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Abstract
A self-consistent joint description of free and weakly bound electron states
in strongly coupled plasmas is presented. The existence of two problems is
emphasized. The first one is a well-known restriction of the number of atomic
excited states. Another one is a description of the smooth crossover from bound
pair electron–ion excited states to collective excitations of free electrons. The
fluctuation approach is developed to study the spectrum domain intermediate
between low-lying excited atoms and free electron continuous energy levels.
The molecular dynamics method is applied to study the plasma model since
the method is able to distinguish all kinds of fluctuations. The electron–
ion interaction is described by the temperature-independent cut-off Coulomb
potential. The diagnostics of pair electron–ion fluctuations is developed. The
concept of pair fluctuations elucidates the smooth vanishing of atomic states
near the ionization limit. The approach suggested removes the artificial break of
the electron state density at the ionization limit: atomic state density divergent
at the negative energy side and free electron state density starting from zero
density at the positive energy side.

PACS numbers: 52.27.Gr, 52.25.Gj, 52.65.Yy

1. Introduction: two problems

1.1. First problem

Adequate treatment of highly excited atoms is one of the most complicated problems in the
theory of low-temperature strongly coupled plasmas (SCPs) [1, 2]. The energy level diagram
of the hydrogen atom is presented in figure 1(a), where the Coulomb potential is also shown.
Es = −Ry/s2 is the expression for the energy levels, where s is the principle quantum number
and Ry is the ionization potential or the Rydberg constant. The statistical weight of the level
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(a) (b)

Figure 1. (a) Energy level diagram of H atom and (b) electron density of states in plasmas. 1:
smoothed density of states (1) for the Coulomb potential; 2: smoothed Planck–Larkin density of
states (6) for T = 2.5 eV; 3: free electron density of states (7).

gs = 2s2 diverges for large s. Since 2Ry/s3 is the energy distance between levels, the density
of states g(s) diverges as g(s) = s5/Ry or

g(Es) = Ry3/2|Es |−5/2 (1)

(figure 1(b)). The partition function Z of the hydrogen atom diverges as well:

Z =
smax∑
s=1

2s2 exp

[
−Ry

kT

(
1 − 1

s2

)]
≈ 2 +

∫ 0

Ry/4
dE g(E) exp

(
− E

kT

)
, (2)

where smax is the maximum principle quantum number, T is the temperature, k is the Boltzmann
constant and g(E) is the smoothed density of states; the subscript s is omitted at the transition
to integration. The population distribution dZ/dE is related to g(E):

dZ/dE = g(E) exp(−E/kT ) (3)

for highly excited states. The argument E is used for both negative and positive energies.
The same divergence takes place for any complex atom:

Z =
smax∑
s=s0

gs exp(−Es/(kT )), (4)

where s0 is the principle quantum number of the ground state (Es0 = 0), and gs and Es are the
statistical weight and energy of the sth level, respectively. As the highly excited levels of any
atom are hydrogen like, the divergences (2) and (4) coincide with each other. The density of
states diverges as (1) for any atom.

So the first problem appeared rather long ago—restriction of the number of excited states
of atoms. Bohr restricted the volume of an excited atom by the volume of a vessel. The problem
was treated by Fermi [3], Planck [4], Brillouin [5], Larkin [6], Ebeling [7, 8], Starostin [9–11]
and other authors; see [1–19] and references therein. The Planck–Larkin recipe [1, 4–15] is
to include into consideration free electron–proton states as well. Mutual compensation of the
divergences in bound and free spectra of the two-body (electron and proton) system results in
the convergent expression for Z [1, 6, 14]:

Z(s) =
smax∑
s=1

2s2
[
exp(Ry/kT s2) − 1 − (Ry/kT s2)

]
(5)
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and the integrable divergence |E|(−1/2) (figure 1(b)) of the effective density of bound states:

g(E) = 0.5Ry3/2 |E|−5/2 [1 − (1 − E/kT ) exp(E/kT )]. (6)

The function g(E) becomes temperature-dependent in this case. Starostin’s adjustment [9–11]
of formula (5) does not influence the character of the divergence.

1.2. Second problem

However, a two-body problem is not sufficient to describe the plasma which is a many-body
system. The density of free electron states is given by

g(E) = 2π−1/2E1/2(kT )−3/2 (7)

(figure 1(b)). So a break arises at the zero energy: divergent density of states at negative
energies and starting from zero density at positive energies.

Motion of free electrons creates plasma waves, which are collective excitations in the
system of free electrons interacting with each other. The electron spectrum is described by
discrete states of excited atoms below the ionization limit and above it by the dispersion of
frequency and damping decrement of plasma waves. So the correct description of the free
electron system still intensifies the break between two branches of the spectrum. There is no
smooth transition from bound pair states to collective excitations of free electrons. Note that
plasma waves do not change the density of free electron states since free electrons are treated
as classical particles in plasmas.

The energy interval intermediate between excited atoms and plasma waves is an extended
one. So the second problem arises—the description of the crossover from bound pair electron–
ion excited states to collective excitations of free electrons. In contrast to the very old first
problem—the restriction of the number of excited states—the second problem was not almost
touched upon earlier. The Planck–Larkin approach does not take into account collective
excitations of free electrons and does not treat a region of highly excited states adjacent to the
ionization limit. These states cannot be treated in pair approximation in any plasma since they
are strongly disturbed by the neighboring particles. The possible effect of the multi-particle
fluctuations on the electron spectrum in the intermediate region is discussed in [19, 20].

The discrete and continuous spectra are treated separately in all other approaches [1–17].
The atomic partition function is limited in one or another way, the interaction energy of free
charges with each other is calculated independently and the contributions of the branches of
the electron spectrum are added. The smooth transition of an electron spectrum from excited
atoms to plasma waves is ignored, and its possible influence on plasma properties is not
discussed. It is really justified for ideal plasmas when the intermediate energy interval is too
small. However, the interval increases with the increase of non-ideality and comprises almost
all the excited states for the SCP. One is not able to ignore the crossover and its influence on
the plasma properties.

1.3. Idea of the solution

The break between two branches of the spectrum in figure 1(b) seems to be artificial. Our work
is devoted to its removal and to the development of a reasonable description of the spectrum
domain intermediate between discrete and continuous electron energy levels. The objective
is to bridge the break by the smooth transition from negative to positive energies for SCP. So
the approach should be a many-body one in the whole spectrum domain and comprise both
bound and free electron states collective excitations included. As collective excitations have
fluctuation nature, our idea of the crossover is to bridge collective fluctuations or excitations
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(plasma waves) to multiple fluctuations, then to triple fluctuations, then to pair fluctuations
and finally to excited atoms which could be considered as stabilized pair fluctuations.

The dispersion of frequency and damping decrement of plasma waves are studied in the
SCP by the method of molecular dynamics (MD) using analysis of space-time fluctuations of
charge density [21–28]. It is natural to extend the approach to the whole electron spectrum
since all kinds of fluctuations manifest themselves in the MD box at the simulation, just as it
takes place in real plasmas. Motion of electrons and ions creates plasma waves, three-body,
four-body and other multiple fluctuations, short-living electron–ion pairs—pair fluctuations
and long-living electron–ion pairs—excited atoms. The MD method presents a universal
approach to the study of all kinds of fluctuations. The problem is to develop the adequate
measurement procedure for any kind of fluctuations.

Though the main objective is the investigation of the pair fluctuations or pairs, this paper
presents the general picture of the electron spectrum in the crossover region in the SCP as
well. Some of the peculiarities of the spectrum near the ionization limit are elucidated, that
is, the draft of the solution of the second problem is given. The transformation of excited
atoms into pairs with the decrease of their binding energy and lifetime is discussed and the
restriction of pairs with a further decrease of those values is obtained, that is, the solution of
the first problem is also given.

2. Plasma model

2.1. Simulation approach

A non-degenerate system of electrons and single charged ions of masses m and M is studied.
Most of the MD runs are performed with the mass ratio M/m = 100. It is found that
pair fluctuation properties do not depend on M/m at M/m > 10. The range of the non-
ideality parameter is 0.3 � � = (4πne/3)1/3(e2/kT ) � 2. Periodic boundary conditions are
used. The number of particles in the MD box is N = 500–600. Since the average interparticle
distance is the screening radius in the SCP, N about 102 is sufficient at � ∼ 1 for the simulation
of both equilibrium plasmas and relaxation [28].

We use the Coulomb potential for charge–charge interactions with a temperature-
independent cutoff (−E0) at r < r0 = e2/E0 for the electron–ion interaction. The cut-off
potential was introduced in SCP theory in [29] and was used in [22, 23, 30, 31] as well. The
truncated Coulomb potential used is completely ad hoc at first glance. However, such a choice
of the plasma model has the following important advantages and physical arguments for usage
in MD simulation of dynamic properties.

(a) It permits us to study both free and bound electron states. Changing the value of E0, we
are able to include a more or less number of bound states in the unperturbed Coulomb
crater. We expect that results for the crossover region are E0 independent if the E0 cutoff
is large enough not to perturb the crossover region.

(b) It is well known that the classical and quantum cross-sections for the Coulomb potential
are equal to each other. Therefore, the truncated Coulomb potential is able to reproduce
quantum scattering if scattering at distances r < r0 is not important. One can suppose
that results of the MD simulations are really physically significant only if they are not
changed remarkably at the reasonable variation of the E0 value.

(c) The temperature-independent form of the cutoff spares us one more problem. The
dependence of the potential on temperature means in fact dependence on velocities or
momentum. Temperature-dependent potentials are not really potentials; they do not
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correspond to any Hamiltonian. An attempt to add a velocity-dependent correction to the
equation of motion would result in breaking the energy conservation law.

Different pseudopotentials (effective pair potential) are used to simulate equilibrium
[21–28] and non-equilibrium [32–38] SCPs. Pseudopotentials [1, 7, 8, 19, 39–52] are derived
for a thermodynamically equilibrium case with a fixed temperature from the expression where
one equates the classical Boltzmann probability for an unknown effective pair potential with
the known exact temperature-dependent quantum probability (Slater sum) for the two-body
system. The procedure gives a physical argument of both the length scale for the smooth
truncation of the Coulomb potential and the value of the temperature-dependent short-range
non-Coulomb part of the pseudopotentials. However, the statistical pseudopotentials are
constructed to get very accurate equilibrium screening, pair distribution functions and other
thermodynamical properties of equilibrium systems; see e.g. [36, 51]. That is why, the
pseudopotentials certainly have their limitations.

The correct procedure for using temperature-dependent pseudopotentials for internal
energy calculation is developed for Monte Carlo simulations [36, 51, 53]. The extension
of the procedure to the MD simulations is not yet found. For this reason, the equivalence
of the Monte Carlo and MD results is not achieved for thermodynamics of an electron–ion
SCP, whereas such equivalence for the one and the same interparticle interaction potential is
a common place for simple liquid thermodynamics.

We see that the derivation of pseudopotentials is not connected to the dynamic properties.
As should be clear from our brief discussion, this methodology relies on an approximation
of equilibrium properties. Thus, the approach is entirely ignorant of the dynamics of the
quantum system [52]. The temperature-dependent pseudopotentials lose physical arguments
and become ad hoc potentials at the application to study relaxation and other dynamic
characteristics by MD, and vice versa the truncated Coulomb potential could yield wrong
results in thermodynamics. So all the effective potentials have their strengths and weaknesses.

Another potential choice to treat the problem is to use wavepacket molecular dynamics
(WPMD) [54]. However, the utility of WPMD to the problem discussed is of serious doubt.
The point is that the WPMD method is challenged by the broadening of electron wavepackets.
The artificial parameter is introduced to confine the wavepacket width increase. It distorts
both the collision frequency and the whole particle dynamics. The problem is not yet solved
[55]. So only the classical MD is used in our simulation.

2.2. Pair fluctuation diagnostics

Pairs are separated out along the MD run. We consider the free states of electron and the pair
electron–ion fluctuations within a single MD run, which calls for the diagnostics of pairs in the
process of simulation. For this purpose, the algorithm [56, 57] of identifying pair fluctuations
is employed, which consists of the following five sequential stages.

(1) In the first, preliminary, stage, the MD method is used to calculate the trajectories of all
particles in an equilibrium plasma throughout the time of simulation.

(2) In the second stage, all electrons are viewed successively at every step of the resultant
MD trajectory, and the search for the nearest ion is performed for each electron. The
horizontal lines in figure 2 correspond successively to the trajectories of all electrons from
the first to the last, the Nth electron. The horizontal axis corresponds to time. Given by
way of example on the trajectory of the first electron are time segments where the ith, j th
and kth ions turned out to be the nearest ions. This is how the trajectories of all electrons
may be marked out during the time of MD calculation. The number of nearest ions is not
given for the electrons except for the first electron.
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Figure 2. Schematic of the pair fluctuation identification algorithm.

(3) In the third stage, in the MD trajectory segments corresponding to one and the same
selected pair, the energy E of this pair is calculated as the sum of potential energy U of
the electron–ion interaction and kinetic energy of relative motion:

E = U(rei) +
μ

2
(�vi − �ve)

2 < 0, (8)

where rei is the spacing between particles in the pair, μ is the reduced mass of particles, vi

is the ion velocity and ve is the electron velocity. This enables one to identify the segment
parts where the pair energy is negative (these parts are shown by bold lines in figure 2)
and where it is positive (thinner lines in figure 2).

(4) In the bold segment parts with negative pair energy and duration �, the phase ϕ

corresponding to the number of electron revolutions relative to an ion is calculated as
the integral of angular velocity of the electron,

ϕ =
∫

�

(
Lei

/
μr2

ei

)
dt, (9)

where Lei is the electron moment of momentum during revolution around the ion. In
other words, the number of rotations defines the total phase of rotation ϕ.

(5) The resultant set of pairs is sorted by the values of ϕ. As an example, the rhombus in
figure 2 defines the lifetime τ for the segment parts, where the phase ϕ turned out to
exceed some value of ϕ0. By varying ϕ0, it is possible to obtain the distribution of pair
fluctuations with respect to ϕ. Similarly, one can determine the distribution of pairs over
the values of energy E, lifetime τ and other parameters. These distributions are related to
one another.

Using classical MD imposes some additional restrictions on the plasma model and
diagnostics. (a) The radius of a pair should be greater than the Bohr radius. Therefore,
scattering of electrons on excited atoms can be treated in the classical approximation [58].
(b) The uncertainty principle relates the pair lifetime, or the phase of rotation ϕ, to the
uncertainty of pair energy. Since the uncertainty should be greater than its energy, one is
able to estimate the restriction ϕ > ϕ0 = (6–8)π for the classical fluctuations. (c) The Stark
broadening is equal to the distance between levels at the border between areas of the classical
pair fluctuations and quantized excited states:

�E ∼ 2(h2/me4)s(s − 1)(kT �)2 = �Es,s+1 = 2Ry/(s2(s + 1)); (10)

see [57] for discussion. Only classical pair fluctuations are treated in this paper. However,
quantum effects are small and could change the results only quantitatively.
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(a) (b)

(c) (d )

Figure 3. Distributions of pairs: (a) The Coulomb cut-off potential and energy distribution of
pair population. Energy is along the vertical axis for both plots. The upper horizontal axis shows
the radius of the potential. Distribution of pair fluctuations corresponds to the lower horizontal
axis. (b) Density of pair states for different values of E0: MD results for E0 = 3(1), 5(2) eV,
� = 1, T = 1 eV and ϕ0 = 8π . (c) Density of pair states for different values of the non-ideality
parameter: 1: Coulomb density (1); MD results for � = 0.3(2), 0.6(3), 1(4), ϕ0 = 8π, T = 1 eV
and E0 = 5 eV. Planck–Larkin distribution for T = 1 eV(5) and T = 2.5 eV(6). Dependence of
�E on n1/3 is shown in the inset. (d) Density of pair states for different values of ϕ0: MD results
for ϕ0 = 2π(1), 4π(2), 8π(3), 12π(4), � = 1, T = 1 eV and E0 = 5 eV.

3. Results and discussion

3.1. Distribution of pair fluctuations over their energies

Energy distributions dZ/dE of the pair fluctuation population are calculated by MD for
a number of temperatures, non-idealities, values of E0 and ϕ0. Methodological figure 3(a)
explains the relation between the population of the pair states and the Coulomb cut-off potential.
There are no pairs either below the cut-off energy or in a certain interval below the ionization
limit. It is important to learn if the increase of the cut-off energy E0 influences the distribution
above the cut-off level. Figure 3(b) gives the answer that there is no influence. We proceed
from dZ/dE to g(E) using (3) and present results for different values of E0. So both the
smooth but steep decrease of g(E) and a gap �E below the ionization limit have a physical
sense.
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(a) (b)

Figure 4. Typical areas of electron states in SCP. (a) Diagram ‘energy levels—free ion number
density’: I is the area of discrete spectrum of Cs (solid horizontal lines) and H (dotted horizontal
lines), II is the area of pairs and III is the area without either excited atoms or pairs. The horizontal
bar, which corresponds to the first excited state of Cs, indicates the range studied in [60] for Cs.
(b) Diagram ‘lifetime—�’ for the first excited level of hydrogen atom. 1: the border between
atoms and pair fluctuations; 2: the border which limits pair fluctuation existence; line 3 is drawn
through the MD points for the lifetime distribution maxima; line 4 is drawn through the MD points
where the number of pairs is 1/100 of maximum.

The values of g(E) are normalized at the large negative energy by the Coulomb density of
states in figure 3(c). The relative behavior of g(E) for both Coulomb and MD cases coincides
with each other for the large negative energies. It points to the correctness of our approach.
Note the drastic deviation of Coulomb and Planck–Larkin g(E) from the MD results near the
ionization limit. Moreover, Planck–Larkin g(E) contradicts the MD data in the whole energy
interval studied.

The densities of the pair states are shown in figure 3(c) for different values of �. The
dependence of �E on n1/3 is given in the inset. It is close to the linear one �E ≈ 2n1/3. The
result can be related to the Unsöld formula. However, the relation of the gap to the plasma
frequency [19, 20] is not excluded as well. The rotation frequency of an electron in the pair is
ω ∼ E3/2, the plasma frequency is ω0 ∼ n1/2, the border of the pair stability could be defined
as ω = ω0 and we obtain �E ∼ n1/3. Note that we do not take into account the dispersion of
plasma waves [28]. Another interpretation of the gap is given in [59].

We use the cut-off value ϕ0 = 8π to exclude unphysical pair fluctuations. The density of
the pair states for different values of ϕ0 is shown in figure 3(d). So, the smearing of the results
caused by some uncertainty in the choice of ϕ0 is not very essential.

3.2. From excited atoms to pair fluctuations and further

The border between excited atoms and pair fluctuations is defined by (10) and is presented
by line 1 in figure 4(a). Line 2 corresponds to the gap �E ≈ 2n1/3. Both lines do not
depend on T. Three typical areas of electron states can be separated out in figure 4(a). Area
I is the area of excited atom existence with the discrete broadened levels. The spectrum is a
pseudocontinuous one in area II. It is the area of pair fluctuations. The new result is that there
exists area III where there are neither atoms nor pairs. Since it is an important result, we check
it by two other argumentations.
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Figure 5. Lifetime distributions of pairs at E = 3 eV(1) and 6 eV(2) for T = 1 eV. τe is the
plasma oscillation period.

An example for the first excited level of H atom in plasma with T = 1.5 eV is shown in
figure 4(b). The verticals 1 and 2 correspond to the intersection of the horizontal s = 2 with
lines 1 and 2 in figure 4(a). The first excited level merges with the second one to the right
from 1; no pair survives to the right from 2. Lines 3 and 4 are new: they are drawn according
to figure 5 where an example of the lifetime distribution is given. Line 3 corresponds to the
lifetime distribution maximum. Line 4 shows the position where the number of pairs is 1/100
of maximum. Almost all the pairs are distributed between lines 3 and 4. The intersection of
lines 3 and 4 can be interpreted as vanishing of pair existence, and it takes place just near the
vertical 2. The coincidence confirms the border of area III.

One more evidence of the existence of area III was derived in [57] from the consideration
of the dependences of both pair fraction and rate of pair appearance on the non-ideality
parameter �. Both dependences have maxima in area II and decrease by the order of magnitude
approaching area III.

Area III exists not only for hydrogen but for other atoms as well and can be compared
with experimental data. The equation of state for the cesium SCP was studied in the pioneer
work [60]. It is evident from figure 4(a) that even the first excited Cs level is transformed into
a pair fluctuation in the range studied and completely disappears in the right part of the range.
The higher excited levels do not exist even as pairs in the whole range. The authors [60]
noted that the best fit to the experiment was obtained when the excited atoms were thoroughly
excluded from the theoretical model. The results of the subsequent experiments [2, 17, 19]
fall within area III as well.

3.3. Distribution of electrons over total energy

Besides the energy E of an electron in the pair, its total energy ε can be calculated which
includes not only the interaction of the electron with the nearest ion and the kinetic energy of
the relative motion but also the interaction of the electron with all neighboring charges. Two
examples of the population distribution f (ε) obtained are given in figure 6(a). Both curves
2′ and 2′′ are normalized to the asymptotic of the Maxwellian distribution 1 for large ε. The
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Figure 6. Population distributions (a) and density of states (b) for � = 0.6 (2′, 3′) and 1 (2′′, 3′′).
1: free electrons; 2: total for T = 2.5 eV; 3: pairs.

distribution of free electrons for energies greater than the interaction energy turns out to be a
Maxwellian one which is a trivial result since we used the classical MD. The interesting result
is that it seems to be non-shifted with respect to the ionization limit of the isolated atom. The
result does not depend on non-ideality. The fact differs from the approximate treatment [61].

The distributions f (ε) (2′, 2′′) and dZ/dE (3′, 3′′) coincide with each other in the region
of large negative energies to the scatter of numerical data in figure 6(a), so pair interactions
predominate here over all other interactions ε ≈ E. There is a minimum in f (ε) in the
intermediate region below the ionization limit, where the electron population drops its value
by more than an order of magnitude. To elucidate the situation, we proceed from f (ε) to the
effective total density of states g(ε):

f (ε) = g(ε) exp(−ε/kT ). (11)

There is no soft gap in the smoothly increasing function g(ε) in figure 6(b). The concept of
a soft gap between excited atoms and free electrons in the electron spectrum of the SCP is
introduced in [62]. The authors [19, 20] agree with the idea of a soft gap but suggested that it is
filled partially by the less populated states of electrons localized in the long wave fluctuations
of charge density. Figure 6(b) reveals that there is no gap in g(ε) but a real gap �E does
exist between pairs (curve 3) and collective states of free electrons (curve 1) and expands with
the increase of non-ideality; cf figure 3(c). One is able to guess that the crossover between
curves 3 and 1 is filled by many-particle fluctuations.

The dependences 2 in figure 6 should be considered as preliminary ones since the function
f (ε) includes all pair interactions, non-physical included. Remember that we excluded non-
physical short-living pairs from the pair density of states in subsection 2.2. We plan to use
DFT to supplement our approach.

Conclusions

The self-consistent fluctuation approach is developed to bridge the smooth crossover from the
plasma waves to pair fluctuations and finally to excited atoms (stabilized pair fluctuations) in
the electron spectrum of the SCP. The following effects are discovered with the help of the
MD method.
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• A smooth but steep restriction of pair fluctuation density is obtained which could explain
the restriction of excited atom contribution to the atomic partition sum.

• The energy domain adjoining to the ionization limit (a ‘gap’) is found out where the
pair fluctuation density is close to zero, in contrast to the Coulomb and Planck–Larkin
approximations for the excited atom density.

• The area of plasma non-idealities is discovered where there are neither excited atoms nor
pair fluctuations.

• The Maxwellian energy distribution of free electrons turns out to be non-shifted with
respect to the ionization limit of the isolated atom.

The suppression of the collisional recombination is considered in the next paper [63].
The important advantage of the fluctuation approach is that it does not use any concept

of the partial number densities, e.g., of free and bound electrons as in the chemical model
[1, 2, 14, 17]. Such quantities are not physical ones since they do not correspond to any quantum
operator; see e.g. [64, 65]. The fluctuation approach operates on the various distributions over
the total number of electrons.
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