
Almost any modern physical chemistry 
book will give some discussion of statistical thermo- 
dynamics in terms of the single-molecule partition 
function (1): 
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where g, and c, are the degeneracies and energies of the 
states of the system. The zero of energy is usually 
taken to be the lowest energy state of the system, and 
the sum extends over all energy levels. 

In  many cases the energy of an atom or molecule can 
he approximately divided into a sum of electronic, 
vibrational, rotational, and translational energies. 
To the extent that this can he done, it is possible to 
separate the partition function into a product of elec- 
tronic, vibrational, rotational, and translational parti- 
tion functions. The electronic partition function is 
simply the sum over all electmnic states, j: 

get = C gie-rj/kT (1) 
j 

The statement is usually made that for most systems 
the energies of all electronic states except the ground 
state are much greater than kT, so that all of the terms 
in the sum are negligible except the first. This has 
energy equal to zero, so Q,, reduces to the degeneracy 
of the ground state. There are a few cases, (nitric 
oxide is one), where one or two other states have en- 
ergies comparable to kT, and these can be included ex- 
plicitly in the sum. Most of the electronic states will 
lie a t  such high energies as to make negligible con- 
tributions to the partition function. 

The above statements about the lack of contrihu- 
tion of excited electronic states are usually presented as 
obvious, since it is easy to check that the exponential 
term is really extremely small for most excited elec- 
tronic states at normal temperatures. The purpose of 
this paper is to point out that the conclusion is not at 
all obvious, and that the statements represent a con- 
siderable oversimplification. 

Let us examine a specific case in detail. One for 
which quantum mechanics has been able to give "ex- 
act" solutions for the energy levels is the hydrogen 
atom. The discrete energy levels are given by the 
familiar formula: 

Electronic Partition 

Function Paradox 

Here LI is the reduced mass of the atom, e is the elec- 
tronic charge, h is Planck's constant, and n is the 
principal quantum number. The zem of energy is 
taken to be the ground state of the atom (3). R is 
the Rydberg constant and is equal to about 109,678 
cm.-' or 13.60 ev (8). If we neglect spin degeneracy, 

each quantum shell has a degeneracy of n2, that is, 
there are n2 orbitals for the shell with principal quantum 
number n, all having the same energy. In  addition to 
the discrete energy levels, there is a continuum of un- 
bound states having energy greater than the ionization 
potential of the hydrogen atom. 

We can now examine the electronic partition function 
Q,r of the hydrogen atom at 25% If we consider 
only the bound states this is given by: 

Let us first look a t  the values of the exponential terms. 
For n = 1, 6, is zero and the exponential is equal to 
one. For n = 2, en = 10.20 ev. Since kT at 25'C is 
2.569 X 10W2 ev, the exponential term is era"  or 10-172, 
surely a negligible number. For higher values of n, 
the energies rapidly approach the ionization limit of 
13.60 ev and the exponential term approaches e-529 or 

At first sight one would conclude that such 
terms are entirely negligible. However, the trouble 
lies in the fact that there are an infinite numher of 
such terms. If one writes down the Schmdinger equa- 
tion for the hydrogen atom there are an infinite number 
of solutions which correspond to bound states, and the 
sum must be extended over all of them. The sum 
then turns out to be infinity times 10-230 which is in- 
finite. To put it another way, a necessary condition for 
the convergence of an infinite series is that the general 
term should approach zero, and this is not the case for 
the series in eqn. (3). The exponential part approaches 
10-23Qvhich is greater than zero, and there is the addi- 
tional factor n2 which actually makes the general term 
of the series go to infinity as n gets very large. Thus 
the value of the electronic partition function calculated 
by eqn. (3) is infinity. 

Suppose we wish to calculate the probability of 
finding the hydrogen atom in its ground state, n = 1. 
This is given by 

i.e., the probability of finding the atom in its ground 
state is zero. 

Now this result is clearly contrary to experience. 
Hydrogen is a common chemical substance and we al- 
ways expect to find it in its ground state unless we 
have extremely high temperatures or some special 
conditions such as an electric discharge. Yet we have 
arrived a t  this couclusion using only the commonly 
accepted formulas of quantum mechanics and statistical 
mechanics. It is this contradiction which provides the 
title for this article, "The Electronic Partition Function 
Paradox." I t  suggests that either quantum mechanics 
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or statistical mechanics must be wrong. This is a 
problem which receives no mention in most books, and 
yet a resolution of the paradox is essential if we are to 
put any faith in these two fields of physical chemistry. 

A view of the way out of this contradiction follows, 
but the reader may wish to think about it himself first. 
There are one or two objections which might be raised 
to the previous discussion which do not resolve the 
contradiction. One is that hydrogen atoms do not 
usually exist as such in the laboratory, but are found 
as hydrogen molecules. But this does not get one out 
of trouble, since it is well known (4) that molecules 
have "Rydberg states" in which an electron is in an 
orbital of high principal quantum number, and that 
these states obey an equation for the energy much like 
eqn. (2).  The details of the energies may be dierent, 
but the fact of an infinite number of levels with a finite 
energy will be just as true for Hz or for any other atom 
or molecule as it is for a hydrogen atom. Thus the 
electronic partition function will diverge for any mole- 
cule. Another possible objection is that highly ex- 
cited atoms can interact strongly with neighboring 
atoms, and that this will afiect the energy levels (5, 6). 
But again this interaction will not affect the conclusion 
that there are an infinite number of levels below some 
finite limiting energy. 

The solution to the problem lies in a consideration of 
the size of the orbital for an electron in a state of large 
n. One can get an estimate of the size by taking the 
radius of the corresponding Bohr orbit for the electron. 
This radius is given by (3) : 

The important thing is that the radius is proportional 
to n2, and the radius of the orbit for n = 1 works out 
to be about 0.529 (10-8cm). Using the proportion- 
ality to na, we can see that by the time n reaches a 
value of 105 the orbit will extend out about 50 cm from 
the nucleus. If the atom is contained in a flask of 
typical laboratory size, the electron will interact with 
the wall by the time the principal quantum number 
reaches about this size. If we assume that the electron 
stays in the flask, the wave functions would have to 
change from the hydrogenic functions to some dis- 
tribution which is confined to the flask. This means 
that the wave functions for higher quantum numbers 
will resemble those of a particle in a box, and the eu- 
ergies of the states will be determined essentially by 
the Schrodinger equation for this case instead of the 
simple hydrogen atom equation. The energy levels 
for a particle in an infinite potential well will continue 
to rise without limit, and there will be only a finite 
number of levels lying below any Jinite energy. This 
means that the exponential term in the electronic parti- 
tion function will indeed go to zero for this case. The 
series in eqn. (1) will converge like the translational 
partition function of a gas which involves the same 
sort of series. 

An idea of the size of QaI may be obtained in this 
ease by cutting off the sum in eqn. (3) when n is about 
105. The first term is unity and the rest very small. 
We could get an estimate of the value of the sum by 
assuming that the exponential term is equal to its 
limiting value of 10-2" for all terms but the first, and 
factoring this value out of the sum. This gives 

The sum occurring in equation (6) can be shown to be 
given by 

Since we need be concerned only with orders of magni- 
tude, this can be taken to be of the order of mVor 
large m. We can then set the sum in equ. (6) equal to 
1015 and we obtain 

Q., = 1 + 
which is not significantly different from unity. If we 
use this value of Q,, in eqn. (4), we find the probability 
that the atom is in its ground state to be unity. 

But, one might ask, suppose the atom is not in a 
flask but is out in space somewhere where the electron 
can move a t  any distance without interference. Would 
the electron then be expected to be in the lowest state? 
To investigate this, we can consider the size of the 
known universe, which is something of the order of 10" 
cm in radius. Applying eqn. (5) we find that the size 
of the orbit is comparable with the known universe when 
n is about 10'8. Using the approximate evaluation of 
the partition function with the series terminated a t  
n = 10'8 gives&., = 1 + 10-"6 which is still not signs- 
cantly different from unity. Clearly the exponential 
factor of 10-280 allows one to have an immense number 
of levels without worrying about the divergence of the 
partition function. Whether the universe is really 
finite or infinite is a question which may never be an- 
swered. Eqn. (1) would appear to diverge for an atom 
in a trnly infinite universe. However, eqn. (4) applies 
only a t  equilibrium, and it is clear that the universe is 
not at equilibrium, so this would not be really contrary 
to experience. 

We now see that the usual procedure of neglecting 
excited electronic states is, in fact, valid, although it is 
not obvious that this should be so. The apparent 
paradox of the divergent partition function can be re- 
solved, and it does not mean that either quantum 
theory or statistical mechanics are wrong. One just 
must be careful to apply the theory to the real physical 
system and not to a hypothetical isolated atom at 
equilibrium in an infinite volume. 

There is little mention of this problem in books on 
physical chemistry or statistical thermodynamics. 
Schrodinger does point out that the hydrogen atom 
should be enclosed in a large but finite box in order to 
apply the statistical formulas (7). The recent book 
by Andrews also has an exercise which involves this 
problem (8). This apparent paradox and its resolu- 
tion are interesting points which deserve wider atten- 
tion because they do point out some fundamental as- 
pects of both quantum mechanics and statistical 
thermodynamics. 

I would like to thank Professor S. J. Gill for calling 
my attention to thclast two references. 

Literature Cited 

(1) For a simple but illuminating development, see GUGGEN- 
HEM, E. A,, "Boltzmann's Distribution Law," North- 
Holland Publishing Co., Amsterdam, 1955. Far a more 

Volume 43, Number 7, July 1966 / 365 



rigorous discussion see HILL, T. L., "Introduction to Sta- 
tistical Thermodynamics," Addison-Wesley Publishing 
Co., Reading, Mass., 1960. 

This formula is usually found written with the zero of energy 
taken to be the ionization limit. See, for example, EY- 
RING, H., WALTER, J., AND KIMBALL, G. E., "Quantum 
Chemistry," John Wiley & Sons, Inc., New York, 1944, 
p. 82. 

KING, G. W., "Spectroscopy and Molecular Structure," 
Holt, Reinhart & Winston, Inc., New York, 1964, pp. 
24-26. 

(4) HERZBERG, G., "Molecular Spectra and Molecular Structure. 
I .  Spectra. of Diatomic Maleoules," D. Van Nostrand Co. 
Inc., Princeton, N. J., 1950,pp. 34, 327,387. 

(5) Zbid., p. 379. 
(6) KUHN, H. G., "Atomic Spectra," Academic Press, Inc., New 

York, 1962, p. 403. 
(7) SCHRODINGER, E., " S t a t i ~ t i d  Thermodynamics," 2nd ed., 

CambridgeUniversity Press, Cambridge, 1952, p. 28. 
(8) ANDREWS, F. C., "Equilibrium Statistical Mechanics, 

John Wiley & Sons, Inc., New York, 1963, p. 105. 

366 / Journal of Chemical Education 


