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Frequency in Relational Mechanics
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ABSTRACT. We analyze the dependence of the frequency of oscillation of
several motions as regards the density of distant gravitational matter ac-
cording to relational mechanics. We conclude that in most situations the fre-
quency is inversely proportional to the square root of this density.

Key words: relational mechanics, gravitational mass.

PACS: 04.50.+h (Unified field theories and other theories of gravitation),
12.25.+e (Models for gravitational interactions).

1 Introduction:

In the last few years there has been a renewed interest in Weber’s law as
applied to electromagnetism and gravitation, [Sokolskii and Sadovnikov,
1987], [Wesley, 1990], [Phipps, 1992], [Assis, 1994], [Kinzer and Fukai,
1996], [Guala-Valverde, 1998], [Assis, 1999], [Bueno and Assis, 2001].

Weber’s force exerted by particle j located at FJ on particle i located at 171

relative to the origin O of a frame of reference S is given by
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Here r, = ‘7'. —f.‘ is the distance between the particles,

g

f;.j = (l_’; —l_;j)/ T is the unit vector pointing from particle j to particle i,
i =dr;/dt is the radial relative velocity between the particles,
i’;.j =d 2I”l.j /dt® is the radial relative acceleration between the particles and

8 . .
¢=3x10m/ s . In the case of electromagnetism the particles are charges

g, and q,, D; =H,q,q; and =1, with H, being a constant. In the
case of gravitation we have gravitational masses m, and mg ,

D, =-H,m,m and & =6, with H, being a constant.

Relational mechanics is a mathematical implementation of Mach’s princi-
ple utilizing Weber’s law for gravitation and the principle of dynamical equi-
librium according to which the sum of all forces acting on any body is always
zero in all frames of reference, [Assis, 1989a] and [Assis, 1999]. Consider a

test body of gravitational mass = ¢! interacting with local bodies and with the
distant universe. The force exerted by the local bodies and by anisotropic

N —
distribution of mass around it will be represented by z,-=1 Fj1 The force

due to isotropic distribution of masses around body 1 would go to zero ac-
cording to Newton’s inverse square law of gravitation. But according to
Weber’s law this force is not zero anymore if there is a relative acceleration
between the test body and the distant masses, due to the acceleration compo-
nent of Weber’s force (1) which falls only as 1/r. Integrating this gravita-

tional force acting on m <l due to the isotropic distribution of gravitational

mass of the distant universe in the universal frame of reference (frame in
which the set of distant galaxies are seen without rotation and without linear

acceleration) yields, [Assis, 1989a] and [Assis, 1999]: — ®m glﬁlU, where
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d,, is the acceleration of body 1 relative to the universal frame of reference

U and (I)=2"7Z§ngguRoz/3cz Here p

o 1S the average gravitational

mass density of the distant universe, R is the radius of the known universe

related with Hubble’s constant /4, by R, =c/H . The value of n depends
on the cosmological model adopted. Utilizing a finite universe and integrat-
ing up to R yields n=1. For an infinite and boundless universe we can

0

integrate to infinity utilizing an exponential decay in gravitation, ek ,
yielding n =2,

We will analyze here oscillatory macroscopic motions due to gravitational,

electric and elastic interactions. As regards the local forces we will consider

2 << e’ v <<c’
only slow motions in which ¥ and V'Y . The elastic force

K(l, - go), where U1 is the position of body 1

will be represented by
when the spring is compressed or stretched, and ¢, the position of body 1
when the spring is relaxed, with K being the elastic constant in relational
mechanics. The general equation of motion of relational mechanics for body

1 of gravitational mass = ¢! and electrical charge 91 interacting with gravita-

tional mass ¢, with electrical charge 4>, with a spring of elastic constant K
and with the distant universe can then be written as (with the approximation
above of slow motions):

Mg Mgs 9.9 , - 3 _
_Hg é’zé n,+H, ;221/'12_K('€1_'€u)_q)mglalU:O' (2)
12 12

Passing the last term to the right hand side and dividing by @ yields an
analogous to Newton’s second law of motion, namely:

m_.m 1 -
g1"g2 A 99> A =
-G———nm + T —k(ﬁl —Eu):mglaw N )
s dre, r,

where G=Hg/®=3H3/2"7Z'§pgo, 1/4re,=H,/® and

k = K/ @ are the usual constants which appear in classical mechanics.
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From Eq. (2) we see that the influence of the distant universe is embodied
in the constant @ . The local gravitational masses m,, and m,, and the local
charges ¢, and ¢, are supposed to be independent of the distant universe,
that is, we assume that they do not depend on £, nor on Pro-

2  Static Situations:

We begin analyzing static situations, that is, situations in which the test
body is not accelerated relative to the distant universe, @,; = 0. Our first
goal is to understand the dependence of the constants G, &, and k on Hub-
ble’s constant and on p,,.

Comparing Egs. (2) and (3) we observe that the universal constant of clas-
sical physics is proportional to the square of Hubble’s constant and inversely
proportional to the average gravitational density of distant matter, namely:

H? H?
GZ% “or Ga —. 4
2"z p, P o

. . . . . 2
Thatis, G in relational mechanics is proportional to /1 / p o

Consider now two large bodies of gravitational masses m,, and m,, at

rest in the universal frame of reference. Their gravitational attraction is ba-
lanced by a mechanical force, for instance, by a rigid mechanical bar suppor-

ting them. A free test body of gravitational mass m g1 May be in static equili-
brium between them due only to the gravitational attractions of m,, and

. 2 2 .
M, provided Gm,m,, / 1y = Gm,m, | 1y, that is:

2
m_:(_] | -
mgp T4
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where 7, , and 7, are the distances of body 1 to bodies A and B, respecti-
vely. Changing the gravitational density of the distant universe will not
change the ratio m,, / m,, . From Eq. (5) this means that body 1 will remain

in equilibrium and the ratio 7 / 7; , will remain the same, no matter the va-
lue of p,,,.

Consider now the free test body 1 being held in static equilibrium between
the gravitational mass m,, and a charge Q;. Once more we suppose the
bodies A and B at rest in the universal frame of reference, with the electric
and gravitational forces between them being balanced by a rigid mechanical
bar. The free test body 1 can be in static equilibrium between them (at a dis-
tance 7, to the center of body A and 7, to the charge B) provided

Gmym,, /17, =qQy /47y, This can  also be written as

eG=(1/47)(q,0, /mglmgA)(rlA /1”13)2. As the charges, the gravitatio-

nal masses and the ratio of distances do not depend on the distant universe,
the same must be concluded of the left hand side of this equation. From Eq.
(4) we then conclude that

&, a ,Og;, . (6)

o

Consider now the test body being held in static equilibrium due to a gravita-
tional and an elastic force. We can think of body 1 being attracted gravitatio-
nally by the gravitational mass 7, at a distance 7, from its center, with a
spring compressed and at rest between the surface of body A and body 1. If
the relaxed length of the spring is £, and its length when compressed is /

the condition of equilibrium is Gm, m,, / 12, =k(¢, = (). Supposing

that the distances do not depend on the distant universe yields G/ k as
constant whatever the value of Py, From Eq. (4) we then conclude that

H2
ka — . @)
P go




88 A.K.T. Assis - J. Guala Valverde

We are now ready to analyze the influence of the gravitational density of
distant matter on the frequency of oscillation of macroscopic bodies accord-
ing to relational mechanics.

3 Grayvitational Interactions:

We first consider two equal bodies of gravitational masses m, separated

by a distance 2R performing a circular orbit around one another relative to
the universal frame of reference. Their acceleration is then the centripetal
acceleration given by a,,, = a)leR , where @, is the angular rotation of one
of the bodies relative to the frame of distant galaxies (each body is at a dis-
tance R from the center of the circular orbit). The equation of motion in this

case is given by Gm; /(2R)* = mga)fUR. The frequency of rotation is then
givenby @y, =,/Gm, / 4R’ . With (4) and assuming that m, and that R do

not depend on the distant universe yields

H

0

T : ®)
20

We can also say that if we multiply the gravitational density of the distant
universe by 4 then the frequency of rotation will by divided by 2 provided
bodies of the same gravitational mass are rotating around one another relative

to the distant universe separated by the same distance 2R. That is, if @, is

W, a

the frequency of oscillation when the distant universe has a gravitational
mass density p g0 and @ is the frequency of oscillation for the same motion

when the universe has a gravitational mass density O ¢» EQ- (8) can also be
written as: @/ @, = \|Pg, / Py -

Consider now a spherical body of gravitational mass M o and radius R

with an uniform density p, = M, /(47 R’ /3). If we have a radial

tunnel passing through its center and a test body of gravitational mass 7 < is
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released at a distance 7, (7, < R) from the center of the sphere the equation

of motion will be: GM ,m,r /R® = m,i* . The solution of this equation is

r(t) =r,cos@t, where @ = ,/GM,, / R* . From Eq. (4) and supposing
that M o and R do not depend on the distant universe we obtain once more
Eq. (8).

Another situation involving gravitation and rotation is related with the fi-
gure of the earth. Due to its diurnal rotation relative to the distant universe
with a period of one day the equatorial radius of the earth R_ is bigger than

the polar radius R_. The fractional change (its oblateness) according to rela-
tional mechanics is given by [Assis, 1999, Section 9.5.1]:

R>_R< ~§pg‘7 (a)erz
R 8 Py \H

)

< o

In this expression O, is the gravitational mass density of the earth and

@, is its angular rotation relative to the distant universe. If the gravitational
density of the distant universe goes to zero, the same will happen with the
fractional change, that is, the earth will become spherical. This is reasonable
because in this case there will be only the earth in the universe, which means
that we cannot speak of its rotation. Supposing now a constant gravitational
mass density for the earth and a fixed fractional change or oblateness, we
obtain from Eq. (9) the same result as Eq. (8).

4 Electromagnetic Interactions:

We now consider two opposite charges +¢ and —q separated by a dis-

tance 2R orbiting around one another relative to the distant universe with
angular frequencies @,,,. We suppose they have equal gravitational masses

m, and that the electrical force between them is much larger than the gravi-
tational force between them. The equation of motion is then given by
q°/4re (2R) = mga)fUR. Supposing that ¢, m, and R do not depend
on the distant universe and utilizing Eq. (6) yields once more Eq. (8).
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We now consider a test charge ¢ of gravitational mass m, describing a

circular orbit in an uniform magnetic field B. As the source of this field we
consider a spherical shell of radius R uniformly charged with a total charge O
and spinning relative to the universal frame of reference U with a constant

angular velocity QQU = QQUZA . According to classical electromagnetism
this system generates an uniform magnetic field inside the shell given by
B=u,0 QQUﬁ / 67t R . We consider the test charge moving in a circular
orbit in the xy plane inside the shell, describing a circle of radius » < R
centered on the center of the shell due to a magnetic force q\_f X B, [Assis,

1989b] and [Assis, 1992]. We are then led to quzmgalU or
qa),UrBzmga)ler. This yields @,;, =¢qB/m,. With the previous

value of the magnetic field we are led to

Dy _ 1,q0
Q 6ﬂng

(10)
0%

As the left hand side of this equation is a ratio of two frequencies, it can-

2 . .
not depend on H / p go - The same must then be true of the right hand side.
As g, Qand m o are local quantities and we are supposing that the radius R
of the shell does not depend on the distant universe, we conclude that £,

must be a constant whatever the value of j / p g0

2
M, = constant whatever the value of —*. (11)

Pgo
We are now able to analyze LC circuits. The frequency of oscillation of

these circuits is given by @ =1/+/LC, where L and C are the self-
inductance and capacitance of the circuit, respectively. We consider only a
representative case as all the others will behave similarly: a capacitor compo-
sed of two large plane areas A separated by a small distance d, such that

C=¢,A4 / d , in series with a solenoid of length ¢ and radius ¢ composed
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of N turns of a wire, such that L = g2, (N / £)* ma*{ . Utilizing (6), (11),

@ =1/~/LC and supposing once more that all distances and sizes do not
depend on the distant universe yields once more Eq. (8).

5 Elastic Interactions:

We now consider a body of gravitational mass 71, describing a circular
orbit relative to the universal frame of reference around a central point due to
a stretched spring. When relaxed the length of the spring is £, while stret-
ched it is given by /. The equation of motion is then given by
k(£ —10,)=m,wi, (. With Eq. (7) we obtain

(-0, @ , 2'"néH, p, 2
; =M@y = ?g;jmgww. (12)

If p,, goes to zero, the spring returns to its relaxed length. On the other
hand, supposing ¢, ¢, H o K, m . fixed no matter the value of o, and
H_, we then the same result as Eq. (8).

Instead of rotation we now consider a spring fixed at one extremity and
with a body of gravitational mass m, oscillating around the equilibrium

position (one dimensional rectilinear motion), relative to the universal frame
of reference. The equation of motion is then given by k(£ —/{,)=m,(.
The solution of this equation gives the position of the test body as a function
of time, namely: ((¢) = Acos(@,,t + B), where @, = \[k/m, is its

frequency of oscillation relative to the universal frame of reference. Applying
Eq. (7) we obtain once more Eq. (8).

Consider now a simple pendulum oscillating in a vertical plane due to the
gravitational force of the earth and to the tension in the string. To clarify the

analysis we replace the string by a spring of stretched length ¢ and relaxed
length ¢, in such a way that the tension 7 in the string can be written as
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T=k({—1,), kbeing the elastic constant of the spring. Suppose the pen-

dulum is dislocated at an angle @ from the vertical direction and released
from rest. We obtain the equations of motion in the radial and tangential

directions as, respectively: m,gcosf=k({-1,) and
m,gsin@=m,l 0. Supposing small displacements such that sin@ ~ 6

this last equation yields the solution 6(¢) = Acos(w,,t + B), where

@,y =Alg= 1/€R92 / GMge is the angular frequency of the pendu-

lum relative to the universal frame of reference. Here Mge is the gravitatio-
nal mass of the earth and R, its radius. Applying Eq. (4) and supposing once
more that M, R, and £ do not depend on H?/ P,, yields once more Eq.
(8).

The same conclusion can be obtained for a conical pendulum. In this case
we have a test body of gravitational mass 7, moving in a circular orbit in a
plane orthogonal to the gravitational field of the earth connected to a string.
Once more we replace the string by the spring above. The angle of the spring
with the vertical direction is given by a constant ¢ when the body moves in a
circular orbit. Calling by r the radius of the circle and by / the distance of its
center to the point of support of the spring we have tan ¢ =r/h. The an-
gular rotation of the test body relative to the universal frame of reference is
represented by @,,,. The horizontal and vertical components of the equation

of motion are given by, respectively: k(¢ —/ )sing = mga)leR and
k(t—1t,)cosp=Gm M, / R’ . From these equations and from Eq. (4)

we obtain

2" & Py, Wy RT
3 H M,

ge

tan ¢ = (13)

Supposing as above that the distances (R,, ¢, ¢, r, h) do not depend
on Hj / P, » the same will happen with tan @.As M ¢ 18 also independent

of Ho2 /pga, we derive once more Eq. (8).
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6 Alternative Formulation:

There is an alternative formulation of relational mechanics which leads es-
sentially to the same results, [Guala-Valverde, 1999a and 1999b]. Instead of
Eq. (2) we obtain

> T2 > T2

m,m,, 1 R .o
sl e N9, _ k(gl _7
5 dre, r,

(14)

where @, =2"7&p,, / 3H’. Following the same procedures as above

. 4, 2 2
yields Ga H, / P> €, constant whatever the value of H/ Pro>

o

M, a P, /' H j and the elastic coefficient k constant whatever the value of

Hj / Pro- Although these results are different from Egs. (4), (6) and (7), this

is not important. After all we do not measure directly G, &, nor k. What we
measure are distances and periods (or frequencies). And this formulation also
leads to Eq. (8) in all cases, supposing as above that the masses, charges and

local distances are independent of Hj / Pro-

7 Conclusion and Experimental Tests:

Supposing that the charges and gravitational masses of local bodies do not
depend on Hj / Pro> and supposing that the same happens with all local

distances, we concluded that the frequencies of rotation or of vibration are
inversely proportional to the square root of the mean density of gravitational
mass of the distant universe, Eq. (8). That is, increasing the density of gravi-
tational mass of distant galaxies will slow down the frequencies of the local
motions analyzed here. This seems to be an universal property valid for all
oscillatory or vibratory motions. If the frequency of a circular or vibratory

motion is given by @, in our universe with an average gravitational mass
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density p,, and we change this density to O, the new frequency will be
givenby: @/ @, =,/p,, /P, -

As the radii of curvature of circular motions are supposed independent of
the distant universe and the centripetal acceleration is given by

ay, =0, I0)a (H./ Pg)» we conclude that all velocities scale as:
v o H | |p 0 - Even light velocity will scale like this utilizing Egs. (6)

and (11). If the velocity of a particle in our universe with p 0 is v, then

the new velocity in an universe with p, is given by: v/ v, = [p,, / p, .

On the other hand all the accelerations scale as: a / a, = p 0 /p g

As these effects are universal, it might be thought that it would be impos-
sible to detect it. That is, as all frequencies (and velocities) scale as

1/.p o » the ratio of any two frequencies (or of any two velocities) is in-

dependent of the distant universe. As we only measure frequencies (or velo-
cities) by comparing it with other frequencies (or velocities), the effect will
not be detected by changing the density of gravitational mass of the distant
universe (for instance, the ratio of the orbital period of the earth of one year

divided by its diurnal period of one day, 7, / T, = 3654, will not change

by modifying the gravitational density of the distant universe). But the effect
can be detected in principle in the laboratory by modifying the surroundings
of some systems but not of other systems. Suppose we have two equal sys-

tems with equal oscillatory motions of frequency @ ,. We now surround one
of the systems with a spherical shell of gravitational mass M o and radius R

at rest relative to the universal frame of reference. According to relational
mechanics this shell will exert a gravitational force on any internal test parti-
cle which is undergoing an oscillatory motion given by ([Assis, 1999]):

—Hgé‘ mgMgc_ilU /3¢*R. Combining this with Eq. (2) shows that we
obtain Eq. (3) with the mass m, in the right hand side replaced by
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2

& GM,
m, 1+ ﬁ . That is, as if the inertia of the test body had increased.
c

As the frequency of oscillation is inversely proportional to the square root of
the inertia of the test body, the new frequency of oscillation inside the shell

will be given by (calling by ® = GM, / R the gravitational potential in-

side the shell and considering ® << c’): @,,, =w,(1-& ®/6c).
That is,

=3 (15)

The same will be valid for all velocities, namely:

View =V & D

new o0 -2 16
v 6 ¢ (16)

o

This allows an experimental verification of the effect. That is, by compa-
ring the frequencies or velocities of the system inside the shell with the other
equal system which is outside and far away from the shell (so that we can
neglect its influence). This might be detected in principle, although the effect
is usually very small. For instance, if M, =1000 kg and R =1 m we

obtain a fractional change of (with & = 6 for gravitation): 7 x 107>,

Instead of placing a neutral shell around the system it might be put an uni-
formly charged spherical shell of radius R and total charge Q at rest relative
to the universal frame of reference. In this case Weber’s electrodynamics
predicts a force on an internal accelerated test charge given by ([Assis, 1992],
[Assis, 1993] and [Assis, 1994, Chap. 7]): ¢,qQd /127 R, where a is
the acceleration of the test charge relative to the shell. Combining this with
Eq. (3) shows that the test charge should behave as having an effective iner-

tial mass given by m—q®d / 3¢? , where m is the usual mass of the test

charge and @ = /47 &, R is the electrostatic potential of the shell

(choosing zero potential at infinity). If gQ > 0 (¢gQ < 0) there is a decrease
(increase) in the effective inertial mass of the test charge. This should affect
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the motion of charged particles, in particular electrons which are very light.
The fractional change of mass for an electron due to a potential of 3kV is

given by 2x107°. And this can be detected in the laboratory. The first
experiments of this kind known to us are due to Mikhailov, who detected an
effect of this order of magnitude and coinciding in sign with the prediction of
Weber’s electrodynamics, [Mikhailov, 1999] and [Mikhailov, 2001]. In this
case the effect is not universal anymore, as it affects only the motion of char-
ged bodies. For instance, it will not affect the frequency of oscillation of a
neutral pendulum inside the charged shell, nor the frequency of oscillation of
a neutral body connected to a spring. In any event this effect is predicted only
by Weber’s electrodynamics, not by Lorentz’s force. For this reason
Mikhailov’s experiments are so important. They should be repeated and per-
formed with greater accuracy by other laboratories around the world.
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