
On the Relation between the Fundamental Equation of
Thermodynamics and the Energy Balance Equation in the Context of
Closed and Open Systems
Jan T. Knuiman* and Peter A. Barneveld

Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The
Netherlands

Nicolaas A. M. Besseling

Department of Chemical Engineering, Section Nanostructured Materials, Delft University of Technology, Julianalaan 136, 2628 BL
Delft, The Netherlands

ABSTRACT: In this paper, we elaborate on the connection between the fundamental equation of thermodynamics, which is
essentially the combination of the First and Second Laws of thermodynamics, and the energy balance equation in the context of
closed and open systems. We point out some misinterpretations in attempts to derive the fundamental equation from these First
and Second Laws of thermodynamics, which occur in several textbooks. These errors are connected with incorrect interpretations
of heat and work terms in relation to changes of the entropy and internal energy change of the system. The consequences of
matter transfer for the formulation of the First and Second Laws are often not properly taken into account, and there is a
widespread misinterpretation of what is called ‘chemical work’. In this paper, we present a correct derivation of the fundamental
equation from the basic laws of thermodynamics, through a careful analysis of matter transfer to an open system. This provides
insight into the meaning of ‘chemical work’.
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The purpose of this paper is to address some errors in
attempts to derive the fundamental equation for the

energy from the basic laws of thermodynamics (eqs 1 and 2),
which occur in several textbooks on thermodynamics for
chemists and physicists, and to provide insight into the
meaning of ‘chemical work’. These errors are connected with
incorrect interpretations of heat and work terms in relation to
entropy and internal energy changes of the system, particularly
when expressions for the First and Second Laws of
Thermodynamics that apply to closed systems are used for
open systems. Misinterpretation of what is called ‘chemical
work’ and the denial of the contribution of matter exchange to
the entropy change of an open system are responsible for this.
We hope that this contribution will help teachers and lecturers
to deal with these issues in a transparent way, and to avoid
certain misinterpretations that can even be found in a number
of otherwise excellent textbooks.
Traditionally, introductions to thermodynamics for chemists

and physicists focus on closed systems, systems that do not
exchange matter with their environment. These courses start
out introducing the basics of thermodynamics in the context of
closed systems. So, the First Law is introduced as

= +U q wd đ đC (1)

Here, UC is the internal1 energy of the system. As the
distinction between closed and open systems is central in this
paper, we write the subscript C to emphasize that this is for a
closed system. Furthermore, đq is the heat transferred to the

system, and đw the amount of work done on the system upon
some infinitesimal small change. In the present paper, we will
deal with volume work only: đw = −pdV, where p is the
pressure and V is the volume of the system. Obviously, other
work terms can be included in đw when relevant, for example,
for interfacial work or work of polarization.
It is one of the central messages of this paper that the mere

inclusion of so-called ‘chemical work’ into đw to account for the
transfer of matter into or from an open system does not
correctly take into account the energy change associated with
exchange of matter between a system and its surroundings.
Chemical work represents only part of the total energy change
and ignores the contributions to the total energy related to
entropy and so-called flow work.
We restrict the discussion to reversible processes, because it

is sufficient for the points we want to make. For reversible
changes of closed systems, the second law reads

=S
q

T
d

đ
C (2)

Where S is the entropy and T is the temperature. Combination
of the First and Second Law as given by eqs 1 and 2,
substituting TdSC for the reversible heat exchange đq and −pdV
for đw, yields the expression for the total differential of UC

(often called the fundamental equation for the internal energy):
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= −U T S p Vd d dC C (3)

This is unproblematic but it applies to closed systems only, that
is, systems that do not exchange matter with their environment.
Matter exchange, and the chemical potential are usually

introduced and discussed in some later stage of a course on
thermodynamics. Usually, little or no attention is devoted to
the implications of matter exchange to the formulation of the
First and Second Laws. We fear that with many students this
may install the idea that eqs 1 and 2 apply just as well for open
systems. As we will see, this misunderstanding has even
transpired into some textbooks. Furthermore, it is most often
merely postulated that μdn terms have to be added to the total
differentials of a thermodynamic potential such as the energy.
In this way, the fundamental equation for the energy of open
systems, also denoted the Gibbs equation, is postulated correctly
as2

∑ μ= − +U T S p V nd d d d
i

i i
(4)

Here, i stands for a particular substance, and μi and ni denote
chemical potential and amount (number of moles) of that
substance, respectively. Most texts (e.g., 3−7) do not explicitly
elaborate on the connection between the fundamental equation
and the First and Second Laws. Instead, the extra μidni terms
are made acceptable by heuristic arguments, for example, by
mentioning the analogy with the route leading to eq 3 and by
emphasizing the analogy between terms μidni and work terms
such as −pdV, both being of the form “intensive d extensive ”.
Some other courses and textbooks provide some more
background and first acknowledge that U is not only a function
of S and V, but also of amounts of substances: U = U(S,V,{ni}).
From this, it follows immediately that
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Subsequently, the identifications are made that (∂U/∂S)V,{ni} =
T, (∂U/∂V)S,{ni} = −p. The new differentials (∂U/∂ni)S,V,{nj≠1} are
then def ined as μi. This derivation of the Gibbs equation (eq 4)
is entirely correct and a perfect introduction of the chemical
potential. However, in a course on thermodynamics one wants
to also establish a connection with the First and Second Laws
as well as to develop an intuition for the meaning of quantities
such as the chemical potential.8 A number of texts attempted to
provide a derivation of the Gibbs equation from the First and
Second Laws. Unfortunately, most accounts of these deriva-
tions that we have encountered are, quite frankly, incorrect.7−13

Although there is some variation between these erroneous
accounts, they all seem to have a number of features in
common. They use for open systems versions of the First and
Second Laws as given by eqs 1 and 2, which is incorrect. This is
combined with a misinterpretation of what is called ‘chemical
work’. Owing to a wonderful cancelation of errors, yet the
correct Gibbs equation is found, making it more difficult to
uncover fallacious assumptions.
On the other hand, engineering-thermodynamics texts (e.g.,

14−21) usually avoid such errors, probably because of their
strong focus on open systems and on the consequences of
matter transfer. They discuss rates of change of energy, entropy

and other quantities in terms of balance equations and correctly
include contributions owing to matter transfer. In fact,
comparing texts on chemical thermodynamics and on
engineering thermodynamics made us recognize the above-
mentioned misinterpretations.
In the subsequent sections, we will pinpoint and discuss the

misinterpretations in the above-mentioned erroneous deriva-
tions of the Gibbs equation. Furthermore, we will provide a
correct derivation of the Gibbs equation from the First and
Second Laws, involving a careful analysis of a process in which
matter is added to a system. We will obtain the proper
generalizations for open systems of eqs 1 and 2. These
generalizations are consistent with the balance equations
generally used in engineering thermodynamics. This derivation
provides insight as to the meaning of the term ‘chemical work’.

■ MISINTERPRETATIONS IN DERIVATIONS OF THE
GIBBS EQUATION

The μidni term has been interpreted as a work term as
suggested by Gibbs himself.22 Several texts followed this
suggestion, including papers by Brønsted23 and Gill,8 and
textbooks by Katchalsky and Curran,24 and by Alberty.25

Interestingly, Prigogine26 included the effect of exchanging
matter on the energy in a kind of extended đq term: dU = dΦ
− pdV, where dΦ is the sum of the heat exchange and the
energy change due to the exchange of matter.
It is probably because of this tendency to interpret μdn as a

work term that it is sometimes included in đw in an attempt to
account for the energy change due to a change in the amount of
i. Steps resembling those yielding eq 3 lead to (incorrect)
equations of the type:9−12

∑ μ= − +U q p V nd đ d d
i

i i
(6)

or13

∑ μ= + +U q w nd đ đ d
i

i i
(7)

where đw = −pdV. Combining these expressions for dU with
the expression for the Second Law given by eq 2 yields the
Gibbs equation (eq 4). Alternatively, but closely related, we
came across:12

μ= + = − + +U q w T S p V nd đ đ d d d ... (8)

implying that the first equality (eq 1) applies to open systems,
as the expression on the right-hand side has a μdn term.27 Some
texts avoid erroneous equations such as these, but include
confusing (erroneous) verbatim ‘explanations’. Reid (ref 7,
section 7.1), for instance, makes the misleading suggestion that
for open systems the first terms of eq 4 represent heat and
work, respectively, just as for closed systems.
The above-mentioned ‘derivations’ of the Gibbs equation

may seem straightforward at first sight, and it is perhaps
reassuring that they indeed lead to the correct Gibbs equation.
This is probably the reason why these misinterpretations found
their way into several otherwise excellent textbooks.7,9−13 We
will show, however, that this fortuitous outcome is due to a
cancelation of errors in the expression for the entropy change,
and in the expression for the energy change, in combination
with the treatment of μdn terms as work terms.
First of all, the expression for the second law for reversible

processes, given by eq 2, does not apply to open systems. For
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an open system, undergoing a reversible change, the entropy is
not just changed by transfer of heat, but also by transfer of
matter. Hence, for open systems (O), the entropy change
associated with a reversible process must be written as

= +S
q

T
Sd

đ
dO em (9)

where demS represents the entropy change as a result of the
exchange of matter between system and environment. Some
authors do state this clearly, for example, De Groot and
Mazur:28 ‘For open systems, i.e., systems which may exchange
heat as well as matter with their surroundings deS (defined by
De Groot and Mazur as the entropy supplied to the system by
the environment, as opposed to diS, the entropy produced
inside a system upon an irreversible change) contains also a
term connected with the transfer of matter.’ Equation 9
represents the proper expression for the second law of
thermodynamics for reversible processes involving open
systems. In the next sections, we clearly demonstrate that for
open systems, demS is nonzero and that it is therefore quite
wrong to identify the TdS term with the reversible heat
exchange, as was done in the above-mentioned fallacious
accounts.
Analogously to the expression for the reversible entropy

change, the energy change of an open system should be
described as

= + +U q w Ud đ đ dO em (10)

where demU represents the energy change as a result of the
exchange of matter. In the next sections, we clearly demonstrate
that demU is not equal to ∑iμidni but to ∑ihi dni.

14−19,21 In the
sections to follow, we show that hi is a molar enthalpy for
species i, which accounts for the added internal energy by
injection of species i, plus the work done on the closed system
to accomplish this. Equations 9 and 10 are consistent with the
balance equations of engineering thermodynamics for the
entropy and the internal energy, respectively. Evidently, authors
of texts on engineering thermodynamics realize that for open
systems an extra term demU must be included in the expression
for the First Law, whereas authors of texts on physical
chemistry and chemical thermodynamics often erroneously
believe that the contribution of matter exchange can be
described by including an extra ‘chemical-work’ term in the
First-Law equation.

■ THERMODYNAMICS OF MATTER TRANSFER
By careful examination of a process by which an amount of
matter is isothermally and reversibly added to an open system
containing some arbitrary mixture, we will now derive eqs 9 and
10, with the correct expressions for the matter-transfer
contributions demS and demU, as well as the Gibbs eq 4.
We consider an open system, O, that can exchange matter

with its surroundings by means of an ‘injector’, I, that contains
only one pure substance i, as illustrated in Figure 1. This is
achieved by separating injector and open system by a
semipermeable membrane that is only permeable to
component i. This requires that the chemical potential of
each species in the injector is almost identical to that of the
corresponding species in the open system, that is, the difference
between the chemical potential values must be infinitesimally
small. For a real gas, this implies that the fugacity of component
i on both sides of the membrane is almost identical. Also, the
temperature of injector and open system is kept constant by

means of a large reservoir surrounding the whole system. The
open system contains component i in any mixture of
substances. The pressure in the open system is maintained at
p by means of a movable piston. Throughout the entire process,
the open system and the injector together constitute a closed
system with diathermal walls, kept at a constant temperature T
by means of a large reservoir surrounding the whole system.
The internal energy of this open system is denoted as UO.
Initially, the injector contains an amount (number of moles)
Δni of component i in equilibrium with the open system and
exactly this amount will eventually be brought into the open
system by emptying the injector (that is why we use Δni and
not just ni). Volume, internal energy, and entropy of the
injector system are viΔni, uiΔni, and siΔni respectively, where vi
is the molar volume of i, ui its molar internal energy, and si its
molar entropy. It is important to realize that the combination of
the open system and the injector can be considered as a closed
system. Therefore, we can use the expressions for the First and
Second Laws given by eqs 1 and 2 for this combination of the
open system and the injector. The relation between the initial
internal energies of the closed and open systems is

= + ΔU U u ni iC O (11)

For the initial entropies, we have a similar relation

= + ΔS S s ni iC O (12)

The contents of the injector is reversibly pushed into the
open system by the injector piston, thereby maintaining
membrane equilibrium. After the injector has been completely
emptied into the open system, we can write the following
relation for the final entropies of the open and closed systems
(the injector is now void):

+ Δ = + ΔS S S SC C O O (13)

where ΔSC and ΔSO are the changes in entropy due to injection
process for the respective systems relative to the initial
entropies SC and SO. Since SC = SO + siΔni, we come to the
conclusion that ΔSO = ΔSC + siΔni. If this equation holds for a
finite amount injected, it also holds for an infinitesimal small

Figure 1. Open system of volume VO separated from an ‘injector’ of
volume VI by a semipermeable membrane which is open to a
substance i only. The open system contains i in an arbitrary mixture
and is kept at a constant pressure p. The injector contains an amount
Δni of pure substance i at pressure pI, in equilibrium with the mixture.
The content of the injector is reversibly (and isothermally) transferred
to the open system. Throughout the entire process, the open system
and the injector together constitute a closed system with diathermal
walls, kept at a constant temperature T by means of a large reservoir
surrounding the whole system.
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amount. So we can make the transition from finite differences
to differentials:

= +S S s nd d di iO C (14)

Furthermore, according to the Second Law for reversible
changes of closed systems (eq 2), dSC = đq/T, so

= +S
q

T
s nd

đ
di iO (15)

where đq represents the possible heat exchange between closed
system and surroundings.
Similarly as for the entropy, after the injector has been

emptied into the open system, the internal energy of the open
system equals that of the closed system (which consists of the
contents of the open system and of the now empty injector):
UC + ΔUC = UO + ΔUO. Here, ΔUC and ΔUO are the changes
in energy due to the injection process for the respective systems
relative to the initial energies UC and UO. Since UC = UO +
uiΔni, we come to the conclusion that ΔUO = ΔUC + uiΔni.
Hence, for the injection of an infinitesimal small amount:

= +U U u nd d di iO C (16)

The change of the energy dUC of the closed system, comprising
the open system plus injector, is given by the First Law for
closed systems eq 1. Hence

= + +U q w u nd đ đ di iO (17)

Work is done on the open system by way of both pistons. The
contribution from the piston of the open system is the familiar
đwO = −pdVO, and the contribution from the injector’s piston
is đwI = −pIvi dni performed on the injector (the volume
change of the injector is −vi dni). The latter contribution,
associated directly with the transfer of i into the open system, is
often called the ‘flow work’. Substitution into eq 1 and
subsequently into the above equation yields

= + + + = + +U q w u n p v n q w h nd đ đ d d đ đ di i i i i iO O I O

(18)

Suppose that the reversible process is not carried out
isothermally but adiabatically, implying that the walls of the
closed system are insulating, so that đq = 0. Also assume that
the piston of the open system is fixed. In this case, the closed
system’s volume decreases upon injection and the injector
volume ultimately becomes zero. This is in essence a reversible
adiabatic compression of a closed system, implying that its
entropy SC cannot change. The entropy lowering associated
with the volume decrease of the closed system is offset by an
entropy rise as a result of the temperature increase due to the
added energy from the external injection work. For the open
system’s entropy SO, it follows from eq 13 that SC = SO + ΔSO
because ΔSC = 0. Since −ΔSO = −siΔni (see above after eq 13)
and si and Δni are positive numbers, the negative of the entropy
change of the open system −ΔSO must be smaller than zero.
Hence, it is evident that the open system’s entropy SO must
have increased in an amount that equals the entropy decrease
siΔni of the injector. This conclusion is at variance with the
fallacious derivations of some authors7−13 that would have
concluded that ΔSO = 0 because q = 0, as the different forms of
the Second Law for closed and open systems are ignored in
these derivations.

■ GENERALIZATION AND DISCUSSION
Equations 15 and 18 constitute the appropriate expressions of
the First and Second Laws for reversible processes involving
matter transfer of component i. This requires that the chemical
potential of each species in the injector is almost identical to
that of the corresponding species in the open system, that is,
the difference between the chemical potential values must be
infinitesimally small. Also, the temperature of injector and open
system must be almost identical. We now generalize these
results to the case where the injector is filled with an arbitrary
mixture of species. Exchange of matter occurs for the species
for which the membrane is permeable. As we only consider
reversible changes, these species are in continuous membrane
equilibrium with the open system. An infinitesimal volume
change of the injector is now given by −∑i vi dni, where vi is the
partial molar volume of species i in the injector mixture. The
internal energy of the mixture in this infinitesimally small
volume is ∑i uidni, where ui is the partial molar internal energy
of species i in the injector mixture. So, by adding an
infinitesimal small volume of injector mixture to the open
system, an energy ∑i (ui + pIvi) dni is transferred to the open
system. Here, pI is the pressure exerted on the injector piston.
So,

∑= + +U q w h nd đ đ d
i

i iO O
(19)

Comparison with eq 10 reveals that the energy change
associated with transfer of matter is demU = ∑i hi dni. Clearly,
demU ≠ ∑iμidni as is sometimes wrongfully assumed (see
previous section). Equation 19 constitutes the correct
expression for the first law for open systems.
The entropy of the volume ∑i vi dni is ∑i si dni, where si is

the partial molar entropy of species i in the injector mixture.
This entropy is transferred to the open system, so

∑= +S
q

T
s nd

đ
d

i
i iO

(20)

When we compare this equation to eq 9, we conclude that the
contribution owing to matter transfer is demS = ∑i si dni.
Equation 20 constitutes the appropriate expression of the
second law for reversible processes involving matter transfer.
According to this equation, the reversible heat exchange for a
process involving matter transfer is not equal to TdSO, as is
sometimes assumed, but to TdSO − T∑isi dni. Substituting in
eq 19, this correct expression for the reversible heat exchange
for đq, and −pdVO for đwO, we obtain the fundamental
equation for the internal energy:

∑

∑ μ

= − + −

= − +

U T S p V h Ts n

T S p V n

d d d ( )d

d d d

i
i i i

i
i i

O O O

O O
(21)

This brings us back to eq 4. The great benefit of the current
derivation is that it clearly shows that the TdS term in the
fundamental equation should not be identified with reversible
heat exchange alone in cases involving matter transfer, and that
∑iμidni should not be interpreted as a traditional work term in
the sense that it represents an internal energy change adjusted
for heat exchange and other types of work. Instead, ∑iμidni
represents an internal energy change due to mass transfer
inclusive flow work, and adjusted for the ‘material’ part of the
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TdS term only. That is the true nature of what is sometimes
confusingly called ‘chemical work’.
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