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Abstract. We present a derivation of the equation describing Resumo. Apresentamos uma derieéq da equego

the current flow in a circuit with self-inductance based on  descrevendo o fluxo de corrente num circuito contendo

Newton’s second law plus the Weber force or, alternatively, auto-induéncia a partir da segunda lei de Newton mais a

plus the Lorentz or l8nard—Schwarzschild force. In Weber's forca de Weber ou, alternativamente, mais a&dode Lorentz

approach the self-inductance can be treated as a measure obu de LEnard-Schwarzschild. No enfoque de Weber a

the effective average inertial mass of the conduction electronsuto-induéncia pode ser tratada como uma medida da massa
inercial nedia efetiva dos étrons de condi#io.

1. Introduction Essentially we will derive the current equation from a
microscopic theory of conduction.

The equation describing the flow of currentin an electric  We begin by deriving Ohm’s law = RI or J= gE

circuit containing self-inductanck and resistanc® in - {or steady currents. Herd is the volume current

series and subject to an applied electromotive fof¢e

I . density, g is the conductivity of the wire and: is
satisfies the equation

the applied electric field. We consider a thin wire of
total length¢ and uniform cross section of arefawith
LE +RI=V(@), (1) /A « ¢, made of a homogeneous material. That these
two forms of Ohm’s law are equivalent to one another
where I = dQ/dr is the current. This equation is is a well known fact [2]. To prove the equivalence we
identical in form (with/ being replaced by = dx/df)  need to utilizeE = E¢ andJ = J¢, where{ is the unit

to Newton’s second law when a maasis subject to a vector parallel to the circuit in each point. We also need
damping force—bv proportional to its velocityb being  tg utilize the fact that

the constant of friction, and to an external applied force

F(1): V =Et, (3)
2 — —

mi% +b% = F@). ) ['=JA=pAv, “)

and R = ¢/gA. In equation (4)p (andp_ = —p) is

In this work we show that this identity in form is the positive (and negative) volume charge density of the
not a coincidence. As a matter of fact, we show how toyeutral wire.

derive equation (1) from Newton’s second law of motion  ohpy's |aw is easily derived from Newton’s second
applied to the conduction electrons. The main difficulty,, 7 — ,,5 applied to an electron of mass —

is how to derive the self-inductance of the circuit which 9.1x 103 kg, [3]. To this end we only need to suppose
is known to have no relation with the electron’s mass '

but only with the geometry of the circut. To this end g £ 2TCE AR L 0 Y B e
we can employ the Weber force ([1]) or, alternatively, 9

the Lorentz force in the Enard—Schwarzschild form. —bu due to the collisions of the electron with the lattice
of the wire. We then obtaigE — bv = ma._

+ E-mail address: assis@ifi.unicamp.br As g = —e, With e = 1.6 x 10°°C, J = Ji =

t Also Collaborating Professor at the Department of Appliedp_y = —pv, v = —vf andad = —al this yields
Mathematics, IMECC, State University of Campinas, 13081-

970 Campinas, SP, Brazil. eE = bv + ma. 5)
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We recover Ohm'’s law from equation (5) in steady In Weber electrodynamics the force exerted by the

state ¢ = 0) supposing infinitesimal charge gb on ¢; is given by ([1], chapter
3):
ep epA
ey TR O gpowbei (P ae
. . . . ey r? 2c2 2 ey r?
If we were dealing with a current flowing longitudi- 1 3
nally over a surface of length across the uniform side x {1+ = <512 B — —(F T2+ T &»12)] ’
s the same reasoning might be applied by replacing c 2
11
I =Ks=ovs, (7) -
wheregg = 8.85x 10712 C2 N~! m2 is the permittivity
and of vacuum,c = 3x 1 m s, 7 = 7} — Fp, U12 =
eos d;/dt = 51—172, 512: dz}_:/dl2 :&1—52, r = ‘7|,
b=—R, (®) ;= dr/dr, ¥ = d?r/dr? and7 = 7/r is the unit vector

= pointing from 2 to 1.
whereK = o_v = —o'v is the surface charge density ( This force is completely relational, depending only
ando_ = —o being the positive and negative surfaceon the distance, radial velocity and radial acceleration
charge densities of the neutral wire). between the interacting charges.

The development presented up to here is not a new As we are considering neutral conductors, the
one and can be found in many textbooks. However, alCoulombian contribution of this force exerted by the
microscopic theories of conduction stop here. We mighpositive lattice and by all other conduction electrons on
now try to derive equation (1) considering (5) with the the test electron goes to zero. The typical velocity of
acceleration term and a time-dependent electromotivthe electrons is their drifting velocity, of the order of

force V(¢). From (4) we can write millimetres per second. This means that we can neglect
the velocity terms of equation (11) as they will be of
ar = pAa. (9) second order inv/c, that is, v*/c> ~ 1077 « 1.
dr The only relevant terms which will remain are the
; . ie i ; acceleration terms. For slowly varying currents we can
(4)I’n(g;ql;?]t(ljo(ng)(?) muiltiplied by /e this yields, with (3), consider that all electrons are accelerated together. This
means that on average= 0 and# = for any pair of
me dI electrons. So the only Weberian force which we still
V(t) = RI + epA di (10)  need to consider is the force exerted by the positive

stationary lattice on the accelerated test electron. This
This would be equation (1) provided = m¢/(epA).  force is obtained from equation (11) and can be put
However, the self-inductance. is known to be in the form (utilizing that Yeoc? = po, Where uo =
independent of the electron’s mass and to depend 47 x 10-7 kg m C2):
only on the geometry of the circuit. Moreover, for

a typical copper wire of lengtlf = 1 m and 1 mm dF = Mf(;.al). (12)
diameter we havd ~ (uol/27)IN(€/v/A) ~ 1076 H, 4r 1
while me/(epA) ~ 1078 H as p ~ 10 C m3, We will calculate this force acting on a typical con-

There is apparently a problem with this derivation of theduction electron in four different situations represented
current equation from Newton’s second law of motionin figures 1-4. The typical or representative test elec-
as the value of. and ofm¢/(epA) differ by ten orders tron on which we will calculate the force will always
of magnitude. In the next sections we show how tobe considered in the middle of the circuit.

deal with this problem, considering appropriately all the In figure 1 we choose a cylindrical coordinate system
relevant forces acting on the conduction electrons. Thiwith its origin at the centre of the straight wire with

is the main contribution of this work. radiusr and with thez-axis along the lengtit of the
wire. The test electrog; = —e is considered to be
at the origin,7; = 0, with axial acceleratiom = a?.

2. Circuit theory from Weber’s force An infinitesimal charge elementgd of the lattice is

: located af, = r, COS@ % +r Sing, 9 + 22, Substituting
We now consider the same problem as above _bu}, dV, = pradp,drpdz, for dg, in equation (12) and
taking into account all forces acting on the conductionnegrating ing, from 0 to 2z, in r, from 0 to the
electrons. We have already considered the force dugygiys, of the wire and inz, from —¢/2 to ¢/2 yields
to the battery or applied electromotive foré&r) and

the frictional force due to the collisions of the electronsﬁ Loep (Z 24 02
_ [p2 1 2
4

with the wire. However, we did not include the © = "4

electromagnetic force exerted by the positive lattice on

our test electron, nor the force exerted by all other I Vre+e/ate2 e a (13)
conduction electrons on our test electron. /r2+02/4—¢/2 2 )
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Figure 1. The uniform volume current density Jj=Jz
flowing over the cross section of a cylindrical wire of
length ¢ and radius r < £.
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Figure 2. The uniform surface current density K=Kz
flowing over the surface of a straight strip of length ¢ and
side d « ¢.
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Figure 3. The uniform surface current density K=Kz
flowing longitudinally over the surface of a cylindrical
conductor of length ¢ and radius r <« £.

l

(k’
z

Figure 4. The uniform surface current density K= K¢
flowing along the poloidal direction ¢ over the surface of
a cylindrical conductor of length ¢ and radius r <« £.

For ¢ > r this yields

- 20\ L.
Fo- (W’ In ) i
2 r

(14)
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along the greatest sideand with they-axis along the
shortest sidel. The test electron is located &t = 0
with accelerationa = aZ. An infinitesimal element
of charge of the lattice is located &t = x,% + y»y.
Integrating equation (12) in, from —d/2 tod/2, and
in x, from —¢/2 to ¢/2 yields, in the approximation
£>d,

> d, ¢
F=— ("2
27 d

In figures 3 and 4 we choose a cylindrical coordinate
system with its origin at the centre of the cylinder and
with the z-axis along the lengtt? of the cylinder of
radiusr. The test electron is chosen &t = rx. An
element of charge of the latticegd = pr, dp, dz; is
located at, = r COS@,% + r Sing, P + z23.

For the case of figure 3 the axial acceleration of the
conduction electrons is given by = aZ. Integrating
equation (12) inp, from 0 to 2r and inz, from —¢/2
to £/2 and utilizing¢ > r yields

- AN
F=— (/Loear In ;) a.
For the case of figure 4 we integrate equation (12) in

the same limits and utilize the same approximation. But
now the electrons have tangential accelerations given
by @ = ap = —asingx + acospy. This means that
the tangential acceleration of our test electron located
atr, = rx, ¢ = 0 is then given byaz = ay. The final
result of the integration is

(15)

(16)

- _ @ N

F = ( 5 ear)a. a7
We can write equations (14)—(17) as

F = mwi, (18)

wheremy, is a Weberian electromagnetic mass having
a different value in each geometry. For figure 1 we
havemy = —(uoepr?In(€/r))/2, for figure 2 we have
my = —(uoeodlIn(€/d))/(2r), for figure 3 we have
my = —upoeorIn(€/r) while for figure 4 we have
mw = —(uoeor)/2.

Newton’s second law taking into account an applied
electric field E (1) (which will give rise to the applied
EMF V (1)), the frictional force—bv (which will give
rise to Ohm’s resistive ternk/) and the Weber force
in the form of equations (12) and (18) yielg¥ () —
bV +mwa = ma. Consideringg = —e and all vectorial
terms parallel at each point to the unit directiérof
the wire € = E{, b = —vf anda = —al) yields an
analogous equation (5), namely

eE(t) = bv+ (m —mw)a = bv + mega,  (19)

For the situation of figures 2—4 we have a bi-where mer = m — my is the effective inertial mass
dimensional current flowing over a surface. We therof the electron. For typical copper wires like those of

replace in equation (12p ds, for dg,, where d;
represents an infinitesimal element of area.

figures 1-4 with¢ ~ 1 m andr ~ 1 mm ord ~ 1 mm
we have|my| ~ 1072 kg. Asm = 9 x 107%! kg we

In figure 2 we choose a Cartesian coordinate systerhave |my| > m, so thatmes ~ —my. This means that

with its origin at the centre of the circuit with theaxis

we can neglect the usual mass of the electron in this
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problem. Multiplying this equation by/e and utilizing  the retaroled scalar potential and the retarded vector
equations (3)—(9) yields (10) but now witk replacing  potential A. We can also utilize the Enard—Wiechert
m: potentials. Expanding the retarded time= ¢ — r/c
megl dI around the present time including radiation effects
- (20)  and relativistic corrections, yields the force exerted by

epA dt R . e

o ] ) the infinitesimal charge elemenydlocalized atr,(r)
However, this is indeed equation (1) observing thaion the point charge, localized atr,(r) as ([6-8]):

V()= RI +

the self-inductance of the circuits of figures 1 and 3 with dor 1 BTy G-T)? Fed
£>> r is given approximately by ([4], p 35): dF = g 2 —|p(aqp 22 2 ra
¢ A gg r? 2c2 c? 2c2
Mo o
~ = iy dg 10
L 2”6 In . (21) _rap + iy x g2 Uy X F 26)
For figure 2 with¢ > d we have ([5 22 dmepr? 2
or Tiguire > e have ([5) This force is the correct relativistic expression valid up
L~™on £ 22) to second order im/c. All terms on the right-hand side
21 d’ of equation (26) are to be calculated and measured at

the present time.

As with the Weber force, the Coulombian component
womr? of this force can be neglected due to the charge neutrality
T (23)  of the wire. The components of this force depending on
the velocity can also be neglected as they are of second

Worder inv/c. The only relevant terms which will remain
of current in aRL circuit from Newton’s second law / y

of motion together with the Weber force. The self- are the acceleration terms of the form
inductancel. has been shown to be directly proportional dF = ,M}[(; AT A @7)
to the Weberian or effective inertial mass of the electron, 8t
namely We perform the same calculations as above in the
N situations of figures 1-4. As the positive ions are fixed
et = ep—L, (24)  inthe lattice, they do not have any acceleratioq, = 0.
This means that their net force (27) on the test electron

for a circuit of lengthe and area of cross sectigh< ¢2. IS Z€ro, in contrast to what happened with the Weber

That is, we derived the equation describing the flow

For figure 1 we had{ = rr2. force. We only need to compute the force exerted on
For a current flowing along the lengthof a surface the test electron by all other conduction electrons. With
with sides we obtained the Weber force this was zero because 0 andi’ = 0
s for any two electrons, but the Lorentz force depends
Meff = eGZL' (25) only on the acceleration of the test cha@eand not

ona; —d,. This means that the acceleration of all other

For figure 2 we had = 4, for figure 3 we had = 27r  conduction electrons will yield a net force on the test
while for figure 4 the tangential current flowed over theelectron according to the Lorentz force even when this
length 2rr crossing the side = ¢£. We can then say test electron is being accelerated together with all other
that the self-inductance of a circuit can be treated aslectrons, as we are considering here for slowly varying
a measure of the average effective inertial mass of theurrents.
conduction electrons. For figures 1-4 we will replace in equation (27)
p_dV, = —pdV, or o_ds, = —o ds, for dgp, where
N dV, and d, are volume or area elements, respectively.
3_‘ 'CIFCUIt theory from the For flgures 1-3 we havé, = a,z, while for flgﬁ:re 4 g
Liénard-Schwarzschild force Gy = axfp = —aSiNgs% + a» COS29. Ut|||2|ng the
We now perform the same calculations as above b ame coordinate systems as in the previous section and

utilizing the Lorentz forceF — qE ¥ g7 x 3. This integrating for the same limits, equation (27) yields, for

force does not depend on the acceleration of the te&gure 1

chargeq. From the analysis in the previous section - Ko e [r24+€2/4+¢)2

we might imagine that we would not be able to derive F=——epria;|In -, | (28)
the self-induction due to this fact (we could only derive

it from Weber electrodynamics utilizing the fact that For £ > r this yields

the Weber force depends on the acceleration of the test . o

charge). As a matter of fact we will see that even with F=- ( epr?In > (29)
the Lorentz force we will derive the same term. In

the Lorentz forcei is the velocity of the test charge FOr figures 2 and 3 we get (with > 4 and ¢ > r,
¢ relative to an inertial frame of referencé& and B 'eSPectively):

are the electric and magnetic fields generated by the P uoeodl AN 30
source charges. These fields can be written in terms of I n 7)% (30)
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F=— (uoedﬂn €> ao. (31) other. However, the positive lattice exerts a force on
r the conduction electrons opposing their acceleration,
see equation (18), remembering that in the situations
analysed in this work we obtainedy, < 0. That is,
Fe=_ (@w,) az$. (32) When an external applied EMF tries to accelerate the
2 conduction electrons in one direction the positive lattice
It should be observed that the acceleration whicHries to hold them according to Weber electrodynamics.
appears in equations (29)—(32) is that of the sourc&Vith the Lorentz or Lénard—Schwarzschild force the
electrons and not that of the test electron. But forexplanation for the same effect is completely different.
the slowly varying currents being considered here, théNow according to equation (27) the positive lattice
test electron is supposed to have the same magnituderts no force on the conduction electrons (no matter
of acceleration as the source ones. In the situationdeir acceleration) because the lattice is considered at
of figures 1-3 the acceleration of the test electron igest in the laboratory, which meaas, = 0. On the
@ = a?. In figure 4 its tangential acceleration is other hand, all other accelerated conduction electrons
d = a5, asg, = 0 because we are supposing= ri.  Will exert a force on our test electron (no matter what its
We can then write equations (29)—(32) as equation (18cceleratiord,) in the opposite direction of their own
This means that we will also derive (1) from the acceleration, as also given by equation (18). That is,
Lorentz or Lenard—Schwarzschild force. suppose we have two electrons 1 and 2 alongrtagis
with x; < x,. When we accelerate 2 to the right with an
accelerationi, due to an external force, will exert an
4. Discussion and conclusions electric force ong; pointing to the left and proportional
to ap, no matter the acceleration @f. According to

We have shown before that in Weber electrodynamics &iénard—Schwarzschild's expression, this electric force

test charge behaves as having an effective inertial ma¥4ll act on g1 even whem, = a,. .
depending on its electrostatic potential energy [9, 10]. That the Weber and Enard—Schwarzschild forces are

Let us discuss this relation for the cases discussed ififferent from one another is easily seen by comparing

this paper. We consider the electrostatic potential energgduations (11) and (26), or (12) and (27). Even

i OE e integrated result is different, as can be seen by
dU between point chargg and an infinitesimal charge "¢ "€ . g
element d, separated by a distaneeas given by comparing equations (13) and (28). However, the
average approximate result obtained here is essentially

du = & dQ2} 33) the same for both models, namely, equation (18).

deg 1’ For the situations analysed in this work these two
completely opposite explanations yield the same final
result, equation (1). This means that they cannot be
distinguished here. Possible experimental tests of a

h - - : ; . Cl05rce law depending on the acceleration of the test
interacting with the stationary lattice with the prevnousd1arge have been published elsewhere, [11,12]. Only

approximations and locations of the test electron yields s, performing experiments of this kind can we decide

U = myc?, (34)  which one of these explanations for the self-inductance
L is the most suitable one.
In any case, the Weberian interpretation presented
14 2 here for the self-inductance as a measure of the effective
U=2In Fwes (35)  inertial mass of the conduction electrons by =
Imeg/(epA) offers a new insight to the microscopic
theory of conduction.

For the case of figure 4 with > r we get:

Consideringy; = —e = —1.6x107°C, dg; = pdV;
or dg, = o ds, being an element of positive charge in
the lattice and integrating this energy for the test electro

for the situations of figures 1-3 and

for the situation of figure 4, with the appropriate
Weberian mass obtained above for each figure.

We can then say once more that the order of
magnitude of the Weberian massy is usuallyU/c?.  References
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