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Synopsis 

In  th is  p a p e r  i t  is d iscussed  to  w h a t  e x t e n t  t he  f i rs t  law of t h e r m o d y n a -  
mics is a phys ica l  law, and  to  w h a t  e x t e n t  i t  is a def in i t ion ,  if it  is general iz-  
ed so as to  be val id  for open  sys t ems .  The  conc lus ion  is r e a c h e d  t h a t  it  is 
p a r t l y  a def in i t ion .  Di f fe ren t  genera l i za t ions  of t he  f i rs t  law, w h i c h  can be 
p roposed ,  m u s t  be cons ide red  as d i f f e r en t  def in i t ions .  The  usefulness  of 
these  d i f fe ren t  de f in i t ions  is c o m p a r e d  wi th  r e spec t  to  t he  sh i f t  of a r b i t r a r y  
c o n s t a n t s  in t he  i n t e rna l  ene rgy  and  in view of t he  t h e r m o d y n a m i c s  of 
i r revers ib le  processes .  

§ 1. Introduction and results. While G i b b s' form of the second 
law of thermodynamics for open systems is extensively employed, 
relatively little is found in the literature on a consistent use of the 
first law for open systems. This may be due to the incomplete 
physical interpretation of the equations which have been proposed 
for this law. In this paper we t ry  to give a contribution to the pro- 
blem of the clarification of the physical meaning of the first law for 
open systems, in particular about the problem as to how far it is a 
physical law and how far it is a definition. 

The generalization of the first law for closed systems, to a law valid 
for open systems as well, is usually achieved in either of two ways for 
which the formalism has been given before 1) 3) (cf. also 3)). From the 
discussion of these formulations, (3) and (9), we find in § 2 that the 
first law for open systems is a physical law only if no diffusion 
phenomena occur. In that  case the formulae (3) and (9) are identical. 
In the general case with diffusion, however, the formulae become 
different, and more or less convenient, definitions of the heat 
transfer. 

The convenience of the forms (3) and (9) is discussed in § 3 with 

- -  780 - -  
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respect to the shifting of the arbitrary zero point in the partial specific 
energies. It  is found that the heat transfer defined by (3) is affected 
by  these shifts, while the heat transfer of (9) is not changed (just as 
in the first law for closed systems). 

In the discussion on the physical meaning, the usual forms of the 
first law, valid for uniform systems, were employed for the sake of 
simplicity. All conclusions are, however, valid for non-uniform 
systems as well. The forms of the first law, containing specific quanti- 
ties as required for non-uniform systems, are given in § 4. 

Finally, the effect of the two alternative forms of the first law for 
open systems on the form of the fundamental equations of macro- 
scopic physics, as used in the "thermodynamics of irreversible pro- 
cesses" 1) 3), is summarized in § 5. 

§ 2. The /irst law /or open systems. We write the first law of 
thermodynamics for closed systems in the form 

dU = d Q - - p d V .  (1) 

With closed systems we mean systems that cannot exchange matter  
with their surroundings, though they may exchange heat with the 
surroundings. (p is the pressure which is exerted on the system, V is 
the volume of the system). In addition to the term - -pdV there may 
be other terms, if other forces are acting on the system. We shall 
omit these terms in §§ 2-4, since they have no importance for this 
discussion. The equation ( ! ) expresses a physical law in the following 
sense : the quantities p, V and dQ can be measured ; p is a mechanical 
quanti ty and V a geometrical quantity. The heat dQ supplied to the 
system by  the surroundings can be measured, if we think of these 
surroundings as a calorimeter, by measuring the temperature chan- 
ges in the surroundings resulting from the heat flow into the system 
(we suppose the specific heats of the surrounding bodies, which 
change in temperature, to be known). Now it is observed that a 
quanti ty dU defined by (1) is the differential of a quanti ty U which 
is a function of the "state variables" characterizing the system. 
These "state variables" may be taken as volume and temperature 
for a homogeneous system with one component; as volume, temper- 
ature, and concentrations for a homogeneous system with several 
components. In this way the energy U is defined as function of 
these "state variables". U contains an arbitrary constant since (1) 
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determines only the differential dU and not U itself. We now make 
the following convention: 

The energies o[ different homogeneous systems o/ the same ] 
pressure, temperature and constitution are proportional to I (2) 
the masses o/the systems. 

This makes the energy an extensive quantity. The arbitrariness 
with which the energy can be changed by  a constant is diminished 
by  (2). 

We now write down a generalization of (1) for open systems, i.e., 
for the case that  the system may exchange matter  with the sur- 
roundings; we suppose, however, that  the system is homogeneous 
and that the matter  flowing into or from the system has the same 
constitution as the matter  in the system (hence this flow is a motion 
of the bulk of this matter  without diffusion phenomena). We now 
put (1) p. 46) 

dU = d Q -  pdV + hdM, (3) 

where h = (U + pV)/M is the specific enthalpy and M is the mass 
of the system. In the equation (3) dU is known according to (1) if the 
change of the state variables of the system is known. If the total  
mass of the system changes, (2) is also needed to fix the energy 
change dU, (we suppose that  concentrations remain the same). The 
measurement of p, dV and dM involves no special difficulties and 
h = (U + pV)/M being a state variable, is determined according 
to (1). However, we must be careful with the measurement of dQ:as  
long as the heat transfer dQ occurs through fixed walls it can be 
measured in the same way as for (1). If, however, a temperature gra- 
dient exists within the matter  flowing from the system (fig. 1) the 
procedure for measuring dQ can no longer be defined in the same way. 

J homogeneous J---~ temperature gradient 
open system - ~  flow of matter 

J "boundary of the system 

Fig. 1. For open  sy s t ems  a f low of mat ter  m a y  be a c c o m p a n i e d  by  a f l o w  of 
heat.  It  is not  a lways  possible  to give a m e t h o d  to measure  this  f l ow of heat .  

We may now define dQ as the heat transfer, which is observed in 
matter  of the same constitution which is at rest and in which the 
same temperature gradient exists. This means, that  while we deter- 
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mined dQ for (1) by  measuring the temperature change and heat 
capacity of the surroundings, dQ in (3) is determined by  measuring 
the temperature gradient and the heat conduction of the matter  at 
the boundary of the system. We can do this only if no diffusion 
phenomena occur, as we have already supposed. With these supposi- 
tions all quantities in (3) can be measured, hence (3) can be considered 
as a physical law. 

If we now take the case that  diffusion phenomena occur in the 
matter  flowing from or into the system, we can no longer specify a 
way to measure the heat transfer. The diffusion may be accompanied 
by  heat flows (Dufour effect) which, are, however, not directly 
measurable. It  is impossible to take the heat flow equal to the heat 
flow for the matter  at rest, for, if diffusion occurs, coordinates can be 
chosen to make the bulk motion equal to zero, but  the different 
components will still move in such a coordinate system. 

In many cases it is still convenient to speak about the heat 
transfer dQ even if flows of material with diffusion occur. This can 
be done by  taking (3) as a de/inition of dQ for such changes; all 
quantities can be measured except dQ; hence (3) cannot be verified 
(or falsified) for such changes, but  the equation is sufficient to 
define dQ. If we state that  dU is defined for these changes, we 
must be careful: (2) fixes the ratio of the energy constants for several 
systems only if they have the same constitution ; however, if diffusion 
occurs the constitution becomes different. Here we again fix energy 
constants by  a convention which is a natural generalization of (2): 

We take the energy o/ a system consisting o/ several sub- 1 
systems to be the sum o/the energies o/the subsystems, i/they 
are considered separately. (by doing this we suppose that  the (4) ! 
interaction amongst the subsystems is negligeable). 

We apply this to find the way in which the energy of a mixture of 
components is fixed, once we have fixed the energies of the pure 
components. To this end we consider a system consisting of a volume 
containing a homogeneous mixture of a number of components, 
separated by a semipermeable wall from a volume filled with the 
pure component k, which can be brought into the main volume in a 
reversible way by  moving a piston (fig. 2). As we could extract any 
component of a mixture in this way, we see that  the energy constant 
of a mixture is determined, once the energy constants of the pure 
components are fixed. 
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The partial specific energy uk of component k in a mixture is 
defined by  uk = (~U/~Mk)p,r (Mk is the mass of component k; 
k ----- 1 . . . . . .  n; n is the number of components). Let u~ be the specifc 
energy of the pure component k. We may change such a specific 
energy by  a constant (independent of pressure and temperature) s k 

From the situation in Fig. 2 and the definition of u k it follows 
immediately that  uk must then be shifted by  the same amount 

~k = uk + ~k, (6) 

while the shift of the total energy 

U = Y~"k=l Mkuk (7) 

is given by U = U + 2~=1 skMk. (8) 

I pure component k mixture of / ][----piston a number of 
components ]\sem|permeable wall 

Fig. 2. If we h a v e  a m i x t u r e  of severa l  c o m p o n e n t s ,  t h e  ene rgy  sh i f t  of t he  
m i x t u r e  is r e l a t ed  to  t h e  ene rgy  shif ts  of t he  pure  c o m p o n e n t s .  This  can  be 
e s t ab l i shed  if we r e m o v e  some c o m p o n e n t  t h r o u g h  a s e m i p e r m e a b l e  wall. 

The total energy shift determined by the ek's must, namely, be 
independent of the position of the piston since a different position 
changes only state variables of the system, while the same matter  
remains in the system (the complete system is "closed"). Hence, if 
we use (3) as a definition for dQ for changes, where matter  flows with 
diffusion occur, a certain abitrariness may occur as a consequence of 
the fact that  the partial specific energies may be shifted. Since (3) 
must be considered only as a definition for changes where material 
flows with diffusion occur, it may be possible to propose different 
definitions and we shall in fact discuss a different definition for the 
heat transfer, which we call here dQ. (cf. 2) 4)), namely 

dV = d o - - p d V  + X~=, hkd, M k, (9) 

where hk ~-u,  + pvk is the partial specific enthalpy; v, is the 
partial specific volume, deMh is the change of mass of the component 
k, as far as it is caused by  mass transfer to or from the system 
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("external  change").  In addit ion there m a y  exist a mass change 
diM k of component  k caused by  a chemical reaction ("internal  
change").  We remark tha t  (9) is the same as (3) as far as only mass 
transfer  occurs wi thout  diffusion phenomena;  we then  have 
deMk = chdM (with the concentrat ion c k = M k / M  ) and (9) becomes 

d U  = d - Q - - p d V  + F~= 1 ckhhdM = d - Q - - p d V  + hdM; (10) 

therefore d~) = dQ for such changes, hence (9) is the same as (3) in 
the special case where it is a physical law, but  (9) differs from (3) in 
the general case where it serves as a definition of dQ (with diffusion). 

§ 3. The de/initions o~ dQ and dQ and shi/ts *k o / the  energy zero 
points. We now discuss the consequences of a shift e~ of the energy 
zero's of the components.  Before doing this, we remark tha t  if a 
chemical reaction is possible among the components  a relation exists 
which the constants  ~k must  satisfy" to derive it, we consider the 
first law (1) for a change in which the system exchanges no ma t t e r  
with the surroundings, while the volume is constant .  Then dU = dQ 
is a directly measurable quant i ty ,  in which no arbi t rary  constant  is 
left. According (7) we have 

d U  : Y~'k'=l (ukdiMk + Mkdu~). (11) 

For a chemical reaction d im k is proportional to the "stoechiometric 
coefficient" vk 

diMk/v k : independent  of k. (12) 

(In chemistry one divides v k by  the molar mass of k to obtain numbers 
proport ional  to the t radi t ional  integral stoechiometric numbers) 
If  we also write down (11), after  shifting the energy zero's we get 

dO = Y~2=t (•kd,Mk + Mkdah). (13) 

We now have d U  = d O  = dQ, because an energy change of a closed 
system is completely defined. Fur the r  du k = dg k (cf. (6)). Hence 
it follows f rom (l l )  and (13) 

•"k=l (Uk - -  U~) d~M k = 0, (14) 

or with (6) and (12) X~= 1 *kv~ = 0. (15) 

This is the  relation between the e~'s, which we sought. 
We n o w  consider the shifts in dQ and dQ which result from the 
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shifts e, for an open system (mass transfer to or from the surround- 
ings). We get, using (15) 

dU - -  dU = Z~ ekdM h = E k ~k(d,Mk + d~Mk) = Xk.ekd~Mk, (16) 

further "hdM - -  h d M  : Z h ekckdM, (17) 

X~ (hkd~Mk - -  hkd,Mk) = X~ ekdeM ~. (18) 

Hence we get for dQ and dQ 

- -  a O .  = - -  aeM ) = 0 ,  ( 2 0 )  

so that  dQ is not shifted, while dQ is generally shifted if the energy 
zero's are changed. 

The different definitions (3) and (9) may now be interpreted in the 
following way, where we include microscopic considerations in the 
discussion. The internal energy U of a system consists of potential 
and kinetic energy of the particles. The potential energy (of the 
particles in the molecule, atom or nucleus) has always arbitrary 
constants undefined, whereas the kinetic energy has a well-deter- 
mined zero-point. For a closed system, dQ from (1) gives a change in 
energy caused by  a transfer of microscopic kinetic energy amongst 
the molecules. (3) and (9) can be interpreted as different ways of 
splitting the change of internal energy in several parts. Since dQ in 
(9) is not affected by  a change in the energy zero it will be a change 
of microscopic kinetic energy, while dQ in (3) includes also a change 
in potential energy of the microscopic particles. However, a change 
hkd,Mk in (9) is a change of energy which comprises potential as well 
as kinetic energy (internal energies will consist partly of kinetic 
energy, e. g., the kinetic energy of translation or of the vibration of 
the atoms in a molecule). The advantage of (9) over (3) is that dQ is 
only a change in microscopic kinetic energy; however, it is not cer- 
tain that one could not find still other ways of splitting dU, where a 
heat transfer dQ' would be defined which would also be a ahange of 
microscopic kinetic energy only. (9) and (3) are both possible defini- 
tions; it may only be that one definition is more convenient than the 
other in certain applications (Some statements on the different defi- 
nitions dQ and dQ were already made in a)). 
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§ 4. The /irst law /ormulated with speci/ic quantities. For  non- 
uniform systems the physical  laws must  be s ta ted  as differential 
equat ions  containing specific quanti t ies,  i.e., per  unit  mass. We can 
write (3) and (9) with specific quanti t ies .  We put  

dQ = Mdq; = Md ; 1 

U ---- Mu;  V = My; c k = Mk/M;  ] (21) 

diM k = Mdic k ; dck= d,c k + dick ; dMk = diM k + deMk, 

hence deMk = chdM + Mdeck. 

We then get instead of (3) 

du = dq - -  pdv, (22) 

and instead of (9) 

du = d ~ -  pdv + X~'= 1 hkd,c ~. (23) 

Though (22) may  seem simpler than (23) in this formulation,  it must  
be remembered  tha t  dq changes for a shift of the energy zero's, 
whilst d~ doesn' t .  

§ 5. The /undamental laws /or irreversible thermodynamics. We 
formulate  the four fundamenta l  laws, which are the basis for the  
the rmodynamics  of irreversible processes in cont inuous sys tems 1) 3) 
(we follow the nota t ion  of 3) and take  a cont inuous sys tem in which 
heat  conduction,  diffusion and one chemical reaction ma y  occur;  
for convenience, however,  we exclude viscosity terms). 

I. T h e  l a w  o f  c o n s e r v a t i o n  o f  m a s s  

OQk/bt = - -  div ekVk + Vk It" 

This can also be wri t ten as 

edck/dt = - -  div Jk + vk Jc. 

We can put  

so . that 

od,ck/dt = - -  div Jk, 

odicJdt = vkJ c, 

dck = deck + dick. 

(24) 

(25) 

(26) 

(27) 

( 2 8 )  
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II .  T h e  e q u a t i o n  o f  m o t i o n  

~dv/dt = - -  grad p + Z~'= 1 FkQk- (29) 

I I I .  T h e e n e r g y e q u a t i o n expresses tha t  the energy 
change aeJat of the tota l  energy e, per uni t  of volume is equal to 
the divergence of the to ta l  energy flow J ,  plus a source te rm caused 
by  external  forces acting on the components  

Oev/~t = - -  div J ,  + X~= 1 Fh. Vkqk. (30) 

The to ta l  energy e, consists of internal  energy and kinetic energy;  
we m a y  also take it per unit  of mass; we then call it e and put  

e~, = Qe. (31) 

We have e = u + ½v 2, (32) 

where u is the internal  energy per uni t  of mass and ½v 2 the bulk 
kinetic energy per unit  of mass. We can th ink of u, ½v 2 and e as 
measurable quanti t ies:  u is a function of the s tate  variables p, T 
and the concentrat ions (and one can determine this fuction according 
to § 1). v is the bulk velocity of a volume element. J ,  can be measured 
if we measure the change of energy in systems $1, S 2 . . . .  each of which 
has part  of its boundary  in common with the element of the system 
which is considered, while their other walls are insulating (Fig. 3). 

elernent of i 

nsulating 
w_~l Is 

Fig. 3. I n  p r inc ip le  i t  is poss ib le  to  give a m e t h o d  to  d e t e r m i n e  t h e  t o t a l  
e n e r g y  f low d e b y  m e a s u r i n g  t h e  energies  in  s e p a r a t e  vo lumes .  

We now introduce hea t  flows Jq and Jb by  definitions in a way 
tha t  is analogous to the introduct ion of dQ and dL9 in § 2. 

J ,  = Jq + ({v2)~v + hey, (33) 

J ,  = J~ ~- (½v2)~v + Z~ hk~v~. (34) 

If  diffusion phenomena occur, all quanti t ies  can be measured except 
Jq o r  J~, so tha t  these equations are no longer physical laws bu t  
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definitions of Jq and J?. (Without  diffusion phenomena  (33) and (34) 
become the same;  Jq = J i  is then directly measurable  and the 
equat ions express the energy law, together  with (30)). 

We now show tha t  (33) and (34) are analogous to (3) and (9) 
( together with (30)). As a ma t t e r  of fact, if we introduce 

q d q / d t = - - d i v  Jq, (35) 

Qd~/dt = -- div JTv (36) 

we get from (26) . . . . .  (36) 

du/dt = dq/dt - -  pdv/dt + (l/Q) Z k F k. Jk, (37) 

and du/dt = d ~ / d t -  pdv/dt + Z k hkd.c h + (1/Q) Za Fa. Jk, (38) 

which are the same as (22) and (23) respectively.  The last terms in 
(37) and (38) have no counterpar t  in (22) and (23), because in sections 
§§ 2-4, we had supposed tha t  no external  forces F~ existed. 

IV. T h e  s e c o n d  l a w  o f  t h e r m o d y n a m i c s  is 

T ds/dt = du/dt + pdv/dt - -  Z ,  #~ dck/dt. (39) 

From (25), (37), resp. (38) and (39) we get for the en t ropy  balance 

ds/dt = - -  div J~ + a. (40) 

where the en t ropy  flow Js is equal to 

J ,  = (Jq - -  Xk ltk Jk)l T, (41) 

or (cf. also 1) p. 97) J ,  = .  J i l t  + Zk ShJk. (42) 

The choice of J~ seems to be more na tura l  than Jq, if we look at 
these equat ions  for J, .  In (42) the second par t  has the appearance of 
a convect ion te rm of entropy,  while this is not t rue for (41). 

The en t ropy  product ion a is given either by  

a ---- (Jq.Xq + X k Jk.Xk + AJc)IT, (43) 

with Xq = - -  (grad T) /T ,  
. } ( 4 4 )  

X~ = Fk - -  grad (l~k/T), A = - -  Z k ~tk~';,, 

or b y  a = ( J i . X i  + Z k Jk.X'k + AJc)/T, (45) 
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w i t h  X~ = - -  (grad T)/T, / 
(46) 

X'k = Fh - -  grad  #k - -  sk grad  T = Fk - -  (grad ~,~)r. J 

W e  c a n  a lso  wr i t e  t h e  c h a n g e  of  e n t r o p y  in a f o r m  a n a l o g o u s  t o  
(24) a n d  (30) 

~sv/Ot = - -  d iv  (ds + sov) + a, (47) 

w h e r e  so = ps is the  e n t r o p y  per  un i t  v o l u m e .  

Rece ived  28-8-52. 
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