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Abstract
The study of free fall is thoroughly present in physics teaching at all levels.
From the point of view of Newtonian dynamics it appears to be extremely
simple, as it consists of a two-body problem with a constant force generating a
constant acceleration. However, there are several important conceptual sub-
tleties and hidden assumptions involved in this problem, which are rarely
discussed in educational settings. In this work we present some of these
subtleties and argue that explicitly addressing them has significant pedagogical
benefits.

Keywords: free fall, universal law of gravitation, inertial frames, gravitational
force exerted by a spherical shell

(Some figures may appear in colour only in the online journal)

1. The free fall of an apple in classical mechanics

Classical mechanics has been taught in the last 300 hundred years based on the work of Isaac
Newton as presented in his book Mathematical Principles of Natural Philosophy, first pub-
lished in 1687, usually known by its first Latin name, Principia (Newton 1934). Aside from
some excerpts of Newton’s original reasoning, it will be presented here in modern vector
notation and in the International System of Units. We will consider, in particular, the simplest
problem of Newtonian dynamics, namely, the free fall of an apple. It is fair to say that a rather
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representative way of how the topic is presented in introductory mechanics courses goes as
follows.

When a force

F acts on a body of mass m, it moves with an acceleration


a. This

acceleration is related to the force by Newton’s second law of motion, namely, =
 
F ma. The

simplest problem of dynamics is when there is a constant force acting on the test body in such
a way that it will move with a constant acceleration. The most important situation is that of
free fall in which the constant force is simply the weight


W of the body given by Newton’s

law of gravitation, namely: = =
 ˆW GMmr R mg .2 Here = ´ - - -G 6.67 10 m kg s11 3 1 2 is

the so-called constant of universal gravitation, M is the mass of the Earth, r̂ is the unit vector
pointing from the apple to the centre of the Earth, R is the Earth’s radius and the constant


g is

called the gravitational field of the Earth, which points towards its centre. By inserting the
values of G, M and R we obtain the magnitude of


g at the Earth’s surface as given by

-9.8 m s .2 Combining these two equations and cancelling the masses, we conclude that all
bodies in the same location will fall freely towards the centre of the Earth with the same
acceleration, namely, =

 
a g . This acceleration has a magnitude of -9.8 m s ,2 independent of

the weights or chemical compositions of the falling bodies. This fact, which is far from being
intuitive, was first grasped by Galileo Galilei, who presented it in his book of 1638, Two New
Sciences. The first to publish a precise value of the free fall acceleration, based on pendulum
experiments, was Christian Huygens in his book of 1673, The Pendulum Clock.

Although the reasoning appears very simple, there are many subtle aspects in this pro-
blem that are normally not considered in traditional textbooks (Lehavi and Galili 2009). Some
of these aspects are discussed in the physics education literature, including the mass
dependence of g for an observer on the ground (Lehavi and Galili 2009), the distinction
between gravitational and inertial masses (Coelho 2007, 2012, Lehavi and Galili 2009), the
fact that g is not constant for long distances (Stewart 1998, Gallant and Carlson 1999), the
influence of the Earth’s rotation in the value of g (French 1983), among others. In this work
we stress other subtle aspects of this problem. Although we do not claim that the subtleties
discussed here are new, we do argue that no paper in the physics education literature presents
them in such a concise way and discusses which ones were already found in Newton’s
original work.

The following sections are guided by plausible questions that may be asked to this
classical example and have a twofold goal. First, we raise some arguments from a more
modern perspective to highlight the pertinence of the question and then we consider whether
or not the issue was relevant to Newton. When sketching Newton’s answers, we will try to be
as faithful as possible to his original reasoning and notation, but without compromising the
understanding for a modern reader. Overall, we argue that exploring such conceptual sub-
tleties with students should contribute for the development of critical reasoning, a major goal
of science education.

2. Is free fall a simple two-body problem?

This problem is normally considered as a simple two-body problem, that is, the interaction
between the Earth and the apple. But this supposition is not true. As a matter of fact, there are
innumerable bodies around the Earth. These other bodies include the Sun, the Moon and the
planets of the solar system. However, as Newton’s law of gravitation is inversely proportional
to the square of the distance between the interacting bodies, the force exerted by these far-
away bodies on the apple is usually neglected in comparison with the force exerted by the
Earth.
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But what about the stars and galaxies? We might think that we can also neglect their
gravitational influence due to the fact that they are also very far away from the apple, at
distances much greater than the Earth’s radius. However, the argument does not apply in this
situation because we do not know how many stars and galaxies exist in the Universe. The
force of a single galaxy acting on the apple may be much smaller than the gravitational force
exerted by the Earth. But the force exerted by all the galaxies might have a magnitude
comparable to the gravitational force exerted by the Earth. The force exerted by all galaxies
on the apple might even be infinitely large, if there is an infinite number of galaxies in the
Universe. In principle we must include the gravitational influence exerted by all these bodies
in any dynamical problem.

Although the influence of the distant bodies in dynamical problems is usually neglected,
Newton himself did take them into account. At his time the galaxies were not yet known, but
the argument he utilised for stars can also be applied for galaxies and for other bodies which
may be discovered in the future. Following Newton, we can consider the stars and galaxies as
composing a series of spherical shells around the solar system. The radii of these shells can go
on to infinity. In theorem 30 of the Principia, Newton considered a test body anywhere inside
a spherical shell. He then considered the gravitational force exerted by each portion of the
shell acting on the internal test body.

His argument goes roughly as follows. Consider a point P inside a homogenous spherical
shell (figure 1). Through P draw two lines HK and IL intercepting very small arcs HI and KL.
Because the angle with vertex on P is very small, one can treat the arcs HI and KL as line
segments and the triangles PIH and PKL as similar, thus writing

= ( )KL

IH

PK

PH
. 1

In other words, the lengths of the arcs are proportional to their distances to P. But instead
of a circle, the situation involves a spherical shell with constant mass density. So if we want to
know how much mass is on each side, we need to relate the areas associated with those arcs
and not their lengths. A possible way to conceive these areas is to think of two cones with
vertices at P and circular bases with diameters HI and KL. The areas are, of course, pro-
portional to the squares of the base diameters. Since the superficial mass density is constant,

Figure 1. Newton’s original figure to prove theorem 30.

Eur. J. Phys. 39 (2018) 035003 A K T Assis and R Karam

3



one can write the ratio of the masses at the bases of these two cones as given by

= ⎜ ⎟⎛
⎝

⎞
⎠ ( )m

m

KL

IH
2KL

IH

2

which from (1) we obtain

= ⎜ ⎟⎛
⎝

⎞
⎠ ( )m

m

PK

PH
. 3KL

IH

2

Now, according to Newton, the gravitational force is directly proportional to the product
of the masses and inversely proportional to the square of the distance. When comparing the
forces exerted by the masses at KL and IH acting on a test body in P, we need to consider both
the masses (mKL, mIH) and distances (PK, PH). Although KL is more distant from P, which
would lead to a smaller force, its area is greater. Therefore, mKL is more massive than mIH.
Due to (3), one effect cancels precisely the other. That is, the force exerted by mKL on a test
body in P is equal and opposite the force exerted by mIH. There is no net force acting on the
test body in P. This geometrical reasoning is very close to Newton’s original argument.
Nowadays the theorem is usually demonstrated using Gauss’ law for the gravitational field.

It is important to stress that this result is only valid for central forces that vary as the
inverse square of the distance. The theorem is not valid, for instance, for a force law that
varies inversely with the distance between the interacting bodies or for a force that falls as
/r1 .3 Suppose that Newton’s law of gravitation represents only a portion of a more general
force law containing other terms. If these other terms depend on the distance differently from
/r1 ,2 then this theorem will not be valid for this more general force law.

In sum, theorem 30 shows that the total or net force exerted by the spherical shell is zero,
no matter the position of the internal test particle. This is one of the most important cos-
mological results of the Principia. According to Newtonian dynamics, even if there is an
infinite number of stars and galaxies in the Universe, it is possible to neglect their joint
gravitational influence on the apple due to this theorem, by considering the stars and galaxies
scattered at random in all directions of the sky. This theorem is what allows us to treat the free
fall of an apple as a two-body problem, although the whole discussion is often neglected in
physics teaching. Nevertheless, it is important and instructive to see how it played an essential
role in Newton’s original work.

Newton himself was completely aware of the cosmological significance of his theorem
30. In book III of the Principia, he mentioned that the aphelions and nodes of the orbits of the
planets are fixed relative to the set of fixed stars. He mentioned that one of the reasons for this
fact was that the fixed stars, being everywhere promiscuously dispersed in the heavens,
destroy their mutual actions on the planets by their contrary attractions, quoting specifically
his theorem 30.

3. Why can the Earth’s mass be considered as concentrated in its centre?

This problem is normally presented as a simple two-body problem, with the Earth and the
apple treated as material points concentrated at their centres of gravity. As regards the apple,
this supposition seems reasonable, due to the fact that it is small in comparison with the
Earth’s radius. But the Earth itself is huge and different portions of the Earth are at different
distances from the apple. It is not obvious that we can consider the Earth with all its mass
concentrated at its centre. The force exerted on the apple by the real Earth might be different
from the force exerted on the apple by a single hypothetical particle with the Earth’s mass
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concentrated at the centre of the Earth. Newton was very aware of this issue and was the first
to prove that one can indeed assume that the Earth’s mass is concentrated in its centre.

However, Newton’s original proof is much harder to follow in this case. We will sketch
its steps to give an overview of its content. The interested reader is referred to the Principia
and to Chandrasekhar (1995, pp 269–273).

It is already quite demanding to understand the reasons for the peculiar geometric
construction of theorem 31 (see figure 2). It depicts two equal spherical surfaces with centres
at S and s. Newton considers corpuscles placed at P and p along the diameters BSA and bsa.
He draws the lines KHP, LIP, khp and lip. The goal of the proof is to relate the gravitational
forces exerted by the spherical zones generated by the revolution of arcs HI and hi acting at
corpuscles located at different points (P and p). The two spheres have the same diameters,
namely, AB=ab. The distance PS is different from the distance ps. It is assumed that the arcs
HK and hk, as well as IL and il, are equal. As PS is different from ps, the angle KPS is
different from the angle kps. He draws SFD, IR, sfd and ir orthogonal to the lines KP and kp,
while SE and se are orthogonal to LP and lp. Lines IQ and iq are drawn orthogonal to the
diameters AB and ab. From the very beginning Newton states that everything is to be
considered for vanishing angles DPE and dpe, which means that we are dealing with his
characteristic ‘last ratios’ kind of reasoning. This assumption allows him to conclude that the
lines DF and df, as well as SE and se, are equal.

The proof starts with the common procedure of finding relations between segments from
similar triangles. Since ΔPRI∼ΔPFD, Δpri∼Δpfd and DF=df one has

= ( )PI

PF

RI

DF
, 4

= ( )pf

pi

df DF

ri

or
5

multiplying (4) and (5) one has

= = = ( )PI pf

PF pi

RI

ri

IH

ih

IH

ih

.

.

arc

arc
. 6

The last terms of the equality are justified by the vanishing angles assumption. Con-
sidering now another set of similar triangles, namely ΔPIQ∼ΔPES, Δpiq∼Δpes, and
SE=se. In this case one has

Figure 2. Newton’s original figure to prove theorem 31.
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= ( )PI

PS

IQ

SE
, 7

= ( )ps

pi

se SE

iq

or
. 8

Multiplying (7) and (8) one has

= ( )PI ps

PS pi

IQ

iq

.

.
. 9

Multiplying (6) and (9) one has

= ( )PI pf ps

pi PF PS

HI IQ

hi iq

. .

. .

.

.
. 10

2

2

The ratio on the right-hand side of (10) has an important meaning. It is the ratio between
the areas described by the arcs HI and hi when each semicircle revolves about the diameter.
And just like in the previous theorem, the area will be directly related with the quantity of
mass because the surface mass density is taken to be constant.

Since the gravitational force exerted by the spherical zone on a test mass at P (or p) is
directly proportional to its area (mass) and inversely proportional to the square of the distance
PI (or pi), the ratio between the forces acting at the corpuscles located at P and p is

= ( )dF

dF
11PI

pi

HI IQ

PI
hi iq

pi

.

.

2

2

which from (10) is equal to

= ( )dF

dF

pf ps

PF PS

.

.
. 12PI

pi

Each elementary gravitational force is directed in the line connecting the point P (or p)
and the infinitesimal arc HI (or hi). One useful strategy is to decompose the (inclined) force
into two perpendicular components. Due to the spherical symmetry, the vertical components
will cancel out for the whole spherical zone and the resultant force will be horizontal, i.e.
towards the centre of the sphere. This is geometrically expressed as

= ( )dF

dF

dF

dF

PI PQ

pi pq
. 13PS

ps

PI

pi

Once again similar triangles (ΔPIQ∼ΔPSF and Δpiq∼Δpsf ) are used to obtain the
following relationship:

= ( )dF

dF

dF

dF

PS PF

ps pf
. 14PS

ps

PI

pi

Substituting (12) in (14) one finally obtains

= ( )dF

dF

ps

PS
. 15PS

ps

2

2

Newton argues that by the same process the same ratio would be obtained when con-
sidering the revolution of the arcs KL and kl, as well as with the other spherical zones that
constitute the spheres. Thus, the resultant forces exerted by the whole spheres acting at
corpuscles located at points P and p are inversely proportional to the squares of the distances
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of these corpuscles to the centre of the spheres. This means that the situation is equivalent to
having the mass of the spherical shell concentrated at its centre, as it was to be proven. As the
result is valid for any spherical shell of arbitrary radius, it will also be valid for a (solid)
sphere composed of many spherical shells.

Even if Newton’s geometric reasoning may seem too complicated for the present-day
reader, modern derivations using calculus are not necessarily easier to follow4. In sum, this
suffices to show that assuming that the Earth’s mass is concentrated in its centre is not at all
trivial. Once again it is valid only for force laws that are central and vary with the distance
as /r1 .2

4. Why can we cancel the gravitational mass of the apple with its inertial mass?

The force

F21 exerted by particle 2 of gravitational mass mg2 and acting on particle 1 of

gravitational mass m ,g1 when they are separated by a distance r12 which is much larger than
the sizes or diameters of these particles, can be expressed as

= - = -
 

ˆ ( )F
Gm m

r
r F . 16

g g
21

1 2

12
2 12 12

Here r̂12 is the unit vector pointing from 2 to 1 and

F12 represents the force exerted by 1 on 2.

After integrating equation (16) over the whole Earth of radius R (theorem 31), the total force
FE1 exerted by the Earth and acting on a particle 1 at the surface of the Earth can be expressed
as

= = - =
  ˆ ( )F W

Gm m

R
r m g , 17E

g gE
g1 1

1

2 1

where mgE is the gravitational mass of the Earth and = -
 ˆg Gm r RgE

2 is the gravitational
field of the Earth at the location of the particle. By replacing the known values

= ´ - - -G 6.67 10 m kg s ,11 3 1 2 = ´m 5.98 10 kggE
24 and = ´R 6.37 10 m6 we obtain

the previous value of = = -∣ ∣g g 9.8 m s .2

However, the mass that appears in the right-hand side of Newton’s second law of motion,
=

 
F ma , is the inertial mass mi of the test particle. Combining equation (17) with Newton’s
second law of motion for particle 1 yields

= =
   ( )W m g m a . 18g i1 1 1 1

Which leads to

=  ( )a
m

m
g. 19

g

i
1

1

1

In principle, we cannot cancel the masses mg1 and mi1 as they have no conceptual relation
with one another. The mass mg1 is a gravitational property of body 1 which is determined
experimentally with an equal-arm balance. It is related to the gravitational interaction between
the apple and the Earth. For instance, if we measure with this balance the weights W1 and W2

of bodies 1 and 2 at the same location of the surface of the Earth, the ratio of their grav-
itational masses is defined as: =/ /m m W W .g g1 2 1 2

The mass m ,i1 on the other hand, is an inertial property of body 1. It is determined
experimentally by its acceleration relative to an inertial frame of reference due to any kind of

4 Derivations of the shell theorems (30 and 31) are standard exercises in calculus courses at university (see, for
instance, French 1971, pp 261–265). These theorems can be more easily proved using Gauss’s law.
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force acting on it. For instance, suppose that a spring of elastic constant k and relaxed length
ℓo is held horizontally over a frictionless table, with one of its extremities connected to a fixed
support attached to the Earth. Suppose that body 1 is connected to its other extremity.
Suppose that body 1 suffers an initial horizontal acceleration a1 when the spring is stretched to
a length ℓ and released from rest. By Hooke’s law combined with Newton’s second law of
motion we obtain - =( )k ℓ ℓ m a .o i1 1 We then remove body 1 and connect body 2 to the same
spring. Suppose that body 2 suffers an initial horizontal acceleration a2 when the spring is
stretched to a length ℓ and released from rest. The ratio of their inertial masses is defined
as =/ /m m a a .i i1 2 2 1

In principle, there is no relation between W W1 2 and a a .1 2 These ratios might have no
relation with one another. From classical mechanics and utilising the fact that the gravitational
field = -

 ˆ/g Gm r RgE
2 depends only on the Earth, we obtain from equation (18) the fol-

lowing relation:

= = ( )W

W

m

m

m

m

a

a
. 20

g

g

i

i

1

2

1

2

1

2

1

2

This relation is all that can be obtained from classical mechanics.
However, Galileo found out experimentally that all bodies fall freely to the ground at the

same location of the Earth with the same acceleration, no matter their weights, shapes or
chemical compositions:

= ( )a a . 211 2

This result is very counter-intuitive. Consider a coin and a feather falling freely in
vacuum. They have different weights, different chemical compositions, different shapes,
different textures, etc. Since any specific property of the coin is different from the corresp-
onding specific property of the feather, it would be natural to predict that they would fall
freely towards the ground with different accelerations. However, both fall with the same
acceleration in the same gravitational field of the Earth. This should be not taken for granted
in physics teaching.

Utilising this experimental fact that =a a1 2 in equation (20) yields =/ /m m m mg g i i1 2 1 2

for all bodies. It is this discovery of Galileo that =a a1 2 that allows the cancelation of the
gravitational mass mg1 appearing in the weight


m gg1 of the body with the inertial mass mi1

appearing in the right-hand side of Newton’s second law of motion


m a .i1 1 Newton’s laws of
motion together with his law of universal gravitation do not allow by themselves this can-
celation of the two masses of body 1. We need to supplement Newton’s laws with the result
of Galileo’s free fall experiment in order to cancel the gravitational mass of a body with its
inertial mass.

To emphasise this fact, we can compare the accelerations in vacuum of an alpha particle
and a proton in the same electric field. These two particles might be moving, for instance,
inside the same ideal capacitor. The alpha particle and the proton do not move with the same
acceleration. The alpha particle has twice the charge of the proton and four times its mass, as
it is composed of two protons and two neutrons. The observed acceleration of the proton in an
electric field is twice the acceleration of the alpha particle in the same electric field. However,
if both particles were falling in the gravitational field of the Earth, they would fall with the
same acceleration.

The inertial mass of a test body is only proportional to its gravitational mass. It has no
relation with the electric charge of the test body, nor with any of its magnetic properties, nor
with the electric current which may be flowing through it, nor with any of its elastic or nuclear
properties etc. This empirical fact suggests that the inertia of a body may be due to its
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gravitational interaction with other bodies in the Universe. This idea is known as Mach’s
principle and has been implemented mathematically with Weber’s force for gravitation
(Assis 2014). An analysis of the influence of Mach’s ideas in the teaching of classical
mechanics in representative university textbooks is found in Assis and Zylbersztajn (2001).

It is important to stress that the distinction between gravitational and inertial masses is
not found in Newton’s original work. In the Principia Newton utilised a single mass concept.
This mass was also called the quantity of matter of the body. It corresponds to our inertial
mass, namely, the mass appearing in the linear momentum of a body, =

 
p m v ,i and also in

Newton’s second law of motion, =
 
F m a.i Newton put two pendulums of equal shape and

length to oscillate near the Earth’s surface. They were filled with the same weight of different
substances. One of them was filled with wood. The second pendulum was filled with an equal
weight of gold. He observed that these two pendulums oscillated with the same frequencies.
The same happened when the second pendulum was filled with an equal weight of silver,
lead, glass, sand, common salt, water and wheat. Newton then concluded that the mass of a
body was proportional to its weight. His pendulum experiment is analogous to Galileo’s free
fall experiment discussed in this paper. Both experiments lead to the same conclusion,
namely, that the inertial mass of a body is proportional to its weight (as expressed by
Newton), or that the gravitational mass of a body is proportional to its inertial mass (as
discussed in modern textbooks).

5. The acceleration of the apple is relative to what?

Now that we clarified these aspects, we can conclude that all bodies fall freely towards the
ground with the same acceleration given by

= = - = - -  ˆ ˆ ( )a g
Gm

R
r r9.8 m s . 22

gE

2
2

That is, all bodies fall freely near the surface of the Earth with the same acceleration5 of
-9.8 m s .2 But this acceleration of -9.8 m s 2 is the acceleration of the apple relative to what?

We might think that it is the acceleration of the apple relative to the ground. Another
assumption could be that it is the acceleration relative to the centre of mass of the apple–Earth
system. However, in principle, neither of these assumptions are completely true in Newton’s
original reasoning.

In order to arrive at equation (22) we utilised Newton’s second law of motion, =
 
F m a.i

Newton applied his formulation of mechanics not only for test bodies moving relative to the
ground, but also to the planets of the solar system. He considered, for instance, the annual
orbit of the Earth around the Sun. In this last situation he would not consider the ground as the
frame of reference, because obviously the Earth is not moving relative to itself. Another frame
of reference was necessary in order to study the orbit of the Earth around the Sun.

According to Newton, the correct frame of reference to utilise in his laws of motion is
what he called ‘absolute space’. In his own words, ‘absolute space, in its own nature, without
relation to anything external, remains always similar and immovable’. Thus, this Newtonian
absolute space is not connected with the Earth or the ground, has no relation with the Sun, is

5 For greater heights the constant acceleration approximation is no longer valid (Stewart 1998, Gallant and
Carlson 1999). Moreover, if one considers the common centre of mass of the apple–Earth system, it is possible to
show that the free fall acceleration of the apple measured by an observer on the Earth’s ground depends on the
apple’s mass (Lehavi and Galili 2009).
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not related to the frame of fixed stars nor is it related with any other material body in the
Universe. It is essentially the empty free space or the vacuum.

Therefore, the free fall acceleration of the test bodies in Galileo’s experiment, according
to Newton, takes place relative to empty free space and not relative to the ground. Usually,
didactical presentations of the topic either (i) simply ignore the question of the frame of
reference with respect to which g is measured, (ii) mention that it is relative to the ground
(which, according to Newton’s original argument, is wrong), or (iii) refer to an inertial frame
of reference attached to the fixed stars. However, as we can see from Newton himself, the
fixed stars cannot be taken to be absolute space, since the latter is immaterial. In the next
section, we show how Newton claims to prove the existence of absolute space with his
famous bucket experiment.

6. How to measure the acceleration of a body relative to absolute empty space?

Obviously this Newtonian concept of the acceleration of the test body relative to absolute
space raises many questions. We do not see the vacuum nor empty space. How to detect the
motion relative to nothing? How to measure it? How can we know the motion of the Earth
relative to empty space? etc.

Newton was aware of this problem. He performed a famous bucket experiment in order
to deal with it. He considered a bucket partially filled with water and hanging by a rope. In the
beginning, the bucket B and the water W remained at rest, without any angular velocity
relative to the ground, namely, w w= = 0.B

I
W
I In this initial configuration I, the water surface

was horizontal. He twisted the rope and released the bucket. In the beginning of the rotation,
only the bucket was spinning relative to the ground and the water remained at rest and plain.
The vessel then gradually communicated its motion to the water, which began to revolve
around the axis of the bucket, receding from the middle and ascending to the sides of the
bucket. After a while, the bucket and the water were rotating together relative to the ground
with a constant angular velocity w .o In this final configuration F we have w w w= = ¹ 0B

F
W
F

o

and the water surface was concave, high at the sides of the bucket and low at the axis of
rotation (see figure 3).

Figure 3. Newton’s bucket experiment. Reproduced with permission from
Assis (1999).
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Newton discussed what caused this parabolic shape. The simple answer is that the
parabolic shape was due to the rotation of the water. But rotation relative to what? There are
three material suspects, namely: (a) rotation of the water relative to the bucket, (b) rotation of
the water relative to the ground, and (c) rotation of the water relative to the distant bodies of
the cosmos like the fixed stars. Let us follow Newton’s reasoning and consider each suspect
separately.

(a) Newton argued that the parabolic shape was not due to the rotation of the water relative
to the bucket. After all, although w w= = 0B
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I and w w w= = ¹ 0,B

F
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F

o in both cases
there is no relative motion between the water and the bucket, namely,
w w w w- = - = 0.B
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W
F Therefore, the ascent of the water towards the sides of the

bucket was not due to its relative motion relative to the bucket.
(b) We might think that this ascent was due to the rotation of the water relative to the ground

because when the water was at rest it was flat, while when it was spinning relative to the
Earth it became parabolic. However, according to Newton’s law of gravitation and his
theorem 31 mentioned above, the Earth attracts any molecule of the water downwards, no
matter if the molecule is at rest or moving relative to the ground. That is, the weight of
the molecule points towards the centre of the Earth and has always the same value, no
matter if the molecule is at rest or spinning around the axis of the bucket. Even when the
water is spinning, the Earth exerts no centrifugal force pressing the water against the
walls of the bucket. In conclusion, the parabolic shape of the water when it was spinning
was not caused by the Earth.

(c) Finally we might think that this ascent of the water was due to its rotation relative to the
frame of fixed stars (or due to its rotation relative to the set of distant galaxies). After all,
when the water was not spinning relative to the stars its surface was flat, while when the
water was spinning relative to the frame of fixed stars its surface acquired a parabolic
shape. However, according to Newton’s law of gravitation and his theorem 30 discussed
above, the set of fixed stars exerts no net force on any molecule of the water because the
stars are scattered all over the sky, like a series of spherical shells around the Earth. The
same reasoning applies to the set of distant galaxies. That is, they exert no resultant force
on any molecule of water, no matter if the water is at rest or spinning relative to this set of
distant galaxies.

Newton then argued that this concave shape of the water surface was due to its rotation
relative to absolute space, which had no relation with anything material. That is, his absolute
space might be considered equivalent to empty free space. It was not related to the ground,
nor to the set of fixed stars, nor to any set of distant bodies around the Earth. The concavity of
the water surface was a measure of its absolute rotation relative to empty space.

We are fully aware that the whole discussion is rather strange for a modern reader. But in
order to appreciate the importance of this experiment and the notion of absolute space for the
theoretical edifice of the Principia, it is instructive to see that this discussion appears in the
very beginning of this work, even before Newton’s famous laws of motion. Nevertheless, it is
interesting to notice that the bucket experiment is practically absent from modern physics
textbooks, which leads to a reflection about processes involving a didactical transposition
(Chevallard 1991). One cannot help wondering whether or not this exclusion has been a
conscious choice made by textbook authors and what are their motivations.

Ernst Mach criticised Newton’s arguments in his book The Science of Mechanics, ori-
ginally published in 1883 (Mach 1960). According to Mach the concavity of the water was
due to its rotation relative to the distant bodies in the cosmos, it was not due to its rotation
relative to Newton’s absolute and empty free space. Although Mach was not able to
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implement this suggestion, his idea became known as Mach’s principle. It is possible to
implement mathematically Mach’s principle utilising Weber’s law applied to gravitation
(Assis 2014).

7. Concluding remarks

The free fall of an apple is often presented as an extremely simple application of Newton’s
laws where a constant force leads to a constant acceleration. In this work, we have shown that
this is far from being the case. We have argued that it is not at all trivial (i) to consider it a
two-body problem, (ii) to assume that the Earth’s mass is concentrated in its centre, (iii) to
cancel the gravitational mass of the apple with its inertial mass, and (iv) to assume that the
acceleration of the apple is relative to the ground. We have also stressed how important these
issues were for Newton’s original work. The absence of an explicit discussion of some of
these conceptual subtleties in traditional textbooks illustrates features of the process called
didactical transposition (Chevallard 1991) or reconstruction (Duit et al 2012) by the educa-
tional literature.

If one agrees that physics should contribute for the education of critical citizens and the
development of logical reasoning, then raising some of those issues in educational settings
can be very beneficial. Although the notion of ‘critical citizens’ has been commonly asso-
ciated with societal issues (e.g. energy consumption and global warming), we are confident
that it is also possible to develop critical reasoning from an ‘internalist’ approach focused
solely on physics concepts (see, for instance, Viennot 2014). The fact that free fall is such a
widely taught topic makes it a powerful gateway to deep conceptual discussions; there are
simply many rich opportunities missed when some of those issues are ignored.

But of course one cannot deny that transforming the discussion presented here into an
adequate didactical discourse intended for students being introduced to the topic is not an
easy task. Any plausible learning theory will argue that we learn from the simple to the
complex. Therefore, exposing the students to all the subtleties of the problem already in their
first contact with it may not be the best strategy. Nevertheless, from the perspective of the
teacher there is an important difference between not knowing the subtleties (and even
implying that the situation is indeed very simple) and being aware of them and making the
conscious choice of omitting and/or briefly mentioning some of these subtleties when
appropriate. Thus, the discussions presented in this article may be even more relevant for
teacher education, especially in order to develop an ability that Chevallard (1991) called
epistemological surveillance and defined as follows:

[K] a tool that allows revised, take away, to question evidences, doubt about
the simple ideas, abandon familiarity, hence misleading its object of study. In a
word, is what enables exercising its epistemological surveillance (Che-
vallard 1991, p 16).
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