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Synopsis

In this paper it is discussed to what extent the first law of thermodyna-
mics is a physical law, and to what extent it is a definition, if it is generaliz-
ed so as to be valid for open systems. The conclusion is reached that it is
partly a definition. Different generalizations of the first law, which can be
proposed, must be considered as different definitions. The usefulness of
these different definitions is compared with respect to the shift of arbitrary
constants in the internal energy and in view of the thermodynamics of
irreversible processes.

§ 1. Introduction and results. While Gibbs’ form of the second
law of thermodynamics for open systems is extensively employed,
relatively little is found in the literature on a consistent use of the
first law for open systems. This may be due to the incomplete
physical interpretation of the equations which have been proposed
for this law. In this paper we try to give a contribution to the pro-
blem of the clarification of the physical meaning of the first law for
open systems, in particular about the problem as to how far it is a
physical law and how far it is a definition.

The generalization of the first law for closed systems, to a law valid
for open systems as well, is usually achieved in either of two ways for
which the formalism has been given before 1) 2) (cf. also 3)}. From the
discussion of these formulations, (3) and (9), we find in § 2 that the
first law for open systems is a physical law only if no diffusion
phenomena occur. In that case the formulae (3) and (9) are identical.
In the general case with diffusion, however, the formulae become
different, and more or less convenient, definitions of the heat
transfer.

The convenience of the forms (3) and (9) is discussed in § 3 with
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respect to the shifting of the arbitrary zero point in the partial specific
energies. It is found that the heat transfer defined by (3) is affected
by these shifts, while the heat transfer of (9) is not changed (just as
in the first law for closed systems).

In the discussion on the physical meaning, the usual forms of the
first law, valid for uniform systems, were employed for the sake of
simplicity. All conclusions are, however, valid for non-uniform
systems as well. The forms of the first law, containing specific quanti-
ties as required for non-uniform systems, are given in § 4.

Finally, the effect of the two alternative forms of the first law for
open systems on the form of the fundamental equations of macro-
scopic physics, as used in the “thermodynamics of irreversible pro-
cesses’’ 1) 3), is summarized in § 5.

§ 2. The first law for open systems. We write the first law of
thermodynamics for closed systems in the form

AU = dQ — pdV. (1)

With closed systems we mean systems that cannot exchange matter
with their surroundings, though they may exchange heat with the
surroundings. (p is the pressure which is exerted on the system, V is
the volume of the system). In addition to the term —p4V there may
be other terms, if other forces are acting on the system. We shall
omit these terms in §§ 2-4, since they have no importance for this
discussion. The equation (1) expresses a physical law in the following
sense: the quantities p, ¥V and dQ can be measured ; $ is a mechanical
quantity and V a geometrical quantity. The heat 4Q supplied to the
system by the surroundings can be measured, if we think of these
surroundings as a calorimeter, by measuring the temperature chan-
ges in the surroundings resulting from the heat flow into the system
(we suppose the specific heats of the surrounding bodies, which
change in temperature, to be known). Now it is observed that a
quantity 4U defined by (1) is the differential of a quantity U which
is a function of the ‘“state variables” characterizing the system.
These “‘state variables’” may be taken as volume and temperature
for a homogeneous system with one component; as volume, temper-
ature, and concentrations for a homogeneous system with several
components. In this way the energy U is defined as function of
these “‘state variables”. U contains an arbitrary constant since (1)
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determines only the differential 4U and not U itself. We now make
the following convention:

The energies of different homogeneous systems of the same
pressure, temperature and constitution are proportional to (2)
the masses of the systems.

This makes the energy an extensive quantity. The arbitrariness
with which the energy can be changed by a constant is diminished
by (2).

We now write down a generalization of (1) for open systems, i.e.,
for the case that the system may exchange matter with the sur-
roundings; we suppose, however, that the system is homogeneous
and that the matter flowing into or from the system has the same
constitution as the matter in the system (hence this flow is a motion
of the bulk of this matter without diffusion phenomena). We now
put (1) p. 46)

AU = dQ — pdV + hdM, (3)

where & = (U + pV)/M is the specific enthalpy and M is the mass
of the system. In the equation (3) U is known according to (1) if the
change of the state variables of the system is known. If the total
mass of the system changes, (2) is also needed to fix the energy
change dU, (we suppose that concentrations remain the same). The
measurement of p, 4V and dM involves no special difficulties and
h = (U 4+ pV)/M being a state variable, is determined according
to (1). However, we must be careful with the measurement of dQ: as
long as the heat transfer dQ occurs through fixed walls it can be
measured in the same way as for (1). If, however, a temperature gra-
dient exists within the matter flowing from the system (fig. 1) the
procedure for measuring 4Q can no longer be defined in the same way.

|—=temperature gradient
—iflow of matter
[ “boundary of the system

homogeneous
open system

Fig. 1. For open systems a flow of matter may be accompanied by a flow of
heat. It is not always possible to give a method to measure this flow of heat.

We may now define dQ as the heat transfer, which is observed in
matter of the same constitution which is at rest and in which the
same temperature gradient exists. This means, that while we deter-
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mined dQ for (1) by measuring the temperature change and heat
capacity of the surroundings, 4@ in (3) is determined by measuring
the temperature gradient and the heat conduction of the matter at
the boundary of the system. We can do this only if no diffusion
phenomena occur, as we have already supposed. With these supposi-
tions all quantities in (3) can be measured, hence (3) can be considered
as a physical law.

If we now take the case that diffusion phenomena occur in the
matter flowing from or into the system, we can no longer specify a
way to measure the heat transfer. The diffusion may be accompanied
by heat flows (Dufour effect) which-are, however, not directly
measurable. It is impossible to take the heat flow equal to the heat
flow for the matter at rest, for, if diffusion occurs, coordinates can be
chosen to make the bulk motion equal to zero, but the different
components will still move in such a coordinate system.

In many cases it is still convenient to speak about the heat
transfer 4Q even if flows of material with diffusion occur. This can
be done by taking (3) as a definition of dQ for such changes; all
quantities can be measured except dQ; hence (3) cannot be verified
(or falsified) for such changes, but the equation is sufficient to
define dQ. If we state that dU is defined for these changes, we
must be careful: (2) fixes the ratio of the energy constants for several
systems only if they have the same constitution ; however, if diffusion
occurs the constitution becomes different. Here we again fix energy
constants by a convention which is a natural generalization of (2):

We take the energy of a system consisting of several sub-
systems to be the sum of the energies of the subsystems, if they
are considered separately. (by doing this we suppose that the
interaction amongst the subsystems is negligeable).

We apply this to find the way in which the energy of a mixture of
components is fixed, once we have fixed the energies of the pure
components. To this end we consider a system consisting of a volume
containing a homogeneous mixture of a number of components,
separated by a semipermeable wall from a volume filled with the
pure component %, which can be brought into the main volume in a
reversible way by moving a piston (fig. 2). As we could extract any
component of a mixture in this way, we see that the energy constant
of a mixture is determined, once the energy constants of the pure
components are fixed.

(4)
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The partial specific energy #, of component £ in a mixture is
defined by w, = (0U[oM,),r (M, is the mass of component £;
k=1, ...., n;nisthe number of components). Let «% be the specifc
energy of the pure component 2. We may change such a specific
energy by a constant (independent of pressure and temperature) ¢,

@ = uf + & ()

From the situation in Fig. 2 and the definition of #, it follows
immediately that #, must then be shifted by the same amount

S (6)
while the shift of the total energy
U=Z%{_, M, (7)
is given by U=U-+ 3!, M, 8)
mixture of | pure component k
a number of piston
components |

semipermeable wall

Fig. 2. If we have a mixture of several components, the energy shift of the
mixture is related to the energy shifts of the pure components. This can be
established if we remove some component through a semipermeable wall.

The total energy shift determined by the ¢,’s must, namely, be
independent of the position of the piston since a different position
changes only state variables of the system, while the same matter
remains in the system (the complete system is ‘‘closed”). Hence, if
we use (3) as a definition for dQ for changes, where matter flows with
diffusion occur, a certain abitrariness may occur as a consequence of
the fact that the partial specific energies may be shifted. Since (3)
must be considered only as a definition for changes where material
flows with diffusion occur, it may be possible to propose different
definitions and we shall in fact discuss a different definition for the
heat transfer, which we call here 40 (cf. 2) %)), namely

U = d§ — paV + 1., hd M, ©)

where h, = u, + pv, is the partial specific enthalpy; v, is the
partial specific volume. 4,M, is the change of mass of the component
k, as far as it is caused by mass transfer to or from the system
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(“external change”). In addition there may exist a mass change
d;M, of component k caused by a chemical reaction (“internal
change”). We remark that (9) is the same as (3) as far as only mass
transfer occurs without diffusion phenomena; we then have
d,M, = c,dM (with the concentration ¢, = M,/M) and (9) becomes

AU = dQ — pdV + Zj_, chdM = dQ — pdV + hdM; (10)

therefore dQ = dQ for such changes, hence (9) is the same as (3) in
the special case where it is a physical law, but (9) differs from (3) in
the general case where it serves as a definition of 4Q (with diffusion).

§ 3. The definitions of dQ and dQ and shifts s, of the energy zeyo
points. We now discuss the consequences of a shift ¢, of the energy
zero's of the components. Before doing this, we remark that if a
chemical reaction is possible among the components a relation exists
which the constants ¢, must satisfy: to derive it, we consider the
first law (1) for a change in which the system exchanges no matter
with the surroundings, while the volume is constant. Then dU = dQ
is a directly measurable quantity, in which #o arbitrary constant is
left. According (7) we have

al = Z;_, (wd M, + M,du,). (11)

For a chemical reaction d,M, is proportional to the “stoechiometric
coefficient” »,

a;M /v, = independent of k. (12)

(In chemistry one divides », by the molar mass of % to obtain numbers
proportional to the traditional integral stoechiometric numbers)
If we also write down (11), after shifting the energy zero’s we get

AU = =, (@,dM, + M di,). (13)

We now have dU = dU = dQ, because an energy change of a closed
system is completely defined. Further du, = ddi, (cf. (6)). Hence
it follows from (11) and (13)

Doy (@ —wy) M, =0, (14)
or with (6) and (12) i e, =0. (15)

This is the relation between the ¢,’s, which we sought.
We now consider the shifts in dQ and dQ which result from the
Physica XVIII 50
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shifts ¢, for an open system (mass transfer to or from the surround-
ings). We get, using (15)

AU — dU = S, 6,dM, = 3, e,(d:M, + d,M,) = 3, e,d,M,, (16)

further "M — hdM = 3, e,c,dM, (17)
5, (d M, — hd M) = =, e,d,M,. (18)
Hence we get for dQ and dQ
A0 — dQ = 3, ey(d,M, — c,dM), (19)
dQ —d) = 3, ey(d,M, —d M,) = 0, (20)

so that dQ is not shifted, while dQ is generally shifted if the energy
zero’s are changed.

The different definitions (3) and (9) may now be interpreted in the
following way, where we include microscopic considerations in the
discussion. The internal energy U of a system consists of potential
and kinetic energy of the particles. The potential energy (of the
particles in the molecule, atom or nucleus) has always arbitrary
constants undefined, whereas the kinetic energy has a well-deter-
mined zero-point. For a closed system, dQ from (1) gives a change in
energy caused by a transfer of microscopic kinetic energy amongst
the molecules. (3) and (9) can be interpreted as different ways of
splitting the change of internal energy in several parts. Since d( in
(9) is not affected by a change in the energy zero it will be a change
of microscopic kinetic energy, while 4Q in (3) includes also a change
in potential energy of the microscopic particles. However, a change
hd, M, in (9) is a change of energy which comprises potential as well
as kinetic energy (internal energies will consist partly of kinetic
energy, e. g., the kinetic energy of translation or of the vibration of
the atoms in a molecule). The advantage of (9) over (3) is that dQ is
only a change in microscopic kinetic energy; however, it is not cer-
tain that one could not find still other ways of splitting 4U, where a
heat transfer 4Q’ would be defined which would also be a change of
microscopic kinetic energy only. (9) and (3) are both possible defini-
tions; it may only be that one definition is more convenient than the
other in certain applications (Some statements on the different defi-
nitions dQ and d were already made in 4)).
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§4. The first law formulated with specific quantities. For non-
uniform systems the physical laws must be stated as differential
equations containing specific quantities, i.e., per unit mass. We can
write (3) and (9) with specific quantities. We put

dQ = Mdg; dj = Mdg;
U=Mu;, V=Mv, c,=M,/M,; (21)
aM,=Mdg,; dc,=d,c, +dge,; dM,=d,M,+ d,M,,
hence d M, = ¢, dM + Mdc,.
We then get instead of (3)
du = dg — pdv, (22)
and instead of (9)
du = dqg — pdv + Z}_, hdc,. (23)

Though (22) may seem simpler than (23) in this formulation, it must
be remembered that dg changes for a shift of the energy zero’s,
whilst dg doesn’t.

§ 5. The fundamental laws for irreversible thermodynamics. We
formulate the four fundamental laws, which are the basis for the
thermodynamics of irreversible processes in continuous systems 1) 3)
(we follow the notation of 8) and take a continuous system in which
heat conduction, diffusion and one chemical reaction may occur;
for convenience, however, we exclude viscosity terms).

I. Thelaw of conservation of mass

0p,/0t = — div v, + ¥ ). (24)
This can also be written as
pde jJdt = —divd, + v, ). (25)
We can put
pdcpfdt = — div J,, (26)
edcildt = vy, (27)
so,that

dc, = dc, + dg,. (28)
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II. The equation of motion

pdv/dt = —grad p + Z}_, Fio,. (29)

III. The energy equation expresses that the energy
change ¢e, /ot of the total energy e, per unit of volume is equal to
the divergence of the total energy flow J, plus a source term caused
by external forces acting on the components

de,jot = — div J, + =¢_, F,.V,0,. (30)

The total energy e, consists of internal energy and kinetic energy;
we may also take it per unit of mass; we then call it ¢ and put

e, = ge. (31)
We have e =u+ }v4 (32)

where # is the internal energy per unit of mass and }v? the bulk
kinetic energy per unit of mass. We can think of , 4v® and ¢ as
measurable quantities: # is a function of the state variables p, T
and the concentrations (and one can determine this fuction according
to § 1). vis the bulk velocity of a volume element. J, can be measured
if we measure the change of energy in systems S,, S,, . . . each of which
has part of its boundary in common with the element of the system
which is considered, while their other walls are insulating (Fig. 3).

element of

the system
Je insulating
S, S, walls

Fig. 3. In principle it is possible to give a method to determine the total
energy flow J, by measuring the energies in separate volumes.

We now introduce heat flows J, and J; by definitions in a way
that is analogous to the introduction of 4Q and 4Q in § 2.

J, =3, + (4vev + hov, (33)
J.=J; + (3v3oV + Z, hyopV,. (34)

If diffusion phenomena occur, all quantities can be measured except
J, or J;, so that these equations are no longer physical laws but



THE FIRST LAW OF THERMODYNAMICS FOR OPEN SYSTEMS 789

definitions of J, and J;. (Without diffusion phenomena (33) and (34)
become the same; J, = J; is then directly measurable and the
equations express the energy law, together with (30)).

We now show that (33) and (34) are analogous to (3) and (9)
(together with (30)). As a matter of fact, if we introduce

odg/dt = —div J,, (35)
odgldt = —div J;, (36)

we get from (26), ..., (36)
dujdt = dgldt — pdvjdt + (/o) Z, F,.J,, (37)

and  du/dt = dgjdt — pdvjdt + T, hde, + (1)0) Z, Fe.J,  (38)

which are the same as (22) and (23) respectively. The last terms in
(37) and (38) have no counterpart in (22) and (23), because in sections
§§ 2-4, we had supposed that no external forces F, existed.

IV. The second law of thermodynamics is

T dsj/dt = du/dt + pdv/dt — Z, p, dc,/dt. (39)
From (25), (37), resp. (38) and (39) we get for the entropy balance
g dsjdt = —div J, + o. (40)
where the entropy flow J, is equal to
J, = (I, — 2 1 JY/T, (41)
or (cf. also 1) p. 97) J, =J/T + Z; 5. (42)

The choice of J; seems to be more natural than J,, if we look at
these equations for J,. In (42) the second part has the appearance of
a convection term of entropy, while this is not true for (41).

The entropy production o is given either by

o= (J,. X, + Z, 3. X, + 4))/T, (43)
with X, = —(grad T)/T,
| } (44)
X, =F,—grad (u/T), A =—2Z,

or by o= (J;.X;+ 5, J,. X, + 4))/T, (45)
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with X; = — (grad 7)/T,

46
X, =F,—grad y, —s,grad T = F, — (grad p,) 1. } (46)

We can also write the change of entropy in a form analogous to
(24) and (30)
0s, /ot = — div (J; + s,v) + o, (47)

where s, = gs is the entropy per unit volume.

Reccived 28-8-52.
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