away from the se-
lected point. The two paths tangent to the adiabatic have
d(Q=0. Paths above the tangent have heat entering the sys-
tem, while the reverse is true for paths below the tangent;
Refs. 4, 5, and 6 are examples of texts which carefully rec-
ognize this fact.

Figure 8 plots path 1—2 of Fig. 1 along with a number of
r=3 adiabatics. Only one adiabatic is tangent to the path
1—2. We now show that the location of this tangent point is
given by V,. For this assertion to be true then at V, the
slope of path 1—2 must equal the slope of the adiabatic. The
slope of an adiabatic is (dP/dV),= — yP/V, where the ratio
of specific heats is y=(r+2)/r. Substituting P=P,

Fig. 7. Whether heat enters or leaves a system depends on the path taken
relative to the unique adiabatic through each point of a PV diagram.
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Fig. 8. The sloping path of Fig. 1 and various r =3 adiabatics. The point
(P4, V,) is also shown.

=mV,+b and using Eq. (2a) for V=V,
=—(r+2)b/[2m(r+1)] gives (dP/dV)y=myr/(r+2)
=m, which is the desired result.

Adiabatic curves play a critical role in the analysis of
many thermodynamic processes. For example, wherever an
adiabatic is tangent to a path in a PV diagram there will be a
sign change in the heat. This fact seems to be ignored, or at
least seriously underemphasized, in introductory texts.

HI. DISCUSSION

Only when the significance of the point (P4, V,) is un-
derstood can the efficiency of the cycle in Fig. 1 be correctly
determined. The efficiency is e=W,,/Q;,, but now we real-
ize that Q=014+ Q3;, and Q4 is gotten by integrating
Eq. (1) from V, to V. From Eq. (2b), V,=1.875V;. The
efficiency could also have been computed using e=1
_Qout/Qin’ where we must use QoutZQA2+Q23' Again,
Q- is obtained by integrating Eq. (1), but now the integra-
tion is from V, to 2V,. In either case, the result is e=1/
6.0625=0.165 for an ideal monatomic gas; compare this to
the erroneous value given earlier, £=1/6.

Alternatively, it is possible to derive the above results
without recourse to Eqs. (1) and (2); this approach may be
more accessible to introductory classes and we would recom-
mend the following as an example to present to students.
Determining the efficiency of the cycle in Fig. 1 starts with
finding the net work for the cycle, which is simply the area
enclosed by the right-triangle: W, ,=(1/2) baseXheight
=(1/4)P V. Next, Q,, is required. Clearly, the process
3—1 is a purely heat in process, and 2—3 is a purely
heat out process. For a monatomic gas Q3 =nCyAT;,
=(3/2)V,AP;,=(3/4)P,V,. This paper has made it clear
that care must be taken to determine Q;, and Q,,, during a
negatively sloping straight-line process; this is the unusual,
but crucial and necessary step that requires determining V, .
At V, the slope of path 12 [m= —(1/2)P,/V,] equals the
slope of the adiabatic [— yP/V =~ y(mV,+b)/V,]. Equat-
ing the slopes gives V,=—(5/8)b/m=(15/8)V,, using
¥=5/3 for a monatomic gas; the same result can be gotten
from Eq. (2b), found by setting dQ =0. From the equation of
the line, P,=(9/16)P,. Q,4 is calculated using the First
Law, simple geometry, the ideal gas equation of state,
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and the results just above for V, and P, : Q4 =(U4—-U,)
+W1A; here U1=(3/2)P1V1, UA =(3/2)PAVA
=(405/256)P,V,, and W ,=(1/2) (P{—P, ) (V,—V,))
+(V,— V)P, =(175/256)P,V,. Substituting into Q4
gives 01,=(49/64)P,V,. The result for Q;, is @;;=01;
+0q4 =(3/4)P,V; +(49/64)PV, =(97/64)P,V,. Fi-
nally, the efficiency of this cycle is e=W,,/Q;, =(1/4)/(97/
64) =16/97 =0.165, as before.

The computed efficiency also depends on r, as can be seen
in Figs. 5 and 6. Consider the cycle of Fig. 1, but modify
path 12 so that P,=P,/2 and V,=3V,. From Eq. (2a) it
will be found that V, is not part of path 1—2, indicating that
an adiabatic is nowhere tangent to the path. Thus Q,, is
entirely Q;, and naive calculations for &£ will be correct and
give £=1/6 for a monatomic gas. However, if an r=5 di-
atomic gas had been used then V, becomes (35/12)V; and
the correct efficiency is 1/8.01 rather than the incorrect’
value of 1/8.

Consider another example where the correct and incorrect
efficiencies differ only slightly. Modify the basic cycle so
that P,=P,, V,=3V,, and P;=P,/3, V;=3V,. Equation
(2a) gives V,=(5/2)V, for r=3 along the straight line path
3—1. For this problem Q;,=Q,,+ Q3,4 and the correct effi-
ciency is 4/31 rather than the incorrect®” value of 2/15.

Simple paths were used in these examples; paths are usu-
ally designed with whole-number factors to make plotting
and calculations easy. An accidental consequence of the
paths chosen in the above textbook examples was that the
point A was near an end of a path, and thus the correct and
incorrect efficiencies were almost the same. But dramatic
changes can occur with what at first appear to be innocuous
variations in the selected path. As an example, modify the
basic cycle of the Fig. 1 so that P,=P,/3, V,=2V,. From
Eq. (2a), V,=1.562V, for r=3 and the correct efficiency is
€=1/4.26. If the assumption had been made that Q, is en-
tirely Q;, then the resulting efficiency would be £=1/3.5, for
a roughly 20% discrepancy from the correct value. If the
same problem is repeated using r=6 then the correct and
incorrect efficiencies become £=1/7.29 and 1/5, respectively,
a roughly 45% discrepancy.

Finally, for the cycle shown in Fig. 2 there is a point A on
the straight line given by V,=1.537V,, leading to a cor-
rectly calculated efficiency of 0.259 for an ideal monatomic
gas.

IV. CONCLUSIONS

For all of the problems that we have found in texts of the
type discussed in this article, the incorrect efficiencies differ
only slightly from the correct values. But the differences are
nevertheless important from a pedagogical point of view.
The common, naive answer that texts seem prone to give is
wrong and is based on wrong assumptions. It is the unques-~
tioned and wrong assumptions that disturb us, not the
“mere” computing of correct or incorrect answers. These
assumptions show up frequently and have become so in-
grained that many instructors and authors apparently have
forgotten some basic physics. Consider the symmetric cycle
of Fig. 9. Homework problems exist in which students are
told to assume Q;, occurs along the upper half of the cycle
(above the dotted line in the figure), while O, occurs for the
lower half. In fact, it is the adiabatics tangent at points 1 and
2 that separate Q;, and Q,,,, creating a much different prob-
lem. Such cycles are intended as learning exercises, but there
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Fig. 9. A symmetrical cycle. The adiabatic curves tangent at points 1 and 2
indicate where the heat changes sign.

are very few students sophisticated enough to realize that the
assumptions they are asked to use are wrong.

We are also concerned when students are presented with
the simpler but more frequently encountered question,
“What is the heat 9, for path 1—2 of Fig, 1?”” Again, very
few students have the sophistication to realize that Q,, may
have (and in this case does have) both positive and negative
components. We encourage instructors and authors to correct

the misleading impressions inherent in this type of process,
and instead try to describe correctly the relationship between
adiabatics and the Q,;, and Q,, taking place along such
paths. That relationship is simple to summarize: if there ex-
ists a point of tangency (called A in this paper) between an
adiabatic and a reversible process on a PV diagram, then
dQ=0 at A and there is a change in sign for the heat. This
change from Q;, to Q, (or vice versa) for a process is
crucial in correctly determining the thermodynamic effi-
ciency of a cycle.
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THE HYPOTHETICO-DEDUCTIVE SCHEME

Now let us turn to certain shortcomings, real or fancied, of the hypothetico-deductive scheme.
If it is a formal objection to classical inductivism that it sets no upper limit to the amount of
factual information we should assemble, so also is it a defect of the hypothetico-deductive scheme
that it sets no upper limit to the number of hypotheses we might propound to account for our
observations. To substitute Whewell’s system for Mill’s is, on the face of it, to trade in an
infinitude of irrelevant facts for an infinitude of inane hypotheses. Mill meant it as a criticism, not
as a comment, when he said:

An hypothesis being a mere supposition, there are no other limits to hypotheses than those of the
human imagination; we may, if we please, imagine, by way of accounting for an effect, some cause
of a kind utterly unknown, and acting according to a law altogether fictitious.

In real life, of course, just as the crudest inductive observations will always be limited by some
unspoken criterion of relevance, so also the hypotheses that enter our minds will as a rule be
plausible and not, as in theory they could be, idiotic. But this implies the existence of some
internal censorship which restricts hypotheses to those that are not absurd, and the internal cir-
cuitry of this process is quite unknown. The critical process in scientific reasoning is not therefore
wholly logical in character, though it can be made to appear so when we look back upon a
completed episode of thought.
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