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The radial part of the Schrödinger equation for atomic hydrogen in a spherical box of radius � is numerically
solved. Two sets of energy levels are obtained, the first one reproduces the unperturbed �bound� levels up to a
given principal quantum number while the other one �unbound� describes levels with energy greater than the
unperturbed ionization energy of atomic hydrogen EH. These last levels asymptotically converge to the corre-
sponding set which can be obtained by the particle in the box model, i.e., levels which increase their energy as
n2 thus ensuring the convergence of the electronic partition function.
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I. INTRODUCTION

The divergence of electronic partition function of atomic
systems is a problem of large interest for plasma and astro-
physical communities. In the case of atomic hydrogen we
can write

f = �
n

gn exp�−
En

kT
� , �1�

where gn is the statistical weight of the nth level and En is the
corresponding energy. In the case of atomic hydrogen we can
express gn and En as a function of principal quantum number
n obtaining

gn = 2n2, �2�

En = −
2��e4

h2n2 = −
EH

n2 , �3�

where n is the principal quantum number, � and e, respec-
tively, the reduced mass and the electron charge and EH
=13.5984 eV is the ionization potential of the unperturbed
atomic hydrogen. We obtain infinite bound �negative ener-
gies� states in the range

En=1 = − EH En=� = 0. �4�

Equation �3� can be also rearranged by taking the ground
state as reference level in the form

En

EH
= �1 −

1

n2� . �5�

In this frame n=1 is the ground state with energy zero
while for n→� En=� /EH=1, i.e., En=�=EH. From these
simple considerations one can understand the divergence of
the partition function due to the divergence of the statistical
weight and the convergence of the exponential factor. This is
true for all temperatures but also if we consider only the s
states in the atomic hydrogen �this point will appear more
clear in the next pages�, i.e.,

fr = �
ns

2 exp�−
Ens

kT
� . �6�

We call this a reduced partition function obtained by sum-
ming only on the s states.

The problem of the divergence of the partition function is
overcome in the literature by cutting the sum to an nmax
which in the case of atomic hydrogen can be written in dif-
ferent ways according to different physical conditions. In this
context large use is often made of the following equations:

a0nmax
2 = �N��−1/3, �7�

a0nmax
2 = D , �8�

where a0 is the Bohr radius, N� is the particle density �cm−3�,
and D is the Debye length. In doing so we consider excited
states in the partition function the radius of which does not
exceed the interparticle distance N−1/3 �Fermi criterion� �1,2�
or Debye length �Griem criterion� �3�.

In both cases the unperturbed levels from Eqs. �3� and �5�,
i.e., coming from the analytical solution of the Schrödinger
equation for the atomic hydrogen in the presence of the Cou-
lomb potential, are used in the calculation of partition func-
tion. This kind of cutoff criteria are to be considered as ad-
hoc procedures which in general are applied to low-pressure
plasmas.

On the other hand a completely different literature exists
on the subject started by Planck �4� and extended by Larkin
�5�, yielding the famous Planck-Larkin partition function.
This approximation has been further improved by taking into
account the multiparticle interaction and usually is applied to
understand very high-pressure strongly coupled plasmas
�6–8�.

The aim of this paper is to reconsider the divergence of
the partition function by considering not an isolated atom but
an atom closed in a spherical box of radius �, i.e., we nu-
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merically solve the radial part of the Schrödinger equation
R�r� for atomic hydrogen by considering the following
boundary conditions:

R�r = 0� = 0 R�r = �� = 0. �9�

The numerical solution of the Schrödinger equation yields
a number of energy levels equal to the number of points
considered in the integration grid. In all cases we recover,
independently from the integration domain, two sets of en-
ergy levels one which reproduces the unperturbed levels
from Eq. �1� up to a given principal quantum number, the
other one which describes levels with energy greater than the
unperturbed ionization energy of atomic hydrogen EH. In-
spection of the second kind of levels shows that they con-
verge to the corresponding set of levels which can be ob-
tained by the particle in the box system i.e., levels which
increase their energy as n2 thus ensuring the convergence of
the partition function.

It is worth noting that the generation of the two types of
levels by solving the Schrödinger equation for atomic hydro-
gen closed in a box is a well known phenomenon studied
many years ago by De Groot and Ten Suldan �9� in their
attempt to investigate the dependence of hydrogen polariz-
ability on extreme pressure conditions. More recent applica-
tions deal with the use of such levels for the calculation of
electron atom ionization cross sections �10,11� as well as for
multiquantum well heterostructure applications �12�. Note
also that very recently a multiauthor book �13� has been pub-
lished collecting the different contributions on the solution of
quantum chemistry problem for confined hydrogen atoms,
these results being in agreement with our numerical results.

To our knowledge the results of the quantum approach
have been never applied to solve the problem of the diver-
gence of the partition function. Solution, in fact, of the
Schrödinger equation for atomic hydrogen in the presence of
a Debye potential �14�

��r� = −
e2

r
exp − r/D �10�

while affecting the energy levels in a way similar to the
present approach does not transform bound levels in un-
bound ones �15�.

Debye length and � introduce a sort of repulsive forces in
the Schrödinger equation. To a given extent the essence of
our approach, even though completely different, could be
recovered by the Planck’s paper. Planck starts distinguishing
three classes of energy levels: those with energy E�0 �un-
bound�, those near to the continuum and a class of actual
bound levels �E�0�. By using an ingenious quantum-
classical approach the E�0 levels bring to the translational
partition function for free proton-electron states. The second
contribution is neglected in the Planck approach, while the
third contribution brings to a convergent partition function.
In our approach we self-consistently produce, by solving the
Schrödinger equation of hydrogen atom in a box, bound and
unbound levels connected by a transition zone, avoiding the
division of classical levels performed by Planck. We can also
anticipate that bound and unbound levels are affected by the

dimension of the box, this effect becoming dramatic for very
small � values. This last point has been neglected by Planck
by using classical and Bohr energy levels.

The outline of the present paper is as follows. In the next
section we discuss the energy levels obtained by numerically
solving the Schrödinger equation for different � values. Then
we report the calculation of the reduced partition function
from the obtained levels and a comparison of these results
with the partition function obtained by using the Fermi cri-
terion. Finally the last section is dedicated to perspectives
and conclusions.

II. ENERGY LEVELS

We solve the radial part of the Schrödinger equation for
atomic hydrogen on a numerical integration grid by impos-
ing the boundary conditions expressed by Eq. �9�. The
boundary condition R�r=��=0 is completely different from
that one appearing in the analytical solution of the
Schrödinger equation, i.e., R�r=��=0. The bulk of results
refers to � /a0=103 and � /a0=104 values by imposing �=0
in the radial part of the Schrödinger equation. In both cases
we divide the integration grid in 102 401 points getting an
equal number of energy levels �bound and free�, which can
be identified as ns levels. Details of the integration procedure
will be reported elsewhere.

Figure 1 shows the numerical adimensional energy level
values

	 =
En

EH
�11�

obtained with � /a0=103 as a function of the number of grid
points which can be identified with the principal quantum

FIG. 1. Reduced energy levels calculated according to numeri-
cal �� /a0=103� and analytical �called Bohr atom� solution of the
Schrödinger equation. In the same figure are also reported the par-
ticle in the box energy levels calculated numerically and
analytically.
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number n. In the same figure we have also reported the ana-
lytical reduced energy levels, i.e., 	=−1 /n2 �also called
Bohr�, which show the well known asymptotic trend of en-
ergy levels to 	=0. The numerical results present values
which closely follow the analytical ones up to a given n
suddenly becoming positive from n=28 on. The numerical
results clearly show the existence of two types of energy
levels, the negative ones which can be assimilated to the
bound states and the positive ones which represent the dis-
cretized continuum. These last levels strongly increase their
energy with n asymptotically going to the analytical energy
levels obtained by the particle in the box model described by
the following equations �see for example Ref. �16��

En =
h2

8me�
2n2, �12�

	n =
En

EH
= � �n

�/a0
	2

, �13�

where me is the electron mass.
This behavior can be understood by comparing numerical

values and analytical particle in the box results also reported
in Figs. 1 and 2. Note the perfect coincidence of the particle
in the box results obtained with the analytical formula �13�
as well as by numerical integration of our atomic hydrogen
model without Coulomb potential. Finally it is worth noting
that the differences between numerical and analytical results
�see Fig. 1� become important when the numerical energies
become positive. Similar results have been obtained for
� /a0=104 �see Fig. 3�. In this case the numerical results
reproduce the analytical ones up to n=89 suddenly becoming
positive from n�89. Again the positive levels asymptoti-
cally go toward the corresponding particle in the box values.
Comparing the numerical results with � /a0=103 and � /a0
=104 we can see that the increase of � /a0 shifts the onset of
positive levels to higher n thus implying the disappearance of
positive levels for � /a0→�. On the other hand we can ex-

pect the disappearance of bound states for � /a0→0. This last
point has been tested in the � /a0 range 2–4 where our values
confirm the older observations of De Groot and Ten Seldan,
as well as with the very recent calculations of Langhlin �17�.

It is interesting to note that the values of n ��=0�, where
there is the sharp transition between the Bohr and the box
levels �28 and 89�, can be approximated by C�� /a0��1/2� with
C close to 0.9. Suggestions to interpolate between the two
regimes could be attempted by following the general math-
ematical approach in Ref. �18�.

III. REDUCED PARTITION FUNCTION

Let us now consider the reduced partition function calcu-
lated by inserting the numerical energy levels in Eq. �4�
�only s states� assigning to each level a degeneracy of 2. The
energy levels introduced in the partition function are referred
to the ground state, i.e., so that all the numerical levels in this
case become positive. The increase of energy levels as n2,
when the levels follow the particle in the box behavior, en-
sures the convergence of the partition function. Let us define
the total reduced partition function f t as

f t = fb + f f , �14�

where fb is the contribution due the bound states and f f the
corresponding one from the discretized continuum. f t, fb and
f f, all calculated from the numerical energies, have been re-
ported as a function of temperature in Fig. 4 �10 000�T
�100 000 K�. In the same figure we have also reported fbF
obtained by using the analytical levels up to nmax given by
the Fermi criterion as well as f fp obtained by the analytical
particle in the box model. It should be noted that f fp is modu-
lated by a factor exp− �EH /kT� and with a statistical weight
of 2 to take into account electron spin multiplicity. Before
examining the results we want to report how to calculate
nmax according to the Fermi criterion through Eq. �7�. First

FIG. 2. Extension of results of Fig. 1 to very high n. FIG. 3. A comparison of numerical and analytical reduced en-
ergy levels for � /a0=104.
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we calculate the volume relative to the considered � /a0 value
as

V =
4

3
��3a0

3 �15�

so that V−1 represents the particle density N�. The value of
nmax is therefore given by the following equation:

nmax = �4

3
�	1/6

�1/2. �16�

We get for the two considered case studies i.e., � /a0=103

and � /a0=104 nmax values respectively equal to 40 and 127.
On the other hand, as anticipated, the onset of positive en-
ergy values from the present calculations occurs respectively
at n=28 and n=89. This means that we should expect fb
� fbF; on the other hand our f f values should be less than the
corresponding ones obtained by the particle in the box model
since in this last case we are summing on an infinite number
of levels rather than on the finite number of levels i.e., 102,
401. Inspection of the results confirms these qualitative con-
siderations. Note that in any case fb and fbF as well as f f and
f fp closely follow the same trend as a function of tempera-
ture. Similar results occur for the other � /a0=104 case study.

The previous results indicate that a hydrogen atom closed
in a box naturally brings to a self-consistent cutoff criterion
of the electronic partition function.

Going beyond this approximation can be done by calcu-
lating all the energy levels with different � values. Here we
report the calculation involving ��0 for the � /a0=103 case.
Figure 5 reports the energy levels as a function of �n−�� at
different � in the � range 0–41, while Fig. 6 is a different
representation as a function of � for selected n values. We
can see that the quantum number � starts affecting the results

only for n�15. On the other hand the dependence on �
becomes dramatic when we consider very small � /a0 values
�17�.

IV. PERSPECTIVES AND CONCLUSIONS

We have reported the effect of a closed box on the energy
levels of atomic hydrogen. This approach indicates that the
levels are split in two classes; the first one reproduces the
behavior of the bound states obtained by the analytical solu-
tion of the Schrödinger equation, while the second one de-
scribes unbound states, which asymptotically go toward the
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levels from the particle in the box model. The results indicate
a large dependence of level energy on � which in turn de-
pends on the size of the box. The ns bound levels have been
used to calculate a reduced electronic partition function
which shows satisfactory agreement with the corresponding
one obtained by using the Fermi cutoff criterion. The un-
bound levels on the other hand reproduce to a first approxi-
mation the particle in the box partition function i.e., the
translational partition function. We believe that this approach
can open interesting perspectives in statistical thermodynam-
ics. First of all we can reformulate the Saha’s equation for
the ionization equilibrium

H = H+ + e �17�

by writing it as

H�b� = H�f� , �18�

where H�b� and H�f�, respectively, represent bound and un-
bound energy levels obtained by solving the Schrödinger
equation in the closed box. In this way we treat bound and
unbound levels on the same basis avoiding the assumption
made in the Saha’s equation of treating the bound levels
from the analytical Schrödinger equation �atom in the uni-
verse� and the unbound levels from the particle in the box
model.

According to the “chemical picture” �Eq. �17�� the Saha’s
equation assumes the well-known form

NeNH+

NH
=

�2�mekT�3/2V

h3

2

fH
exp�−

EH

kT
	 , �19�

where Ne, NH+, and NH represent in the order the electron,
atom and neutral particle numbers and fH the internal parti-
tion function of atomic hydrogen �fH+ =1�. The multiplicity
of free electron is given by the factor 2.

Following Eq. �18�, i.e., the “physical picture,” we can
write an equilibrium constant

K =
Nf

Nb
=

f f

fb
=

NH+Ne

NH
, �20�

where we have identified Nf =NH+Ne and Nb=NH. Moreover
considering

fb 
 fH,

f f 

�2�mekT�3/2V

h3 2 exp�−
EH

kT
	

we recover the Saha equation.
Another interesting perspective is to understand some non

linear effects in plasma physics by investigating the energy
levels from the numerical calculation of Schrödinger equa-
tion in the box allowing the presence of a Debye potential
�15�.
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