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ABSTRACT. We propose the principle of physical proportions, ac-
cording to which all laws of physics can depend only on the ratio of
known quantities of the same type. An alternative formulation is that
no dimensional constants should appear in the laws of physics; or that
all “constants” of physics (like the universal constant of gravitation,
light velocity in vacuum, Planck’s constant, Boltzmann’s constant etc.)
must depend on cosmological or microscopic properties of the universe.
With this generalization of Mach’s principle we advocate doing away
with all absolute quantities in physics. We present examples of laws
satisfying this principle and of others which do not. These last exam-
ples suggest that the connected theories leading to these laws must be
incomplete. We present applications of this principle in some funda-
mental equations of physics.
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1 Introduction

The idea of dimension had its origins in ancient Greek geometry. It
was then considered that lines had one dimension, surfaces had two
dimensions and solids had three dimensions, [1, Vol. 1, pp. 158-9, 169-
170 and Vol. 3, pp. 262-3], [2] and [3]. These dimensions were related to
the rule or principle of homogeneity, according to which only magnitudes
of the same kind could be added or equated, and only these had a numeric
ratio (we could not divide a volume by a length, for instance), [2]. This
principle was also called by Heath the principle of similitude and he also
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spoke of the theory of proportions, [1, Vol. 1, pp. 137 and 351; Vol.
2, pp. 112-113, 115-129, 187, 280-281 and 292-293]. The geometrical
dimensions were also linked to the concept of similar figures, [1, Vol. 2,
pp. 187-188].

The geometrical notion of dimension was extended by Fourier to
include physical dimensions, [4, §§160-161], words in square brackets
added: “It must now be remarked that every undetermined magnitude
or constant has one dimension proper to itself, and that the terms of one
and the same equation could not be compared, if they had not the same
exponent of dimension. We have introduced this consideration into the
theory of heat, in order to make our definitions more exact, and to serve
to verify the analysis; it is derived from primary notions on quantities;
for which reason, in geometry and mechanics, it is the equivalent of the
fundamental lemmas which the Greeks have left us without proof. In the
analytical theory of heat, every equation (E) expresses a necessary rela-
tion between the existing magnitudes [length] x, [time] t, [temperature]
v, [capacity for heat] c, [surface conducibility] h, [specific conducibility]
K. This relation depends in no respect on the choice of the unit of
length, which from its very nature is contingent, that is to say, if we
took a different unit to measure the linear dimensions, the equation (E)
would still be the same.”

Dimensional analysis grew out of these ideas. It is applied, for in-
stance, to check the correctness of equations (in the sense that all terms
should have the same dimensions). Moreover, all equations should be
invariant as regards any change in the system of units employed. It
is also utilized in the derivation of relations between physical magni-
tudes applying the principle of homogeneity. For instance, it is possible
to derive (except from a dimensionless constant) the dependence of the
frequency of oscillation of a pendulum near the earth’s surface on the
pendulum’s length and on the earth’s gravitational field by considering
the dimensions or units of these physical terms. Apparently the first
person to utilize this principle in physics was Foncenex in 1761, before
Fourier’s works, [2]. Reynolds, Lodge, FitzGerald, Rücker, Jeans and
especially Lord Rayleigh made many contributions to dimensional anal-
ysis along these lines during the last century, see [5, p. 10] for references
and discussion.

In 1914 Tolman presented a “principle of similitude”, [6]: “The fun-
damental entities out of which the physical universe is constructed are of
such a nature that from them a miniature universe could be constructed
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exactly similar in every respect to the present universe.” But Buck-
ingham and Bridgman showed that this principle was already included
in the “principle of dimensional homogeneity”, which had been utilized
in geometrical and physical equations for a very long time, [7] and [8].
Buckingham’s paper was very important in bringing the attention of the
scientific community to the so-called Π-theorem, which had already been
enunciated by Vaschy in the 1890’s, [5, Chapter VI] and [9, Vol. 2, p.
712]. This theorem had been employed implicitly by many scientists
since Fourier’s works.

For a critical discussion of the systems of units, of the concepts of
physical similarity and of dimensional analysis, with many references,
see Chapters XIV (The Symbols of Physics) and XV (Units and ‘Di-
mensions’) of O’Rahilly’s book, [9].

Here we present a new principle which is not embodied in these pre-
vious ones, as will be clarified in the examples below. Just to show the
novelty of the principle we can consider the equation describing an ideal
gas, presented by Buckingham as: pv/Rθ = N . Here p is the pressure,
v the specific volume, θ the absolute temperature, R a dimensional con-
stant and N is a dimensionless constant. This is considered a “complete”
equation by Buckingham, [7]. It is also invariant as regards any change
in the system of units employed. Despite these facts, it does not comply
with the principle of physical proportions presented here. For this reason
it should be considered correct but incomplete. Below we will see what
a complete equation for an ideal gas should look like.

2 The Principle of Physical Proportions

Newton based his dynamics as presented in the Principia (1687) on the
concepts of absolute time, absolute space and absolute motion. Accord-
ing to him absolute time flows equably without relation to anything
external, absolute space remains always similar and immovable without
relation to anything external and absolute motion is the translation of
a body from one absolute place into another [10, Definitions]. Leibniz,
Berkeley and Mach were against these concepts and proposed that only
relative time, relative space and relative motion could be perceived by
the senses. For this reason only these relative concepts should appear
in physical laws. Mach expressed these ideas clearly in his book The
Science of Mechanics, of 1883 [11]. Excellent reviews of Mach’s principle
and of the distiction between relative and absolute motions at different
times in the development of mechanics can be seen in [12], [13]. Relative
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time is a measure of duration by means of the motion of material bodies
(like the angle of rotation of the earth relative to the fixed stars), rela-
tive space is a measure of dimension by means material bodies (as the
distance between two bodies measured by a material rule; or the relative
order of three bodies A, B and C along a straight line: ABC, or ACB,
or ...).

We agree with Leibniz, Berkeley and Mach on this topic and pro-
pose the principle of physical proportions (PPP) as a generalization of
their ideas, [14] and [15]. Mach advocated doing away with all absolute
quantities of motion (reducing local, absolute quantities to global, rela-
tional ones). Here we advocate doing away with all absolute quantities
whatever. As we will see, in classical physics not only space and time
are absolute, but also gravitational mass, electrical charge etc. It is our
point of view that none of these absolute quantities should appear in
the laws of physics. In this work we discuss relational mechanics, [16]
and [17], an alternative to standard theory that implements both Mach’s
principle and the PPP.

We formulate the principle as follows: (1) All laws of physics can
depend only on the ratio of known quantities of the same type. This
principle can also be understood in four further ways in order to clarify its
meaning: (2) In the laws of physics no absolute concepts should appear,
only ratios of known magnitudes of the same type should be included; (3)
Dimensional constants should not appear in the laws of physics; (4) The
universal constants (like G, c, h, kB , ...) must depend on cosmological
or microscopic properties of the universe; (5) All laws of physics and all
measurable effects must be invariant under scale transformations of any
kind (that is, under scale transformation of length, of time, of mass, of
charge, ...).

We consider the PPP as an intuitive principle of nature, which should
lead to a better understanding of the physical laws. In particular we
believe that equations which do not satisfy the principle should be in-
complete. That is, hidden connections of the properties of bodies with
the distant universe will be hopefully clarified with the implementation
of the principle.

The five statements of the PPP are not totally equivalent to one an-
other. Despite this fact there are connections between them, as we will
see below. The first formulation is our preferred one. By quantities of
the same type we mean quantities with the same units and embodying
the same physical concepts. That is, in the laws of physics there should
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appear only ratios of lengths, of periods of time, of electrical charges, of
frequencies, of gravitational masses etc. The word “known” means that
we can identify to which body the property belongs to. In the second
statement the expression “absolute concepts” should be understood in
the Newtonian terms above, that is, concepts which do not depend on
the material external world (like Newton’s absolute space, time and mo-
tion). As we will see, in classical mechanics there is also an absolute
concept of mass, of electrical charge etc. In our point of view all of
these concepts should not be included in physical laws. When we have
only laws expressed in terms of ratios of masses, of electrical charges,
of electrical currents etc. then the goal of eliminating absolute concepts
will be reached. In the fourth statement by universal constants we mean
constants which do not depend on the properties of bodies, in order to
contrast them with the normal characteristics of bodies. For instance,
the electrical resistivity varies from metal to metal, while Boltzmann’s
constant is the same for all gases. For this reason constants like kB are
normally designated as absolute or fundamental ones. But it is our be-
lief that these constants should somehow be related with the properties
of the distant bodies in the universe, so that it might be possible to
modify or control their values by changing the environment around the
measuring devices. By the words “of any kind” in the fifth statement
we want to express all types of magnitudes (time, mass, charge, ...) and
not only lengths (usually by scale transformation it is understood only
a change of distances or linear magnitudes). The meaning of this state-
ment is that no measurable or detectable effect should appear if we, for
instance, double the electrical charges of all bodies in the universe. As we
will see when analysing the acceleration between two charges, classical
physics does not implement this idea.

Some authors in the past have expressed their point of view that no
effect should be detected by a length transformation (that is, if all the
bodies in the universe, including the atoms, increased in size by the same
amount, the same happening with all distances). To our knowledge the
first to generalize this idea to include time and motion was Boscovich in
1755, [18]. Some of his typical statements: “A motion which is common
to us and the world cannot be recognized by us - not even if the world as
a whole were increased or decreased in size by an arbitrary factor.” (...)
“It even is conceivable that this whole world before our eyes contracted
or expanded in a matter of days - with the magnitude of the forces
contracting or expanding in unison. Even if this occurred, there would
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be no change of the impressions in our minds and hence no perception
of this kind of change.” We agree with these ideas and extend it to all
magnitudes (charges, temperatures etc.)

The meaning of the principle is illustrated by the examples below.
With these examples we will have a clarification of these five alternative
formulations.

3 Laws Satisfying this Principle

The law of the lever is the first example of a relation satisfying this prin-
ciple. Propositions 6 and 7 of Archimedes’s work “On the equilibrium
of planes” reads as follows, [19] and [20]: “Two magnitudes, whether
commensurable [Prop. 6] or incommensurable [Prop. 7], balance at dis-
tances reciprocally proportional to the magnitudes.” We can write this
as follows: two weights P1 and P2 at distances d1 and d2 from a ful-
crum remain in horizontal static equilibrium (relative to the surface of
the earth) when P1/P2 = d2/d1. Only ratios of local weights and local
distances are relevant here. No fundamental constants appear in this
law. Doubling all lengths or all weights (or gravitational masses) in the
universe does not affect the equilibrium of the lever.

The law of the inclined plane also satisfies this principle. Stevin
proved this law considering a triangle ABC with its plane perpendicular
to the horizon and its base AC parallel to it. By hanging two weights
D and E on sides AB and BC, respectively, he showed by the principle
of the impossibility of perpetual motion that the two bodies connected
by a string would be in equilibrium if D/E = AB/BC, [21].

Consider now floating bodies. Archimedes discovered the main prin-
ciple of hydrostatics and presented it in his work “On floating bodies”,
[19] and [20]. The fifth proposition of this work reads as follows, our
words in square brackets: “Any solid lighter than a fluid [that is, of
smaller relative or specific weight] will, if placed in the fluid, be so far
immersed that the weight of the solid will be equal to the weight of the
fluid displaced.” Considering a homogeneous solid, its weight is propor-
tional to its density, ρS , multiplied by its total volume, VT . Analogously,
the weight of the fluid displaced is proportional to its density, ρF , mul-
tiplied by the volume of the solid which is below the surface, VB . The
condition for static equilibrium can then be stated as
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VB

VT
=

ρS
ρF

. (1)

This equation, which can be considered as the law describing the static
equilibrium of homogeneous solids in fluids of higher relative weight, also
satisfies completely the PPP. Only ratios of known volumes and known
densities appear here. No fundamental constants are involved in this law.
Doubling all densities in the universe will not affect the ratio VB/VT .

Another example involves communicating vessels filled with liquids.
If the cross-sectional area of vessel 1 (2) is A1 (A2) and we apply on their
free surfaces the forces F1 (F2), respectively, equilibrium (no motion
relative to the surface of the earth) will result if F1/F2 = A1/A2. In
the case of a hydraulic jack these forces may be two weights P1 and P2.
Once more this relation satisfies completely the PPP.

There are also dynamical laws which satisfy this principle. One ex-
ample is Kepler’s second law of planetary motion: Areas swept out by
the radius vector from the sun to the planet in equal times are equal,
[22, p. 135]. In other words, the area is proportional to the time. In
algebraic terms if one planet describes an area A1 in time t1 and area
A2 in time t2 then A1/A2 = t1/t2.

Another example is Newton’s second law of motion coupled with his
third law. Consider two bodies of inertial masses mi1 and mi2 interacting
with one another along a straight line. If they suffer accelerations a1 and
a2 relative to an inertial system of reference we obtain from Newton’s
laws (considering constant inertial masses): mi1/mi2 = −a2/a1.

4 Laws Not Satisfying this Principle

The law of elastic force was first presented by Hooke in 1678 in terms of
proportions, namely: “the power of any spring is in the same proportion
with the tension thereof: that is, if one power stretch or bend it one
space, two will bend it two, and three will bend it three, and so forward,”
[23]. In this form it complies with the principle of physical proportion,
as it can be written as power1/power2 = space1/space2. But nowadays
it is expressed in terms of an equality involving an elastic dimensional
constant, so that it does not satisfy any longer the PPP. Consider a
spring of relaxed length �o and elastic constant k. If it is compressed or
stressed by a force F to a length �, the law states that the displacement
or lengthening of the spring is proportional to this force. Expressing this
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by means of an equality, as usually done, yields the condition of static
equilibrium as F = k(�− �o). This relation does not satisfy the PPP as
there is no ratio of forces on the left-hand side and no ratio of lengths
on the right-hand side. Moreover, there appears the elastic constant
which has no relation with the force that the spring is supporting. This
law is correct in the sense that it describes the behavior of springs (it
is valid so long as the lengthening of the spring is not so large as to
become irreversible). But because it does not satisfy the PPP, it is to
be regarded as incomplete.

If the spring is replaced by a string or a bar made of homogeneous
material with cross-sectional area Ao this law would be written as (if the
strain is not too large):

F = Y Ao
�− �o
�o

, (2)

where Y here is called Young’s modulus. This expression of the law
is better than the previous one because in the right hand side there
is a ratio of lenghts. But it still does not satisfy completely the PPP.
Although a ratio of lengths appear on the right-hand side, there is no
ratio of forces on the left-hand side and no ratio of areas on the right-
hand side. Moreover, Young’s modulus is not a unitless constant. Its
units are those of pressure and its value is characteristic of each material,
although it does not depend on the cross-sectional area nor length of the
string made of an specific material. For this reason we might say that
it is incomplete. As Young’s modulus has a different value for each
material, it must depend on microscopic properties of the material (like
being inversely proportional to the cross-sectional area of the molecules
composing the string, or to the square of the average distance between
these molecules etc.) We might hope that when a better understanding
of the origin of the elastic properties of bodies is found, it will be possible
to write Hooke’s law as

F

F∗
= α

Ao

A∗

�− �o
�o

, (3)

Here F∗ and A∗ are a force and an area of some yet unknown origin and
α is a dimensionless constant yet to be determined.
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Consider now the acceleration of free fall near the surface of the earth,
which is given by

a = G
Me

R2
e

. (4)

Here G = 6.67 × 10−11 Nm2/kg2 is the constant of gravitation, Me =
5.98 × 1024 kg is the earth’s mass and Re = 6.37 × 106 m is its average
radius. This acceleration of free fall depends only on the mass of the
earth, and not on the ratio of this mass to other masses in the universe.
It also depends on the distance of the test body to the center of the earth
and not on the ratio of this distance to other distances in the universe.
According to classical mechanics the constant G is not dependent on
other bodies in the universe. This means that it is considered a universal
constant of nature, which can not be modified nor influenced by external
means. If we double all masses in the universe this expression suggests
that the free fall acceleration will also double, in such a way that this
might be perceived or detected. This shows that not only space and time
are absolute in classical mechanics, but also mass. All of these things
are against the principle of physical proportions.

We now analyse the flattening of the earth. Due to its diurnal ro-
tation around the North-South direction the earth takes essentially the
form of an ellipsoid of revolution. With a period of one day the angular
rotation of the earth relative to an inertial frame of reference is given by
ω = 7.29×10−5 rad/s. Its equatorial radius R> becomes bigger than the
polar radius R<. According to classical mechanics the fractional change
f is given by (as essentially first obtained by Newton):

f ≡ R> −R<

R<
≈ 15ω2

16πGρe
≈ 0.004 . (5)

Here ρe = 5.5 × 103 kg/m3 is the earth’s average mass density. There
are several aspects of this result which are questionable. In the first
place this fractional change depends on the angular rotation of the earth
relative to absolute space or to an inertial frame of reference. In prin-
ciple the distant universe composed of stars and galaxies can disappear
without affecting f . This consequence is not intuitive. After all if the
earth were alone in the universe it would not make sense to speak of its
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rotation. Consequently its flattening should disappear when the distant
stars and galaxies also disappear according to the Machian perspective.
If the earth remained stationary in an inertial frame of reference and the
distant universe rotated around its North-South direction in the oppo-
site direction (compared with the previous situation), the earth would
not be flattened. This is against Mach’s point of view. Moreover, the
fractional change depends only on the density of the earth, but not on
the density of distant matter. If it were possible to double the average
matter density of the distant universe, without affecting the matter den-
sity of the earth, the previous result would not be affected. This shows
that not only space and time, but also mass or matter density are ab-
solute quantities in classical mechanics. All of these aspects are against
the principle of physical proportions.

The great majority of physical laws do not comply with the principle
of physical proportions. Whenever there are physical laws expressed in
terms of equalities, instead of proportions, and in which there appear
some local constants (like the spring constant k, the dielectric constant
ε of the material, ...) or some universal constants (like G, εo, kB , h, ...)
they must be incomplete, although correct. Some examples: the law of
ideal gases, PV = kBNT = RnT (P being the pressure, V the volume,
kB = 1.38 × 10−23 J/K Boltzmann’s constant, N the number of atoms
or molecules, T the temperature, R = 8.3 J/Kmol the universal gas
constant and n the number of moles), the velocity of sound, vs =

√
B/ρ

(B being the bulk modulus of the fluid with density ρ), Ohm’s law,
V = RI (where V is the voltage or potential difference between two
points A and B of a conductor of resistance R where flows the constant
current I), etc.

5 Implementation of the Principle of Physical Proportions

We now discuss how to implement this principle in order to complete
the laws. We first consider hydrostatics and Archimedes’s principle.
Although Eq. (1) satisfies the principle, we will discuss an incomplete
form of this law.

It is easy to imagine how people unaware of Archimedes’s results
might arrive at a correct but incomplete law when experimenting with
floating bodies. They might put ice, cork, wood etc. floating only in
water and observe that the ratio of the submersed to the total volume
was proportional to the density of the material, namely
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VB

VT
= AρS , (6)

where A would be a constant of proportionality with dimensions of the
inverse of density. This constant would be the same for all solid bodies
specified above. This equation is correct dimensionally and is invari-
ant under unit transformation (the numerical value of A will depend
on the system of units employed, for instance A = 1.0 × 103kg/m3 or
A = 1.6 × 10−5g/in3, but the form of the equation will be the same in
all systems of units). It would count as a “complete” equation judged
against Buckingham’s standards.

Although this law describes correctly the behavior of floating bodies
in water, it is incomplete. In order to transform this law into one that
is compatible with the PPP it would be necessary to discover if A was
of cosmological, local or microscopic origin. Specifically, it would be
necessary to discover if 1/A was proportional to the mean density of
mass in the universe, to the density of the local fluid where the solid
was floating, or to the density of the molecules composing the fluid,
for instance. By floating the same solids in different fluids like liquid
mercury, gasoline and alcohol it would be possible to arrive at A = 1/ρF .
The situation might then be described by Eq. (1) and the law might be
considered complete.

Relational mechanics satisfies completely Mach’s principle and the
more general PPP. A presentation and discussion of this theory can be
found in several places: [16], [24], [25], [26], [27], [28], [29], [30, Chapt.
6], [31, Chap. 3], [32], [33], [34] and [17]. It is based on Weber’s law for
gravitation and electromagnetism: [35]. Weber’s force depends only on
the relative distance between the interacting charges, on their relative
radial velocity and on their relative radial acceleration, so that it is com-
pletey relational. For a modern discussion of Weber’s electrodynamics
see: [36], [37], [38], [39], [40], [30], [41], [42], [43], [44], [45], [46], [47], [17,
Sections 11.2 and 11.3], [48], [49] and [50]. Relational mechanics is based
also on the principle of dynamical equilibrium, [16] and [17, Section 8.1]:
The sum of all forces of any nature (gravitational, electric, magnetic,
elastic, nuclear etc.) acting on any body is always zero in all frames of
reference. As the sum of all forces is zero, only ratios of forces will be
detectable or measurable. The system of units (MKSA, cgs etc.) to be
employed is not relevant. Moreover, the unit or dimension of the forces
can be whatever we wish.
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According to relational mechanics the acceleration of free fall towards
the earth, amU , is given by [17, Sections 8.4, 8.5 and 9.2]:

amU =
3c2

2απρgoR2
o

Mge

r2
, (7)

or

amu

ao
=

2
α

Mge

Mgo

R2
o

r2
. (8)

We now discuss this relation in detail, first explaining its terms. The
gravitational mass of the earth is represented by Mge. The distance
between the test body and the center of the earth is given by r. The
gravitational mass of the test body does not appear, only its acceleration
relative to the universal frame of reference U , amU . The universal frame
of reference is the frame in which the set of distant galaxies are seen
as essentially at rest (apart from random or peculiar velocities) without
any rotation nor linear acceleration. The cosmological properties appear
in the radius of the known universe given by Ro ≈ 1026 m and in ρgo ≈
3 × 10−27 kg/m3, which is the average gravitational mass density of
the distant universe. If the universe is infinite, Ro may represent a
characteristic length of gravitational interactions, namely, the effective
length of gravitational interactions due to an exponential decay. The
gravitational mass in the known universe is given by Mgo = 4πρgoR3

o/3 ≈
1052 kg. If the universe has an infinite size and an infinite gravitational
mass, this Mgo may represent a characteristic gravitational mass (that
is, the gravitational mass in the characteristic volume 4πR3

o/3) which
would exert effects on local bodies. We also related the light velocity c =
3× 108 m/s with Hubble’s constant Ho ≈ 3× 10−18 s−1 by Ro = c/Ho.
A characteristic cosmological acceleration is given by ao ≡ RoH

2
o ≈ 6 ×

10−10/ms−2. Moreover, α is a dimensionless number with value 6 if we
work with a finite universe and integrate Weber’s law for gravitation until
Hubble’s radius Ro. If we work with Weber’s law and an exponential
decay in gravitation we can integrate up to infinity and in this case
α = 12.

The important aspect of this result is that only ratios of gravitational
masses, of distances and of accelerations are relevant here. Doubling
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the earth’s gravitational mass while keeping the characteristic gravita-
tional mass Mgo of the distant universe unaltered is equivalent of keeping
the earth’s gravitational mass unaltered while halving the characteristic
gravitational mass of the distant universe. In both cases the acceleration
of free fall doubles compared to its present value of 9.8 m/s2. Halving the
distance between the center of the earth and the test body increases four
times the acceleration of free fall. According to the expression above, the
same will happen by keeping ao, Mge, Mgo, r unaltered and doubling Ro.
Values as small as ao happen on a cosmological scale in the centripetal
acceleration of rotating galaxies. This may indicate that gravitational
effects locally are connected with the rotation of distant galaxies. For
instance, doubling the rotation of all galaxies in the universe may dou-
ble the acceleration of free fall near the surface of the earth. Or maybe
ao may represent the average acceleration of all bodies in the universe
relative to the universal frame of reference U . Comparing the equation
above with those of classical mechanics we can see that the gravitational
constant G can be seen as a function of the cosmological properties of
the universe, namely: G = 3c2/(2απρgoR2

o). All of these aspects are in
consonance with the PPP.

With this example we can also illustrate the physical content of the
PPP. Historically Galileo discovered first that the acceleration of free fall
near the surface of the earth is independent of the weight or chemical
composition of the falling bodies. Later on Newton showed that it is pro-
portional to the mass of the attracting body. But we could imagine these
discoveries being made in the reverse order. That is, in the first place
scientist A could discover that the acceleration of free fall is proportional
to the mass of the attracting body. According to the PPP we could then
write this law as: a1/ao = me/mo, where a1 is the acceleration of the
test body of mass m1, me represents the gravitational mass of the attact-
ing body, and ao and mo would be the acceleration and masses of other
bodies yet to be determined. In this form the equation is compatible
with the PPP, but it is not yet complete because we still did not identify
the bodies to which mo and ao refer to (comparing the first statement
of the PPP, we still do not “know” these quantities). One reasonable
suspect for the mass mo would be that mo = m1, that is, to suppose
that it refers to the mass of the test body. But following the paths of
Galileo or by independent experimental researches it would be shown
that the acceleration of free fall does not depend on the mass of the test
body, so eliminating this suspect. As the two obvious candidates (the
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attracting and the test bodies) have already been considered, it would
only remain the distant bodies in the universe. That is, somehow mo

must be a representative mass of the distant stars and galaxies. As we
have seen, relational mechanics shows that this is indeed the case.

We now consider the figure of the earth. The flattening of the earth
according to relational mechanics is given by [17, Sections 8.5 and 9.5.1]

f ≡ R> −R<

R<
≈ 5α

8
ω2
eU

H2
o

ρgo
ρge

. (9)

As the values of Hubble’s constant and of the average matter density of
the universe are not yet known with great precision, it is not possible
to give an exact value for the ratio above. But the order of magnitude
is compatible with the observed value of 0.004. We can also utilize that
this is the observed value of f and in this way (together with the known
value of the angular rotation of the earth relative to the distant galaxies
and together with the known matter density of the earth) derive the
value of 5αρgo/8H2

o .
But here what we want to emphasize are the Machian aspects of this

result. The first one is that the angular rotation ωeU which appears in
relational mechanics is the angular rotation of the earth relative to the
distant universe (that is, relative to the frame of distant galaxies). It is
no longer to be understood as the angular rotation of the earth relative
to empty space. According to relational mechanics there will be the
same flattening of the earth no matter if the earth rotates relative to an
arbitrary reference frame while the distant universe remains stationary
in this frame, or if the distant universe rotates in the opposite direction
relative to this frame of reference while the earth remains stationary
in this frame, provided the quantitative relative rotation between the
earth and the distant universe is the same in both cases. The flattening
of the earth cannot be considered anymore as a proof of the real or
absolute rotation of the earth. Relational mechanics is not the only
theory which implements this effect. The same can be said of another
reformulation of mechanics due to Barbour and Bertotti, [51], [52] and
[53]. Their approach involves relational quantities, intrinsic derivatives
and the relative configuration space of the universe. They follow now
more closely the approach of general relativity, see [54]. For a discussion
of other approaches to implement Mach’s principle with many references,
see [17, Chapt. 11].
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The second Machian aspect is that this flattening depends on the
ratio of densities of the distant universe and of the earth. We can in-
crease the flattening decreasing the density of the earth or increasing the
density of the distant universe (supposing in both cases a constant an-
gular rotation ωeU ). When the gravitational mass density of the distant
universe goes to zero, the same happens with flattening of the earth.
This is completely reasonable because in this case there would be only
the earth in the universe and it is then meaningless to speak of its rota-
tion (it would be rotating relative to what?), consequently its flattening
should disappear. This happens only in relational mechanics, but not
in classical mechanics. Only ratios of known quantities are important
here. Gravitational mass or gravitational matter density are not absolute
quantities in relational mechanics. The last aspect to be considered here
is the ratio of the angular rotation of the earth and Hubble’s constant.
If we double the rotation of the earth relative to the distant universe,
the flattening increases four times as it is proportional to the square of
the angular rotation of the earth. To say that the rotation of the earth
increased we must compare it with something else (for instance, with a
clock). The same result should appear if the earth did not change its
rate of rotation (relative to an arbitrary standard), but all other motions
in the universe became slowed by a factor of 2 (relative to the same arbi-
trary standard). This means that Hubble’s constant must somehow be
like an average frequency of oscillation and/or rotation of the matter in
the universe; or the angular rotation of the characteristic cosmological
gravitational mass Mgo relative to the very distant universe; or ... If we
decrease by two all of these frequencies (except the frequency of rotation
of the earth relative to the distant universe), Hubble’s constant is divided
by 2 compared with its present value and the flattening increases four
times, as in the previous situation. This happens in relational mechan-
ics but not in classical mechanics. Doubling all frequencies (including
ωeU and Ho) does not change f . All of these are physically reasonable
results.

At present there are no conflicts of relational mechanics with known
observations. Possible experimental tests to be performed in the future
were presented in [17, Section 10.4]. They include a controlled change in
the effective inertial mass of a body inside a massive spherical shell, the
detection of anisotropic effective inertial masses of bodies surrounded
by anisotropic distribution of distant masses, detection of geodetic and
motional precession of gyroscopes (see also [55] and [56]), and to test
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if there is or not an exponential decay in gravitation. It should be re-
marked that according to Weber’s electrodynamics the effective inertial
mass of a charged body should change if it is placed inside a stationary
and uniformly charged spherical shell, but nothing of this should hap-
pen according to Maxwell’s equations or to Lorentz’s force. This effect is
analogous to an electrical Mach’s principle and was quantitatively pre-
dicted in [57] and [58]. To our knowledge the first experiments to test
the existence of this effect were performed by Mikhailov, [59] and [60].
The magnitude and sign of the effect he detected coincided with those
predicted by Weber’s electrodynamics. According to Costa de Beaure-
gard and Lochak, if Mikhailov’s experiment be confirmed by independent
researches it may become a “landmark”, [61].

6 Applications to Other Situations

We now consider the application of the PPP to situations involving dif-
ferent physical concepts. We do not know how to implement the principle
in these new situations. But we wish to show the consequences of the
principle in order to motivate the search for a way to implement it.

We first analyse electrostatics. Consider two charges q1 and q2 of
the same sign repelling one another. We can keep them separated at
a constant distance d applying an external force, for instance, placing
a dielectric spring of elastic constant k and relaxed length �o between
them. By equating the coulombian force with the elastic force k(d− �o)
we obtain that the fractional displacement f of the spring is given by

f ≡ d− �o
�o

=
q1q2

4πεod2�ok
. (10)

Here εo = 8.85 × 10−12 C2s2/kgm3 is called the vacuum permittivity.
Doubling the value of the two charges increases f four times. The frac-
tional displacement should also increase four times according to the PPP
by keeping q1 and q2 unaltered but halving all other charges in the uni-
verse (that is, the charges of all atoms and molecules of the spring, of the
earth and of all other bodies of the universe, except q1 and q2). However,
this consequence is not implemented in present theories, indicating that
they must be incomplete. The influence may be completely local (halv-
ing all the charges of the spring and distant galaxies changes only the
elastic constant to k/4, without affecting εo), completely cosmological
(halving all the charges of the spring and of all astronomical bodies does
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not change k but only the vacuum permittivity to εo/4), or a mixture of
both effects (halving all the charges of the spring and of all astronomical
bodies affects the elastic constant and the vacuum permittivity, their
new values becoming k/2 and εo/2, for instance).

Suppose now we remove the spring, releasing the charges. They will
then be accelerated in opposite directions. According to classical me-
chanics the value of the initial acceleration of q1 relative to absolute space
or to an inertial frame of reference is given by: a1 = q1q2/4πεod2mi1,
where mi1 is the inertial mass of body 1. Doubling q1 and q2 relative to
an arbitrary standard increases the acceleration of q1 four times. The
same should happen by maintaining q1 and q2 unaltered but diving by
two (compared to the same arbitrary standard) all other charges in the
universe. But the increase of a1 in this second situation is not repre-
sented by this law, as no other charges are involved on it. This means
that electrical charges are absolute concepts in classical physics. The
value of a1 depends on q1q2 and not on the ratio of these charges to
other known charges in the universe. In order to implement the PPP
it would be necessary to find other charges built in (or hidden in) the
product εomi1. Maybe these are the microscopic charges composing the
inertial masses mi1 and mi2 (that is, the charges composing the atoms
or molecules of bodies 1 and 2), or the charges composing the stars and
galaxies of the distant universe. Anyhow the PPP has not yet been
implemented in this case.

According to relational mechanics the value of the acceleration of q1
relative to the universal frame of reference is given by, [17, Section 8.5,
Eqs. (8.42) to (8.44)]:

a1U =
q1q2

4πεod2mg1
. (11)

Here mg1 is the gravitational mass of body 1. In relational mechanics
there appears only gravitational masses, being inertial mass a derived
concept which arises only when we compare relational mechanics with
classical mechanics. This acceleration increases four times by doubling
q1 and q2. The same must happen by keeping q1 and q2 unaltered but
halving all other charges in the universe (that is, halving the charges of
all atoms and molecules of distant galaxies, and halving the microscopic
charges composing the molecules of bodies 1 and 2). Again the effect
may be totally cosmological (affecting only the vacuum permittivity),
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totally local (affecting only the gravitational masses mg1 and mg2) or
a mixture of both effects (affecting the vacuum permittivity and both
gravitational masses).

One example of how the gravitational mass of a body may depend
on its microscopic constituent charges was given in [62] and in [63].
The Newtonian gravitational force between two bodies of gravitational
masses mg1 and mg2 was derived as a residual electromagnetic force aris-
ing from the interaction between the neutral oscillating dipoles compos-
ing body 1 and the neutral oscillating dipoles belonging to body 2, where
each dipole consisted of a negative charge oscillating around a positive
one. The gravitational mass of each body was then found proportional
to the number of oscillating dipoles composing it and to q2/εo, where q
represents the positive (or negative) charge of each neutral dipole. With
this model it is possible to implement the PPP for charges.

Another situation is Ampère’s force between electrical circuits car-
rying currents I1 and I2, proportional to I1I2. As the currents are pro-
portional to the drifting velocities of the electrons, we can increase the
force four times by doubling these drifting velocities. The consequences
of this effect can be seen statically (an increase in the tension of a spring
holding the two circuits at a constant distance) or dynamically (an in-
crease in the acceleration of the two circuits when the spring is released).
The same consequences must happen by keeping I1 and I2 unaltered but
making all other bodies in the universe move with half their present value
velocities. As the modern theories do not implement this property, they
must be incomplete.

Consider now the equation of state of an ideal gas, PV = NkBT .
This equation does not satisfy the PPP. The equation of an ideal
gas satisfying this principle should take the form (P/Po)(V/Vo) =
a(N/No)(T/To), where a is a dimensionless number and Po, Vo, No,
To are local and/or cosmological pressures, volumes, number of parti-
cles and temperature. When the theory leading to this new equation is
found, it will be possible to relate Boltzmann’s constant to the proper-
ties (like pressure, density and temperature) of the local or cosmological
environment. For instance, relational mechanics showed that the uni-
versal constant of gravitation G is proportional to H2

o/ρgo. This shows
that it is not a constant anymore, but a function of the properties of
the distant universe. Something analogous should hold for Boltzmann’s
constant. The new equation describing the behaviour of an ideal gas will
be different to the present one. But not only that, we will also gain a
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new understanding of the law, perceiving new connections of the local
properties of a gas with the distant universe. For instance, if a fixed
number of atoms is enclosed in a fixed volume and we increase its tem-
perature four times, the pressure of the gas according to the new law
will also increase four times, as it happens according to the present law.
But when the new law is obtained it will be possible to show that we can
also increase the gas pressure four times (as indicated, for instance, by
a manometer) by keeping its temperature, volume and number of parti-
cles constant, while simultaneously dividing by four the temperature of
the distant bodies in the universe (stars and galaxies). The same can
be said as regards the volume and number of particles in the gas or in
the distant universe. That is, if some effect is measured locally when
we change the pressure, volume, number of atoms or temperature of the
gas; it will be possible to show when we have a complete theory that the
same effect will also happen when the opposite change is perfomed in
the distant cosmos.

The same can be said of almost all relations in physics. Other univer-
sal constants like light velocity in vacuum, Planck’s constant etc. must
all be functions of properties of the distant universe (macroscopic re-
lations) or of the local particles (microscopic relations). In this regard
we can see that this principle has some relations with Dirac’s great cos-
mological numbers (or variation of the universal constants), [64]. By
observing several dimensionless numbers of the order of 1039, like the
ratio of the electric to the gravitational force between an electron and a
proton, or the ratio of Hubble’s time to a unit of time fixed by the con-
stants of atomic theory, Dirac supposed that they should be related to
one another. In his words, “such a coincidence we may presume is due to
some deep connexion in Nature between cosmology and atomic theory.”
His new principle of cosmology was stated as follows: “Any two of the
very large dimensionless numbers occuring in Nature are connected by a
simple mathematical relation, in which the coefficients are of the order
of magnitude unity.”

The principle of physical proportions presented here may help to
elucidate the connexion between the atom and the cosmos perceived by
Dirac, as it offers directions of where to find this deeper understanding
of nature.
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Kräfte und Webers Elektrodynamik. Fusion, 16:15–17, 1995.

[45] E. T. Kinzer and J. Fukai. Weber’s force and Maxwell’s equations. Foun-
dations of Physics Letters, 9:457–461, 1996.

[46] J. Fukai and E. T. Kinzer. Compatibility of Weber’s force with Maxwell’s
equations. Galilean Electrodynamics, 8:53–55, 1997.

[47] A. K. T. Assis, W. A. Rodrigues Jr., and A. J. Mania. The electric field
outside a stationary resistive wire carrying a constant current. Founda-
tions of Physics, 29:729–753, 1999.



The Principle of Physical Proportions 171

[48] A. G. Kelly. Experiments on unipolar induction. Physics Essays, 12:372–
382, 1999.

[49] M. d. A. Bueno and A. K. T. Assis. Inductance and Force Calculations
in Electrical Circuits. Nova Science Publishers, Huntington, New York,
2001. ISBN: 1-56072-917-1.

[50] J. Guala-Valverde, P. Mazzoni, and R. Achilles. The homopolar motor:
A true relativistic engine. American Journal of Physics, 70:1052–1055,
2002.

[51] J. B. Barbour. Relative-distance Machian theories. Nature, 249:328–329,
1974. Misprints corrected in Nature, vol. 250, p. 606 (1974).

[52] J. B. Barbour and B. Bertotti. Gravity and inertia in a Machian frame-
work. Nuovo Cimento B, 38:1–27, 1977.

[53] J. B. Barbour and B. Bertotti. Mach’s principle and the structure of
dynamical theories. Proceedings of the Physical Society of London A,
382:295–306, 1982.

[54] J. B. Barbour and H. Pfister (editors). Mach’s Principle: From Newton’s
Bucket to Quantum Gravity. Birkhäuser, Boston, 1995.
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