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Equivalence between the formulas
for inductance calculation

Marcelo Bueno and A.K.T. Assis

Abstract: We demonstrate the equivalence for the self-inductance of closed circaits, with the
formulas of Nenmann, Weber, Maxweil, and Graneau.

Résumé : Nous démontrons que les formules de Neuman, Weber, Maxwell et Grancau
donnent la méme self-inductance pour des circuits fermeés.
{Traduit par la rédaction}

1. Introduction

The concept of inductance arises naturally when swdying the interaction energy between current-
carrying circuits. This interaction energy has a factor that depends only on the geometry of the
circuits. When we analyze the self-energy of a single circuit, this factor is called self-induciance;
when we analyze the interaction energy of two distinet circuits, it is called mutual inductance.

With the theorstical development of electrodynamics three main formuias appeared to calculate
inductance: the expressions of Neumann, Weber, and Maxwell. Recently, a new formula can be
deduced from Graneau’s work.

Our goal is to demonsirate the equivalence between these formulas for the self-inductance of a
closed circuit. This equivalence is a known fact for the mutual inductance of two separate closed
circuits [1], but tiere s no demonstration for a single closed circuit.

The demonstration we shall present here is a generalization of the equivalence we have recently
shown in some specific configurations [2].

2. Inductance fornulas

2,1. Neumann’s formula
To explain Faraday's law of inductance with Ampare’s force [3], Neumann introduced the concepts
of vector pefential and mutual inductance. Consider two closed circvits I'y and Iy carrying currents
I, and £y, respectively, Fig. 1. A current element of the cirenit I'; #s Iydw,, and a current element of
the circuit I's is f2dr,. They are located, respectively, at v, and »r,,

The magnetic interaction energy £, between the circuits T'y and Ty, derived by Neumann, is
given by

v #o dr, - dr,
Ulz T 112 f}l f}\z T ey

where iy =4 x 1077 kgm C 2 and ry; = |, — 7.
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Fig. 1. Two closed circnits I'y and Tz with currents [y and . The cumment element Fyde, is located al », while
Iydr, is located al vy,

as [1 LM}, where M}
mutnal inductance. Therefore, it follows from (1) that

ui=f g S @
4 fr, Jr, Tay

We can write the energy U is the geometric coefficient cailed the

2.2. Weher’s formula
Through Weber's force we can derive an interaction cnergy Ug, for the circuits I'; and T, following
the same reasoning shown in Sect. 2.1 [4, 5]. If we write U} as [; [, M3, we obtain the coefficient

of mutual inductance M-y, in Weber’s electrodynamics:

(Foy - A, ) (Fyy - d
my=ted § Cotnlfy o) ®
4 Ty JTa ‘

2.3. Maxwell’s formula
In classical electrodynamics we utilize Darwin’s energy [6] to obtain the interaction energy U{‘g =
i M}\g. The formula for the coefficient of mutual inductance M, f‘% is [7, 8]

f f {dr, - dry} + (Fyy - dr)(Fyy - dry) 4)
My = ar Jr Jr, 2Zry

2.4. Graneau’s formula
In his hook, ref. 9, p. 212, Graneau defined an electrodynamic energy d*V;J between current elements.
Integrating for closed circuits we obtain the interaction energy U3 = Fy o M. This results in

M =2 j{ ?g’ [3(f»3-dn}(fu : in) — 2(dr, - dr;)] &)
Iy #Tg it

Analogous to Helmholtz’s procedure [3, 7, 8, 10], these expressions for the mutal energy between
two closed circuits can be written as I3 = Iy oMo, with
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Fig. 2. {a) Circuit ' of thickness w, length £ and carrying an uniform and constant current £, (6 Y circuits T,
dividing I'. (&) Circuit [', of thickness «, and carrying an uniform current J, = Tuw, v,

fa)

Mg

@ f f 1+k (d?‘, ) d"")) + 1-& (f'zj B drz)('ﬁu : dr})
r, Jro 2 Tuy 2 Tay
1+k% 1—k
( > ) M+ (T) MY (6)

where My = M} for k= 1, Myy = MY for k = ~1, and My = M} for & = 0, My = M3
for k = —5.
Changing the variables of integration in (6) we obtain May = Mz, for all formulas.

J. Generic proof of equivalence

As we want to prove the equivalence of the four formulas presented above when caleutating the self-
inductance of a single closed circuit, we cannot use the model of a linear current element. Expression
(6) is not well defined when I'y coincides with T's. To overcome this difficulty we have to change
the lincar-current element to a surface- or volume-current element.

We now demonstrate the equivalence between the formulas of self-inductance given by Neumann,
Weber, Maxwell, and Graneau. First, consider the circuit I' described in Fig. 2a. We suppose this
circuit to be composed of surface-current elements. The thickness of the circuit is w. We divide 1’
into /¥ circuits ', with thicknesses u, and carrying currents [, in such a way that w = Zil (Wey
I, = fun fw (Figs. 2b and 2¢c). We choose a large ¥ to make w, < w and w, < £ (£ is the length of
T).
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Fig. 3. {a) Circoit ', with thickness w, and carrying current £,. & Circuit I', replaced by M rectangular circuits
Ly (F = 1,..., M), cach carrying a currgnt £, in the same direction as T',.

)

N0
ﬁ?” - gg@
\4%:h dog B8~
T My

The self-inductance Lp of the circuit T, in Figs. 2a and 26, can be written as®

L Loe (L) B L)

E Lr, + E Mr,.r, o)

mes] m.n=t
mn

where Sp is the surface of the circnit T'. To arrive at (7) we defined Lr, = [ f; [ f, d*M,;
and My, = f fsrm -rj:‘fr., d4ﬂfu.

Now, we approximate the circuit I, in Fig. 2¢, by M rectangular closed circuits I'y, with currents
I,, in the same direction as in T, {Figs. 3a and 3b}. This approximation can he improved to any desired
degree by decreasing the rectangle’s areas and increasing their number M accordingly . We can write

Lr

M i3
Lo,=Y L, + Y M, (8)
=1 Jok=1
£k

The seli-inductance Ly, of the rectangle I';, can be calculated with the geometry of Fig, 4.

As we have surface-current elements in the rectungle of Fig. 4, we have to make use of the
equivalence Idr «— Kda in expressions (3} to (6), where K is the surface-current density (|K| =
I/w,) and de is the area element. Calculating the integrals [2], supposing w, < & and w, < {3,
yields (neglecting terms of the orders (w,/81)3, (w,/£2)?, and above)

2 2f £
=I¢ R DT ™ 2) +26 In{ =2 - 2psinht [ 2
2 tw W &

—2¢; sinh ¢ (E ) + 465 MR g i’g] ]

N o _ W _ M
Lrt: - Lr!; - J[’TIJ

3 With this definition, the seli-energy of the circuit T s 2L /2,
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Fig. 4. Rectangular closed circuit T;; with sides £ and fa, thickness o, and current f.
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This i5 2 very important result. It shows that for the closed circuit of Fig. 4, we have the
same coefficient of seli-inductance according to the expressions of Neumann, Weber, Maxwell, and
Graneau.

The circuits [, and I';x of Fig. 3b are two distinct closed circuits, with 3 ¥ k. Therefore,
MI‘.;I’\ L = Mr\ T = Mfr.” = MF‘ r,, [11. This fact, and the equivalence in (%) substituied in
{8), shows that for the circuit l" of Flg 2e,

LY, =Lf, = L = If, (10)

As MY = MY, T, = Mfr, = M (two distinet closed circuits of Fig. 25) we finally obtain
from (7), Wllil the equwa.lcn(,e in (10,

Ef =1 = [ = 18 {11y

This is the proof of equivalence between the expressions of Neumann, Weber, Maxwell, and
Graneau cbtained utilizing a generic circuit I' with surface-current elements (Fig. 2a). Instead, we
could have utilized a circuit I' with volume-current elemnents. The demonstration of the equivalence
in this case follows the same reasoning presented above. It is only necessary to calculate the self-
inductance of the rectangular closed circuit with volume-current elements, analogous to the one
presented in Fig. 4 with surface-current elements. With the same dimensions as in Fig. 4, but now
with the square cross section of sides w;,, and utilizing the equivalence fdr — JdV (J is the volume-
current density, |J| = I/w?, and AV is the volume element) in (3) to {6), we obtain [2] {supposing
w, & £1, w, < Py and neglecting terms of the orders {wy/€1)3, (w,/€3)° and above)

2
LF, =¥, =18, =}, ~ 2 [zeg In ( f) +20 T (Zj‘) ~ 28, sinh™! (ﬁ—:)

i 11

4!

: -1
—2# sinh (E

) A8 B (48 (— -2m2- 2{)] (12)

As in expression (9), the same coefficient of self-induction is obtained according to the expressions
of Neumann, Weber, Maxwell, and Graneay.

1997 NRC Canada



362 Can. J. Phys. Vol. 75, 1997

4. Conclusions

The fact that the mutnal inductance of two separate closed circuils is the same according to the
formuias of Neumann, (2), Weber, (3), Maxwell, (4), and Graneau, (5), has been known for a long
time [1]. We conclude in this work that this result remains valid cven when we are caleulating the
self-inductance of a single closed circuit.

Therefore, there is no distinction between these formulas when dealing with closed cireunits.

In some situations it is easier to calculate the force between closed circuits (or between a closed
circuit and a part of itself) by deriving it from the inductance (see ref. 9, p. 204, and refs. 11 and
12) not calculating it directly by means of Ampére’s force or Grassmann's force. Thus, the fact that
the self-inductance with Maxwell’s formula and Weber’s formula is the same implies that classical
electrodynamics (Grassmann's force) and Weber's electrodynamics (Ampere’s force) agree as regards
the resultant force in closed circuits [13-16].
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