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We argue that thermal machines can be understood from the perspective of “virtual qubits” at “virtual
temperatures”: The relevant way to view the two heat baths which drive a thermal machine is as a composite
system. Virtual qubits are two-level subsystems of this composite, and their virtual temperatures can take on any
value, positive or negative. Thermal machines act upon an external system by placing it in thermal contact with
a well-selected range of virtual qubits and temperatures. We demonstrate these claims by studying the smallest
thermal machines. We show further that this perspective provides a powerful way to view thermodynamics,
by analyzing a number of phenomena. This includes approaching Carnot efficiency (where we find that all
machines do so essentially by becoming equivalent to the smallest thermal machines), entropy production
in irreversible machines, and a way to view work in terms of negative temperature and population inversion.
Moreover we introduce the idea of “genuine” thermal machines and are led to considering the concept of “strength”
of work.
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I. INTRODUCTION

The field of quantum thermodynamics [1–3] has made
great strides in gaining a basic understanding of phenomena at
the intersection of quantum mechanics and thermodynamics.
This line of research goes all the way back to the 1950s,
when thermodynamic analysis of lasers was investigated
[4–6]. Since then there has been significant interest in many
related areas, with many results on quantum thermal machines
[7–18], finite-time thermodynamics [19–24] and the second
law [25–29] (and references therein).

Of particular interest to this work is one recent development,
namely the study of the smallest possible self-contained
thermal machines [30–34]. By self-contained we mean that
no sources of external work or other form of control are
allowed, only incoherent interactions with thermal baths at
various temperatures. These smallest self-contained thermal
machines are arguably the most elementary thermal machines.
As such, they are inherently simple and transparent; they
offer us a view into the core of thermodynamics unobstructed
by unnecessary details and complications. What we want to
show here is that because of this, their study leads to a new
view of thermodynamics, allowing for general conclusions
to be drawn about the way thermal machines ultimately
function.

At the core of this view of thermodynamics lies the notion
of a virtual qubit and its virtual temperature. A virtual qubit
is a two-level subsystem of the two baths that drive a thermal
machine, when considered as a composite system. Different
virtual qubits have different virtual temperatures. Using these
concepts, we show first that the smallest thermal machines—
refrigerators, heat pumps, and heat engines—all function via a
simple mechanism: They place an external system in thermal
contact with a well chosen virtual qubit at a well chosen virtual
temperature. More complicated thermal machines, including
classical ones, use essentially the same mechanism. The only

difference is that they couple the external system to many
virtual qubits, at many virtual temperatures, all at the same
time.

We demonstrate further the breadth of this new notion.
First of all, the virtual qubit provides a natural way to
understand work, in terms of population inversion and negative
temperatures. This, in turn, shows that work has an additional
property, which we term “strength.” Additionally, this notion
is seen to be particularly powerful in understanding efficiency,
especially the Carnot limit. The smallest thermal machines
are shown to have an efficiency which is always universal
(independent of model details), while any thermal machine
which approaches the Carnot efficiency functions, essentially,
as the smallest machines in the limit, utilizing only a single
virtual temperature. Moreover, the strength of work will be
seen to vanish in the Carnot limit, reinforcing the weak nature
of the Carnot limit. Finally, we see that the resources a pair
of thermal baths provide is captured by the notion of virtual
temperature, which in turn allows for the idea of a “genuine
thermal machine” to be introduced.

The paper is organized as follows: In Sec. II we introduce
the virtual qubit and its virtual temperature and outline
in Sec. III how this notion is used to understand thermal
machines. In Sec. IV we begin to demonstrate explicitly
this idea for the smallest thermal machines, discussing first
refrigerators and heat pumps in Sec. V and then work and heat
engines in Sec. VI. In Sec. VII we introduce the “strength”
of work and its manifestation for both finite-dimensional
and infinite-dimensional systems. We begin our discussion
of efficiency in Sec. VIII, where we discuss the universality
of the efficiency of the smallest machines. Continuing in
Sec. IX we discuss how thermal machines approach the Carnot
limit, while in Sec. X we study entropy production in irre-
versible machines. Finally, in Sec. XI we introduce “genuine”
machines.
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II. THE VIRTUAL QUBIT

Suppose we have two noninteracting thermal baths at
different temperatures, T1 and T2. The state of each bath
by itself is rather trivial, being simply a Boltzmannian
distribution. However, thermal machines work by accessing
both baths. It is therefore far more relevant to look at the
two baths together, as a composite system. The structure of
this system, which may seem no more complicated than its
constituent parts, has, in fact, a rich structure. A “virtual qubit”
is the most elementary subspace in the Hilbert space of the
composite bath, that is, a two-dimensional subspace. Most
important are virtual qubits in which the two (basis) states are
energy eigenstates of the composite system. What makes the
virtual qubit interesting is that, in general, it behaves as if it
has a virtual temperature Tv , which can be very different from
either bath temperature, T1 or T2; in particular, Tv can be much
smaller, or larger than either, or even negative.

To be more precise, let us consider two arbitrary energy
eigenstates in bath 1 with energy spacing E1, which we
denote |g〉

B1
and |e〉

B1
. Similarly, consider two states in bath

2 with energy spacing E2, denoted |g〉
B2

and |e〉
B2

. These are
depicted in Fig. 1(a). From these states we can identify four
energy eigenstates of the composite system, namely |g〉

B1
|g〉

B2
,

|e〉
B1

|g〉
B2

, |g〉
B1

|e〉
B2

, and |e〉
B1

|e〉
B2

. Of particular interest are
virtual qubits formed of the states |e〉

B1
|g〉

B2
and |g〉

B1
|e〉

B2
.

Without loss of generality, we may take E2 > E1. With this
choice, these two states form a virtual qubit with energy
spacing Ev = E2 − E1. It is convenient to define the virtual
ground and excited states as, respectively,

|G〉
Bv

= |e〉
B1

|g〉
B2

, |E〉
Bv

= |g〉
B1

|e〉
B2

, (1)

depicted in Fig. 1(b). The “virtual temperature” of this qubit
can be found by looking at the ratio of populations, pE

v and
pG

v , of the excited and ground state,

e−Ev/Tv = pE
v

pG
v

. (2)

Since each bath is individually in a Boltzmannian distribution,
we know that the populations of the eigenstates from a single
bath satisfy the relations

pe
1 = p

g

1e−E1/T1 , pe
2 = p

g

2e−E2/T2 . (3)

FIG. 1. (Color online) Schematic diagram of bath virtual qubits.
(a) Two baths, one at temperature T1 and one at temperature T2. In each
bath we identify two arbitrary energy eigenstates, |g〉

Bi
and |e〉

Bi
, with

spacing Ei . (b) These two baths can be viewed as a single composite
bath. Two energy eigenstates of this composite system are |G〉

Bv
≡

|e〉
B1

|g〉
B2

and |E〉
Bv

≡ |g〉
B1

|e〉
B2

. The “virtual temperature” Tv of
this “virtual qubit” can take on any value—positive or negative—
depending on E1 and E2.

Therefore, we see that

pE
v = p

g

1pe
2 = p

g

1p
g

2e−E2/T2 ,
(4)

pG
v = pe

1p
g

2 = p
g

1p
g

2e−E1/T1 ,

and so we obtain

e−Ev/Tv = e−E2/T2

e−E1/T1
, (5)

which allows us finally to arrive at

Tv = E2 − E1
E2
T2

− E1
T1

(6)

as the virtual temperature of the virtual qubit.
There are a couple of important observations which we

must now make. The first is that the virtual temperature does
not depend on the energy of each individual level, but only on
their energy difference.

Second, the virtual temperature, as a function of the local
energy level spacings E1 and E2, can take a range of values,
crucially all temperatures outside the range of T1 and T2; it
can be smaller or larger than both and can even take negative
values [35]. Third, in macroscopic baths we can find essentially
any possible energy level. Hence, the composite system of a
pair of macroscopic baths contains virtual qubits at essentially
any virtual temperature Tv .

Finally, for every given virtual temperature Tv , one can
find essentially infinitely many virtual qubits in the composite
system. This follows from the fact that each bath locally has
infinitely many qubits with the spacings E1 and E2.

These these facts are precisely what give the composite
system its thermodynamic power, as we show in the rest of the
paper.

III. THERMAL MACHINES

The central idea of this paper is that all a thermal machine
does is place an external system in direct thermal contact with
a restricted set of virtual qubits in the composite bath, having
only a restricted range of virtual temperatures. The external
system simply reacts to the virtual qubits as it would react if
put in thermal contact with real qubits having the same virtual
temperatures.

If the temperatures are predominantly smaller than those
of the individual baths, the machine is a refrigerator. If the
temperatures are predominantly larger, then it is a heat pump.
Finally, if the temperature is negative, then the machine is a
heat engine. In this sense thermal machines act simultaneously
as a coupler and a filter—they provide a coupling between the
system and the thermal reservoirs, but also filter out only a
restricted range of virtual temperatures.

The important question concerns how exactly a thermal
machine accomplishes this task. In particular, how can a
thermal machine filter out selected virtual qubits from the
composite bath? This ability seems surprising since we can
construct thermal machines without detailed knowledge of the
spectrum of the bath. In the next section we give an answer
to this question for the case of the smallest thermal machines.
In fact, as we will see, the smallest thermal machines couple
not to a range of virtual temperatures, but to only a single one.
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In this sense, they act as perfect filters and are therefore the
“cleanest” thermal machines. We see later in Sec. IX that the
ability to perfectly filter is intimately related to the ability to
reach Carnot efficiency.

IV. HOW THERMAL MACHINES WORK:
THE SMALLEST THERMAL MACHINES

A. The machine virtual qubit

All of the smallest thermal machines have at their core the
same basic mechanism. Each machine consists of two qubits,
qubit 1, which is in thermal contact with bath 1, and qubit 2,
which is in thermal contact with bath 2 [see Fig. 2(a)]. These
two qubits will then interact with each other and an external
system via an interaction Hamiltonian. It is illuminating to
consider the state of the two qubits before this interaction
is turned on. Suppose that qubit 1 has energy spacing E1

and qubit 2 energy spacing E2. The explicit choice of these
energies is part of the design of the machine and is chosen
by us. In the absence of interaction with the external system,
each qubit interacts only with its own thermal bath. As such,
each will reach thermal equilibrium at the corresponding bath
temperature.

For simplicity, throughout this paper we only consider the
case of weak coupling between the machine and the bath, as
this will allow us to focus on resonant (i.e., energy conserving)
interactions only. In this regime the thermal state of each qubit

FIG. 2. (Color online) Schematic diagram of the smallest thermal
machines. (a) The smallest machine comprises two qubits, one with
energy spacing E1 in thermal contact (wavy line) with a bath at
temperature T1 and the other with energy spacing E2 in thermal
contact with a bath at temperature T2. (b) The ultimately more relevant
way to view this system is that the “machine virtual qubit” with
spacing Ev = E2 − E1, is in thermal contact with virtual qubits in the
composite bath at the virtual temperature Tv . The local energy-level
spacings E1 and E2 allow the machine virtual qubit to “filter” out a
single virtual temperature from the composite bath.

will be a Boltzmannian distribution, with the Hamiltonian
being the free Hamiltonian of the qubit. Thus, the thermal
state of each qubit is given by

τi = 1

Zi

e−Hi/Ti

= 1

1 + e−Ei/Ti
(|0〉

i
〈0| + e−Ei/Ti |1〉

i
〈1|), (7)

where Hi = Ei |1〉
i
〈1| is the free Hamiltonian of each qubit.

Let us look at this trivial thermalization process, in which
each qubit simply reaches equilibrium with its own bath, from a
different, and ultimately more relevant, point of view. The two
qubits have four energy eigenstates, |0〉1 |0〉2 , |0〉1 |1〉2 , |1〉1 |0〉2 ,
and |1〉1 |1〉2 . Of particular interest are the two states |0〉1 |1〉2

and |1〉1 |0〉2 . In a similar fashion to the previous section, let us
interpret the Hilbert space spanned by these two states as a
virtual qubit, with ground and excited states

|0〉
v
= |1〉1 |0〉2 , |1〉

v
= |0〉1 |1〉2 . (8)

This will be our machine virtual qubit. The energy spacing
of these two states is Ev = E2 − E1. By repeating a similar
analysis to that carried out for the virtual qubit in the composite
bath, we find that this machine virtual qubit reaches the
temperature Tv ,

Tv = E2 − E1
E2
T2

− E1
T1

. (9)

We can interpret this result as saying that the machine virtual
qubit entered into thermal contact with virtual qubits in the
composite bath and thermalized to their temperature.

Seen from this point of view, the thermalization process
may seem surprising. As we saw previously, there are many
virtual qubits in the composite bath having the same energy-
level spacing as the machine virtual qubit, that is, satisfying
E2 − E1 = E2 − E1. It would appear, therefore, that all such
virtual qubits should couple resonantly to the machine virtual
qubit. However, the temperature of the virtual qubits depends
not only on the level spacing E2 − E1, but also on the separate
values of E2 and E1; coupling all of these to the machine virtual
qubit will result in it attaining some average temperature. The
key to understanding the behavior of the machine virtual qubit
is to realize that the interaction with the composite bath is not
arbitrary; it occurs only via the local couplings of qubit 1 to
bath 1 and qubit 2 to bath 2. Each machine qubit will only
interact resonantly with a corresponding qubit in the bath, so
E1 = E1 and E2 = E2. This allows the machine to couple its
virtual qubit in a very selective way to the virtual qubits in
the composite bath and to single out the precise temperature
Tv . In the terminology of the previous section, we see that
it is the local resonant couplings which provide the filtering
for these machines. Furthermore, we see that only a single Tv

is selected, and as such this machine acts as a perfect filter.
Finally, we note that the specific value of Tv filtered out is
chosen at our disposal by the the way in which we engineer
the machine, that is, by the choice of E1 and E2.

B. Coupling to the external system

We now have all the necessary tools to understand the
behavior of these thermal machines: All we have to do now
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is to place the external system in thermal contact with the
virtual qubit of the machine.

As an example, let us consider the simplest case, where the
system which the machine will act upon is itself another qubit.
This qubit is called qubit 3 and has energy spacing E3. Given
this spacing, we ensure that the machine is engineered such
that E2 − E1 = E3. With this choice, we see that the machine
virtual qubit and the external system have equal energy-level
spacings. It is therefore possible to introduce an arbitrarily
weak interaction which allows the virtual qubit and external
system to resonantly exchange energy; that is, we place them
in thermal contact.

This can be done via the interaction Hamiltonian

Hint = g(|0〉1 |1〉2 |0〉3 1〈1|2〈0|3〈1| + |1〉1 |0〉2 |1〉3 1〈0|2〈1|3〈0|), (10)

which was previously introduced in Ref. [30] and induces
transitions between the two degenerate states |0〉1 |1〉2 |0〉3 ↔
|1〉1 |0〉2 |1〉3 . Again, the most relevant way to write this Hamil-
tonian is in terms of the virtual qubit,

Hint = g(|0〉
v
|1〉3 v

〈1|3〈0| + |1〉
v
|0〉3 v

〈0|3〈1|), (11)

which induces transitions between the two degenerate states
|0〉

v
|1〉3 ↔ |1〉

v
|0〉3 . In this notation it becomes manifest that

the interaction Hamiltonian is the one which generates the
unitary SWAP between the external system and the machine
virtual qubit. Hence, this interaction places these two qubits
into thermal contact.

C. Summary

We now reach the crux of our analysis. We see that the way
in which the whole process works is that selected virtual qubits
of the composite bath, at a selected virtual temperature, are
placed in thermal contact with a virtual qubit of the machine.
In turn, this virtual qubit of the machine is placed in thermal
contact with the external system. Hence, all that happens is an
ordinary thermalization process of the external system with the
virtual qubits in the composite bath, mediated by the machine
virtual qubit. If the external system is otherwise isolated from
an external environment, then it reaches the temperature Tv

(for an explicit calculation, see Appendix A and Fig. 3). On
the other hand, if the system is also in contact with an external
environment, then it will reach some (stationary) state similar
to any system in contact with two thermal baths (see Fig. 4).

We conjecture that this process is, in fact, a special case
of the general procedure which all thermal machines use.
However, a thermal machine generally has many different
energy levels, hence many different machine virtual qubits.
In turn, they couple to many different virtual qubits in the
composite bath, covering a range of virtual temperatures,
instead of a single one, thus complicating the situation. It is
also further complicated by the fact that when the interaction is
stronger the energy levels of the machine become broadened,
so even a single virtual qubit in the machine can couple to many
virtual temperatures in the composite bath. Nevertheless, the
principle remains the same; the external system is placed in
thermal contact with the various virtual qubits in the bath,
mediated by the virtual qubits of the machine.

FIG. 3. (Color online) Schematic diagram of the smallest ma-
chine interacting with an isolated external qubit. An isolated external
system—here a single qubit—is placed into thermal contact with
the machine virtual qubit, which has matching energy-level spacing.
This interaction is depicted by the wavy line. The net effect is that the
external system is placed in thermal contact with virtual qubits in the
composite bath at temperature Tv , mediated by the machine virtual
qubit.

V. REFRIGERATORS, HEAT PUMPS, AND MORE

As we noted above, the particular function that the
thermal machine provides depends upon the range of virtual
temperatures of the composite bath which are coupled to the
external system. If these are predominately lower than T1 and
T2 (the actual temperatures of the two baths) then the machine
is functioning as a refrigerator. On the other hand, if the range
of virtual temperatures is predominately higher than T1 and T2

then the machine is functioning as a heat pump.
A more interesting situation is what happens when the

range of virtual temperatures is predominantly negative. This
corresponds to virtual qubits having population inversions.
The thermodynamic significance of this and related effects is
discussed in the next section.

VI. WORK AND HEAT ENGINES

Work is one of the central concepts of physics. In com-
parison, population inversion is an interesting phenomenon,
but until now usually associated mostly with laser physics. In

FIG. 4. (Color online) Schematic diagram of the smallest ma-
chine interacting with an open external qubit. If the external system
also interacts with its own environment at temperature T3 then it
will behave as any system in contact with two thermal baths at two
differing temperatures.
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this section, however, we argue that inversion is a far more
important thing; in fact, we argue that producing work and
generating population inversion are one and the same thing.

Work is generally associated with ordered movement.
Therefore, the first requirement in order to be able to talk
about work is to have a system with many states; otherwise,
the whole idea of the system having an ordered movement,
that is, going from one state to another in a systematic way,
makes no sense. Talking therefore of work when dealing with
systems with a small, limited number of states, such as when
considering the two qubits comprising the thermal machine
presented in the previous section, may seem impossible. To
tackle this problem many alternative ways of defining work
have been given in the literature [36–39], each with its own
merits. Here we take the most direct route: Just as Carnot
said, “motive power (work) is the useful effect that a motor
is capable of producing. This effect can always be likened
to the elevation of a weight to a certain height” [40]. Hence,
we consider lifting a weight to be producing work, and any
machine that lifts a weight to be a machine that produces work.
Following this idea we argue that work is nothing other than
producing population inversion.

At a very elementary level, this definition is clearly
consistent with the usual one. Indeed, consider a weight taken
initially to be on the floor; this is the state of lowest energy
and is therefore its ground state. Lifting the weight—that is,
doing work on it—is nothing but completely depopulating the
ground state and populating an excited state, a state where the
weight is higher up. Thus, the final state of the weight is an
inverted state. Alternatively, we could consider a free particle
whose kinetic energy is steadily increased by the machine, or
indeed any other similar system. There is, however, far more
here than meets the eye.

To begin with, we introduce the model of the smallest heat
engine [30,34]. It is identical to that of the refrigerator, (i.e.,
we take two qubits, one connected to a bath at T1 and one
connected to a bath at T2). We imagine that the engine delivers
work by pulling up a weight. The weight is isolated from both
baths. To simplify the situation we consider that the weight
is pulled up very slowly, so that we can neglect the change
of its kinetic energy and consider only the potential energy.

Furthermore, we suppose that the weight can be situated
only at some discrete equidistant heights, so that the energy
difference between them is the same. Hence, the weight has
discrete energy eigenstates |n〉w with corresponding energy
eigenvalues En = nEw, with Ew > 0. Alternatively, we can
imagine that the engine delivers work by pumping energy
into a harmonic oscillator; both situations are formally almost
equivalent (the harmonic oscillator energies being limited from
below). This setup is depicted diagrammatically in Fig. 5(a).

The free Hamiltonian of the system is thus

H0 = E1|1〉1〈1| + E2|1〉2〈1| +
∞∑

n=−∞
nEw|n〉

w
〈n|. (12)

The energies are taken such that

E2 − E1 = Ew. (13)

Given this constraint, the energy levels |0〉1 |1〉2 |n〉
w

and
|1〉1 |0〉2 |n+1〉

w
are degenerate. The engine acts by making

transitions between these degenerate states.
The qubits and weight interact via the Hamiltonian

Hint = g

∞∑
n=−∞

|0〉1 |1〉2 |n〉
w 1〈1|2〈0|

w
〈n+1|

+ |1〉1 |0〉2 |n+1〉
w 1〈0|2〈1|

w
〈n|. (14)

The intuitive idea behind the design of this engine is to bias
the transition

|0〉1 |1〉2 |n〉
w

→ |1〉1 |0〉2 |n+1〉
w
, (15)

in which the weight is lifted in favor of the reverse transition
in which the weight is lowered. This is obtained by coupling
the two qubits to heat baths at different temperatures, T2 > T1,
chosen such that the probability for the qubits to be initially in
the state |0〉1 |1〉2 is larger than the probability to be in the state
|1〉1 |0〉2 .

In terms of the virtual qubit of the machine (8), what we
want is to bias the transition

|1〉
v
|n〉

w
→ |0〉

v
|n + 1〉

w
(16)

in favor of the reverse transition [see Fig. 5(b)]. The condition
for this to happen is simply that the probability to be in the

FIG. 5. (Color online) Schematic diagram of the smallest heat engine. (a) The weight, an equispaced system, unbounded from above
and below, interacts with the machine qubits via the interaction depicted by vertical arrows. This interaction induces transitions between the
degenerate energy eigenstates |0〉1 |1〉2 |n〉

w
↔ |1〉1 |0〉2 |n+1〉

w
. The energies E1 and E2 are chosen such that the “forward” transition in which

the weight is lifted is biased in favor of the “backward” transition in which the weight is lowered. As such, the weight is lifted on average,
and hence this system produces work. (b) From the viewpoint of the virtual qubit, the biasing condition says that the virtual qubit must have a
population inversion or, in other words, must be at a negative temperature.

051117-5



BRUNNER, LINDEN, POPESCU, AND SKRZYPCZYK PHYSICAL REVIEW E 85, 051117 (2012)

state |1〉
v

should be larger than the probability to be in the state
|0〉

v
.
In other words, the condition for the machine to work as

a heat engine is precisely that the machine virtual qubit has
a population inversion and is therefore at a negative virtual
temperature.

A. Engine model details

So far, our conclusions have been of a general nature; while
they are enough to understand qualitatively the working of
our heat engine, it is illuminating to understand it also more
quantitatively. To do this we need to say more about the way
in which the two machine qubits interact with their respective
heat baths. In Appendix B we consider an explicit model
for the thermalization of the machine qubits, identical to that
previously presented for the refrigerator [30]. This allows us
to analytically solve for the time evolution of the system. We
present here the important aspects of the solution.

To begin with we must first introduce two new quantities
relating to the virtual qubit. The first is the equilibrium “bias”
of the virtual qubit,〈

Zeq
v

〉 =
v
〈0|τ1 ⊗ τ2|0〉

v
−

v
〈1|τ1 ⊗ τ2|1〉

v

≡ 1〈1|2〈0|τ1 ⊗ τ2|1〉1 |0〉2 − 1〈0|2〈1|τ1 ⊗ τ2|0〉1 |1〉2

∝ 1 − e−Ev/Tv , (17)

which gives the difference in population of the ground and
excited states of the virtual qubit at thermal equilibrium (i.e.,
in the absence of interaction with the external system). Thus,
whenever there is more population in the virtual ground state
then the bias is positive and so too is the virtual temperature.
However, when we have a population inversion the bias and
virtual temperature become negative.

Second, we need the equilibrium normalization of the
virtual qubit,〈

Neq
v

〉 =
v
〈0|τ1 ⊗ τ2|0〉

v
+

v
〈1|τ1 ⊗ τ2|1〉

v

≡ 1〈1|2〈0|τ1 ⊗ τ2|1〉1 |0〉2 + 1〈0|2〈1|τ1 ⊗ τ2|0〉1 |1〉2

∝ 1 + e−Ev/Tv , (18)

which is simply the combined population in the virtual ground
and excited states. Having introduced these two quantities we
can now state the important features of the solution. To see
that the weight is being raised in time, we must look at the
average energy of the weight, 〈Ew〉. Asymptotically, we find
that, from Eq. (B11)

〈Ew〉 = −αEw

〈
Zeq

v

〉
t, (19)

where α = g2p

2g2+p2 is a positive constant which depends only
upon the strength of the interaction Hamiltonian (g) and the
strength of the thermalization (p). We thus see that the energy
of the weight is exactly proportional to the bias of the virtual
qubit 〈Zeq

v 〉, and thus increases in time whenever the virtual
qubit is at a negative temperature, confirming our claim that
the “weight is lifted.”

Notably, we find that the weight is not only lifted in time,
but that it spreads also. The expression obtained for the spread
�E2

w in the asymptotic limit is, from Eq. (B16),

�E2
w = E2

w

(
α
〈
Neq

v

〉 − β
〈
Zeq

v

〉2)
t, (20)

where β = 2g4p(g2+2p2)
(2g2+p2)3 is a second, model-dependent positive

constant.
Given the above, we see that the behavior of the weight can

be likened to that of a biased random walk: In this picture the
virtual qubit plays the role of the coin, with the “normalized
bias” 〈Zeq

v 〉/〈Neq
v 〉 playing the role of the (average) bias of the

coin, and 〈Neq
v 〉 modulating, along with g and p, the probability

per unit time to make a transition.

VII. STRENGTH OF WORK

Classically, when one thinks of work, one thinks of
work full stop; there is no notion of there being different
types of work. However, as we have seen above, all that
is required from a heat engine in order to produce work
is that its virtual qubit should be at a negative temperature.
However, different heat engines may have their virtual qubits
at different negative temperatures. For conciseness we refer
to this as the “temperature at which the work is delivered”
or the “temperature of the work.” It is quite clear that work
delivered at different temperatures must be, in many physical
ways, different. In fact, intuitively, work delivered at negative
temperatures with smaller absolute values—corresponding to
larger inversions in the machine—is, in some sense, “stronger.”

It is important to emphasize that this strength of work
is not equivalent to power, that is, to the rate at which
work is delivered; it is a completely different notion and
has nothing to do with time scales. True, as we have seen
in Eq. (19), everything else being the same, the power of a
machine depends on the temperature of the work; the smaller in
absolute value the negative temperature, the larger the power.
However, power depends upon many other factors besides this
temperature; critically, it depends on the coupling constants
which are the ones that encode the time scales. On the other
hand the virtual temperature at which work is delivered is a
notion independent of any time considerations.

The question that arises concerns how the difference in
virtual temperature of the work manifests itself physically,
apart from its influence on power. We do not yet know all of
the ways in which it does, but there are two important scenarios
which we demonstrate below.

A. Producing inversions in systems bounded from above

In the previous section we saw that the effect of a heat
engine is to steadily increase the energy of the system on
which it acts. This, of course, can only happen if the system’s
energy spectrum is unbounded from above. However, suppose
that the energy spectrum has an upper bound. What happens
then? Intuitively, the answer is immediate: As we argued, all
that a thermal machine does is put the external system in
simple thermal contact with the machine virtual qubit (which,
in turn, is in thermal contact with a selected virtual qubit
in the composite bath). If the external system is otherwise
isolated it will tend to reach thermal equilibrium with the
machine virtual qubit. If the machine virtual qubit is at negative
temperature, this will be the final temperature of the external
system. In a system with energy unbounded from above, such
an equilibrium cannot be achieved; in the evolution toward
equilibrium, the system will forever increase its energy. On
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the other hand, when the energy spectrum is bounded from
above, the system will reach equilibrium, thermalizing to an
inverse Boltzmannian distribution at the negative temperature
Tv (see Appendix A).

In other words, if the weight is lifted by a string passing
through a hole in a ceiling, the weight cannot raise more
and will eventually reach a Boltzmannian distribution, with
the maximum probability at the ceiling, but having nonzero
probability to be found at all smaller heights.

Here we see one other aspect of the strength of work: The
smaller in absolute value the negative temperature at which
work is delivered, that is, the stronger the work is, the closer
to the ceiling the weight is pushed.

The mechanism by which the inverted Boltzmannian
distribution gets established is interesting by itself. To better
see what happens, consider an external system with many
energy eigenstates. Suppose the system starts at an energy
level far from the top. At the initial moment the top plays no
role, and the engine simply pushes it up the energy ladder.
Had this evolution been uniform, without spreading, the
system would have simply ended “stuck at the ceiling,” that
is, at the top energy level. However, as it climbs, the position
of the weight also spreads; as stated previously, the evolution
resembles closely that of a biased random walk. If initially
the energy was perfectly well defined, during the evolution
it will spread approximately as a Gaussian packet. This is
still different from the inverted Boltzmannian that is the final
equilibrium state. However, as the system reaches the top
energy level, it cannot climb in energy any further. At this
moment, all it can do is spread. As such, it starts to extend
backward, toward lower energies, reaching eventually the
inverted Boltzmannian equilibrium state.

Note that the spreading, which seemed to be more like a
minor side effect when studying the evolution of a system
with infinite energy spectrum (or when far from the top in the
case of a bounded energy one), plays, in fact, an essential role;
the inverted Boltzmannian equilibrium could not be achieved
without it.

It is important to note also that the spreading is not restricted
to quantum heat engines; classical thermal machines lead to
a spread in energy as well. Indeed, although usually one does
not think of fluctuations in a thermal machine, they always
exist. The thermal baths that drive the machines always have
fluctuations and these lead to fluctuations in the evolution of
the machine. (A nice and easy example is given by the famous
Feynman ratchet-and-pawl heat engine [41]. When the pawl
is up the ratchet has some probability to move backward.)

B. Energy gain versus energy spreading

Consider again a heat engine acting on system with an
infinite number of energy levels and suppose that the system
starts with a well defined given initial energy. As we discussed
before, its evolution (in energy) is similar to a biased random
walk: As its average energy increases, it also spreads in energy.
An interesting problem is to compare the increase in average
energy with the spreading.

The increase in average energy is proportional to time,
while the increase in spread is proportional to the square root
of time [see Eqs. (19) and (20)]. Thus, for short times it is the
spreading which dominates, so the system is likely to also lose

energy, not only to gain it. The probability to find the system
with lower energy therefore increases, even though the average
energy becomes larger. After a longer time, however, the gain
in the average energy becomes larger than the spread. The
interesting question is not after how much time the average
energy becomes larger than the spread, but how much energy
must have been put into the system by this time. In other words,
to measure the spreading versus the scale of average energy
(as opposed to in time), which is an intrinsic property of the
evolution.

There is a “break even” time tbe such that 〈Ew〉(tbe) =
�Ew(tbe). We denote the average energy at this time (the
“break even energy”) by 〈Ebe

w 〉. From Eqs. (19) and (20) we
find

〈
Ebe

w

〉 = −Ew

(〈
N

eq
v

〉
〈
Z

eq
v

〉 − β

α

〈
Zeq

v

〉)
. (21)

The first term in the brackets depends only upon the virtual
temperature, and not on the other details of the machine. In-
deed, it is easy to show that 〈Neq

v 〉/〈Zeq
v 〉 = 1/ tanh(Ev/2Tv).

The second term, however, is a model-dependent term, and
thus the break even energy is a nonuniversal property of a
thermal machine.

Crucially, however, when the virtual temperature ap-
proaches minus infinity; that is, the inversion of the machine
virtual qubit becomes vanishingly small, the second term
becomes negligible and the break even energy becomes
universal and infinite. This is another manifestation of the
strength of the work. Namely, when the strength is very
weak, the break even energy becomes very large and in the
limit unobtainable. The machine therefore effectively stops
working. As we see in the next section, this is exactly the
moment when the machine approaches the Carnot limit.

That heat engines become “weak” in the Carnot limit, in
that the power they deliver becomes vanishingly small, is a
well known property. Here, however, we present an aspect
independent of time scales. We see that the Carnot limit is
weak in that the weight must gain an infinite amount of energy
before winning against its spread. Thus, this is intrinsically a
pathological point.

VIII. UNIVERSALITY OF EFFICIENCY OF SMALLEST
THERMAL MACHINES

In the Introduction we argued that the smallest thermal
machines are the most fundamental thermal machines, and
because of this their study shows the inner workings of
thermodynamics in the clearest way. Here we show the insight
they provide into the efficiency of thermal machines.

The Carnot efficiency of a thermal machine is a universal
property of the machine; it depends only upon the temperature
of the heat baths between which it works, but not upon the
details of the construction of the machine or its interactions
with the thermal bath. On the other hand, the efficiency of
a thermal machine when operating away from the Carnot
efficiency is a nonuniversal property, which does depend upon
all of these details. In this section we show, however, that the
efficiency of the smallest machines is always universal, both
at the Carnot limit and away from it.
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FIG. 6. (Color online) Schematic diagram of idealized thermal
machines, showing the flow of heat and entropy for (a) a refrigerator,
(b) a heat pump, and (c) a heat engine.

We focus here on the smallest refrigerator. Identical
conclusions follow for the heat pump and engine. The idealized
thermal machine which the smallest refrigerator is a specific
instance of is depicted in Fig. 6(a). The efficiency ηfr for such
a refrigerator is the ratio of the heat Q3 extracted from the
“cold” external bath at temperature T3 to the heat Q1 provided
to the machine by the “hot” bath at temperature T1,

ηfr = Q3

Q1
. (22)

For the smallest machines it was shown previously [42] that the
ratio of the heat exchanged with each bath must match perfectly
the ratio of the energy-level spacing of the corresponding
qubits,

Q1 : Q2 : Q3 = E1 : E2 : E3, (23)

which arises due to the fact that there is only a single way in
which the baths can exchange heat. Therefore, the efficiency
η

q

fr of the smallest refrigerator is given by

η
q

fr = E3

E1
. (24)

Using the definition of Tv , we can express this result not in
terms of the energies E1 and E3, but instead in terms of the
virtual and bath temperatures. We find that

η
q

fr = ηC
fr

(
1 −

1
Tv

− 1
T3

1
Tv

− 1
T2

)
, (25)

where

ηC
fr =

1
T2

− 1
T1

1
T3

− 1
T2

(26)

is the standard Carnot efficiency for a refrigerator driven
by baths at T1 and T2 and extracting heat from a bath at
temperature T3 [see Fig. 6(a)]. In Sec. IX we discuss this
result with respect to approaching Carnot efficiency.

In a similar fashion, we can derive the efficiencies η
q

hp of
the smallest heat pump and η

q

he of the heat engine, given by

η
q

hp = ηC
hp

(
1 −

1
T3

− 1
Tv

1
T1

− 1
Tv

)
, (27)

η
q

he = ηC
he

(
1 − − 1

Tv

1
T1

− 1
Tv

)
, (28)

where

ηC
hp =

1
T1

− 1
T2

1
T1

− 1
T3

, ηC
he = 1 − T1

T2
(29)

are the Carnot efficiency for a heat pump and heat engine
driven by baths at T1 and T2, and delivering heat to a bath at
T3, or work, respectively [see Figs. 6(b) and 6(c)].

Thus, we see that for the smallest machines the efficiency
is universal; it depends only upon the temperatures of two
external baths and the single virtual temperature in the
composite bath which the machine selects and couples to.
It does not depend on any other details, such as the coupling
constants between the machine and the bath and the machine
and the external system.

The lack of universality of the efficiency of other thermal
machines can now be better understood from this point of
view. A general thermal machine will not select out a single
virtual temperature, but rather a range of virtual temperatures,
and couple an external system to all of them. The efficiency is
therefore an average, which depends upon the relative coupling
to each of these virtual temperatures, which is a machine-
dependent and nonuniversal property. That is, it is precisely
the ability to “perfectly filter” a single virtual temperature
which gives the smallest machine its universal character.

IX. REACHING CARNOT EFFICIENCY

Previously in our study of the smallest thermal machines we
studied the question of whether they can approach the Carnot
efficiency. Naively, one may think that imposing restrictions
upon the size of a machine may necessarily constrain it so
that it cannot, even in principle, operate anywhere close to
the Carnot efficiency. This, however, is not the case; as shown
previously [31], the smallest machines can approach the Carnot
efficiency. What we show here is a surprising twist: Essentially,
only the smallest machines can approach Carnot efficiency (a
more detailed and qualified statement is presented below).

In the previous section we showed that the efficiency of
the smallest machines can be written as the Carnot efficiency
plus a correction term Eqs. (25)–(28). To approach the Carnot
limit this correction term must vanish. Hence, the machine
must be fine tuned to couple to the specific virtual temperature
that makes this term vanish. For a machine constructed by
two physical qubits, this may be achieved easily by tuning the
energy level spacing E1 and E2 appropriately.

Let us consider now more general thermal machines. As
stated previously, unlike the smallest thermal machines, which
filter out a single virtual temperature from the composite
bath, generally a thermal machine will filter out a range
of virtual temperatures. The above analysis shows that if a
machine filters out a temperature away from the precise one
required, then it will not operate close to the Carnot limit. Thus,
in order to approach Carnot efficiency general thermal
machines must be engineered to decouple from the unwanted
virtual temperatures; that is, the machine must filter out a range
of virtual temperatures which approach the single desired
temperature in the limit.

The only way to achieve this decoupling is for the machine
to be engineered in such a way that it effectively implements
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a smallest thermal machine. Indeed, consider a single pair of
energy levels at spacing E3 in the external system which the
machine is acting upon. Given fixed external bath temperatures
T1 and T2 we noted previously that there is only a single
choice of spacings E1 and E2 that both couple to E3, (i.e.,
E2 − E1 = E3) and also produce a machine virtual qubit at
temperature Tv . On the other hand, if the parts of the machine
in contact with each bath have other spacings E′

1 and E′
2

which can couple to E3 (i.e., E′
2 − E′

1 = E3) then they lead
to other virtual temperatures T ′

v different from the required
Tv . Coupling the machine to these other virtual temperatures
will spoil its efficiency. Thus, we conclude that any thermal
machine which filters a single virtual temperature must be
coupled by only a single spacing to each bath and is hence
exactly the smallest thermal machine or a collection thereof.

To summarize, quantum mechanics offers for free systems
with discrete energy levels. All we need to do is ensure
the spacing is the desired one. On the other hand, classical
systems have essentially a continuous energy spectrum, so we
cannot avoid them having undesired energy level spacings.
It is nevertheless possible to approach Carnot efficiency if
we engineer the machine in such a way that the undesirable
spacings that couple to the system are all close to the desired
virtual temperature. Hence, classical machines that approach
the Carnot limit do so by effectively removing energy levels
from their spectrum, and becoming essentially identical to the
smallest machines [43].

Finally, we would like to comment on the meaning of the
Carnot limit and the way in which reversibility is achieved.
As is well known, whenever two bodies at two different
temperatures are put in contact, irreversibility occurs. The only
way to achieve reversibility is to ensure that all systems that are
in contact have the same temperature. This is precisely what
happens in a machine which works in the reversible regime.
As we can see from Eqs. (25) and (27), for the refrigerator
and heat pump the correction term vanishes and the Carnot
limit is achieved precisely when the bodies which are placed
into thermal contact—the external system, the machine virtual
qubit, and the selected virtual qubits of the composite bath—all
approach the same temperature. Put differently, one may be
tempted to think that we have a situation in which three bodies
at different temperatures are in contact with each other and this
may necessarily lead to irreversibility. The difficulties that may
arise from such a situation were exposed nicely by Parrondo
[44]. We see, however, that reversibility can occur even in
such a situation precisely because the relevant systems which
interact in this situation are both at the same temperature.

X. ENTROPY

Analyzing the flow of entropy in thermal machines is one of
the most basic aspects of thermodynamics. Here we do so for
the smallest thermal machines, where we find that it is highly
illuminating. In particular, we see that entropically as well the
virtual qubit behaves as a real qubit at the virtual temperature,
reinforcing our argument that the virtual temperature acts as a
real temperature in all respects. Let us focus on the smallest
refrigerator, depicted in idealized form in Fig. 6. As noted
previously, the smallest machines have the property that the
ratio of heat currents match the ratio of energy levels Eq. (23).

Using this fact, in conjunction with the definition of Tv , (9),
we obtain

Q2

T2
− Q1

T1
= Q3

Tv

, (30)

which is clearly an entropy equality involving the entropies
S1 = Q1/T1, S2 = Q2/T2, flowing out of bath 1 and into bath
2, and the entropic quantity Sv = Q3/Tv .

The change in total entropy of the two baths and external
system for the refrigerator is given by

�Sfr = S2 − S1 − S3, (31)

where S3 = Q3/T3 is the entropy flowing out of bath 3.
Using (30) this can be rewritten as

�Sfr = Q3

Tv

− Q3

T3
. (32)

By similar analysis, for the heat pump and heat engine we find

�Shp = Q3

T3
− Q3

Tv

, �She = −Q3

Tv

. (33)

The meanings of these results (for the refrigerator and heat
pump) are as follows: We have two bodies in thermal contact,
the external system at temperature T3 and the virtual qubits
in the composite bath at temperature Tv . The bodies exchange
the quantity of heat Q3. Now we see that the meaning of the
entropic quantity Q3/Tv is the entropy of the virtual qubits,
and the relation (32) is the standard entropy flow for two bodies
in thermal contact.

Similar analysis of a machine putting heat into a body at
Tv < 0 shows how the strength of work, as characterized by the
smallness of the absolute value of Tv , is related to the amount
of entropy that is removed from the body while delivering a
fixed amount of heat Q3: The smaller the absolute value of Tv ,
the larger the entropy removed from the body, with the amount
tending to infinity as Tv → 0 from below.

Incidentally, this shows again that the Carnot limit is
approached exactly when the two systems in thermal contact
approach the same temperature.

XI. GENUINE THERMAL MACHINES

We would like to define now an important concept, that
of genuine refrigerators and heat pumps. Your refrigerator at
home uses a supply of work to transfer heat from a cold source
to a hot source. Furthermore, from a theoretical point of view,
the way refrigerators are generally presented is that of “an
engine running in reverse,” using a supply or work to move
heat against the gradient. The point we want to make now is
that work is not necessary.

On the one hand, it is well known that an external source
of work is not required to produce a refrigerator. However,
by itself, this fact is not surprising; we can always replace
the source of work with an engine that produces it, using two
external baths. Indeed, we know that the work used to power
our refrigerator at home ultimately comes from a power station.
There are also examples of refrigerators in which there is no
apparent place in which work is used—adsorption refrigerators
for example have no engines and pumps—but this by itself does
not mean that work is not present in some hidden form (such
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as while gases are expanding, etc.) The concepts of virtual
qubits and virtual temperatures offer for the first time the tools
to address this question.

The crucial point we want to make is that it is not necessary
to generate work—even internally in the machine—to create
a refrigerator. The refrigerators we presented in the previous
section function by putting an external system in contact with
virtual qubits whose temperature is lower than T1 and T2, the
actual temperatures of the two baths. At no point is there ever
a population inversion involved; in other words, at no point is
work produced or used.

In this sense, this is a genuine refrigerator. Ordinary
refrigerators (and heat pumps) that use work are now seen
to be “wasteful.” This is most evident if we talk about the
resources that a composite thermal bath provide us with. It is
clear that work is a resource provided by the composite bath,
and we can indeed use this to produce a refrigerator. However,
we see that the composite bath provides other resources as
well, namely energy at any temperature, not merely work.
Energy at a cold temperature is a resource which can be used
to achieve cooling directly, while work needs to be somehow
converted. Thus, ordinary refrigerators make non-necessary
use of a resource (work) that is more powerful than is needed.
Genuine thermal machines use the minimal possible resources
and are thus the “purest” thermal machines.

Furthermore, it is essential to make the difference between
genuine and nongenuine thermal machines when we want to
know what exactly do they do to the thermal baths that drive
them. If we take the baths not to be strictly infinite in size,
then thermal machines necessarily degrade them, in particular
reducing their free energy. Genuine refrigerators couple to
different virtual qubits than refrigerators which use work as
an intermediate effect. Hence, they clearly affect the bath in a
different way. It would be interesting to study further exactly
these differences.

Finally, it is illuminating to see, for the case of the smallest
machines, how the functionality is changed as we vary the
bath parameters. In Fig. 7 we hold fixed the design of the

FIG. 7. (Color online) Graph of virtual temperature against bath
temperature. We hold fixed the local energy-level spacings E1 and E2,
as well as the bath temperature T1, and allow the bath temperature T2 to
vary. When T2 < T1, the virtual temperature Tv becomes smaller than
either environmental temperature and the machine is a refrigerator.
For T1 < T2 <

E2
E1

T1, Tv becomes larger than T1 and T2 and hence the

machine is a heat pump. Finally, for E2
E1

T1 < T2, Tv becomes negative
and the machine functions as a heat engine.

machine (E1 and E2), and the bath temperature T1, and plot
how the virtual temperature (and therefore function) changes
as we vary the remaining bath temperature T2. It is interesting
to note that as T2 approaches E2

E1
T1 from above then Tv → ∞.

This engine is the reversible (Carnot) engine and is seen to be
at the transition between heat pump and heat engine; in this
sense it is again seen to be the “weak.”
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APPENDIX A: THERMAL MACHINES ACTING
ON FINITE-DIMENSIONAL SYSTEMS

In this Appendix we demonstrate explicitly our claim that
external systems put into thermal contact with the machine
virtual qubit thermalize to its virtual temperature, for the case
of finite dimensional systems [see Fig. 8]. Crucially, this holds
for both positive and negative temperatures. The temperature
to which the external system thermalizes classifies the behavior
of the machine: If it is colder than either environmental
temperature, then the machine is a refrigerator; if it is hotter,
then it is a heat pump. Finally, if the temperature is negative,
then it is a heat engine.

To see explicitly this thermalization, consider initially that
the external system is itself completely isolated except for the
interaction with the thermal machine. That is, we consider the
external system to only be in contact with the thermal machine,
not with any other external system, so it is only the machine
that determines its behavior.

In the weak coupling limit, the dynamics of the system are
accurately described by a master equation. The equation will
generically take the form

∂ρ

∂t
= −i[H0 + Hint,ρ] + D1(ρ) + D2(ρ), (A1)

FIG. 8. (Color online) Schematic diagram of thet smallest ma-
chine interacting with an isolated external system. An isolated
external system—here an N level equispaced system—is placed
into thermal contact (wavy lines) with the machine virtual qubit,
which has matching energy-level spacing. The net effect is that the
external system is placed in thermal contact with virtual qubits in the
composite bath at temperature Tv , mediated by the machine virtual
qubit, and reaches a Boltzmannian at temperature Tv . This holds
independent of whether Tv is positive or negative, in which case the
state is an “inverted Boltzmannian.”
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where

H0 = E1|1〉1〈1| + E2|1〉2〈1| + E3|1〉3〈1|, (A2)

Hint = g(|0〉1 |1〉2 |0〉3 1〈1|2〈0|3〈1| + |1〉1 |0〉2 |1〉3 1〈0|2〈1|3〈0|), (A3)

with E3 = E2 − E1, and D1(ρ) and D2(ρ) are the dissipative
dynamics acting on qubits 1 and 2, respectively. Such an
equation provides a consistent description of the dynamics
of the system when both the strength of the interaction
Hamiltonian and the dissipative dynamics are weak [45].

Without specifying a specific model for the dissipative
dynamics, all such models must satisfy

D1(τ1 ⊗ σ23) = 0, D2(τ2 ⊗ σ13) = 0, (A4)

where

τi = 1

Zi

e−Hi/Ti , Zi = tr(e−Hi/Ti ) (A5)

are the thermal equilibrium state and partition function of
qubit i, respectively, and the states σ23 and σ13 are arbitrary
density matrices. In other words, a necessary requirement for
any weakly coupled and weakly interacting system is that the
thermal equilibrium state of each qubit is the stationary state
of its dissipative dynamics.

To find the stationary solution to Eq. (A1) it suffices to note
that [

H1

T1
+ H2

T2
+ H3

T3
,H0 + Hint

]

= g

(
E2

T2
− E1

T1
− E3

T3

)
(|0〉1 |1〉2 |0〉3 1〈1|2〈0|3〈1|

− |1〉1 |0〉2 |1〉3 1〈0|2〈1|3〈0|). (A6)

Thus, by recalling the definition of the virtual temperature
given in the main text Eq. (9), it is evident that it is exactly when
T3 = Tv that the right-hand side of Eq. (A6) vanishes. In this
instance the operator appearing on the left of the commutator
commutes with the total (free + interaction) Hamiltonian of
of the system. If we thus define the state

τv = 1

Zv

e−H3/Tv , (A7)

which is simply the thermal equilibrium state of qubit 3 at
temperature Tv , then it follows immediately that the thermal
product state

τ1 ⊗ τ2 ⊗ τv ≡ 1

Z1

1

Z2

1

Zv

exp

(
−H1

T1
− H2

T2
− H3

Tv

)
(A8)

also commutes with the total Hamiltonian, showing that it is
stationary with respect to the unitary dynamics. This state
is, however, also seen to satisfy conditions (A4), showing
that it is stationary with respect to the dissipative dynamics.
Combining these two facts we thus conclude that it is the
stationary solution of the master equation (A1).

Thus, the external qubit will approach a thermal state at
the temperature of the machine virtual qubit, showing that it
indeed thermalizes to the temperature of the virtual qubit, as
stated.

It is important to realize that this result can be extended
beyond the thermalization of qubits. Indeed, qubits have

the special property that every diagonal density matrix (in
the energy eigenbasis) can have a temperature associated
to it. Thus, to show that the external system is indeed
thermalizing to the temperature of the virtual qubit we must
consider more general systems. Let us consider therefore an
N -level system which has equidistance spacing between its
energy eigenstates. That is, we consider a system with energy
eigenstates |0〉, . . . ,|N − 1〉 and free Hamiltonian

H
[N]
3 =

N−1∑
n=0

nE3|n〉3〈n|, (A9)

where we maintain the condition that E3 = E2 − E1. This
system is taken to interact with the two machine qubits via the
interaction Hamiltonian

H
[N]
int = g

N−2∑
n=0

|0〉1 |1〉2 |n〉3 1〈1|2〈0|3〈n + 1|

+ |1〉1 |0〉2 |n + 1〉3 1〈0|2〈1|3〈n|, (A10)

which can be seen as a sum of terms, all of the form (A3).
Using an identical proof method as used for qubits, or by
direct substitution, it is straightforward to show that the thermal
product state

τ1 ⊗ τ2 ⊗ τ [N]
v ≡ 1

Z1Z2Z [N]
v

exp

(
−H1

T1
− H2

T2
− H

[N]
3

Tv

)
(A11)

is the stationary solution to the corresponding master equation,
where

τ [N]
v = 1

Z [N]
v

e−H
[N]
3 /Tv , Z [N]

v = tr(e−H
[N]
3 /Tv ). (A12)

In other words, all equispaced systems, when placed into ther-
mal contact with the virtual qubit [via the interaction (A10)]
thermalize to the virtual temperature. Crucially, when the
virtual temperature is negative, the final state is an inverse
Boltzmannian, with population decreasing exponentially with
decreasing energy as we move away from the most excited
state |N − 1〉.

If instead of considering the external system to be isolated
we place it in contact with a third thermal bath at some fixed
temperature T3 then we would expect to find a nonuniversal
steady-state solution to Eq. (A1) which will depend upon the
explicit form the of dissipative terms Di(ρ).

In Ref. [30], for the case where the external object is a
qubit (to be cooled), a specific model was employed and it was
shown that with three thermal baths the external object reaches
a stationary state which is cooler than its environment. From
the current perspective the situation is simple to understand:
The object is in thermal contact with both the virtual qubit and
also its own environment. We thus expect it to reach a steady
state with temperature between these two temperatures, with
the precise temperature depending on the relative “magnitude”
of the two thermalizing effects. Therefore, as long as Tv < T3

intuitively we expect the object to be cooled, which is exactly
what was found for the model presented in Ref. [30].
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APPENDIX B: THERMAL MACHINES ACTING
ON INFINITE-DIMENSIONAL SYSTEMS

In this Appendix we present the detailed calculations of a
specific model which shows that when we take the external
system to be unbounded in energy, and engineer the smallest
thermal machine to have the virtual qubit at a negative virtual
temperature, then the system is continually excited and thus
captures the classical notion of a heat engine producing work,
as claimed in the main text.

As explained earlier, to do so we place the machine virtual
qubit in thermal contact with a “weight,” a system consisting
of equally spaced energy levels, unbounded from above and
below. Namely, we have the free and interaction Hamiltonians

H0 = E1|1〉1〈1| + E2|1〉2〈1| +
∞∑

n=−∞
nEw|n〉

w
〈n|, (B1)

Hint = g

∞∑
n=−∞

|0〉1 |1〉2 |n〉
w 1〈1|2〈0|

w
〈n + 1|

+ |1〉1 |0〉2 |n + 1〉
w 1〈0|2〈1|

w
〈n|, (B2)

where E1 and E2 are chosen such that E2 − E1 = Ew. To
complete the model we must give an explicit form for the
dissipative dynamics of the machine, that is, a model for the
thermalization of each machine qubit with its bath. We use
the same model used in our previous work on the smallest
refrigerator [30], namely,

Di(ρ) = p(τi ⊗ triρ − ρ). (B3)

This simple model of thermalization clearly satisfies the
conditions (A4) and and generates an exponential decay of
each qubit back to its thermal state τi , with decay constant p.
The explicit master equation which governs the dynamics of
the system therefore takes the form

∂ρ

∂t
= −i[H0 + Hint,ρ] +

2∑
i=1

p(τi triρ − ρ). (B4)

We expect that this equation accurately models the behavior of
the system as long as g and p are chosen such that g,p � Ek ,
so that we are in the weak-dissipation, weak-interaction
regime. Here it is consistent both to use the free Hamiltonian to
define the thermal states and to neglect additional contributions
to the dissipative dynamics originating from the interaction
between the qubits. Note that here we make the simplifying
assumption that the two baths interact with the same coupling
strength p. The analysis presented below can also be carried
out in the case of unequal coupling strengths p1 �= p2;
however, it substantially complicates the algebra without
changing the results obtained.

1. Raising of the weight

By first multiplying (B4) by the free Hamiltonian of the
weight Hw and then taking the trace, we find an expression for
the rate of change of the average energy of the weight, given
by

d

dt
〈Ew〉 = d

dt
tr(Hwρ) = −igEw�, (B5)

where

� =
∑

n

1〈0|2〈1|
w
〈n|ρ|1〉1 |0〉2 |n + 1〉

w

− 1〈1|2〈0|
w
〈n + 1|ρ|0〉1 |1〉2 |n〉

w
. (B6)

By introducing the three new operators on qubits 1 and 2,

Zv = |1〉1 |0〉2 1〈1|2〈0| − |0〉1 |1〉2 1〈0|2〈1|,
Zv = |0〉1 |0〉2 1〈0|2〈0| − |1〉1 |1〉2 1〈1|2〈1|, (B7)

Nv = |1〉1 |0〉2 1〈1|2〈0| + |0〉1 |1〉2 1〈0|2〈1|,

and denoting 〈Zv〉 = tr(ρZv), 〈Zv〉 = tr(ρZv), and 〈Nv〉 =
tr(ρNv) then the following set of equations can be obtained
in a straightforward manner from Eq. (B4)

d

dt
� = −2p� − 2ig〈Zv〉,

d

dt
〈Zv〉 = −2ig� − p

(〈Zv〉 − 〈
Zeq

v

〉)
, (B8)

d

dt
〈Nv〉 = p

(
1 − 2〈Nv〉 + 〈

Zeq
v

〉〈Zv〉 − 〈
Zv

eq 〉〈Zv〉
)
,

d

dt
〈Zv〉 = −p

(〈Zv〉 − 〈
Zv

eq 〉)
,

where

〈
Zeq

v

〉 = tr
(
Zvτ1 ⊗ τ2

)
,

〈
Zv

eq 〉 = tr(Zvτ1 ⊗ τ2) (B9)

are the thermal equilibrium expectation values of the operators
Zv and Zv . We see that the evolution of 〈Zv〉 is completely
independent of the evolution of the other variables, a situation
which only occurs when the two baths have a common
coupling strength p. Furthermore, although the evolution of
〈Nv〉 depends on all the other variables, we see that no other
variable depends directly upon it. This system of equations
can easily be solved for the asymptotic (stationary) behavior.
Denoting the variables in this limit with a superscript “S,” we
find that

�S = − igp

2g2 + p2
〈Zeq

v 〉, 〈
ZS

v

〉 = p2

2g2 + p2

〈
Zeq

v

〉
,

〈
NS

v

〉 = 〈
Neq

v

〉 − g2

2g2 + p2

〈
Zeq

v

〉2
,

〈
Zv

S 〉 = 〈
Zv

eq 〉
. (B10)

There are a number of notable features of this solution. The
first is to note that 〈Zv

S〉 is the “bias” of the “antivirtual” qubit,
the virtual qubit formed from the states |00〉 and |11〉, and that
this bias is left unaltered by the coupling of the virtual qubit
to the weight. Second, we see that the normalization of the
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virtual qubit is shifted from its value at thermal equilibrium
and that its stationary value is only ever smaller than (or equal
to) this value. Finally, we see that the bias of the virtual qubit
is scaled by the coupling and always decreases in magnitude.

Finally, by substitution of the solution (B10) into (B5)
we obtain for the asymptotic rate of change of the average
energy

d

dt
〈Ew〉 = − g2p

2g2 + p2
Ew

〈
Zeq

v

〉
. (B11)

2. Spreading of the weight

A second quantity of interest is 〈E2
w〉, which gives informa-

tion about the spreading of the average energy of the weight
in time. From Eq. (B4) it follows that the equation governing
the evolution of this quantity is

d

dt

〈
E2

w

〉 = −igE2
w�n, (B12)

where we have introduced the quantity �n, defined by

�n =
∞∑

n=−∞
(2n + 1)(1〈0|2〈1|

w
〈n|ρ|1〉1 |0〉2 |n + 1〉

w

− 1〈1|2〈0|
w
〈n + 1|ρ|0〉1 |1〉2 |n〉

w
). (B13)

Introducing a second new quantity 
n, related in an analogous
manner to 〈ZS

v 〉 as �n is to �,


n =
∞∑

n=−∞
(2n + 1)(1〈1|2〈0|

w
〈n + 1|ρ|1〉1 |0〉2 |n + 1〉

w

− 1〈0|2〈1|
w
〈n|ρ|0〉1 |1〉2 |n〉

w
). (B14)

Then it is possible to obtain the following set of coupled
differential equations,

d

dt
�n = −2p�n − 2ig
n,

(B15)
d

dt

n = −2ig�n − p
n − 2g2t

〈
Zeq

v

〉〈
ZS

v

〉 − p
〈
NS

v

〉
,

which are valid in the asymptotic limit, since to derive the
second equation the asymptotic solution (B10) has been used.
These equations can easily be solved using standard techniques
and the asymptotic solution for the expected-squared-energy

is given by

d

dt

〈
E2

w

〉 = d

dt
〈Ew〉2 + g2p

2g2 + p2
E2

w

×
(〈

Neq
v

〉 − 2g2(g2 + 2p2)

(2g2 + p2)2

〈
Zeq

v

〉2)
. (B16)

3. Heat transfers

Finally, if we define further the two quantities �1 and
�2, which are the instantaneous ground state probabilities for
qubits 1 and 2, respectively,

�1 =
∑

n

1〈0|2〈0|
w
〈n|ρ|0〉1 |0〉2 |n〉

w

+ 1〈0|2〈1|
w
〈n|ρ|0〉1 |1〉2 |n〉

w
, (B17)

�2 =
∑

n

1〈0|2〈0|
w
〈n|ρ|0〉1 |0〉2 |n〉

w

+ 1〈1|2〈0|
w
〈n|ρ|1〉1 |0〉2 |n〉

w
, (B18)

then these quantities obey the coupled set of equations

d

dt
�1 = +ig� + p

(
�

eq

1 − �1
)
,

(B19)
d

dt
�2 = −ig� + p

(
�

eq

2 − �2
)
,

where �
eq

i = (1 + e−Ei/Ti )−1 is the equilibrium ground state
population of each qubit. Making use of Eq. (B10) it can
therefore be seen that asymptotically these populations reach
the values

�S
1 = �

eq

1 + g2

2g2 + p2

〈
Zeq

v

〉
, �S

2 = �
eq

2 − g2

2g2 + p2

〈
Zeq

v

〉
.

(B20)

The rate at which heat flows between the qubits and their
environments is given by the change in energy of each
qubit due to the interaction with the baths. Given the master
equation (B4), the asymptotic heat currents are therefore

d

dt
Qi = tr[HiDi(ρ)] = ptr

[
Hi

(
τi − ρS

i

)]
= (−1)i+1 g2p

2g2 + p2
Ei

〈
Zeq

v

〉
. (B21)
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