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In this work we calculate the electrodynamic energy of conductors carrying slowly time-varying currents. We show
that this energy can be quantitatively identified with the classical kinetic energy of the current-carrying electrons
with effective intertial mass proportional to the self-inductance of the conductor.
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1. Introduction

There has been a recent theoretical and experimen-
tal interest in the study of the effective inertial mass
of electrons which can be different from their free in-
ertial mass of 9.1 x 1073! kg, [1-6]. These attempts
utilize Weber’s force between charged bodies, [7-13].

Here we consider the interactions between the con-
duction electrons and the positive stationary lattice of
the current carrying conductor. The goal is to estab-
lish a connection between these interactions and the
self-inductance of the conductor. In this approach the
self-inductance is seen as a measure of the effective in-
ertial mass of the conduction electrons. We utilize We-
ber’s energy of interaction between charges and com-
pare these results with those given by classical electro-
dynamics (utilizing Darwin’s energy, from which the
Liénard-Schwarzschild force can be derived, [14], [15,
pp. 150-151], [16, Section 12.7, pp. 593-595]). We wish
to find a connection between these interaction ener-
gies and the kinetic energy of the conduction electrons.
The attempt is to clarify the relation between a global
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variable describing an electric circuit, namely, its self-
induction L, and the microscopic variables related to
the underlying physics, that is, the effective inertial
mass of the conduction electrons.

As is well known, if there is a current i flowing
through a conductor with self-inductance L, the clas-
sical magnetic energy Up of the system is given by:

1
Up = 5Lz‘2 . (1)

Suppose that the current flows through the cross-
section A of the conductor with an average drifting
velocity v. Then 4 can be substituted by ¢ = pAw,
where p is the volumetric charge density of conduction
electrons in the conductor. The magnetic energy can
then be rewritten as:

2
Up = L(pAv)? = L(Lp2a2)02 = N (9
2 2 2
Here we defined mqg = Lp?A?/N as the effective mass
of a conduction electron and N is the total number of
electrons in the current flow. This yields the magnetic
energy Up as an effective kinetic energy.



A.K.T. Assis and J.A. Hernandes

But this effective kinetic energy cannot be identi-
fied with the usual kinetic energy Ty qua] = NV mu? /2
(where m = 9.1 x 1073! kg is the mass of the electron)
for two reasons. The first reason is that for fixed N and
v it is known that Up = Li?/2 depends on the geome-
try of the circuit. On the other hand, T4, does not
yield this dependence on the geometry, as it has the
same value for all the shapes of a circuit. For instance,
by bending a wire without changing the current 4, the
self-inductance L changes, the same happening with
Up, while T},¢,51 remains the same. The second reason
is that for typical situations 7},ga] << Un, which pre-
vents the identification of these two concepts. Consider
for instance a cylindrical copper wire of length ¢ and
radius r < ¢ carrying a current 4. Its self-inductance is
given by L = (uof/27)In(¢/r), [17, p. 35]. This means
that Up = Li?/2 ~ 7.6 x 1077 Jif { =1m, r = 0.5
mm and ¢ = 1 A. In a copper wire we have typically
one conduction electron per atom and 8.5 x 10?2 atoms
per cm®. This yields Tyguq ~ 2.7 x 10710 J < Ug.
This means that the magnetic energy cannot be iden-
tified with the usual kinetic energy of the conduction
electrons.

Despite this fact, our goal in this work is to derive
the magnetic energy Up as an effective kinetic energy
of the conduction electrons due to their electrodynam-
ic interactions with the conductor. To show this and
to have a better understanding of the physical con-
cepts behind this approach we compare two formula-
tions, namely, Weber’s electrodynamics and classical
electromagnetism.

2. Weber’s Potential Energy

Consider two charged particles g; and g2, located
in 71 and 75, with velocities ¥; and ¥y relative to the
origin O of an inertial system M, respectively. Weber’s
potential energy of interaction between these charges
is given by, [11, p. 61]:

1 2
R e Gt ) R

47eq T2 2¢2

where €y = 8.85 x 10712 C2?/Nm? is the electric per-
mittivity of the vacuum, ri5 = || — s, 12 = dria/dt
and ¢ = 3 x 10% m/s is the velocity of light in vacuum.
The term 715 can be rewritten as 75 = 715 - /12, where
7212 = 7?12/7'12 and 1712 = 171 — 172. The Hamiltonian en-
ergy Hyy is given by Hy = T + Uy, where T is the
kinetic energy of the system.

We will calculate the energy in four different situa-
tions, following the approach of [2]: (A) a cylindrical
wire of length ¢ and radius » < ¢, with an uniform
longitudinal volume current density J=Jz flowing
over its cross section; (B) a straight rectangular strip
of length ¢ and side d < ¢, with an uniform longitudi-
nal surface density K =K:2 flowing over its surface;
(C) a hollow cylinder with length ¢ and radius r < ¢,

with an uniform longitudinal surface density K=K?
flowing over its surface; (D) the same cylinder as in
(C), but with an uniform surface density K = K¢
(azimuthal current) flowing over its surface.

First we consider case (A). That is, a straight cylin-
drical wire with length ¢ and radius r < ¢, with an
uniform longitudinal volume current density J=Jz
flowing over its cross section. The axis of the cylin-
der is along the z axis. For a resistive circuit carrying
steady currents there are surface charges spread along
its surface, [18-23]. Despite this fact we consider in
a simplified model the wire to be essentially neutral
at all points, dg_— = —dg4, and utilize cylindrical co-
ordinates (r,y,z). We also consider the situation of
slowly time-varying current, so that at a given instant
of time all conduction electrons have the same average
drifting velocity v = v 2.

In both calculations (utilizing Weber’s electrody-
namics and utilizing Darwin’s energy or classical elec-
tromagnetism) we take into account only this drifting
velocity of the conduction electrons, which is a sta-
tistical non-equilibrium average. We do not take into
account the thermal random velocities because we are
interested here only in the effective kinetic energy of
the conduction electrons which is a function of the
current intensity in the current carrying conductor. A
full statistical treatment taking into account the ther-
mal random velocities of the conduction electrons is
beyond the scope of this paper.

In each current element j there are positive and
negative charges, dg;+ and dg;_, respectively. Due to
the assumed charge neutrality of each current element
we have dgj_ = —dg;+. When we consider the inter-
action between two neutral current elements, j = 1
and j = 2, we need to take into account four inter-
actions: (I) stationary positive ions dg;4 interacting
with stationary positive ions dga4; (II) mobile conduc-
tion electrons dq;_ interacting with mobile conduc-
tion electrons dgo—; (III) stationary positive ions dgi+
interacting with mobile conduction electrons dgs_;
and (IV) mobile conduction electrons dg; — interacting
with stationary positive ions dgoy. We consider each
of these interactions separately, beginning with inter-
action (I). From Eq. (3) and the fact that the ions are
at rest relative to one another it remais only a repul-
sive Coulombian interaction. The same happens with
interaction (II) due to the supposition that all elec-
trons move with the same drifting velocity, namely,
U1— = Uo_ = v1Z. This means that v;_ — vo_ = 0,
so that 715 = 0. This reduces Weber’s potential ener-
gy given by Eq. (3) to a Coulombian repulsion. Due
to the assumed charge neutrality of the wire we have
dgi— = —dq1+ and dga— = —dgo4. This means that
the Coulombian attraction represented by the first
term on the right hand side of Eq. (3) for interac-
tions (III) and (IV) will yield two attractions that
will cancel the Coulombian repulsions given by in-
teractions (I) and (II). The only components which
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will remain from interactions (III) and (IV) will be
given by the velocity component of Eq. (3), namely,
—dqldQQ’Flz/Sﬂ'éo’FlQC In particular we need to con-
sider the interaction between mobile conduction elec-
trons (an element of charge dq; = —pridridp1dz lo-
cated at '} = r1 cos p1Z+71y sin 19+ 21 2, moving with
velocity 7 = v12) and the stationary positive lattice
(an element of charge dgs = +pradradpadzs located
at Ty = ro Ccos Yok + 79 8in Yo + 292, which is at rest
relative to the laboratory, that is, 7o = 0), where p is
the conduction charge density inside the wire.

By considering the four interactions above what re-
mains from Weber’s energy is then given by:

2
Uw = Vil (4)

8T

where 119 = 1/(€oc?). From Eq. (3) the integral I is
given by (defining a? = r? + r3 — 2r17ry cos(pa — ¢1)):

r r 27 27
I E/ Tld’l“l/ rgdrg/ dyq dpa
/“2 " /“2 dza( z2—21)2
2/2 ! 1z/2 [a? + 22*21) ]3/2
/Tld’l“l /’I“gd’l“g d(pl
x/d@(zx@—zx a? + (2
0

{+ Va2 + 2 )
rVar )

In this point we utilize the approximation ¢ > r, re-
sulting:

+ £In

20

14
I =~ 2m2rte <ln — - 7) ~ 2%t In- . (6)
r 4 T

The energy Uy is then found to be given by:
1 et
UW:(Wln) o2 )
r

This can be arranged in a more interesting
manner. Utilizing the self-inductance of this wire,
L = (uol/27)In(¢/r), and the total number of con-
duction electrons N = pmr?l/e, where —e = —1.6 x
10712 C is the electron’s charge, the energy Uy can
be rewritten as:

2

Uw = %L(pﬂr%l)Z = N% , (8)
where mqg = (epA/l)L is the effective electron mass.
The order of magnitude of the effective mass can be
obtained considering a typical copper wire, with £ ~ 1
m and 7 ~ 1 mm, yielding mqg ~ 1072 kg. As the free
inertial mass of the electron is given by m = 9 x 103!
kg, we have myg > m.
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For case (B) a similar integration leads to:

2€d2 Vi 2
L)ZW In gvf = NLegvl , (9)

with L = (uol/27) In(¢/d) and N = old/e. Here —o is
the surface charge density of the conduction electrons.

Uw =

In this case we have meg = (eod/l)L
For case (C) we obtain:
2,21 L o M}
Uw = poo“mlr<In v = NT , (10)

with L = (uof/27)In(¢/r) and N = o2nré/e. In this
case meg = (eoc P/¢)L, where P = 27r is the length
of the cross section. That is, the perimeter of the con-
ductor through which the current flows.

An analogous calculation yields for case (D) the fol-
lowing relation:

202 2
Uw = Hog T v = N Teft1 , (11)
2 2
with L = (uonr?/€) and meg = (eal/2mr)L
Egs. (8) to (11) yielded the same general result,
namely:
Mefv?
Uy =N ET , (12)
with the appropriate effective inertial energy for each
geometry.

Instead of integrating Weber’s potential energy, it is
also possible to work with the Lagrangian formulation.
Weber’s Lagrangian energy, as first obtained by Carl
Neumann, is given by, [11, p. 68]:

-2
Sy = 12 1 (1 + ’"12> . (13)

41eq r12 2c2

Note the change of sign in front of the term with
1/¢? when we compare Egs. (3) and (13). Weber’s La-
grangian is given by Ly =T — Sy, with T being the
kinetic energy of the system. The Hamiltonian Hy,
and the conserved energy Fys on the other hand, are
given by Hy = Eyw =T + Uy

Comparing Egs. (3) and (13) indicate that the La-
grangian energy for these four cases according to We-
ber’s expression can be written as:

2
Sw = fN% : (14)

with the appropriate effective inertial mass for each
geometry.

3. Darwin’s Energy

To compare Weber’s electrodynamics with classical
electromagnetism we now consider Darwin’s energy,
[14], [15, pp. 150-151] and [16, Section 12.7, pp. 593—
595]. We perform the same calculations as above but
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utilizing Darwin’s expression for the interaction ener-
gy between the charges. From this potential, we can
derive the Liénard-Schwarzschild force utilizing the
Lagrangian formalism. Darwin’s energy is given by:

_ Qe 1
47‘(’60 T12

Up

U1 - Ug + (U1 - P12) (V2 - 12)

X |1+ ¢

(15)

The Hamiltonian Hp and the conserved energy Fp
for classical electromagnetism are given by Hp =
Ep = T + Up, where T is the kinetic energy. This
is not to be confused with Darwin’s Lagrangian ener-

gy:

1
Sp = qig2 1
47T60 12
U1 - T + (U1 - T12) (T2 - T12)

X [1—
2¢2 ’

(16)

so that the Lagrangian is Lp =T — Sp.

The main difference between Darwin’s energy (15)
and Weber’s energy (3) is that in Weber’s energy
the velocities appear only in their relational form
(7'"%2 = (’f‘lg . 1712)2 = [7212 . (’171 — 172)]2) Darwin’s en-
ergy, on the other hand, depends on the product of
the velocity of each particle involved in the interac-
tion. To see the difference between the two approach-
es we consider a fixed positive ion of the lattice with
7 = 0 interacting with a mobile conduction electron
U # 0. In this case the velocity components of Egs.
(15) and (16) go to zero, yielding only a Coulombian
interaction between these charges. On the other hand,
as 712 # 0 in this case, the velocity components of
Egs. (3) and (13) do not go to zero and the Weberi-
an interaction for these charges is different from the
Coulombian interaction. The opposite happens when
we consider the interaction of two conduction electrons
moving relative to the lattice with the same velocity,
U1 = Up # 0. In this case 712 = 0 so that the Weberian
interaction reduces to the Coulombian potential en-
ergy, while the velocity components of Egs. (15) and
(16) remain different from zero. This results in differ-
ent interpretations of the phenomenom of a conductor
carrying a current. By disregarding the Coulombian
interaction which is common to Weber’s electrody-
namics and to Darwin’s energy, the difference between
the two approaches can be stated as follows: Classical
electromagnetism (as represented by Darwin’s energy)
deals only with interactions among conduction elec-
trons, while Weber’s electrodynamics deals only with
an interaction between the conduction electrons and
the stationary lattice.

We calculate Darwin’s energy for each of the four
cases treated with Weber’s energy. We begin with
case (A). Once more we consider in each current ele-
ment j positive and negative charges, dg;4+ and dg;_,

respectively. Due to the assumed charge neutrality of
the current elements we have dq;— = —dg;+. When
we consider the interaction between two neutral cur-
rent elements, 7 = 1 and j = 2, we need to take into
account four interactions: (I) stationary positive ions
dqi+ interacting with stationary positive ions dgoy;
(IT) mobile conduction electrons dg; — interacting with
mobile conduction electrons dgs—; (I1I) stationary pos-
itive ions dg;+ interacting with mobile conduction
electrons dgo—; and (IV) mobile conduction electrons
dq1— interacting with stationary positive ions dgoy.
We consider each of these interactions separately, be-
ginning with interaction (I). From Eq. (15) and the
fact that the ions are at rest relative to one another
it remais only a repulsive Coulombian interaction. In
interaction (II) we have from Eq. (15) a Coulombian
repulsion plus a velocity component given by

—dq1-dga_[T1— - Vo + (U1 - 12) (Vo - F12)] /8Te€0T12C>.

For interactions (III) and (IV) we have from Eq. (15)
only a Coulombian attraction, as the velocity com-
ponent goes to zero due to the fact that we are as-
suming a stationary positive lattice. This Coulombian
attraction of interactions (III) and (IV) cancels the
Coulombian repulsion of interactions (I) and (II). This
means that from these four interactions based on Dar-
win’s energy it only remains the velocity component
of Eq. (15) arising from the interaction of the mobile
electrons of element j = 1 with the mobile electrons
of element 7 = 2. In particular we need to consider
the interaction between mobile conduction electrons
of the first element (an element of charge

dq1 = —prldrldgoldzl

located at

—

7] = 71 COS (1 & + r1sin 1y + 212,

moving with velocity ¥5 = v12) and the mobile con-
duction electrons of the second element (an element
of charge dgs = —pradradpadzs located at 7™ =
T COS Yo + Tosin ey + 222, moving with velocity
Uy = v9Z), where p is the conduction charge density
inside the wire.

For case (A) and by taking into account the four
interactions above, the integration of Darwin’s energy
(15) is then given by:

2
Up = “gg V1ol . (17)

The integral Io which appears here is given by, from
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q. (15) and the considerations above:

27 27
[2 / rldrl/ ’I“gd’l“g/ d(pl/ ngQ
/5/2 i /4/2 { Z9 — 21) + 1}
¢/2 ¢/2 r12
/rldrl/rgdrg/dgol

27 2 2
x/dg02< —6v/a? + (2 +20In g; va®+¢ )
0

Va? + 2
20 5
~ 4£7T (hl , — 4)
2

where we defined once more a?> = 7% + ri —
21179 cos(p1 — p2) and utilized in the last equation the
approximation ¢ > r. Due to the fact that the inter-
action is between conduction charges only, we main-
tained the term vjvy in the energy (17), although we
are considering the case in which vo = vy = v. This
will be discussed in the next section of this article.
The energy for this case becomes:

4€7r2r41n£ , (18)
T

pop*mrtl
2
with meg = epAL/l. So Up is almost the same as
Eq. (8), except for the factor 1/2.
For cases (B), (C) and (D) we obtain by similar
calculations, respectively:

14
Up = In Sv1v2 = Nmegguiva , (19)

20d% ¢

Up = NO;T In Uz = Nmgguivs , (20)
2.2 ¢

Up = 2ppo-r°nlIn —vivs = Nmeguivs , (21)
r

Up = poo*r*mlvivg = Nmeguiva , (22)

where the effective masses in Eqs. (20) to (22) are the
same as the analogous ones obtained previously with
Weber’s energy for each case.

Egs. (19) to (22) can be written as

Up = Nmegv1va , (23)

with the appropriate effective inertial mass for each
geometry.

By comparing Egs. (15), (16) and (19) to (22) we
obtain that in the four geometries considered here,
Darwin’s Lagrangian energy can be written as:

SD = —Nmeffvlvg 5 (24)

with the appropriate effective inertial mass for each
case.

4. Discussion and Conclusion

The velocity-dependent potentials we have used so
far are also called generalized potentials. From them
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we can obtain the net force Fj applied on charge ¢
utilizing the standard approach, namely:

oS d 0S

F:n = -5 . a.
! 8.731 +dt8v11.

(25)
where x; is the x component of the position vector
of the charge g1, and vy, is the x component of the
velocity of the charge ¢;. The y and z components
can be obtained analogously. For both Weber’s and
Darwin’s potentials, we obtain from Eq. (25) applied
to Egs. (8) to (14) and (19) to (24):

- dv .
F = —meffd—tl = —Megds - (26)

For Darwin’s energy we utilized the fact that
U1 = Uy = v, after the derivation above.

Weber’s energy (3) and Darwin’s energy (15) differ
by a factor of 1/2. The same can be said of the final
results obtained from Weber’s electrodynamics and
from classical electromagnetism, namely, Eqs. (12)
and (23). Despite this fact, the expressions for the
forces in these two approaches are exactly the same,
that is, Eq. (26). That the forces give the same result
had already been obtained in [2]. Beyond the differ-
ence of 1/2 in the expressions for Weber’s and Dar-
win’s energies, these energies have completely differ-
ent interpretations. Darwin’s energy is due only to the
interactions among the conduction electrons, and all
other interactions (between conduction electrons and
the stationary positive lattice, and among the charges
of the positive lattice with one another) are zero. This
happens due to the explicit velocities that appear in
Eq. (15). Weber’s energy is due only to a non-zero
interaction between the conduction electrons and the
positive lattice (where there is a non-zero relational
velocity, 715 # 0), while all other interactions are null.

Another important aspect to discuss is the differ-
ent effective inertial masses obtained in cases (C) and
(D). In these cases the conductor has the same size
and form, but the currents are orthogonal to one an-
other (in case (C) the current flows along the longitu-
dinal 2 direction, while in case (D) the current flows
along the azimuthal ¢ direction). Notice that Weber’s
effective masses for these cases differ considerably, re-
spectively, meg = poeorIn(¢/r) and meg = poeor/2.
This anisotropy in the effective intertial mass of a test
charge had already been noticed before, [24] and [11,
p. 189-190].

We can write the results of the effective mass for
Weber’s energy in the general form given below for
volumetric and surface currents, respectively:

epA ecP
Meff = TL s or, Meff = TL s (27)
where A is the cross section of the volumetric current,
P is the perimeter of the cross section of the surface
currents and ¢ is the total length of the conductor
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along the direction of the current. In the same way,
the Weberian energies can be written in the general
form:

2
1
U = N% = SLi%. (28)

We can interpret Eq. (28) as follows: the kinetic
energy of conduction electrons in Weber’s electrody-
namics is quantitatively identified with the classical
magnetic energy (which is not the case for Darwin’s
energy, Eq. (23)). Moreover, this shows a connection
between the self-inductance of a circuit and the ef-
fective inertial mass of its conduction electrons. This
interpretation offers a new insight to the microscopic
theory of conduction. In particular it indicates that
the collective behaviour of the conduction electrons in
slowly varying current carrying conductors represent-
ed by the magnetic energy Up = Li?/2 can be seen
as an effective kinetic energy of the mobile electrons
arising from their electrodynamic interaction with the
stationary positive lattice of the conductor through
Weber’s force law, Ug = Nmegv?/2. According to
Mach’s principle the usual kinetic energy mwv?/2 of
any particle arises from its gravitational interaction
with the distant bodies in the cosmos, [12,25-29].
The quantitative results presented in this paper yield-
ing Li?/2 = Nmegv?/2 indicate that also the mag-
netic energy arises from an electrodynamic interac-
tion of the mobile electrons with the stationary posi-
tive ions of the lattice. As meg was found in all cas-
es much greater than the usual free electron mass
m = 9.1 x 1073! kg, this explains why we can usu-
ally neglect the usual inertial mass when dealing with
current carrying conductors. The results obtained here
indicate the correctness of Mach’s principle as applied
to electromagnetism, by showing how to derive the
magnetic energy as a dynamical effect arising from
the interacting of the conduction electrons when they
move relative to the stationary positive lattice, [30].
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