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! so that electron positions can be specified to

few times 10° cm™
within 10y or so without appreciably disturbing thermal equilibrium.

Any two of these wave packets, differing in the number n, which
specifies location, or in m, which specifies momentum, or both, are
orthogonat states, and therefore count, for the Pauli principle, as
distinct states of motion.

In problems of the preseat kind, which involve counting states, it
pays to avoid surprises on an altogether lower level, by keeping in
mind the distinction between the ““box” boundarv condition we
have used, and the cyclic boundary condition, which is often more
convenient.

With the latter choice we require wave functions which repeat
after a distance L. If these are written in the form exp(ikx), & must
be a muitipie of 2n/L. The spacing of permissible k values is there-
fore twice what we had in the box, but we must remember that there
was, for the box, no point in letting & become negative, whereas
now exp(ikx} and exp(—itkx) are distinct functions. For counting
up the states in a given energy range, i.e, within a given range of
k2. the cyclic boundary condition gives us half the density of states,
but spread over two equal intervals in k. Overall, both schemes there-
fore give the same answer if we apply each consistently.

3.2. IoNizaTiON

If atoms are in statistical equilibrium at a temperature T, in
circumstances in which the interaction between atoms is negligible,
the probability of an atom being in the state n is given by Boliz-
mann’s expression

— o bE (3.2.1)

where, as usual,

A= 1/KT, (3.2.2)
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K being Boltzmann’s constant, and

Z =Y et (32.3)

the sum to extend over all states, and to include un integration over
the continuous spectrum.

At low temperature, when one is intergsted mainly in states of
low excitation, the relative probabilities of occupation can casily
be read off from (3.2.1). However, even at low temperature, we
cannot get absolute values, because the sum for Z in (3.2.3) diverges.
This is true even for the contribution from the discrete spectrum.
For example, in hydrogen there are, counting spin, 2n® states of
encrgy

R
E,=—-——=. n=123.., 3.2.4)
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where R is Rydberg's constant. These tend to 0 for large n, so the
discrete sum for Z diverges as 3> 2n% The contribution of the con-
tinuous spectrum makes the divergence even worse.

We have to conclude, with some surprise, that the chance of the
atom remaining in the ground state or in any other finite state is
zero. To make this a little more quantitative, consider an atom in
a finite volume, say a sphere of radius a. Then states extending over
a radius much less than  will have the same energy as in free space,
and states extending much beyond a will not exist. Since the mean
radius is agn®, with 4, the Bohr radius, we can find the right order
of magnitude by cutting off the sum at n = (a/a,)"'?, which, for
large a, gives §(a/a,)*. On the other hand, it is easy to see that the
continuous spectrum contributes, in the same limit, an amount
proportional to the volume, ie., to ¢ So in a really large volume
the dominant state for the electron is to be in a state of positive
energy ; the atom is ionized.

If we are really dealing with a single atom in an infinite volume,
this is physically the correct answer, because the equilibrium for
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ionization depends on the available volume. This is evident from
the consideration of the rate of ionization and recombination,
which must balance in equilibrium. Whatever the mechanism, the
rate of ionization is independent of the volume, whercas the rate
of recombination depends on the chance of the electron meeting
the nucleus again, which is inversely proportional to the volume.

In practical problems we are more often concerned with a large
number of atoms in a Iarge volume at finite, if perhaps low, density.
In that case, we can use the eigenstates of the free atom only if their
extension is less than the mean spacing between atoms, and we
should, for each atom, not count states of a greater extension, since
these overlap other atoms, and are then, in fact. approximated by
the states of the other atoms, which will also be included. Similarly
we must not atiribute a continuous spectrum to each atom, since
this would also involve double-counting. At low density, the con-
tinuous spectrum can be replaced by electrons moving in free
space. Finally, we must allow for the mutual repulsion of the
efectrons, which means that the binding energy of an electron in
the atom is substantially reduced if there is another electron in it
already.

The full discussion, given, for example, very clearly in Landau
and Lifshitz, Statistical Physics, §103, shows that, at temperatures
at which the atom is not almost complelely ionized, the excitation
probability is negligible, so that one is concerned only with atoms
in the ground state, ions (i.e., for hydrogen bare protons), and frec
electrons. The equilibrium can then be determined by the usual
methods for finding the equilibrium in a reaction. The result given
by Landau and Lifshitz takes, for hydrogen, the form that the
degree of ionization, ie., the ratio between the number of ions
and that of all nuclei, is

P [ 2mh* e iz
=i+ () e , (3.2.5)

where P is the pressure, and m the electron mass.




56 SURPRISES IN THEORETICAL PHYSICS

We verify again that for infinite volume with a finite number of
atoms, P = 0, the degree of ionization becomes complete at any
temperature.

Historical note; The theory of thermal ionization was, I believe,
first given by Saha, and the result used to be known as Saha’s
equation, It is still referred to as such by astrophysicists, but tends
to be ignored in physics texts, with a few exceptions (such as the
passage in Landau and Lifshitz referred to above). Physicists en-
countering this problem may therefore be tempted to fall into the
trap which constituted our surprise here.

3.3. PERTURBATION THEORY FOR
STATISTICAL EQUILIBRIGM

It is well known that all equilibrium properties of a system can
be derived from the partition function Z, already defined in (3.2.3):

Z=Yc " g= %. (3.3.1)

In many cases, the energy eigenvalues E, are not known exactly,
and the Hamiltonian is of the form

H=Hy,+W (3.3.2)

with only the eigenstates of A, known exactly. If W is small enough,
we can find the eigenstates of H approximately by using a per-
turbation expansion, of which the first two terms are given by

| Wl

B - B2 633

E,=E°’+ W,+ Y
mn:ﬁn

provided the unperturbed eigenvalues are all distinct. It is also
known that, for the series to converge rapidly it is usually neces-
sary that

|W| < AE. (3.3.4)
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