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Abstract: We demonstrate (he equivalence for the ,elf-inductance of closed "ircuits, with the 
formulas of Neumann, Weber, Maxwell, and Graneau. 

1Usum~: NOllS demonrrons que lcs formules de Neuman, Weber. Maxwell ct Grancau 
donncn( la meme 8clf·inductaIl~e pour des circuits fenne" 
[Traduit par la redachon) 

1. Introduction 

The concept of inductance arises naturally when studying the interaction energy between current­
carrying circuits. This interaction energy has a factor that depends only on the geometry of the 
circuits. When we analyze the self-energy of a smgle circuit, this factor is called self-inductance; 
when we analyze the interaction energy of two distinct circuits, it is called mutual inductance. 

With the theoretical development of electrodynamics three main fonnulas appeared to calculate 
inductance: the expressions of Neumann, Weber, and Maxwell. Recently, a new fonnula can be 
deduced from Graneau's work. 

Our goal is to demonstrate the equivalence between these fonnulas for the self-inductance of a 
dosed circuit TIlis equivalence is a known fact for the mutual inductance of two separate closed 
circuits [1], but tl.ere is no demonstration for a single closed circuit. 

The demonstration we shall present here is a generalization of the equivalence we have recently 
shown in some specific configuratious [2]. 

2. Inductance forr .. ulas 

2.1. Neumann's formula 
To explain Faraday's law of inductance with Ampere's force [3], Neumann iutroduced the concepts 
of vector potential and mutual inductance. Consider two dosed circuit~ r I and r~ carrying currents 
h and 12 , respectively, Fig. I. A current element of the circnit r I is 11 dr" and a current element of 
the circuit r 2 is hdrJ" They are located, respectively, at r, and rl' 

The magnetic interaction energy U~, between the circuits r 1 and r 2 , denved by Neumann, is 
givcn by 

'-! Ito i i dr, ·dr) Ui2 = 4hI2 
1T r, r, '1"'1 

(1) 
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fig. 1. Two do,ed circuits r, and r2 with currents 1, and 1,. The current element J,dT", is located at T", while 
I.dr, is located at T"" 

• 
" 

o 

r, 

We can write the energy U~ as 1thM~. where Mji is the geometric coefficient called the 
mutnal inductance. Therefore, it follows from (1) that 

M[; "" Po 1 1 dr,· drJ (2) 
411" frl Jr, r'J 

2.2. Weber's Connula 
Through Weber's force we can derive an interaction energy Ui2', for the circuits r 1 and r 2, following 
the same reasoning shown in Sect. 2.1 [4, 5]. If we write Uij as 1tI2M~, we obtain the coefficient 
of mutnal inductance Al;j, in Weber's electrodynamics: 

(3) 

2,3, Maxwell's ronnula 
In classical electrodynamics we utilize Darwin's energy [6J to obtain the interaction energy Ul~ "" 
hhMN, The fonnula for the coefficient of mutual inductance }vIN is [7, 8] 

(4) 

2.4. Graneau's Connula 
In his book, ref. 9, p. 212, Granean defined un electrodynamic energy d2V,; between current elements. 
Integrating for closed circuits we obtain tbe interaction energy ug -= hhA'fg. Tbis results in 

(5) 

Analogous to Helmholtz's procedure [3, 7. 8, lOJ, these expressions for the mutual energy between 
two closed circuits can be wrillen as U12 = hhAft2, with 
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FIg. 2. (aJ Circuit r of {hickncs~ w. length e and carrymg an uniform and constant current [. (b) N Circuits r, 
dividing r. (,,) Circuit r, of {hkkncs; w, and carrying an uniform current J, == Jw,;",. 

(')~====:: 

r 

("ff=-===~ 

(6) 

where M(2 = M~ for I.; = 1, Ah~ = AI{j for k = -1, and j\h~ = AIM for k = 0, M12 = JUg 
for k = -5. 

Changing the variables of integration in (6) we obtain ./I'hl co Al12 , for all fonnulas. 

3. Generic proof of equivalence 

As we want to prove the equivalence of the four fonnulas presented above when calculating the ~e1f­
inductance of a single do:.ed circuit, we cannot use the model of a linear current element. Expression 
(6) is not well defined when r 1 coincides with r 2. To overcome this difficulty we have to change 
the lincar-current element to a surface- ur volume-current elemenl. 

We now demonstrate the equivalence between the fonnulas of self-inductance given by Neumann, 
Weber, Maxwell, and Graneau. First, consider the circuit r described in Fig. 2a. We suppose this 
circuit to be composed of surface-current elements. The thickness of the circuit is w. We divide l' 
into N circuits r, with thickne~~es w, and carrying currents I" in such a way that w = L~=l [,!" 

1, = [w,/w (Figs. 2b and 2c). We choose a large N to make w, <1( wand w, < £ (£ is the length of 
C). 
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Fig. 3. (a) Circuit r, with thickness w, and carrying current I,. b Circuit r, replaced by At rectangular circuits 
r" (j = 1, '_, Af). each carrying a current 1, in the same direotion as r,. 

r, 
w, I, 

The self-inductance Lr of the circuit r, in Figs. 2a and 2b, can be written as} 

Lr 

, , 
L: Lr" + L: M rmfn (7) 
,,=1 m n=l 

m'" 
where Sr j, the surface of the circuit r. To arrive at (7) we defined Lr " == J fsr" I .r~rn d4 M'J 

and Mrmr.. == J fSr,,, J f"r" d
4

M'J" 
Now, we approximate the circuit f" in Fig. 2e, by Ai rectangular closed circuits f'J with currenl~ 

I" in the same direction as in r, (Figs. 3a and 3b). This approximation can be improved to any desired 
degree by decreasing the rectangle's areas and increasing !heir number AI accordingly. We can write 

];I M 

Lr, = L Lr " + L Mr"r" (8) 
J=l J,k~l 

,# 

The self-inductance Lr" of the rectangle r'J can be calculated with the geometry of Fig. 4. 
As we have surface-current elements in the rectangle of Fig. 4, we have to make use of the 

equivalence Jdr ,...., Kda in e:l:pressions (3) to (6). where K is the surface"current density (iKi = 
'/w,) and da is thc area element. Calculating the integrals [2], supposing w, « t] and w,« (2, 
yields (neglecting tenns of the orders (W,/i1)3, (w,/1'2)\ and above) 

(9) 

3 With tius definiuon, the ""If-energy of lhe circuit r is 12 Lr /2. 
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Fig, 4. Rectangular closed circuit r" with ,ide, £, and '0, thickness w" and current I. 

'} r;) 
u, --

0 w, tz-w, t, 

This is a very important result. It shows that for the closed circuit of Fig. 4, we have tte 
same coefficient of self-inductance according to the expressions of Neumann, Weber, Maxwell, and 
Graueau. 

The circuits r" and r,k of Fig. 3b are two distinct closed circuits, with J # k. Therefore, 

M{:I.,r" = 1\,f~ r,. = .Mr.,r" = Mf;,r,. [I]. This fact, and the equivalence in (9) substituted in 
(8), shows that for the circuit r, of Fig. 20, 

(10) 

As ,Upr = MPr = M~lr = Mfr (two distinct closed circuits of Fig. 2b) we finally obtain 
from (7), ~ith the etiu{valence';~ (10), , J 

L~ = Lt" = L~ = L~ (11) 

This is the proof of equivalence between the expressions of Neumann, Weber, Maxwell, and 
Graneau obtained utilizing a generic circuit r with surface-current elements (Fig. 2a). Instead, we 
could have utilized a circuit r with volume-current elements. The demonstration of the equivalence 
in this case follows the same reasoning presented above. It is only necessary to calculate the self­
inductance of the rectangular dosed circuit with volume-current elements. analogous to the one 
presented in Fig. 4 with surface-current elements. With the same dimensions as in Fig. 4, but now 
with the square cross section of sides w,' and utilizing the equivalence J dr ,...., JdV(J is the volume­
current density, iJi = 1/w;, and dV is the volume element) in (3) to (6), we obtain [2J (supposing 
w,« lj, w, «£2 and neglecting tenns of the orders (W,/[1)3, (W,/£2)3 and above) 

Lr =Lr =Lr =Lr ":'- 2£2 In - +U,11l - -2t2smh -, W M " "" [ (",) ('f,) . _, (f') 
" 'J " ., 21r W, W, £1 

. _, (I,) ")'" (" '")] -2flsmh t; +4(£1+f2 + (f1+fo) "G-3"ln2-"3 (12) 

As in cxpression (9), the same coeffiCIent of self-induction is obtained according to the expressions 
of Neumann, Weber, Maxwell, and Graneau. 
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4. Conclusions 

The fact that the mutual inductance of two separate closed circuit~ is the same according to the 
formulas of Neumann, (2), Weber, (3), Maxwell, (4), and Graneau, (5), has been known for a long 
time 11]. We conclude in this work that this result remains valid even when we are calculating the 
self,induclance of a single closed circuit. 

Therefore, there is no distinction between these formulas when dealing with closed circuits. 
In some situations it is easier to calculate the force between closed circuits (or between a closed 

circuit and a part of itself) by deriving it from the inductance (see ref. 9, p. 204, and refs. II and 
12) not calculating it directly by means of Ampere's force or Grassmann's force. Thus, the fact that 
the self-inductance with Maxwell's formula and Weber's formula is the same implies that classical 
electrodynamics (Grassmann's force) and Weber's electrodynamics (Am~re's force) agree as regards 
the resultant force in closed circuits [13-16], 
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