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ABSTRACT. Weber’s electrodynamics is utilized to model supercon-
ductivity. We show that it successfully reproduces well known super-
conducting effects like the London moment, the Meissner effect and the
London penetration depth. The calculations presented here have the
advantage to include the mass of the free electrons where they belong,
namely, in Newton’s second law of motion.
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1 Introduction

In this work we utilize Weber’s electrodynamics to model superconduc-
tivity. As there is no resistance in superconductors, free electrons will
be accelerated under the action of electromagnetic forces. After the ex-
ternal force is removed, any acquired velocity will continue indefinitely
with its constant magnitude.

We first consider the London moment, namely, the magnetic moment
acquired by a rotating superconductor. When we rotate a superconduct-
ing body relative to an inertial frame of reference with an angular veloc-
ity ~Ω, a magnetic field ~B = 2m~Ω/e is developed throughout its interior,
where m = 9.1× 10−31 kg > 0 and e = 1.6× 10−19 C > 0 represent the
magnitude of the electron’s mass and charge, respectively.
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We then consider the Meissner effect [1]. Experiments show that the
net magnetic field inside superconductors in the presence of an external
applied magnetic field decreases exponentially from the surface inwards
with a characteristic length called London penetration depth, λL. A
surface current is induced in the superconductor material creating an
induced magnetic field inside it which completely opposes the external
applied magnetic field. This phenomenon is called the Meissner effect.

It is shown here how to deduce these two effects, the London mo-
ment and the Meissner effect, from Weber’s force coupled with Newton’s
second law of motion. The usual theoretical treatment of these subjects
is based on the works of Becker, London and co-authors [2, 3, 4, 5]. In
these earlier works the mass of the free electrons was introduced ad hoc
in purely electrodynamic equations describing the magnetic field of the
superconducting material. In the model presented in this work, on the
other hand, the mass of the test particle appears where it really belongs,
namely, in Newton’s second law of motion. This is the main advantage
of the present calculations.

The existence or not of an electric field penetration depth in super-
conductors will not be considered in the present work [6, 7]. It should be
emphasized that the London equations and the Meissner effect can also
be derived in purely classical terms based on the principle of minimum
action [8, 9].

2 Weber’s Force

Consider an inertial frame of reference S with origin O and a point
particle 1 electrified with charge q1. Let ~r1 = x1x̂ + y1ŷ + z1ẑ be its
position vector relative to the origin O of S, while ~r2 = x2x̂ + y2ŷ + z2ẑ
is the position vector of another point particle 2 electrified with charge
q2. The velocities and accelerations of these charges in S are given by,
respectively: ~v1 = d~r1/dt, ~v2 = d~r2/dt, ~a1 = d~v1/dt = d2~r1/dt2 and
~a2 = d~v2/dt = d2~r2/dt2.

The position vector pointing from q2 to q1 will be defined by ~r12 ≡
~r1 − ~r2 ≡ ~r. We also define in this reference frame the relative vector
velocity ~v12 and the relative vector acceleration ~a12 by the following
expressions: ~v12 ≡ ~v1−~v2 and ~a12 ≡ ~a1−~a2. The charges are separated
by a distance r12 ≡ r ≡

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. The unit

vector r̂ pointing from 2 to 1 can be written as r̂12 ≡ r̂ ≡ (~r1 − ~r2)/r.
In the International System of Units and in vector notation Weber’s
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force ~F21 exerted by particle 2 on particle 1 is given by [10, 11, 12, 13,
14, 15]:

~F21 = −~F12 =
q1q2

4πεo

r̂

r2

(
1− ṙ2

2c2
+

rr̈

c2

)

=
q1q2

4πεo

r̂

r2

[
1 +

1
c2

(
~v12 · ~v12 −

3
2

(r̂ · ~v12)
2 + ~r12 · ~a12

)]
. (1)

Here ~F12 is the force exerted by q1 on q2, ṙ ≡ dr/dt is the relative radial
velocity between them, while r̈ ≡ dṙ/dt = d2r/dt2 is the relative radial
acceleration between the charges. In vector notation these magnitudes
can be written as: ṙ = r̂ ·~v12 and r̈ =

[
~v12 · ~v12 − (r̂ · ~v12)2 + ~r12 · ~a12

]
/r.

The constant c ≡ 1/
√

µoεo = 2.998×108 m/s is the ratio of electromag-
netic and electrostatic units of charge. Its experimental value was first
determined by W. Weber and R. Kohlrausch. Its value is the same as
light velocity in vacuum.

In this work we will be dealing with neutral materials, so that the
electrostatic or coulombian component of equation (1), q1q2r̂/(4πεor

2),
will not need to be considered in the calculations. For the London mo-
ment, the superconductor material is rotated mechanically relative to the
laboratory with velocities of the order of meters per second. The con-
duction electrons will acquire velocities of the same order of magnitude,
so that v1 � c and v2 � c, where v1 ≡ |~v1| and v2 ≡ |~v2|. Therefore, the
velocity components of Weber’s force (1) will be very small compared
to light velocity and will be neglected in the following calculations. The
only remaining term of Weber’s force which will need to be considered
here is the last component depending on the accelerations ~a1 and ~a2,
namely:

~F21 =
q1q2

4πεo

r̂

r2

~r12 · ~a12

c2
=

µoq1q2

4π

r̂

r
(r̂12 · ~a12) . (2)

3 The London Moment
The London moment was predicted by Becker, London and others con-
sidering two cases: (I) a superconducting body set into rotation relative
to an inertial frame of reference, and (II) a rotating normal metal cooled
into the superconducting state while rotating [2], [5, pp. 78-83] and [16].
In this work we consider case (I) with two geometries, namely, a rotating
cylindrical shell and a rotating spherical shell.
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3.1 Rotating Cylindrical Shell

We first consider a superconducting cylindrical shell of radius R2 and
infinite length with its axis along the z axis. We suppose it is com-
posed of a single monoatomic layer of superconducting material. This
assumption is utilized to illustrate clearly what are the source charges
producing the effect, the net forces they exert on the test charges and the
resulting motion of these free electrons. Arguments have already been
presented to show that if the London penetration depth (usually tens of
nanometers) is much larger than the thickness of the shell (monoatomic
in this first model, that is, of the order of one ångström), then there
will be no London moment [17]. In Subsections 4.2, 5.1 and 5.2 we will
expand the monoatomic layer model to a model with many layers and
to a more realistic model of a continuous superconducting body with a
finite thickness.

The cylindrical shell is assumed to be electrically neutral, being com-
posed of a positive lattice with surface charge density σ2+ ≡ σ2 > 0 and
a set of free electrons with surface charge density σ2− = −σ2. The
positive lattice will be identified with the macroscopic superconducting
sample, so that when we say that the superconductor is rotating with an
angular velocity ~Ω2, the lattice is assumed to rotate with the same ve-
locity, namely, ~Ω2+ ≡ ~Ω2. We assume that the positive cylindrical shell
and the conduction electrons are initially at rest relative to the inertial
frame of reference S. In the time interval from t = 0 to the final value
t = tf the superconducting material is rotated mechanically around the
z axis with a variable and given angular velocity ~Ω2+(t) = Ω2+(t)ẑ, until
it reaches a final and constant angular velocity ~Ω2+f = Ω2+f ẑ. Our goal
is to calculate for 0 < t < tf Weber’s force exerted by this positive cylin-
drical shell acting on a test free electron located at a distance ρ from the
axis of the shell, figure 1. We then apply Newton’s second law of motion
in order to deduce the corresponding motion induced in the conduction
electron. That is, we assume that when we rotate the superconducting
material, only part of the body (lattice plus bound electrons) does indeed
rotate with the material. The free electrons, on the other hand, don’t
rotate together with the lattice because they don’t feel any friction. In
our model the free electrons will be dragged behind the positive lattice
due to the action of an induced Weber-force exerted by the lattice.

Consider an element of source charge dq2 of the cylindrical shell
having a surface charge density σ2 and area da2. In cylindrical coor-
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Figure 1: Particle with charge q1 at a distance ρ1 from the axis of a
cylindrical shell of length ` and radius R2 rotating relative to the inertial
frame of reference S with an angular velocity Ω2(t) around the z axis.

dinates da2 = R2dϕ2dz2, where ϕ is the azimuthal angle. Therefore,
dq2 = σ2da2 = σ2R2dϕ2dz2. When the cylindrical shell is rotating with
angular velocity Ω2(t) around the z axis, the position vector, velocity
and acceleration of this element of charge are given by, respectively:
~r2 = R2ρ̂2 + z2ẑ, ~v2 = R2Ω2ϕ̂2 and ~a2 = −R2Ω2

2ρ̂2 + R2Ω̇2ϕ̂2, where
ρ̂2, ϕ̂2 and ẑ are the unit vectors of cylindrical coordinates at the loca-
tion of dq2, while Ω̇ ≡ dΩ/dt. The test charge q1 will be a conduction
electron belonging to this cylindrical shell. It may also have centripetal
and tangential components of its acceleration. We assume that contact
forces maintain the conduction electrons at a constant distance ρ1 = R2

from the axis of the cylinder, so that ρ̇1 = 0 and ρ̈1 = 0. We consider
the test charge located at z1 = 0. We assume that it will move along the
tangential direction ϕ with an angular velocity ω1(t). Its position vec-
tor, velocity and acceleration are then given by, respectively: ~r1 = ρ1ρ̂1,
~v1 = ρ1ω1ϕ̂1 and ~a1 = −ρ1ω

2
1 ρ̂1 + ρ1ω̇1ϕ̂1, where ω̇1 ≡ dω1/dt. Equa-

tion (2) yields the force exerted by the source charge dq2 acting on the
conduction electron q1.

Integrating equation (2) over the surface of the cylindrical shell yields
the following net force acting on the test electron along the tangential
or azimuthal direction ϕ̂1:

~F =
∫ ∞

z2=−∞

∫ 2π

ϕ2=0

µoq1dq2

4π

r̂

r
(r̂12 · ~a12)
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=


−µoq1σ2R2(Ω̇2 − ω̇1)ρ1ϕ̂1/2 , if ρ1 < R2 ,

−µoq1σ2R2(Ω̇2 − ω̇1)R2ϕ̂1/2 , if ρ1 = R2 ,

−µoq1σ2R2(Ω̇2 − ω̇1)R2
2ϕ̂1/(2ρ1) ,if ρ1 > R2 .

(3)

The calculation with ρ1 = R2 and Ω̇2 = 0 had already been presented
before [18].

We now apply Newton’s second law of motion to a conduction elec-
tron located at ρ1 = R2 and moving only along the azimuthal direction,
namely:

~F = m1~a1 = mR2ω̇1ϕ̂1 . (4)

Here ~F represents the total force acting on the test electron with inertial
mass m1 ≡ m = 9.1× 10−31 kg. We are considering only the azimuthal
component of this force along the ϕ direction, as contact forces prevent
the electron from moving along the radial ρ direction.

There are two sets of charges exerting forces on any specific conduc-
tion electron, namely, (a) the positive lattice rotating around the z axis
with angular velocity Ω2+(t); and (b) all the other conduction electrons
rotating around the z axis with angular velocity ω1−(t). These forces
exerted by the positive and negative charges of the cylindrical shell and
acting on any specific test electron with charge q1 = −e < 0 will be rep-
resented by ~F2+,−e and ~F2−,−e, respectively. As all conduction electrons
rotate together around the z axis, we have ṙ = 0 and r̈ = 0 for any
pair of electrons. Therefore, there will be no net component along the
azimuthal direction acting on any specific conduction electron due to all
the other conduction electrons, so that ~F2−,−e = ~0. The net force ~F
acting on any conduction electron will be then due only to the rotating
positive lattice of the shell, that is, ~F = ~F2+,−e + ~F2−,−e = ~F2+,−e.

We now combine Newton’s second law of motion, that is, equation
(4), with equation (3) for ρ1 = R2. Considering the force of the positive
lattice acting on a conduction electron we obtain the following equation
of motion:

−µoq1σ2R2(Ω̇2+ − ω̇1−)R2

2
ϕ̂1 = mR2ω̇1−ϕ̂1 , (5)

or
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ω̇1− =
|mWc|

m + |mWc|
Ω̇2+ , (6)

where q1 ≡ −e < 0. Here e = 1.6×10−19 C > 0 represents the magnitude
of the charge of the electron, while |mWc| ≡ µoeσ2R2/2 > 0 represents
the magnitude of the so-called weberian electromagnetic mass for this
cylindrical geometry [18, 19].

Equation (6) shows that ω̇1− is proportional to Ω̇2+ at any time t
during the time interval 0 < t < tf . Therefore, ω1−(t) will also be pro-
portional to Ω2+(t), no matter how Ω2+ changes with time. Assuming
that the shell and the test electrons begin at rest, Ω2+(0) = ω1−(0) = 0,
then the final value of ω1−, represented by ω1−(tf ) ≡ ω1−f , will be pro-
portional to the final angular velocity of the positive lattice represented
by Ω2+(tf ) ≡ Ω2+f , that is:

ω1−f =
|mWc|

m + |mWc|
Ω2+f . (7)

This equation is valid no matter how fast the superconducting shell
reaches its final angular velocity. It can reach Ω2+f in 1 second or in 1
hour. It will also be valid if the angular velocity of the shell grows lin-
early, sinusoidally or with any other function of time. That is, the final
value of the angular velocity of the conduction electrons will be indepen-
dent of the history of how the rotating shell reached its final value. The
final state, namely, the final angular velocity of the conduction electrons
ω1−f , will not depend on the history to get there. In conclusion, ω1−f

will not depend on how Ω2+(t) changed with time. It will only depend
on the final value Ω2+f acquired by the superconductor material.

In any macroscopic material we have |mWc| � m. For instance, in
the case of a niobium cylindrical shell of radius R2 = 0.1 m and surface
charge density σ2 ≈ 2 C/m2, we have |mWc| ≈ 2 × 10−25 kg, which
is some five orders of magnitude larger than the inertial mass of a free
electron. With this condition equation (7) can be approximated to

ω1−f ≈
(

1− m

|mWc|

)
Ω2+f , (8)

where m/|mWc| � 1.
Therefore, according to Weber’s electrodynamics, when we rotate a

superconducting shell clockwise, the positive charges of the lattice will
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exert a clockwise force on the conduction electrons making them move
in the same direction as the lattice. However, the inertial mass of the
electrons will make them lag slightly behind the positive lattice, figure
2 (a).

+
_W

2+f

w
1-f

R2

O

B = 0ext

B = 2mint W2+f
e

B = msur W2+f
e

(a) (b)

Figure 2: (a) When the positive lattice of the superconducting cylindrical
shell is rotated around the z axis with an angular velocity Ω2+f , it causes
the set of conduction electrons to rotate in the same sense with a slightly
smaller angular velocity ω1−f = (1 − m/|mWc|)Ω2+f . (b) Magnetic
field ~B inside, at the surface and outside a rotating superconducting
cylindrical shell.

As is well known, the magnetic field ~B(ρ) at a distance ρ from the axis
of a cylindrical shell of radius R and surface charge density σ rotating
uniformly around the z axis with an angular velocity Ωẑ is given by:

~B(ρ < R) ≡ ~Bint = µoRσΩẑ ,
~B(ρ = R) ≡ ~Bsur = µoRσΩẑ/2 ,
~B(ρ > R) ≡ ~Bext = ~0 .

 (9)

Here ~Bint is the internal magnetic field at ρ < R, ~Bsur is the magnetic
field at the surface ρ = R, while ~Bext is the external magnetic field at
ρ > R.

We can now calculate the magnetic field of the rotating supercon-
ducting cylindrical shell of radius R2 composed of a positive lattice with
surface charge density σ2+ ≡ σ2 > 0 rotating around the z axis with
an angular velocity Ω2+f , combined with a set of free electrons having
a negative surface charge density σ2− = −σ2 and rotating around the z
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axis with an angular velocity ω1−f = (1 −m/|mWc|)Ω2+f . For ρ < R2

equation (9) yields:

~B(ρ < R2) ≡ ~Bint = µoR2σ2Ω2+f ẑ − µoR2σ2ω1−f ẑ

= µoR2σ2Ω2+f ẑ − µoR2σ2

(
1− m

|mWc|

)
Ω2+f ẑ

=
µoR2σ2m

|mWc|
Ω2+f ẑ =

2m

e
Ω2+f ẑ . (10)

Similar calculations yield the magnetic field at ρ = R2 as given by
~B(ρ = R2) ≡ ~Bsur = mΩ2+f ẑ/e, while the external magnetic field goes
to zero for ρ > R2, that is, ~B(ρ > R2) ≡ ~Bext = ~0, figure 2 (b). It is
normally assumed that the magnetic field throughout a superconductor
has the value ~B = 2m~Ω/e. Our new result indicates that in the cylindri-
cal shell model with a single monolayer this value of the magnetic field
will be valid only inside the superconductor, being zero outside it and
having half of this value at its surface. In the next model of a super-
conducting spherical shell we will show that the radial component of the
magnetic field is continuous at the surface of the material, while only
the component parallel to the surface will be discontinuous.

Equation (10) is exactly the London moment, which has been exper-
imentally verified many times [20]. It indicates that the magnetic field
points in the same sense as the angular rotation of the superconducting
material. That is, the produced magnetic field is parallel to the angular
velocity of the positive lattice.

3.2 Rotating Spherical Shell

We now consider the same problem in the configuration of a supercon-
ducting spherical shell of radius R2 centered on the origin of the co-
ordinate system with the shell initially at rest in the inertial frame of
reference S. The positive lattice of this shell has a surface charge den-
sity σ2+ ≡ σ2 > 0, while the negative conduction electrons have an
equal and opposite surface charge density, namely, σ2− = −σ2. The
conduction electrons at this shell are also considered initially at rest.
We then rotate the positive lattice in the time interval 0 < t < tf
around the z axis until it reaches the final and constant angular veloc-
ity ~Ω2+f = Ω2+f ẑ. The test particle with charge q1 will be located at
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~r1 = r1r̂1 = r1 (sin θ1 cos ϕ1x̂ + sin θ1 sinϕ1ŷ + cos θ1ẑ). Here we are uti-
lizing spherical coordinates (r, θ, ϕ) with the angular velocity ϕ̇ ≡ ω,
figure 3.

W2

R2

r1

z

x

y

q

j

Figure 3: Particle with charge q1 at the position vector ~r1 relative to the
origin of a spherical shell of radius R2 which rotates around the z axis
with an angular velocity Ω2.

We assume that contact forces will keep the mobile conduction elec-
tron at a constant distance r1 = R2 from the center of the shell, so that
ṙ1 = 0 and r̈1 = 0. When we rotate the shell relative to the inertial frame
of reference S, there will arise centrifugal forces pointing away from the
z axis of rotation, analogous to the forces acting on the Earth while it
is spinning daily around its axis relative to the frame of fixed stars and
causing its flattening at the poles. This effect will cause a redistribution
of charges of the spherical shell around the polar θ direction, with free
electrons accumulating around the equator. This equatorial accumula-
tion of charges will stop when the coulombian forces generated by this
excess of negative charges at the equator balance the centrifugal force
generated by the rotation of the shell. In this stable configuration there
will be no motion of the conduction electrons along the polar θ direction,
so that θ̇1 = 0 and θ̈1 = 0. It can be shown that this redistribution of
charges is negligible due to the large value of the electrostatic force when
compared with the centrifugal force. Therefore we will not consider this
effect in this work, assuming that the surface density of free electrons
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in the stable configuration will be equal and opposite the surface charge
density of the positive lattice. That is, we assume that the surface charge
density of the conduction electrons will be given by −σ2, no matter the
value of the polar angle θ. We will concentrate our analysis in the motion
of the test electrons along the azimuthal ϕ direction.

The velocity and acceleration of the test particle relative to the
inertial frame of reference S are then given by, respectively, ~v1 =
r1ω1 sin θ1ϕ̂1 and ~a1 = −r1ω

2
1 sin2 θ1r̂1−r1ω

2
1 sin θ1 cos θ1θ̂1+r1ω̇1 sin θ1ϕ̂1.

An element of source charge dq2 of the spherical shell with surface charge
density σ2 and area da2 is given by dq2 = σ2da2 = σ2R

2
2 sin θ2dθ2dϕ2.

Its position vector, velocity and acceleration are given by, respectively:

~r2 = R2r̂2 = R2 (sin θ2 cos ϕ2x̂ + sin θ2 sinϕ2ŷ + cos θ2ẑ) , (11)

~v2 = R2Ω2 sin θ2ϕ̂2 , (12)
and

~a2 = −R2Ω2
2 sin2 θ2r̂2 −R2Ω2

2 sin θ2 cos θ2θ̂2 + R2Ω̇2 sin θ2ϕ̂2 . (13)

We integrate equation (2) over the surface of the spherical shell in
order to obtain the force exerted by the shell on a test particle with
charge q1. This integration yields [21] [15, Appendix B]:

~F (r1 ≤ R2) =
∫ π

θ2=0

∫ 2π

ϕ2=0

µoq1dq2

4π

r̂

r
(r̂12 · ~a12)

=
µoq1σ2R2

3

[
~a1 + ~Ω2 ×

(
~Ω2 × ~r1

)
− d~Ω2

dt
× ~r1

]
, (14)

~F (r1 > R2) = µoq1σ2

{
R2

2

r2
1

(~r1 · ~a1) r̂1 +
R4

2

r4
1

[
r1~a1

3
− (~r1 · ~a1) r̂1

+
r1

3

(
~Ω2 · ~r1

)
~Ω2 +

r2
1Ω

2
2

6
r̂1 −

(
~r1 · ~Ω2

)2

2
r̂1 +

r1

3

(
~r1 ×

d~Ω2

dt

)
 .

(15)
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The azimuthal components of equations (14) and (15) along the ϕ̂1

direction are given by, respectively:

~F =
{
−µoq1σ2R2r1 sin θ1(Ω̇2 − ω̇1)ϕ̂1/3 , if ρ1 ≤ R2 ,

−µoq1σ2R
4
2 sin θ1(Ω̇2 − ω̇1)ϕ̂1/(3r2

1) ,if ρ1 > R2 .
(16)

We now apply Newton’s second law of motion to a conduction elec-
tron with mass m1 = m > 0 and charge q1 = −e < 0 located at r1 = R2

and moving only along the azimuthal direction ϕ with angular velocity
ω1−. The azimuthal component of this equation can be written as:

~F = m1~a1 = mR2ω̇1− sin θ1ϕ̂1 , (17)

where ~F represents the net force acting on the conduction electron. Once
more there are two sets of charges exerting forces on any conduction
electron, namely, (a) the positive lattice rotating around the z axis with
angular velocity Ω2+(t); and (b) the remaining free electrons spread over
the spherical shell and rotating together with angular velocity ω1−(t).
As all electrons move together around the z axis, we have ṙ = 0 and
r̈ = 0 for any pair of electrons, so that there will be no net component of
the force along the azimuthal direction acting on any specific conduction
electron due to all the other conduction electrons. The only remaining
force acting on any conduction electron will be then the force due to the
rotating positive lattice of the shell.

Combining Newton’s second law of motion with equation (14) for
r1 = R2 and considering the azimuthal component of the force exerted
by the positive lattice acting on a conduction electron located at the
polar angle θ1 yields:

−µoq1σ2R
2
2 sin θ1

3
(Ω̇2+ − ω̇1−)ϕ̂1 = mR2ω̇1− sin θ1ϕ̂1 , (18)

or

ω̇1− =
|mWs|

m + |mWs|
Ω̇2+ , (19)

where the magnitude of the so-called weberian electromagnetic mass for
this spherical geometry is given by |mWs| ≡ µoeσ2R2/3 > 0. This
equation shows that ω̇1− will be always proportional to Ω̇2+, no matter
the value of the polar angle θ. Therefore, all conduction electrons will
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undergo the same azimuthal acceleration around the z axis, rotating
together as a rigid body.

Once more we have |mWs| � m for macroscopic situations. We can
then integrate equation (19) from the stationary initial value Ω2+(0) = 0
up to the final and constant angular velocity Ω2+f (tf ) = Ω2+f yielding
the final approximate result for the angular velocity of the conduction
electron as given by:

ω1−f ≈
(

1− m

|mWs|

)
Ω2+f , (20)

where m/|mWs| � 1.
For this spherical geometry we arrived at essentially the same result

obtained earlier in the configuration of the cylindrical geometry, namely,
equation (8). That is, by rotating the positive lattice, the positive ions of
the superconductor will generate an azimuthal force on the conduction
electrons inducing them to move in the same direction as the lattice.
The inertial mass of the electrons will make them lag slightly behind the
positive lattice.

Consider a spherical shell of radius R centered at the origin of a
coordinate system and uniformly charged with a surface charge density
σ. When this shell rotates uniformly around the z axis with an angular
velocity Ω, it produces a magnetic field given by [22, exercise 14-6, pp.
14-3 and 14-4], [23, pp. 61 and 250] and [24, pp. 229-230]:

~B(r < R) ≡ ~Bint = (2µoRσΩ/3)(cos θr̂ − sin θθ̂) = (2µoRσΩ/3)ẑ ,
~B(R) ≡ ~Bsur = µoRσΩ(4 cos θr̂ − sin θθ̂)/6 ,
~B(r > R) ≡ ~Bext = µoR

4σΩ(2 cos θr̂ + sin θθ̂)/(3r3) .


(21)

Here ~Bint is the internal magnetic field at r < R, ~Bsur is the surface
magnetic field at r = R, while ~Bext is the external magnetic field at
r > R.

The internal magnetic field is uniform, having the same magnitude
and direction anywhere inside the shell. Outside the shell we have a
dipolar magnetic field. The radial component of the magnetic field along
r̂ is continuous at the surface of the material. On the other hand, the
poloidal component along θ̂, parallel to the surface, will be discontinuous
at r = R.
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We can now calculate the magnetic field inside a rotating supercon-
ducting spherical shell of radius R2 composed of a positive lattice with
surface charge density σ2+ ≡ σ2 > 0 rotating around the z axis with
an angular velocity Ω2+f , combined with a set of free electrons having a
negative charge density σ2− = −σ2 and rotating around the z axis with
an angular velocity ω1−f = (1 −m/|mWs|)Ω2+f . From equations (20)
and (21) we obtain:

~B(r < R2) ≡ ~Bint =
2
3
µoR2σ2Ω2+f ẑ − 2

3
µoR2σ2

(
1− m

|mWs|

)
Ω2+f ẑ

=
2m

e
Ω2+f ẑ . (22)

Once more we obtained the London moment from Weber’s electrody-
namics combined with Newton’s second law of motion. This effect was
now obtained by rotating a superconducting spherical shell around its
axis. We showed that the magnetic field anywhere inside the rotating
superconductor will be given by 2m~Ω2+f/e.

4 The Meissner Effect

The Meissner effect was discovered by Meissner and Ochsenfeld in 1933
[1]. The net magnetic field inside a superconductor in the presence of
an external applied magnetic field goes to zero due to surface currents
induced in the material. This phenomenon has since then been observed
in two cases, namely, (I) applying a magnetic field in the presence of a
superconducting body, and (II) a normal metal cooled into the supercon-
ducting state in the presence of an applied magnetic field. In this work
we consider case (I) from the point of view of Weber’s electrodynamics
with two geometries, namely, cylindrical and spherical shells.

4.1 Two Cylindrical Shells

The first geometry to be considered here is the configuration with two
neutral cylindrical shells of infinite lengths and radii R1 and R2 > R1

concentric along the z axis. The outer shell is a normal conductor with
positive surface charge density σ2+ ≡ σ2 > 0 and negative surface charge
density σ2− = −σ2, while the inner shell is superconducting with positive
surface charge density σ1+ ≡ σ1 > 0 and negative surface charge density
σ1− = −σ1. All these charges are supposed initially at rest relative to
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the inertial frame of reference S. Our goal is to calculate the motion
induced in the conduction electrons of the inner shell when an external
azimuthal current is applied to the outer shell. We will also calculate the
net magnetic field produced inside the inner shell. We will assume that
the positive lattices of both shells remain stationary during the whole
process, as each atom has a mass much greater than that of an electron.
The conduction electrons of the outer shell will be accelerated by an
external source along the azimuthal direction during the time interval
0 < t < tf , moving around the z axis with a variable and given angular
velocity ~Ω2−(t) = Ω2−(t)ẑ. They begin at rest and at the end of this
time interval they will be moving with the final and constant angular
velocity Ω2−f ẑ.

As both shells are electrically neutral, the electrostatic or coulombian
component of equation (1), q1q2r̂/(4πεor

2), will not need to be consid-
ered in the calculations. In London moment we rotated mechanically
a superconductor. In the Meissner effect, on the other hand, the con-
ductor producing the applied magnetic field and the superconducting
material placed in this magnetic field remain at rest in the laboratory or
move with small velocities. The drifting velocities of the conduction elec-
trons in normal conductors have the order of magnitude of millimeters
per second. In superconducting materials the conduction electrons move
relative to the lattice with velocities v larger than this drifting velocity
of normal conductors, but still much smaller than light velocity. We can
then neglect the velocity components of Weber’s force (1). Therefore,
as it happened with the London moment, the only remaining compo-
nent of Weber’s force which will need to be considered here is the last
component depending on the accelerations ~a1 and ~a2, namely, equation
(2).

The test charge will be a conduction electron of the inner supercon-
ducting shell located at (ρ1, ϕ1, z1) = (R1, ϕ1, 0) which will rotate
around the z axis in the time interval 0 < t < tf with a variable angular
velocity dϕ1/dt ≡ ω1−(t) which needs to be calculated. There are four
sets of charges which might exert a force on any conduction electron of
the inner shell in the time interval 0 < t < tf , namely: (a) the sta-
tionary positive lattice of the outer shell with surface charge density σ2

and zero angular velocity Ω2+(t) = 0; (b) the set of negative conduc-
tion electrons of the outer shell with surface charge density −σ2 moving
with an angular velocity ~Ω2−(t) = Ω2−(t)ẑ; (c) the stationary positive
lattice of the inner shell with surface charge density σ1 and zero angular
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velocity Ω1+(t) = 0; and (d) the set of remaining negative conduction
electrons of the inner shell with surface charge density −σ1 and angular
velocity ω1−(t). These four forces acting on a test electron with mass
m1 ≡ m > 0 and charge q1 ≡ −e < 0 will be represented by, respectively,
~F2+,−e, ~F2−,−e, ~F1+,−e and ~F1−,−e. As all negative charges of the inner
shell move together with the test electron around the z axis, there will
be no component of Weber’s force acting on the test charge due to the
other electrons of the same shell. That is, equation (2) goes to zero for
this fourth set of charges represented by letter (d) when acting on any
specific conduction electron of the superconducting inner shell, so that,
~F1−,−e = ~0.

We assume that contact forces maintain any conduction electron at
a constant distance ρ1 = R1 from the axis of the cylinder, so that ρ̇1 =
0 and ρ̈1 = 0. We will be interested only in the motions along the
azimuthal ϕ direction. We include here only force components along
this direction. Newton’s second law of motion as applied to the test
electron of the inner shell can be written as:

~F = m1~a1 = mR1ω̇1−ϕ̂1 , (23)

where ~F represents the total force.
The total force ~F will be given by equation (3) for all sets of charges,

namely, (a), (b), (c) and (d) above, acting on the conduction electron.
Combining equations (3) and (23) for these four sets of charges acting
on the test electron yields:

~F2+,−e + ~F2−,−e + ~F1+,−e + ~F1−,−e

= −µo

2
q1ρ1

[
σ2R2(0− ω̇1−)− σ2R2(Ω̇2− − ω̇1−) + σ1ρ1 (0− ω̇1−)− 0

]
ϕ̂1

= m1ρ1ω̇1−ϕ̂1 . (24)

Utilizing m1 ≡ m = 9.1×10−31 kg > 0, q1 = −e = −1.6×10−19 C <
0 and ρ1 = R1 in equation (24) yields:

ω̇1− = −R2σ2

R1σ1

Ω̇2−

1 + m/|mWc|
, (25)
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where |mWc| ≡ µoeσ1R1/2 > 0 is the magnitude of the weberian electro-
magnetic mass for this cylindrical geometry. Utilizing that |mWc| � m
and integrating equation (25) from t = 0 to t = tf yields the approximate
final result:

ω1−f ≈ −
R2σ2

R1σ1

(
1− m

|mWc|

)
Ω2−f , (26)

where m/|mWc| � 1. This equation indicates that the negative electrons
of the inner shell will move in the opposite sense of the motion of the
negative charges of the outer shell. The magnitude of ω1−f will be
generally larger than that of Ω2−f in this example of a single monoatomic
conducting layer. When, for instance, σ2 = σ1 and R2 = 2R1, equation
(26) indicates that ω1−f ≈ −2Ω2−f , figure 4 (a).

+

+

_

_

W2-f
w1-f

R1

O

R2

Bapl

Bres

B = 0ext

(a) (b)

Figure 4: (a) When the negative charges of the outer shell are accelerated
tangentially up to a final angular velocity Ω2−f , the negative charges of
the inner superconducting shell will reach a final angular velocity ω1−f

given by equation (26) which has the opposite sense from that of Ω2−f

and a larger magnitude. (b) Magnetic field produced by these rotating
negative charges.

Utilizing equation (9) we can obtain the magnetic field produced by
these two negative rotating cylindrical shells. To this end we need to
add the magnetic field produced by the outer shell R2 when its negative
charges are rotating around the z axis with the angular velocity Ω2−f ẑ,
with the magnetic field produced by the inner shell R1 when its negative
charges are rotating with angular velocity ω1−f ẑ, where ω1−f is given by
equation (26). According to Weber’s electrodynamics this net magnetic
field will be given by:
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~B(ρ < R1) ≡ ~Bres ≡ −2(R2σ2/(R1σ1))(m/e)Ω2−f ẑ = (m/|mWc|) ~Bapl ,
~B(R1 < ρ < R2) ≡ ~Bapl ≡ −µoR2σ2Ω2−f ẑ ,
~B(ρ > R2) ≡ ~Bext = ~0 .


(27)

Here ~Bapl ≡ −µoR2σ2Ω2−f ẑ is the magnetic field produced by the ex-
ternal source, ~Bres is the residual magnetic field which will remain inside
the inner shell, while ~Bext is the external magnetic field at ρ > R2, figure
4 (b).

The magnetic field inside a single monoatomic superconducting shell
will not be exactly zero, although its order of magnitude will be much
smaller than the applied magnetic field. In the previous example of a
niobium cylindrical shell of radius R1 = 0.1 m and surface charge density
σ1 ≈ 2 C/m2, we had |mWc| ≈ 2 × 10−25 kg, so that | ~Bres|/| ~Bapl| =
m/mWc ≈ 4.5 × 10−6 � 1. These orders of magnitude are compatible
with the Meissner effect. In the next Subsection we show that if the
superconductor is composed of three or more shells, the magnetic field
goes to zero inside it.

4.2 Four Cylindrical Shells

To illustrate the penetration depths of currents and magnetic fields in
the Meissner effect with Weber’s electrodynamics, we first generalize the
configuration of figure 4. The superconductor is now replaced by a set
of three infinite cylindrical shells of radii R1a < R1b < R1c centered
along the z axis. Each superconducting cylindrical shell is supposed to
consist of a single monoatomic layer composed of positive and negative
charges. These cylindrical shells are surrounded by an external resistive
cylindrical shell of radius R2 > R1c. The positive surface charge densities
of the cylindrical shells 1a, 1b, 1c and 2 will be represented by σ1+a > 0,
σ1+b > 0, σ1+c > 0 and σ2+ ≡ σ2 > 0, respectively. The conduction
electrons of the outer resistive shell R2 will be accelerated by an external
source along the azimuthal direction during the time interval 0 < t < tf ,
moving around the z axis with a variable and given angular velocity
~Ω2−(t) = Ω2−(t)ẑ. They begin at rest and are accelerated until they
reach the final and constant angular velocity Ω2−f ẑ at t = tf . We will
assume that the positive charges of shells 1a, 1b, 1c and 2 remain at
rest during the whole process. We need to obtain the angular velocities
ω1−a, ω1−b and ω1−c of the conduction electrons of shells 1a, 1b and 1c
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as a function of the given angular velocity Ω2− of the electrons of the
resistive shell 2.

Consider, for instance, a specific conduction electron q1 = −e < 0 of
shell 1b. There are eight sets of charges exerting forces on it, namely,
the positive and negative charges of shells 1a, 1b, 1c and 2. We can
utilize equation (3) to express the azimuthal components of these eight
forces by taking care if this test electron of shell 1b is inside or outside
the cylindrical shell of the source charges which are exerting forces on it.
We assume the charge neutrality of each shell such that their negative
surface charge densities will be equal and opposite the corresponding
positive surface charge densities, namely, σ1−a = −σ1+a, σ1−b = −σ1+b,
σ1−c = −σ1+c and σ2− = −σ2. We are interested only in the azimuthal
component of Newton’s second law of motion along the ϕ direction. In
each line of the next equation, from top to bottom, we represent the
forces exerted by the positive and negative charges of shells 1a, 1b, 1c
and 2 acting on a conduction electron of shell 1b. With q1 = −e, the
azimuthal component of Newton’s second law of motion for this test
electron can then be written as:

µoe

2

[
σ1a

R3
1a

R1b
(0− ω̇1−b)− σ1a

R3
1a

R1b
(ω̇1−a − ω̇1−b)

+ σ1bR
2
1b(0− ω̇1−b)− σ1bR

2
1b(ω̇1−b − ω̇1−b)

+ σ1cR1bR1c(0− ω̇1−b)− σ1cR1bR1c(ω̇1−c − ω̇1−b)

+ σ2R1bR2(0− ω̇1−b)− σ2R1bR2(Ω̇2− − ω̇1−b)
]

= mR1bω̇1−b . (28)

By writing similar equations for a test electron of shells 1a and 1c we
will have three equations with three unknowns, namely, ω̇1−a, ω̇1−b and
ω̇1−c. By solving this set of three equations we obtain that ω̇1−a, ω̇1−b

and ω̇1−c will be proportional to Ω̇2−. We can then integrate in time the
final solutions, obtaining the final values ω1−af , ω1−bf and ω1−cf . The
solution of this set of three equations, approximated up to first order in
m/|mWc| � 1 for each shell, yields the following integrated final values
of ω1−a, ω1−b and ω1−c, respectively:
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ω1−af = 0 , (29)

ω1−bf = − m

|mWc2|
σ2

σ1b

R2
1cR2

R1b(R2
1c −R2

1b)
Ω2−f , (30)

ω1−cf = − σ2

σ1c

R2

R1c

(
1− m

|mWc1|
R2

1c

R2
1c −R2

1b

)
Ω2−f . (31)

In these equations |mWc1| ≡ µoeσ1cR1c/2 > 0 and |mWc2| ≡ µoeσ2R2/2 >
0 are the magnitudes of the weberian electromagnetic masses for the elec-
trons of the cylindrical shells of radii R1c and R2, respectively.

As m/|mWc2| � 1 and m/|mWc1| � 1 we have ω1−cf � ω1−bf �
ω1−af = 0. That is, the angular velocities of these shells decrease rapidly
as we go from the external to the internal shell.

The magnetic field for each region can be obtained from equation (9)
by taking into account the azimuthal motion of the electrons not only in
the three superconducting shells 1a, 1b and 1c, but also in the external
shell 2. The net magnetic field in each region is then found to be given
by:

~B(ρ < R1b) ≡ ~Bint = ~0 ,
~B(R1b < ρ < R1c) ≡ ~Bres ≡ −2mσ2R1cR2Ω2−f ẑ/(eσ1c(R2

1c −R2
1b)) ,

~B(R1c < ρ < R2) ≡ ~Bapl ≡ −µoR2σ2Ω2−f ẑ .


(32)

Once more the residual magnetic field Bres ≡ | ~Bres| is much smaller
than the applied magnetic field Bapl ≡ | ~Bapl|. Moreover, the magnetic
field decreases quickly to zero for ρ < R1b, that is, ~B(ρ < R1b) ≡ ~Bint =
~0.

The qualitative behavior of the angular velocity of the conduction
electrons at each shell and the net magnetic field in each region are
represented in figure 5.

4.3 Two Spherical Shells

We now perform a similar calculation considering two concentric spheri-
cal shells of radii R1 and R2 > R1 centered at the origin of the coordinate
system. The outer resistive shell has a stationary positive charge density
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Figure 5: (a) Qualitative representation of the angular velocities of the
conduction electrons of each shell. (b) Magnetic field in each region
between the shells.

σ2 > 0 and a negative charge density −σ2. These negative charges will be
considered initially at rest, being accelerated azimuthally by an external
source around the z axis during the time interval 0 < t < tf . They will
move around the z axis with a given angular velocity ~Ω2−(t) = Ω2−(t)ẑ,
until they reach the final and constant angular velocity Ω2−f ẑ. The in-
ner superconducting shell has a stationary positive charge density σ1 > 0
and a negative charge density −σ1. These negative charges will also be
considered initially at rest. Due to the azimuthal forces exerted by the
other charges, they will begin to rotate around the z axis with an an-
gular velocity ~ω1−(t) = ω1−(t)ẑ, until they reach the final and constant
angular velocity ω1−f ẑ. Our goal is to calculate ω1−f as a function of
the given Ω2−f . We will also calculate the magnetic field inside the inner
shell.

The test charge will be a conduction electron of the inner super-
conducting shell located at (r1, θ1, ϕ1) = (R1, θ1, ϕ1). Contact forces
will keep it at a constant distance from the center of the shell, so that
ṙ1 = 0 and r̈1 = 0. We will be interested only in its motion along the
azimuthal direction ϕ with an angular velocity dϕ1/dt = ω1−, so that
θ̇1 = 0 and θ̈1 = 0. The velocity and acceleration of the test charge
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along the azimuthal direction are then given by ~v1 = R1ω1− sin θ1ϕ̂1

and ~a1 = R1 sin θ1ω̇1−ϕ̂1, where ω̇1− ≡ dω1−/dt.
As in the Subsection 4.1, there are four sets of charges acting on any

conduction electron of the inner shell during the time interval 0 < t < tf ,
namely: (a) the stationary positive charges of outer shell with radius R2

and surface charge density σ2+ ≡ σ2 > 0; (b) the negative charges
of the outer shell with radius R2 and surface charge density σ2− = −σ2

moving with a given angular velocity Ω2−(t)ẑ; (c) the stationary positive
charges of the inner shell with radius R1 and surface charge density
σ1+ ≡ σ1 > 0; and (d) the negative charges of the inner shell with radius
R1 and surface charge density σ1− = −σ1 moving with angular velocity
ω1−(t)ẑ. Each one of these forces has already been calculated, being
given by equations (14) and (16), with the appropriate values of σ, R and
Ω. They will be represented by ~F2+,−e, ~F2−,−e, ~F1+,−e, and ~F1−,−e. We
utilize the azimuthal component of Newton’s second law of motion ~F =
m1~a1 = m1R1 sin θ1ω̇1−ϕ̂1 with ~F = ~F2+,−e + ~F2−,−e + ~F1+,−e + ~F1−,−e.
Utilizing m1 = m, q1 = −e < 0 and r1 = R1 we obtain:

~F2+,−e + ~F2−,−e + ~F1+,−e + ~F1−,−e

= −µoq1σ2R2R1 sin θ1

3
(0− ω̇1−) ϕ̂1 +

µoq1σ2R2R1 sin θ1

3
(Ω̇2−− ω̇1−)ϕ̂1

− µoq1σ1R
2
1 sin θ1

3
(0− ω̇1−) ϕ̂1 +~0

= mR1 sin θ1ω̇1−ϕ̂1 . (33)

This equation can also be written as:

ω̇1− = −σ2R2

σ1R1

|mWs|
m + |mWs|

Ω̇2− ≈ −
σ2R2

σ1R1

(
1− m

|mWs|

)
Ω̇2− , (34)

where |mWs| ≡ µoeσ1R1/3 > 0 is the magnitude of the weberian electro-
magnetic mass for this spherical geometry. As before, usually we have
|mWs| � m. This equation shows that ω̇1− will be always proportional
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to Ω̇2−, no matter the value of the polar angle θ. Therefore, all con-
duction electrons will undergo the same azimuthal acceleration, rotating
together as a rigid body around the z axis.

Integrating this equation from t = 0 to t = tf yields the final result
given by:

ω1−f = −σ2R2

σ1R1

|mWs|
m + |mWs|

Ω2−f ≈ −
σ2R2

σ1R1

(
1− m

|mWs|

)
Ω2−f , (35)

where m/|mWs| � 1.
These equations indicate that the conduction electrons of the inner

superconducting shell will be accelerated in the opposite direction of the
acceleration of the electrons of the outer resistive shell. Moreover, the
magnitude of the angular velocity acquired by the inner electrons will
be usually larger than the angular velocity of the electrons of the outer
shell. If, for instance, σ1 = σ2 and R2 = 2R1, then ω1−f ≈ −2Ω2−f .

Utilizing equation (21) we can obtain the magnetic field due to these
two spherical shells. To this end we need to add the magnetic field
produced by two sets of charges, namely, (a) the outer shell R2 when
its negative charges with surface density −σ2 are rotating around the z
axis with the angular velocity Ω2−f ẑ; and (b) the inner shell R1 when
its negative charges with surface density −σ1 are rotating with angular
velocity ω1−f ẑ given by equation (35). According to Weber’s electro-
dynamics, this net magnetic field inside the inner superconducting shell
will be given by:

~Bres(r < R1) = −2
3
µoR2σ2Ω2−f ẑ − 2

3
µoR1σ1ω1−f ẑ

= −2
σ2R2

σ1R1

m

e
Ω2−f ẑ =

m

|mWs|
~Bapl , (36)

where ~Bapl ≡ −(2µoR2σ2Ω2−f/3)ẑ is the applied magnetic field in this
region and |mWs| = µoeσ1R1/3 > 0 is the magnitude of the weberian
electromagnetic mass in this spherical geometry. The applied magnetic
field would be the net magnetic field in the internal region r < R1 if the
inner superconducting spherical shell were not present. As m � |mWs|,
we have Bres � Bapl, indicating that there will remain a small residual
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magnetic field in the internal region, as it happened in the case of two
cylindrical shells.

In the region R1 ≤ r < R2 we need to add the uniform magnetic field
due to the outer shell with the dipolar magnetic field due to the inner
shell. In this case we can neglect m compared with |mWs| in equation
(35) as m/|mWs| � 1, so that ω1−f ≈ −σ2R2Ω2−f/(σ1R1). Utilizing
that ẑ = cos θr̂ − sin θθ̂, the net magnetic field in this region can then
be expressed as:

~B(R1) = −1
2

[
2
3
µoR2σ2Ω2−f ẑ + lim

r→R1

µoR
4
1σ1ω1−f (2 cos θr̂ + sin θθ̂)

3r3

]

=
µoR2σ2Ω2−f sin θ

2
θ̂ − 1

6
µoR2σ2(2 cos θr̂ + sin θθ̂)

m

|mWs|
Ω2−f

≈ µoR2σ2Ω2−f sin θ

2
θ̂ , (37)

and

~B(R1 < r < R2) = −2
3
µoR2σ2Ω2−f ẑ − µoR

4
1σ1ω1−f (2 cos θr̂ + sin θθ̂)

3r3

≈ −2
3
µoR2σ2Ω2−f (cos θr̂− sin θθ̂)+

µoR
3
1R2σ2Ω2−f (2 cos θr̂ + sin θθ̂)

3r3
.

(38)
The present situation will be equivalent to the configuration of figure

4 with one difference. In the situation of two ideal cylindrical shells of
infinite lengths carrying azimuthal currents, the magnetic field between
the shells will always be the same, no matter the value of the current
in the inner shell. In the more realistic situation of two spherical shells,
on the other hand, the magnetic field between them will be the uniform
magnetic field produced by the outer shell, combined with the dipolar
magnetic field produced by the inner superconducting shell. They have
the same orders of magnitude, as can be seen from equation (38). This
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alteration of the magnetic field around the superconductor is always
shown in experiments related to the Meissner effect, due to the fact that
any real superconducting sample has a finite volume.

Equation (38) indicates that the magnitude of the magnetic field
at θ = π/2 rad just outside the superconducting spherical shell
is larger than the magnitude of the applied magnetic field ~Bapl ≡
−(2µoR2σ2Ω2−f/3)ẑ. This behavior is typical in the Meissner effect.

Equation (36) shows that the magnetic field has a poloidal direction
around the inner superconducting spherical shell and does not pene-
trate it, except for the residual magnetic field ~Bres = m~Bapl/|mWs|. As
m/|mWs| � 1 we have | ~Bres|/| ~Bapl| � 1. That is, the magnitude of
the residual magnetic field inside the superconducting spherical shell is
much smaller than the magnitude of the applied magnetic field. This
property represents the essence of the Meissner effect.

4.4 A Spherical Shell Inside a Cylindrical Shell

We now perform a similar calculation considering a superconducting
spherical shell of radius R1 inside a resistive cylindrical shell of radius
R2 > R1, figure 6. They are centered on the origin of the coordinate
system, with the axis of the cylindrical shell along the z axis. They
have positive and negative charge densities represented by, respectively:
σ1 > 0, −σ1, σ2 > 0 and −σ2. We assume that the positive charges
of both shells will remain at rest relative to the inertial frame S. The
negative charges of both shells are considered initially at rest. As before,
we assume that during the time interval 0 < t < tf an external source
accelerates azimuthally the negative charges of the outer shell with a
variable and given angular velocity ~Ω2−(t) = Ω2−(t)ẑ up to a final and
constant angular velocity Ω2−f ẑ. Our goal is to calculate the induced
motion of the conduction electrons of the superconducting inner shell.
We will also obtain the magnetic field produced by this system. As
before, we are only interested in the force and motion along the azimuthal
ϕ direction. We will once more neglect the coulombian and velocity
terms of Weber’s force, so that the only remaining component will be
that given by equation (2).

The force acting on any conduction electron of the inner shell will
be due to four sets of charges, namely, the positive and negative charges
of the outer shell, together with the positive and remaining negative
charges of the inner shell. The force exerted by the first two sets of
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Figure 6: A superconducting spherical shell inside a resistive cylindrical
shell.

charges is given by equation (3) with the appropriate values of σ, R and
Ω. The force exerted by the last two sets of charges is given by equation
(16) with the appropriate values of σ, R and Ω. We now add the forces
due to these four sets of charges utilizing charge neutrality, σ2− = −σ2

and σ1− = −σ1, together with the assumption that the positive charges
of both shells remain at rest during the time interval 0 < t < tf , so
that Ω2+(t) = Ω1+(t) = 0. We consider a test electron of the inner shell
located at (R1, θ1, ϕ1) moving with angular velocity ω1−. Its azimuthal
equation of motion is then given by:

−µo

2
q1ρ1

[
σ2R2(0− ω̇1−)− σ2R2(Ω̇2− − ω̇1−)

]
ϕ̂1

− µoq1σ1R
2
1 sin θ1

3
(0− ω̇1−) ϕ̂1 +~0 = mR1 sin θ1ω̇1−ϕ̂1 . (39)

With ρ1 = R1 sin θ1 and q1 = −e < 0 we obtain:

ω̇1− = −3
2

σ2R2

σ1R1

|mWs|
m + |mWs|

Ω̇2− ≈ −
3
2

σ2R2

σ1R1

(
1− m

|mWs|

)
Ω̇2− , (40)

where m/|mWs| � 1. Here |mWs| ≡ µoeσ1R1/3 > 0 is the magnitude
of the weberian electromagnetic mass for this spherical geometry. This
equation shows that ω̇1− will have the same value for all charges, no
matter the polar angle θ where the test electron is located. Therefore,
all negative charges of the inner superconducting shell will be accelerated
azimuthally as a rigid body.

Integrating equation (40) from t = 0 to t = tf yields:
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ω1−f = −3
2

σ2R2

σ1R1

|mWs|
m + |mWs|

Ω2−f ≈ −
3
2

σ2R2

σ1R1

(
1− m

|mWs|

)
Ω2−f .

(41)
The magnetic field can now be obtained combining the field due to

the motion of the conduction electrons around the cylindrical outer shell
given by equation (9), with the magnetic field due to the motion of the
conduction electrons around the inner spherical shell given by equation
(21). Inside the inner superconducting spherical shell the magnetic field
is given by:

~Bres(r < R1) = −µoR2σ2Ω2−f ẑ − 2
3
µoR1σ1ω1−f ẑ

= −3
m

e

σ2R2

σ1R1
Ω2−f ẑ =

m

|mWs|
~Bapl , (42)

where ~Bapl ≡ −µoR2σ2Ω2−ẑ is the applied magnetic field. The net
magnetic field in the region r < R1 would have the value of the applied
magnetic field ~Bapl if the superconducting inner spherical shell were not
present. The presence of the inner spherical shell modifies the magnetic
field inside it, so that the net value is now given by ~Bres. As m � |mWs|
we have | ~Bres| � | ~Bapl|. Therefore the magnitude of the remaining
residual magnetic field inside the superconducting spherical shell is much
smaller than the magnitude of the applied magnetic field. This same
property happened in the case of two cylindrical shells.

The magnetic field in the region between the inner spherical shell
and the outer cylindrical shell can also be obtained by equations
(9) and (21). In this region equation (41) can be approximated to
ω1−f ≈ −3σ2R2Ω2−f/(2σ1R1) because m/|mWs| � 1. Utilizing that
ẑ = cos θr̂ − sin θθ̂, the magnetic field at the surface of the inner super-
conducting shell will be given by:

~B(R1) = −1
2

[
µoR2σ2Ω2−f ẑ + lim

r→R1

µoR
4
1σ1ω1−f (2 cos θr̂ + sin θθ̂)

3r3

]

=
3µoR2σ2Ω2−f sin θ

4
θ̂ − 1

4
µoR2σ2(2 cos θr̂ + sin θθ̂)

m

|mWs|
Ω2−f
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≈ 3µoR2σ2Ω2−f sin θ

4
θ̂ . (43)

In the region between the inner spherical shell and the outer cylin-
drical shell the magnetic field will be given by:

~B = −µoR2σ2Ω2−f ẑ − µoR
4
1σ1ω1−f (2 cos θr̂ + sin θθ̂)

3r3

≈ −µoR2σ2Ω2−f (cos θr̂ − sin θθ̂) +
µoR

3
1R2σ2Ω2−f (2 cos θr̂ + sin θθ̂)

2r3
.

(44)
Once more the present situation will be equivalent to that of figure

4 with one difference. In the situation of two ideal cylindrical shells of
infinite lengths carrying azimuthal currents, the magnetic field between
the shells will always be the same, no matter the value of the current
in the inner shell. In the more realistic situation of a superconducting
spherical shell inside a resistive cylindrical shell, on the other hand, the
magnetic field between them will be the uniform magnetic field produced
by the outer cylindrical shell, combined with the dipolar magnetic field
produced by the inner superconducting spherical shell. They have the
same orders of magnitude, as can be seen from equation (44).

Equation (44) indicates that the magnitude of the magnetic field at
θ = π/2 rad just outside the superconducting spherical shell is larger
than the magnitude of the applied magnetic field ~Bapl ≡ −µoR2σ2Ω2−ẑ.
This behavior is typical in the Meissner effect.

Equations (42) and (43) show that the magnetic field has a poloidal
direction on the inner superconducting spherical shell and does not pen-
etrate it, except for the residual magnetic field ~Bres = m~Bapl/|mWs|.
As m/|mWs| � 1 we have | ~Bres| � | ~Bapl|. This property represents
the essence of the Meissner effect. It has been deduced in this paper
as a consequence of Weber’s electrodynamics combined with Newton’s
second law of motion.

In this Section we considered only case (I) where a magnetic field
does not penetrate into a superconductor. This is not too surprising
as a temporary skin effect is already observed and explained in normal
conductors. A real challenge is posed when the magnetic field is expelled
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once a current-free conductor is cooled down to the superconducting
state. This case (II) will not considered in the present work.

5 London Penetration Depth

5.1 Superconducting Cylinder

We now consider a superconducting cylinder of infinite length, inner
radius Ri and outer radius Ro centered along the z axis. We assume
that this hollow superconductor is inside a normal resistive cylindrical
shell of radius R2 > Ro. Their axes are located along the z axis. Consider
a test electron q1 = −e < 0 of the superconductor at a distance ρ from
the z axis, with Ri ≤ ρ ≤ Ro. We assume that at the initial time t = 0
all charges are at rest. During the time interval 0 < t < tf an external
source generates a given variable azimuthal angular velocity Ω2−(t) for
the electrons located at the external resistive cylindrical shell R2, figure
7. Our goal is to obtain the angular velocity ω(ρ, t) induced in the test
electron as a function of its distance ρ and time t. This problem will be
solved with Weber’s electrodynamics utilizing equation (3) coupled with
Newton’s second law of motion.

Let R′ be a variable distance of integration in the superconducting
cylindrical material, with Ri ≤ R′ ≤ Ro. There are six groups of charges
exerting forces on a specific conduction electron of the superconductor
located at a distance ρ from the z axis, namely, (a) the positive and
negative charges of the superconductor located in the region Ri < R′ <
ρ; (b) the positive and negative charges of the superconductor located
in the region ρ < R′ < Ro; together with (c) the positive and negative
charges of the resistive cylindrical shell located at R2. As usual, we
will assume charge neutrality of the superconductor cylinder, together
with charge neutrality of the external cylindrical shell. Moreover, we
will assume that the positive charges of the superconductor and external
shell will always remain at rest. The external shell has positive and
negative surface charge densities given by σ2+ ≡ σ2 > 0 and σ2− = −σ2,
respectively. The positive and negative volume charge densities of the
superconductor will be written as ne > 0 and −ne, respectively, where
n > 0 represents the number density of the conduction free electrons,
while e = 1.6 × 1019 C > 0 is the magnitude of their charge. We now
apply equation (3) to these six groups of charges when acting on the
conduction electron located at a distance ρ from the z axis.

We first need to obtain the azimuthal force exerted by the charges of
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Figure 7: (a) Superconducting cylinder S of inner radius Ri and outer
radius Ro inside a resistive cylindrical shell of radius R2. (b) Cross-
section of the system with a conduction electron q1 = −e < 0 of the
superconductor at a distance ρ from the z axis.

the superconducting cylinder located between Ri and ρ acting on a test
electron located at a distance ρ from the z axis. To this end, we first
consider a cylindrical shell of radius R2 = R′ and thickness dR′ such
that Ri ≤ R′ ≤ ρ. The volume charge densities of this cylindrical shell
will be represented by ±ne, where the upper (lower) sign represents the
positive (negative) charges of the cylinder. The angular velocities of the
positive and negative charges of this cylindrical shell will be represented
by 0 and ω(R′), respectively. We then utilize the third line of equation
(3) and integrate it from R′ = Ri up to R′ = ρ. Therefore, the sum
of the azimuthal force exerted by the positive and negative charges of
the cylinder acting on the conduction electron with charge q1 = −e < 0
located at a distance ρ from the z axis will be given by:

~F =
µoe

2nϕ̂

2ρ

∫ ρ

R′=Ri

R′3[0−ω̇(ρ)]dR′−µoe
2nϕ̂

2ρ

∫ ρ

R′=Ri

R′3[ω̇(R′)−ω̇(ρ)]dR′
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= −µoe
2nϕ̂

2ρ

∫ ρ

R′=Ri

R′3ω̇(R′)dR′ . (45)

Analogously the force exerted by the positive and negative charges of
the cylinder located between ρ and Ro acting on a test electron located
at ρ can be obtained integrating the first line of equation (3), yielding:

~F =
µoe

2nρϕ̂

2

∫ Ro

R′=ρ

R′[0−ω̇(ρ)]dR′−µoe
2nρϕ̂

2

∫ Ro

R′=ρ

R′[ω̇(R′)−ω̇(ρ)]dR′

= −µoe
2nρϕ̂

2

∫ Ro

R′=ρ

R′ω̇(R′)dR′ . (46)

Consider now the external and resistive cylindrical shell of radius R2

with a positive surface charge density σ2+ ≡ σ2 > 0 always at rest,
Ω2+(t) = 0, and a negative surface charge density σ2− = −σ2 moving
with angular velocity Ω2−(t) around the z axis. The force exerted by
these two shells and acting on a test electron located at a distance ρ
from the z axis and moving around it with angular velocity ω can also
be obtained by the first line of equation (3), yielding:

~F =
µoeσ2ρϕ̂

2
R2[0−ω̇(ρ)]−µoeσ2ρϕ̂

2
R2[Ω̇2−−ω̇(ρ)] = −µoeσ2ρϕ̂

2
R2Ω̇2− .

(47)
According to equation (4) the azimuthal component of Newton’s sec-

ond law of motion applied to the test electron located at a distance ρ
from the z axis can be written as:

~F = m~a = mρω̇(ρ)ϕ̂ , (48)

where ~F represents the total force acting on this test electron.
The sum of equations (45), (46) and (47) yields the net force ~F acting

on the conduction electron located at ρ. Applying this net force to the
azimuthal component of Newton’s second law of motion yields:

−µoe
2nϕ̂

2ρ

∫ ρ

R′=Ri

R′3ω̇(R′)dR′ − µoe
2nρϕ̂

2

∫ ρ

R′=Ri

R′ω̇(R′)dR′
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− µoeσ2ρϕ̂

2
R2Ω̇2− = mρω̇(ρ)ϕ̂ . (49)

This is an integral equation with the unknown ω̇(ρ). We can obtain
the differential equation satisfied by ω̇(ρ) utilizing that [25, p. 44]:

∂

∂ρ

∫ R′=g(ρ)

R′=f(ρ)

F (ρ,R′)dR′ =
∫ R′=g(ρ)

R′=f(ρ)

∂F (ρ,R′)
∂ρ

dR′

+
{

∂g(ρ)
∂ρ

F [ρ, g(ρ)]− ∂f(ρ)
∂ρ

F [ρ, f(ρ)]
}

. (50)

This equation is valid for arbitrary functions f(ρ), g(ρ) and F (ρ,R′).
We define a positive magnitude λL by

λL ≡
√

m

µone2
. (51)

This positive magnitude is the so-called London penetration depth.
Deriving twice equation (49) as a function of ρ, utilizing equations

(50) and (51) and rearranging the terms, we obtain the following second
order differential equation:

λ2
Lρ

d2ω̇

dρ2
+ 3λ2

L

dω̇

dρ
− ρω̇ = 0 . (52)

We now define the dimensionless magnitude u ≡ ρ/λL and utilize a
change of variable by defining the magnitude v(u) as v(u) ≡ uω̇. With
these definitions equation (52) can then be written as:

u2v′′ + uv′ − (u2 + 1)v = 0 , (53)

where v′ ≡ dv/du and v′′ ≡ d2v/du2. This is the modified Bessel func-
tion of order 1. Its general solution is given by

v(u) = c1I1(u) + c2K1(u) , (54)

where c1 and c2 are arbitrary constants, while I1(u) is the modified
Bessel function of order 1 and K1(u) is the Hankel function of order 1.
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According to equation (49) we will need to integrate these modified
Bessel and Hankel functions from u = Ri/λL up to u = Ro/λL. Typical
values of λL range from 50 to 500 nm, while Ri and Ro have macroscopic
values, so that Ro/λL > Ri/λL � 1. We can then approximate I1(u)
and K1(u) by their asymptotic behaviors

Iν(u � 1) =
eu

√
2πu

, (55)

and

Kν(u � 1) =
√

π

2u
e−u . (56)

These asymptotic behaviors are valid for arbitrary values of the modified
Bessel and Hankel functions of the order ν.

In these limits we then have:

ω̇ =
v(u)
u

=
c1I1(u) + c2K1(u)

u
=

c1√
2π

eu

u3/2
+
√

π

2
c2

e−u

u3/2
≈ c3

eu

u3/2
.

(57)
We defined here the magnitude c3 by c3 ≡ c1/

√
2π and we utilized once

more that we are interested only in values of u ≡ ρ/λL when u � 1.
We can now apply equation (57) into equation (49). After performing

the two integrations and utilizing once more Ro/λL > Ri/λL � 1 we
obtain

c3 = −2|mWc2|
m

√
Ro

λL
e−Ro/λLΩ̇2− . (58)

Here |mWc2| ≡ µoeσ2R2/2 > 0 is the magnitude of the weberian elec-
tromagnetic mass for this cylindrical geometry.

By equations (57) and (58) we obtain that ω̇ given by ω̇ = c3e
u/u3/2

will be proportional to Ω̇2−, no matter how Ω2− changes with time. In-
tegrating ω̇ in time, we obtain the angular velocity of the test electron,
ω(t), as being proportional to the angular velocity Ω2−(t) of the elec-
trons located at the external resistive cylindrical shell R2. Both angular
velocities, ω(t) and Ω2−, begin from rest, that is, ω(0) = Ω2−(0) = 0.
When Ω2− reaches its final and constant value Ω2−f at t = tf , then ω
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will also reach its final and constant value ωf (ρ). The integrated re-
sult of equations (57) and (58) yields this final angular velocity of any
conduction electron located at a distance ρ from the z axis as given by:

ωf (ρ) =
eu

u3/2

∫ tf

t=0

c3dt = −2|mWc2|
m

√
Ro

λL
e−Ro/λL

eρ/λL

(ρ/λL)3/2
Ω2−f .

(59)

The uniform applied magnetic field ~Bapl generated by the current
flowing in the external shell R2 is given by:

~Bapl = −µoR2σ2Ω2−f ẑ = −µoσ2V2−dẑ , (60)

where V2−d is the drifting velocity of the conduction electrons at the
resistive shell R2 given by V2−d ≡ R2Ω2−f .

Equations (59) and (60) yield the value of the final angular velocity
ωf (Ro) of the conduction electrons located at the outer surface Ro of
the superconducting cylinder as given by:

ωf (Ro) ≡ −
2|mWc2|

m

λL

Ro
Ω2−f = −µoeσ2R2

m

λL

Ro
Ω2−f = −eλL| ~Bapl|

mRo
.

(61)

Equations (51), (60) and (61) yield the tangential velocity vt(Ro) of
the free electrons at the outer surface of the superconducting cylinder as
given by:

vt(Ro) ≡ ωfRo = −eλL| ~Bapl|
m

= −
√

σ2
2µo

mn
V2−d . (62)

Equation (59) shows that we could then obtain how the angular ve-
locities ωf (ρ) of the conduction electrons of the superconductor vary as
a function of their distance ρ to the z axis. We now calculate the value
of this angular velocity very close to the outer surface of the supercon-
ductor, that is, at a distance ρ = Ro − d, with 0 ≤ d � Ro. Equation
(59) yields:

ωf (Ro − d) = ωf (Ro)e−d/λL . (63)
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This equation indicates that the induced current in the superconductor
exists essentially only at its surface, decreasing exponentially as we go
inside the body.

The magnetic field inside the superconductor can be obtained by the
sum of two fields, namely, (a) the uniform applied magnetic field, ~Bapl,
generated by the external resistive shell; and (b) the magnetic field due
to the induced currents in the superconductor. The magnetic field at a
distance ρ from the z axis due to the induced currents can be obtained
utilizing the first line of equation (9). To this end we consider a cylindri-
cal shell of radius R′ such that ρ < R′ < Ro, thickness dR′, with positive
charges at rest and negative charges rotating around the z axis with an
angular velocity ωf (R′). We then replace the surface charge density σ
of this shell as appearing in equation (9) by ±nedR′, where the upper
(lower) sign represents the positive (negative) charges of this shell. We
then add the applied magnetic field due to the resistive cylindrical shell
of radius R2 with the magnetic fields due to these positive and negative
cylindrical shells of radius R′ and thickness dR′. After integration in R′

we obtain that the net magnetic field at a distance ρ from the z axis will
be then given by:

~B(ρ ≤ Ro) = ~Bapl − µoneẑ

∫ Ro

R′=ρ

R′ωf (R′)dR′ . (64)

Utilizing equation (59) we can integrate equation (64). For ρ � λL

this integration yields:

~B(ρ ≤ Ro) = ~Bapl

[
1− e−Ro/λL

(
eRo/λL − eρ/λL

√
Ro

ρ

)]
. (65)

Finally, the magnetic field very close to the outer surface of the su-
perconductor, at a distance ρ = Ro − d, with 0 ≤ d � Ro, is given
by:

~B(Ro − d) = ~Baple
−d/λL = −µoR2σ2Ω2−f ẑe−d/λL . (66)

This equation shows that the magnetic field penetrates into a su-
perconductor typically only up to the London penetration depth λL.
When d = λL the value of the magnetic field will be decreased to 1/e of
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the value of this field in the external surface Ro of the material, being
negligible beyond this point.

5.2 Superconducting Sphere

We now consider a more realistic model of a superconducting sphere in-
side a resistive cylindrical shell. They have a common center and the
cylindrical shell is aligned along the z axis. The superconductor has an
inner radius Ri and outer radius Ro, while the cylindrical shell has a
radius R2 > Ro > Ri. As usual we will utilize charge neutrality and
assume that the positive charges of the superconductor and cylindri-
cal shell remain at rest during all the time. Consider a test electron
q1 = −e < 0 of the superconductor located at the polar angle θ from the
z axis and at a distance r from the origin, with Ri ≤ r ≤ Ro, figure 8.
We assume that at the initial time t = 0 all charges are at rest. During
the time interval 0 < t < tf an external source generates a given variable
azimuthal angular velocity Ω2−(t) for the electrons located at the exter-
nal resistive cylindrical shell R2 until they reach a final given angular
velocity Ω2−f . Our goal is to obtain the angular velocity ω(r, t) induced
in the test electron moving around the z axis during the time interval
0 < t < tf . This problem will be solved with Weber’s electrodynamics
utilizing equation (16) coupled with Newton’s second law of motion.

Let R′ be a variable distance of integration in the superconducting
spherical material, with Ri ≤ R′ ≤ Ro. Once more there are six groups
of charges exerting forces on a specific electron of the superconductor
located at a polar angle θ and at a distance r from the origin, namely,
(a) the positive and negative charges of the superconductor located in
the region Ri < R′ < r; (b) the positive and negative charges of the
superconductor located in the region r < R′ < Ro; together with (c) the
positive and negative charges of the resistive cylindrical shell R2. The
external shell has positive and negative surface charge densities given by
σ2+ ≡ σ2 > 0 and σ2− = −σ2, respectively. The positive and negative
volume charge densities of the superconductor will be written as ne > 0
and −ne, respectively, where n > 0 represents the number density of the
conduction free electrons and e = 1.6× 10−19 C > 0 is the magnitude of
their charge. We now apply equation (8) to these six groups of charges
when acting on the conduction electron located at a distance r from the
origin.

The azimuthal component of Newton’s second law of motion applied
to a conduction electron of the superconductor located at the polar angle
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Figure 8: (a) Superconducting sphere S of inner radius Ri and outer
radius Ro inside a resistive cylindrical shell of radius R2 aligned with the
z axis. (b) Cross-section of the system in the xz plane with a conduction
electron q1 = −e < 0 of the superconductor at a polar angle θ from the
z axis and at a distance r from the origin.

θ from the z axis and at a distance r from the origin is given by equation
(17), namely:

~F = mr sin θω̇(r)ϕ̂ , (67)

where ~F represents the total force acting on it along the azimuthal ϕ
direction.

Following the procedure of Subsection 5.1 we obtain that the az-
imuthal component of Newton’s second law of motion of this test electron
is given by:

~F = −µoe
2n sin θϕ̂

3r2

∫ r

R′=Ri

R′4ω̇(R′)dR′−µoe
2nr sin θϕ̂

3

∫ Ro

R′=r

R′ω̇(R′)dR′

− µoeσ2r sin θϕ̂

2
R2Ω̇2− = mr sin θω̇(r)ϕ̂ . (68)

There is a common factor sin θ in all terms of this equation which
can be canceled out. Therefore all conduction electrons of any spherical
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shell of radius r inside the superconductor will rotate together around
the z axis as a rigid body.

The integral equation (68) has the unknown ω̇(r). Deriving twice
this equation as a function of r, utilizing equation (50) and rearranging
the terms yields the following second order differential equation:

λ2
Lρ

d2ω̇

dr2
+ 4λ2

L

dω̇

dr
− ρω̇ = 0 , (69)

where λL ≡
√

m/(µone2).
We now define the dimensionless magnitude u2 ≡ r/λL and utilize

the change of variables v2(s2) ≡ s
3/2
2 ω̇. With these definitions equation

(69) can then be written as:

u2
2v
′′
2 + u2v

′
2 −

[
u2

2 +
(

3
2

)2
]

v2 = 0 , (70)

where v′2 ≡ dv2/du2 and v′′2 ≡ d2v2/du2
2. This is the modified Bessel

function of order 3/2. Its general solution is given by

v2(u2) = c1I3/2(u2) + c2I−3/2(u2) , (71)

where c1 and c2 are arbitrary constants, while I3/2(u2) and I−3/2(u2)
are the modified Bessel functions of orders 3/2 and −3/2, respectively.

According to equation (68) we will need to integrate these modified
Bessel functions from u2 = Ri/λL up to u2 = Ro/λL. As before, we also
have Ro/λL > Ri/λL � 1. We can then approximate I±3/2(u2) by their
asymptotic behaviors given by equation (55).

Therefore

ω̇ =
c1I1(u2) + c2K1(u2)

u
3/2
2

≈ c4
eu2

u
3/2
2

, (72)

where we have defined the magnitude c4 by c4 ≡ (c1 + c2)/
√

2π.
We can now apply equation (72) into equation (68). After performing

the two integrations and utilizing once more Ro/λL > Ri/λL � 1 we
obtain

c4 = −3|mWc2|
m

√
Ro

λL
e−Ro/λLΩ̇2− . (73)
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Here |mWc| ≡ µoeσ2R2/2 > 0 is the magnitude of the weberian electro-
magnetic mass of the electrons of the cylindrical shell R2.

Therefore ω̇ = c4e
u2/u

3/2
2 will be proportional to Ω̇2−, no matter how

Ω2− changes with time. Integrating in time ω̇ yields ω(t) proportional
to Ω2−(t). Both angular velocities begin from rest. After Ω2− reaches
its final value Ω2−f , then the final value ωf (r) of the angular velocity of
any conduction electron located at a distance r from the origin will be
then given by:

ωf (r) =
eu2

u
3/2
2

∫ tf

t=0

c4dt = −3|mWc2|
m

√
Ro

λL
e−Ro/λL

er/λL

(r/λL)3/2
Ω2−f .

(74)
The value of the angular velocity of the conduction electrons at the

surface of the superconducting spherical shell, ωf (Ro), is then given by:

ωf (Ro) ≡ −
3|mWc2|

m

λL

Ro
Ω2−f = −3eµoσ2R2

2m

λL

Ro
Ω2−f = −3eλL| ~Bapl|

2mRo
,

(75)
where ~Bapl = −µoR2σ2Ω2−f ẑ is the uniform applied magnetic field gen-
erated by the current flowing in the external resistive shell R2.

Equation (74) shows that we could then obtain how the angular ve-
locities ωf (r) of the conduction electrons of the superconductor vary as
a function of their distance r to the origin. We now calculate the value
of this angular velocity very close to the outer surface of the supercon-
ductor, that is, at a distance r = Ro − d, with 0 ≤ d � Ro. Equation
(74) yields:

ωf (Ro − d) = ωf (Ro)e−d/λL . (76)

This equation indicates that the induced current in the superconductor
exists essentially only at its surface, decreasing exponentially as we go
inside the body.

The magnetic field inside the superconductor can be obtained com-
bining the uniform applied field ~Bapl generated by the external shell with
the field due to the induced currents. The magnetic field at a distance
r from the origin due to the induced currents can be obtained utilizing
equation (21). To this end we consider a spherical shell of radius R′ with
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Ri < R′ < Ro, thickness dR′, with positive charges at rest and negative
charges rotating around the z axis with an angular velocity ωf (R′). We
then replace in equation (21) the surface charge density σ of this shell by
±nedR′, where the upper (lower) sign represents the positive (negative)
charges of this shell. We then add the applied magnetic field due to the
resistive cylindrical shell of radius R2 with the magnetic fields due to
these positive and negative spherical shells of radius R′ and thickness
dR′. After integration in R′ the net magnetic field at a distance r from
the origin will be then given by:

~B(Ri ≤ r ≤ Ro) = ~Bapl −
µone

3r3
(2 cos θr̂ + sin θθ̂)

∫ r

R′=Ri

R′4ωf (R′)dR′

− 2
3
µoneẑ

∫ Ro

R′=r

R′ωf (R′)dR′ . (77)

Utilizing equation (74) we can integrate equation (77). For λL �
Ri < Ro < R2 this integration yields:

~B(λL � Ri ≤ r ≤ Ro) = ~Bapl

+
ne2µ2

oσ2R2

2m

λ5
L

r3

√
Ro

λL
e−Ro/λLΩ2−f (2 cos θr̂ + sin θθ̂)

[
er/λL(r/λL)5/2

− eRi/λL(Ri/λL)5/2
]

+
ne2µ2

oσ2R2

m
λ2

L

√
Ro

λL
e−Ro/λLΩ2−f ẑ

[
eRo/λL

(Ro/λL)1/2
− er/λL

(r/λL)1/2

]
. (78)

Therefore, utilizing ẑ = cos θr̂−sin θθ̂, the magnetic field at the outer
surface Ro of the sphere is given by:

~B(Ro) =
3
2
µoR2σ2Ω2−f sin θθ̂ =

3
2
| ~Bapl| sin θθ̂ . (79)

That is, it is a poloidal magnetic field.
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Finally, the magnetic field very close to the outer surface of the su-
perconductor, at a distance r = Ro − d, with 0 ≤ d � Ro, is given
by:

~B(Ro − d) = ~B(Ro)e−d/λL =
3
2
µoR2σ2Ω2−f sin θθ̂e−d/λL

=
3
2
| ~Bapl| sin θθ̂e−d/λL .

(80)

This equation shows that the magnetic field penetrates into a su-
perconductor typically up to the London penetration depth λL. When
d = λL the value of the magnetic field will be decreased to 1/e of the
value of this field in the external surface of the material, being negligible
beyond this point.

6 General Discussion
If the effects of superconductivity have a classical explanation, it should
also be applicable to cases at very low resistivity as Edwards noted al-
ready [8, 9]. On the other hand, one finds magnetic fields frozen into
collision-less plasmas, but not expelled like it is observed in cases of a
fully developed Meissner effect. An explanation for the “critical field”
where superconductivity cannot be maintained any longer is beyond the
scope of this work.

All calculations presented in this paper were based essentially on
Weber’s electrodynamics coupled with Newton’s second law of motion
applied to a conduction electron of the superconductor. In particular,
we utilized the component of Weber’s force which depends on the accel-
erations ~a2 and ~a1 of the source and test charges, q2 and q1, respectively,
as given by equation (2).

We first deduced the London moment showing that when a supercon-
ductor rotates relative to an inertial coordinate system with an angular
velocity ~Ω, an internal magnetic field is produced given by ~B = 2m~Ω/e.
This effect was deduced utilizing the force exerted by the positive lattice
of the superconductor acting on its conduction electrons. This force de-
pends on the time variation of the angular velocity of the conductor. It
acts while the material increases its angular velocity. Weber’s force has
an azimuthal force component proportional to d~Ω/dt.

In this work we also showed that when a magnetic field is produced
around a superconductor, permanent currents will be induced on its
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surface. The magnetic field produced inside the superconductor by these
surface currents will cancel almost exactly the applied magnetic field,
except for an extremely small residual value. This behavior represents
the essence of the Meissner effect. This fact was deduced utilizing the
component of Weber’s force which depends on the time variation of the
angular velocity of the conduction electrons located at the outer resistive
shell and producing the applied magnetic field. That is, we utilized the
component of Weber’s force which is proportional to d~Ω2−/dt.

We also deduced the London penetration depth. We showed that
the current induced in the superconductor exists essentially only at its
surface, decreasing exponentially as we penetrate the superconducting
material. The net magnetic field at the outer surface of the supercon-
ductor is tangential to its surface.

In the original works of Becker, London et al. the masses of the
free electrons appearing in the London moment and also in the Meiss-
ner effect were introduced ad hoc in purely electrodynamic equations.
In particular, these masses were introduced in equations describing the
magnetic field of the superconducting material. In our treatment, on the
other hand, the mass of the test particle was introduced where it really
belongs, namely, in Newton’s second law of motion. This is the main
advantage of the present treatment of these topics.
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