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Abstract. We present a derivation of the equation describing
the current flow in a circuit with self-inductance based on
Newton’s second law plus the Weber force or, alternatively,
plus the Lorentz or Líenard–Schwarzschild force. In Weber’s
approach the self-inductance can be treated as a measure of
the effective average inertial mass of the conduction electrons.

Resumo. Apresentamos uma deriva¸cão da equa¸cão
descrevendo o fluxo de corrente num circuito contendo
auto-indut̂ancia a partir da segunda lei de Newton mais a
força de Weber ou, alternativamente, mais a for¸ca de Lorentz
ou de Líenard–Schwarzschild. No enfoque de Weber a
auto-indut̂ancia pode ser tratada como uma medida da massa
inercial ḿedia efetiva dos elétrons de condu¸cão.

1. Introduction

The equation describing the flow of current in an electric
circuit containing self-inductanceL and resistanceR in
series and subject to an applied electromotive forceV (t)

satisfies the equation

L
dI

dt
+ RI = V (t), (1)

where I = dQ/dt is the current. This equation is
identical in form (withI being replaced byv = dx/dt)
to Newton’s second law when a massm is subject to a
damping force−bv proportional to its velocity,b being
the constant of friction, and to an external applied force
F(t):

m
d2x

dt2
+ bdx

dt
= F(t). (2)

In this work we show that this identity in form is
not a coincidence. As a matter of fact, we show how to
derive equation (1) from Newton’s second law of motion
applied to the conduction electrons. The main difficulty
is how to derive the self-inductance of the circuit which
is known to have no relation with the electron’s mass
but only with the geometry of the circuit. To this end
we can employ the Weber force ([1]) or, alternatively,
the Lorentz force in the Liénard–Schwarzschild form.
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Essentially we will derive the current equation from a
microscopic theory of conduction.

We begin by deriving Ohm’s lawV = RI or EJ = g EE
for steady currents. HereEJ is the volume current
density, g is the conductivity of the wire andEE is
the applied electric field. We consider a thin wire of
total length` and uniform cross section of areaA with√
A� `, made of a homogeneous material. That these

two forms of Ohm’s law are equivalent to one another
is a well known fact [2]. To prove the equivalence we
need to utilizeEE = E ˆ̀ and EJ = J ˆ̀, where ˆ̀ is the unit
vector parallel to the circuit in each point. We also need
to utilize the fact that

V = E`, (3)

I = JA = ρAv, (4)

andR = `/gA. In equation (4)ρ (and ρ− = −ρ) is
the positive (and negative) volume charge density of the
neutral wire.

Ohm’s law is easily derived from Newton’s second
law EF = mEa applied to an electron of massm =
9.1×10−31 kg, [3]. To this end we only need to suppose
an electric forceq EE due to the battery or applied
electromotive force EMF and an average frictional force
−bEv due to the collisions of the electron with the lattice
of the wire. We then obtainq EE − bEv = mEa.

As q = −e, with e = 1.6 × 10−19 C, EJ = J ˆ̀ =
ρ−Ev = −ρEv, Ev = −v ˆ̀ and Ea = −a ˆ̀ this yields

eE = bv +ma. (5)
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We recover Ohm’s law from equation (5) in steady
state (a = 0) supposing

b = eρ

g
= eρA

`
R. (6)

If we were dealing with a current flowing longitudi-
nally over a surface of length̀ across the uniform side
s the same reasoning might be applied by replacing

I = Ks = σvs, (7)

and

b = eσs

`
R, (8)

where EK = σ−Ev = −σ Ev is the surface charge density (σ

and σ− = −σ being the positive and negative surface
charge densities of the neutral wire).

The development presented up to here is not a new
one and can be found in many textbooks. However, all
microscopic theories of conduction stop here. We might
now try to derive equation (1) considering (5) with the
acceleration term and a time-dependent electromotive
forceV (t). From (4) we can write

dI

dt
= ρAa. (9)

In equation (5) multiplied bỳ/e this yields, with (3),
(4), (6) and (9),

V (t) = RI + m`

eρA

dI

dt
. (10)

This would be equation (1) providedL = m`/(eρA).
However, the self-inductanceL is known to be
independent of the electron’s massm and to depend
only on the geometry of the circuit. Moreover, for
a typical copper wire of length̀ = 1 m and 1 mm
diameter we haveL ≈ (µ0`/2π)ln(`/

√
A) ≈ 10−6 H,

while m`/(eρA) ≈ 10−16 H as ρ ≈ 1010 C m−3.
There is apparently a problem with this derivation of the
current equation from Newton’s second law of motion
as the value ofL and ofm`/(eρA) differ by ten orders
of magnitude. In the next sections we show how to
deal with this problem, considering appropriately all the
relevant forces acting on the conduction electrons. This
is the main contribution of this work.

2. Circuit theory from Weber’s force

We now consider the same problem as above but
taking into account all forces acting on the conduction
electrons. We have already considered the force due
to the battery or applied electromotive forceV (t) and
the frictional force due to the collisions of the electrons
with the wire. However, we did not include the
electromagnetic force exerted by the positive lattice on
our test electron, nor the force exerted by all other
conduction electrons on our test electron.

In Weber electrodynamics the force exerted by the
infinitesimal charge dq2 on q1 is given by ([1], chapter
3):

d EF = q1 dq2

4πε0

r̂

r2

(
1− ṙ2

2c2
+ rr̈
c2

)
= q1q2

4πε0

r̂

r2

×
[

1+ 1

c2

(
Ev12 · Ev12− 3

2
(r̂ · Ev12)

2 + Er · Ea12

)]
,

(11)

whereε0 = 8.85×10−12 C2 N−1 m−2 is the permittivity
of vacuum,c = 3 × 108 m s−1, Er = Er1 − Er2, Ev12 =
dEr/dt = Ev1 − Ev2, Ea12 = d2Er/dt2 = Ea1 − Ea2, r = |Er|,
ṙ = dr/dt , r̈ = d2r/dt2 and r̂ = Er/r is the unit vector
pointing from 2 to 1.

This force is completely relational, depending only
on the distance, radial velocity and radial acceleration
between the interacting charges.

As we are considering neutral conductors, the
Coulombian contribution of this force exerted by the
positive lattice and by all other conduction electrons on
the test electron goes to zero. The typical velocity of
the electrons is their drifting velocity, of the order of
millimetres per second. This means that we can neglect
the velocity terms of equation (11) as they will be of
second order inv/c, that is, v2/c2 ≈ 10−22 � 1.
The only relevant terms which will remain are the
acceleration terms. For slowly varying currents we can
consider that all electrons are accelerated together. This
means that on averagėr = 0 and r̈ = for any pair of
electrons. So the only Weberian force which we still
need to consider is the force exerted by the positive
stationary lattice on the accelerated test electron. This
force is obtained from equation (11) and can be put
in the form (utilizing that 1/ε0c

2 = µ0, whereµ0 =
4π × 10−7 kg m C−2):

d EF = µ0q1 dq2

4π

r̂

r
(r̂ · Ea1). (12)

We will calculate this force acting on a typical con-
duction electron in four different situations represented
in figures 1–4. The typical or representative test elec-
tron on which we will calculate the force will always
be considered in the middle of the circuit.

In figure 1 we choose a cylindrical coordinate system
with its origin at the centre of the straight wire with
radius r and with thez-axis along the length̀ of the
wire. The test electronq1 = −e is considered to be
at the origin,Er1 = 0, with axial accelerationEa = aẑ.
An infinitesimal charge element dq2 of the lattice is
located atEr2 = r2 cosϕ2x̂+r2 sinϕ2ŷ+z2ẑ. Substituting
ρ dV2 = ρr2 dϕ2 dr2 dz2 for dq2 in equation (12) and
integrating inϕ2 from 0 to 2π , in r2 from 0 to the
radiusr of the wire and inz2 from −`/2 to `/2 yields

EF = µ0eρ

4

(
`

√
r2 + `

2

4

−r2 ln

√
r2 + `2/4+ `/2√
r2 + `2/4− `/2 −

`2

2

)
Ea. (13)
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Figure 1. The uniform volume current density EJ = J ẑ
flowing over the cross section of a cylindrical wire of
length ` and radius r � `.

Figure 2. The uniform surface current density EK = K ẑ
flowing over the surface of a straight strip of length ` and
side d � `.

Figure 3. The uniform surface current density EK = K ẑ
flowing longitudinally over the surface of a cylindrical
conductor of length ` and radius r � `.

Figure 4. The uniform surface current density EK = K ϕ̂
flowing along the poloidal direction ϕ̂ over the surface of
a cylindrical conductor of length ` and radius r � `.

For `� r this yields

EF = −
(
µ0eρr

2

2
ln
`

r

)
Ea. (14)

For the situation of figures 2–4 we have a bi-
dimensional current flowing over a surface. We then
replace in equation (12)σ ds2 for dq2, where ds2

represents an infinitesimal element of area.
In figure 2 we choose a Cartesian coordinate system

with its origin at the centre of the circuit with thex-axis

along the greatest sidèand with they-axis along the
shortest sided. The test electron is located atEr1 = 0
with accelerationEa = aẑ. An infinitesimal element
of charge of the lattice is located atEr2 = x2x̂ + y2ŷ.
Integrating equation (12) iny2 from −d/2 to d/2, and
in x2 from −`/2 to `/2 yields, in the approximation
`� d,

EF = −
(
µ0eσd

2π
ln
`

d

)
Ea. (15)

In figures 3 and 4 we choose a cylindrical coordinate
system with its origin at the centre of the cylinder and
with the z-axis along the length̀ of the cylinder of
radius r. The test electron is chosen atEr1 = rx̂. An
element of charge of the lattice dq2 = ρr2 dϕ2 dz2 is
located atEr2 = r cosϕ2x̂ + r sinϕ2ŷ + z2ẑ.

For the case of figure 3 the axial acceleration of the
conduction electrons is given byEa = aẑ. Integrating
equation (12) inϕ2 from 0 to 2π and inz2 from −`/2
to `/2 and utilizing`� r yields

EF = −
(
µ0eσr ln

`

r

)
Ea. (16)

For the case of figure 4 we integrate equation (12) in
the same limits and utilize the same approximation. But
now the electrons have tangential accelerations given
by Ea = aϕ̂ = −a sinϕx̂ + a cosϕŷ. This means that
the tangential acceleration of our test electron located
at Er1 = rx̂, ϕ = 0 is then given byEa = aŷ. The final
result of the integration is

EF = −
(µ0

2
eσr

)
Ea. (17)

We can write equations (14)–(17) as

EF = mWEa, (18)

wheremW is a Weberian electromagnetic mass having
a different value in each geometry. For figure 1 we
havemW = −(µ0eρr

2 ln(`/r))/2, for figure 2 we have
mW = −(µ0eσd ln(`/d))/(2π), for figure 3 we have
mW = −µ0eσr ln(`/r) while for figure 4 we have
mW = −(µ0eσr)/2.

Newton’s second law taking into account an applied
electric field EE(t) (which will give rise to the applied
EMF V (t)), the frictional force−bEv (which will give
rise to Ohm’s resistive termRI ) and the Weber force
in the form of equations (12) and (18) yieldsq EE(t) −
bEv+mWEa = mEa. Consideringq = −e and all vectorial
terms parallel at each point to the unit directionˆ̀ of
the wire (EE = E ˆ̀, Ev = −v ˆ̀ and Ea = −a ˆ̀) yields an
analogous equation (5), namely

eE(t) = bv + (m−mW)a = bv +meffa, (19)

wheremeff = m − mW is the effective inertial mass
of the electron. For typical copper wires like those of
figures 1–4 with̀ ≈ 1 m andr ≈ 1 mm ord ≈ 1 mm
we have|mW| ≈ 10−20 kg. As m = 9× 10−31 kg we
have|mW| � m, so thatmeff ≈ −mW. This means that
we can neglect the usual mass of the electron in this
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problem. Multiplying this equation bỳ/e and utilizing
equations (3)–(9) yields (10) but now withmeff replacing
m:

V (t) = RI + meff`

eρA

dI

dt
. (20)

However, this is indeed equation (1) observing that
the self-inductance of the circuits of figures 1 and 3 with
`� r is given approximately by ([4], p 35):

L ≈ µ0

2π
` ln

`

r
. (21)

For figure 2 with`� d we have ([5])

L ≈ µ0

2π
` ln

`

d
. (22)

while for figure 4 with`� r we have

L ≈ µ0πr
2

`
. (23)

That is, we derived the equation describing the flow
of current in aRL circuit from Newton’s second law
of motion together with the Weber force. The self-
inductanceL has been shown to be directly proportional
to the Weberian or effective inertial mass of the electron,
namely

meff = eρ A
`
L, (24)

for a circuit of length̀ and area of cross sectionA� `2.
For figure 1 we hadA = πr2.

For a current flowing along the length̀of a surface
with sides we obtained

meff = eσ s
`
L. (25)

For figure 2 we hads = d, for figure 3 we hads = 2πr
while for figure 4 the tangential current flowed over the
length 2πr crossing the sides = `. We can then say
that the self-inductance of a circuit can be treated as
a measure of the average effective inertial mass of the
conduction electrons.

3. Circuit theory from the
Li énard–Schwarzschild force

We now perform the same calculations as above but
utilizing the Lorentz forceEF = q EE + q Ev × EB. This
force does not depend on the acceleration of the test
chargeq. From the analysis in the previous section
we might imagine that we would not be able to derive
the self-induction due to this fact (we could only derive
it from Weber electrodynamics utilizing the fact that
the Weber force depends on the acceleration of the test
charge). As a matter of fact we will see that even with
the Lorentz force we will derive the same term. In
the Lorentz forceEv is the velocity of the test charge
q relative to an inertial frame of reference,EE and EB
are the electric and magnetic fields generated by the
source charges. These fields can be written in terms of

the retarded scalar potentialφ and the retarded vector
potential EA. We can also utilize the Liénard–Wiechert
potentials. Expanding the retarded timetr = t − r/c
around the present timet , including radiation effects
and relativistic corrections, yields the force exerted by
the infinitesimal charge element dq2 localized atEr2(t)
on the point chargeq1 localized atEr1(t) as ([6–8]):

d EF = q1

{
dq2

4πε0

1

r2

[
r̂

(
1+ Ev2 · Ev2

2c2
− (r̂ · Ev2)

2

c2
− Er · Ea

2c2

)
− r Ea2

2c2

]}
+ q1Ev1 ×

{
dq2

4πε0

1

r2

Ev2 × r̂
c2

}
. (26)

This force is the correct relativistic expression valid up
to second order inv/c. All terms on the right-hand side
of equation (26) are to be calculated and measured at
the present timet .

As with the Weber force, the Coulombian component
of this force can be neglected due to the charge neutrality
of the wire. The components of this force depending on
the velocity can also be neglected as they are of second
order inv/c. The only relevant terms which will remain
are the acceleration terms of the form

d EF = −µ0q1 dq2

8π

1

r
[(r̂ · Ea2)r̂ + Ea2]. (27)

We perform the same calculations as above in the
situations of figures 1–4. As the positive ions are fixed
in the lattice, they do not have any acceleration,Ea2+ = 0.
This means that their net force (27) on the test electron
is zero, in contrast to what happened with the Weber
force. We only need to compute the force exerted on
the test electron by all other conduction electrons. With
the Weber force this was zero becauseṙ = 0 andr̈ = 0
for any two electrons, but the Lorentz force depends
only on the acceleration of the test chargeEa2 and not
on Ea1− Ea2. This means that the acceleration of all other
conduction electrons will yield a net force on the test
electron according to the Lorentz force even when this
test electron is being accelerated together with all other
electrons, as we are considering here for slowly varying
currents.

For figures 1–4 we will replace in equation (27)
ρ− dV2 = −ρ dV2 or σ− ds2 = −σ ds2 for dq2, where
dV2 and ds2 are volume or area elements, respectively.
For figures 1–3 we haveEa2 = a2ẑ, while for figure 4
Ea2 = a2ϕ̂2 = −a2 sinϕ2x̂ + a2 cosϕ2ŷ. Utilizing the
same coordinate systems as in the previous section and
integrating for the same limits, equation (27) yields, for
figure 1

EF = −µ0

2
eρr2Ea2

(
ln

√
r2 + `2/4+ `/2

r

)
. (28)

For `� r this yields

EF = −
(
µ0

2
eρr2 ln

`

r

)
Ea2. (29)

For figures 2 and 3 we get (with̀ � d and ` � r,
respectively):

EF = −
(
µ0eσd

2π
ln
`

d

)
Ea2, (30)
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EF = −
(
µ0eσr ln

`

r

)
Ea2. (31)

For the case of figure 4 with̀� r we get:

EF = −
(µ0

2
eσr

)
a2ŷ. (32)

It should be observed that the acceleration which
appears in equations (29)–(32) is that of the source
electrons and not that of the test electron. But for
the slowly varying currents being considered here, the
test electron is supposed to have the same magnitude
of acceleration as the source ones. In the situations
of figures 1–3 the acceleration of the test electron is
Ea = a2ẑ. In figure 4 its tangential acceleration is
Ea = a2ŷ, asϕ1 = 0 because we are supposingEr1 = rx̂.
We can then write equations (29)–(32) as equation (18).

This means that we will also derive (1) from the
Lorentz or Líenard–Schwarzschild force.

4. Discussion and conclusions

We have shown before that in Weber electrodynamics a
test charge behaves as having an effective inertial mass
depending on its electrostatic potential energy [9, 10].
Let us discuss this relation for the cases discussed in
this paper. We consider the electrostatic potential energy
dU between point chargeq1 and an infinitesimal charge
element dq2 separated by a distancer as given by

dU = q1 dq2

4πε0

1

r
. (33)

Consideringq1 = −e = −1.6×10−19 C, dq2 = ρ dV2

or dq2 = σ ds2 being an element of positive charge in
the lattice and integrating this energy for the test electron
interacting with the stationary lattice with the previous
approximations and locations of the test electron yields

U = mWc
2, (34)

for the situations of figures 1–3 and

U = 2 ln
`

r
mWc

2, (35)

for the situation of figure 4, with the appropriate
Weberian mass obtained above for each figure.

We can then say once more that the order of
magnitude of the Weberian massmW is usuallyU/c2.
Comparing figures 3 and 4 we find that, for the same
electron, when we try to accelerate it in the radial
direction we getmW = Uc2, while when we try to
accelerate it tangengially in the poloidal direction we
find mW = U/(c22 ln(`/r)). This anisotropy in the
effective inertial mass of a test charge had already been
noticed before [1, 10]. That is,mW behaves like a tensor
and not like a scalar quantity.

We were able to derive equation (1) with the Weber
and Lorentz forces, although with a completely different
interpretation. According to Weber electrodynamics,
when we accelerate electrons relative to the lattice
there is no average force of one electron on any

other. However, the positive lattice exerts a force on
the conduction electrons opposing their acceleration,
see equation (18), remembering that in the situations
analysed in this work we obtainedmW < 0. That is,
when an external applied EMF tries to accelerate the
conduction electrons in one direction the positive lattice
tries to hold them according to Weber electrodynamics.
With the Lorentz or Líenard–Schwarzschild force the
explanation for the same effect is completely different.
Now according to equation (27) the positive lattice
exerts no force on the conduction electrons (no matter
their acceleration) because the lattice is considered at
rest in the laboratory, which meansEa2+ = 0. On the
other hand, all other accelerated conduction electrons
will exert a force on our test electron (no matter what its
accelerationEa1) in the opposite direction of their own
acceleration, as also given by equation (18). That is,
suppose we have two electrons 1 and 2 along thex-axis
with x1 < x2. When we accelerate 2 to the right with an
accelerationa2 due to an external force,q2 will exert an
electric force onq1 pointing to the left and proportional
to a2, no matter the acceleration ofq1. According to
Li énard–Schwarzschild’s expression, this electric force
will act on q1 even whena1 = a2.

That the Weber and Liénard–Schwarzschild forces are
different from one another is easily seen by comparing
equations (11) and (26), or (12) and (27). Even
the integrated result is different, as can be seen by
comparing equations (13) and (28). However, the
average approximate result obtained here is essentially
the same for both models, namely, equation (18).

For the situations analysed in this work these two
completely opposite explanations yield the same final
result, equation (1). This means that they cannot be
distinguished here. Possible experimental tests of a
force law depending on the acceleration of the test
charge have been published elsewhere, [11, 12]. Only
after performing experiments of this kind can we decide
which one of these explanations for the self-inductance
L is the most suitable one.

In any case, the Weberian interpretation presented
here for the self-inductance as a measure of the effective
inertial mass of the conduction electrons byL =
`meff/(eρA) offers a new insight to the microscopic
theory of conduction.
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