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We treat the problem of two resistive plates carrying a steady current
in the same direction. We consider a linear battery orthogonal to the
direction of the current in the middle of the plates. We study the be-
havior of the surface charges close to the battery. We calculate the
potential and electric field in the space outside the plates. We also
consider the case of a single resistive plate carrying a steady current.
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1. INTRODUCTION

The electric field outside resistive conductors carrying steady cur-
rents has been studied in many cases of interest, [1], [2, pp. 177–185],
[3, 4, 5, 6, 7]. The surface charges that drive the steady current for these
cases of straight conductors carrying steady longitudinal currents be-
have linearly with the longitudinal coordinate. These geometries have
the problem of infinite length in the longitudinal coordinate, so that we
cannot analyze the behavior of the potential, electric field and surface
charges close to the battery.

To overcome this deficiency we consider in this work the location
of the battery. Our goal is to analyse the electric potential, electric
field and surface charges close to the battery in a simple geometry.
In this respect our work is somewhat similar to the treatment made
by Jefimenko, Heald, Griffiths and Jackson in other geometries, [8,
Prob. 9.33 and Fig. 14.7], [9, p. 318], [10], [11, p. 279] and [12].

2. DESCRIPTION OF THE PROBLEM

We consider two parallel planes, separated by a distance 2a, located at
y = a and y = −a, carrying a steady current in the same direction along
the x axis, Fig. 1. The plates have dimensions 29x and 29z in the x and
z axis, respectively, with 9z ' a and 9x ' a. We suppose air or vacuum
between the plates and also outside them. There are two identical linear
batteries located at x = 0 on both plates, supplying an electromotive
force of 2φ0. The plates have potentials φ(x = −9x) = φL − φ0 and
φ(x = 9x) = φR +φ0 in the left and right extremities, respectively. The
potential along the plates is described by, see Fig. 2:

φ(x, y = ±a, z) =

(φR − φL)x/(29x) + (φR + φL)/2− φ0, x < 0,

(φR − φL)x/(29x) + (φR + φL)/2 + φ0, x > 0.

(1)
There is a discontinuity in x = 0 due to the presence of the battery.

Later on we consider the case of a single plate. This is analogous
to our present case with the distance between the plates going to zero
(a → 0). We considered initially the double-plate case because it is
more general than the single-plate and the mathematical difficulty is
essentially the same in both cases.

This problem can clearly be separated in two parts: (a) the
electrostatic problem of plates held at constant potentials (−φ0 for the
region x < 0 and φ0 for x > 0); and (b) the problem of a steady
current without the discontinuity (with potentials φ(x = −9x) = φL

and φ(x = 9x) = φR in the extremities and φ(x = 0) = (φL +φR)/2, see
Fig. 3. That is, φ = (φR − φL)x/(29x) + (φR + φL)/2). Both problems
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Fig. 1. Two parallel large resistive plates located in the planes y = a
and y = −a, carrying a steady current in the same direction along the
x axis. There is a linear battery in each plate in x = 0, supplying an
electromotive force 2φ0.

Fig. 2. Potential along the plates.

have already been solved separately in the literature. Part of problem
(a) is treated in [13, pp. 309–313]. Problem (b) is treated by [14]. We
discuss in more detail each solution and mainly the combination of
both cases in the following sections.

3. ELECTROSTATIC SOLUTION OF PLATES HELD AT
CONSTANT POTENTIALS

Suppose four semi-infinite parallel plates, located at (x < 0, y = a),
(x > 0, y = a), (x < 0, y = −a) and (x > 0, y = −a), see Fig. 1.
There is a thin insulating barrier at (x, y) = (0,±a). The plates at
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Fig. 3. The potential of Fig. 2 can be decomposed in two parts: the
plates held at constant but discontinuous potentials (dashed lines),
and the plates with a continuous potential varying linearly with the
longitudinal coordinate (continuous line).

x < 0 are held at the constant potential −φ0, while the plates at x > 0
are held at φ0, [13, pp. 309–313]. We can solve Laplace’s equation,
∇2φ = 0, in Cartesian coordinates using separation of variables in the
form φk(x, y) = Xk(x)Yk(y), where the functions Xk and Yk obey the
equations (k being an arbitrary constant):

d2Xk

dx2
= −k2Xk,

d2Yk

dy2
= k2Yk. (2)

The solutions of these equations are Xk(x) = ak sin(kx)+bk cos(kx) and
Yk(y) = cke

ky + dke
−ky, with ak, bk, ck and dk being constants. The

final solution φ(x, y) is a linear combination of all possible solutions
φk(x, y).

As the boundary conditions are anti-symmetric around the x
coordinate, φ(−x,±a) = −φ(x,±a), the solution must also be anti-
symmetric at all points: φ(−x, y) = −φ(x, y) and φ(0, y) = 0. The
same reasoning applies to the y coordinate, but in this case the bound-
ary conditions (and also the solution) are symmetric: φ(x,−y) =
φ(x, y). Additionally, we must have a limited solution in both x and y
coordinates, |φ(|x| → ∞, y)| ≤ φ0 < ∞ and |φ(x, |y| → ∞)| → 0. This
means that our previous solutions are reduced to Xk(x) = ak sin(kx)
and Yk(y) = ck(e

ky + e−ky) ≡ ek cosh(ky) in the region between the
plates, with ek = 2ck. For y > a (y < −a) we must have ck = 0
(dk = 0). As φ(x,−y) = φ(x, y) this implies that in the region out-
side the plates our solutions are reduced to Xk(x) = ak sin(kx) and
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Yk(y) = fke
−k|y|, with fk being constant. The particular solutions are

then given by (with Ak and Bk being constants):

φk(x, |y| ≤ a) = Ak sin(kx) cosh(ky), (3)

φk(x, |y| ≥ a) = Bk sin(kx)e−k|y|. (4)

The general solution which is a combination of all possible par-
ticular solutions has then the form

φ(x, |y| ≤ a) =

∫ ∞

0

Ak cosh(ky) sin(kx)dk, (5)

φ(x, |y| ≥ a) =

∫ ∞

0

Bke
−k|y| sin(kx)dk, (6)

where the coefficients Ak and Bk must be determined by the boundary
conditions. Eqs. (5) and (6) can be seen as sine Fourier transforms of
a function Φ:

Φ(k, y) =

√
2

π

∫ ∞

0

φ(x, y) sin(kx)dx =


√

π/2Ak cosh(ky), |y| ≤ a,√
π/2Bke

−k|y|, |y| ≥ a.

(7)
Calculating Eq. (7) in y = a and applying the boundary conditions
φ(x > 0,±a) = φ0 and φ(x < 0,±a) = −φ0 yields the coefficients Ak

and Bk:

Ak =
2φ0

πk cosh(ka)
, Bk =

2φ0e
ka

πk
. (8)

The final solution can be written as (see Appendix)

(9)

φ(x, |y| ≥ a) =
2φ0

π

∫ ∞

0

e−k(|y|−a) sin(kx)

k
dk =

2φ0

π
arctan

[
x

|y| − a

]
.

(10)

4. SOLUTION OF PLATES WITH STEADY CURRENT
AND BATTERY

Equation (5) of [14] gives the solution of parallel plates separated by
a distance 2a, with dimensions 29z and 29x, with 9z ' 9x ' a and
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φ(x, |y| ≤ a) =
2φ0

π

∫ ∞

0

cosh(ky)

cosh(ka)

sin(kx)

k
dk =

2φ0

π
arccot

[
cos(πy/2a)

sinh(πx/2a)

]
,



carrying a steady current:

φ(x, y) =
1

ε0

[
(αx + β)

(
29x

π
− |y − a|+ |y + a|

2

)
+

2β9x

π
ln

29z

9x

]
,

(11)
where ε0 = 8.85×10−12C2N−1m−2 is the permittivity of free space and
the constants α and β must be determined by the boundary conditions.
In the present case,

α =
ε0(φR − φL)

29x(29x/π − a)
, β =

ε0(φR + φL)

2(29x/π + (29x/π) ln(29z/9x)− a)
.

(12)
The solution of the problem with the battery is the sum of

Eqs. (9) and (11), for the region between the plates, and Eqs. (10)
and (11) outside the plates:

φ(x, |y| ≤ a) =
2φ0

π
arccot

[
cos(πy/2a)

sinh(πx/2a)

]
+

φR − φL

29x

x +
φR + φL

2
, (13)

φ(x, |y| ≥ a) =
2φ0

π
arctan

(
x

|y| − a

)
+

29x/π − |y|
29x/π − a

φR − φL

29x

x

+
29x/π + (29x/π) ln(29z/9x)− |y|
29x/π + (29x/π) ln(29z/9x)− a

φR + φL

2
. (14)

When y = ±a the potentials reduce to the boundary conditions given
by Eq. (1) as expected.

The electric field E can be obtained from the potential utilizing
the relation E = −∇φ. This yields

E(x, |y| < a) =−
[
2φ0

a

cosh(πx/2a) cos(πy/2a)

cosh(πx/a) + cos(πy/a)
+

φR − φL

29x

]
x̂

− 2φ0

a

sinh(πx/2a) sin(πy/2a)

cosh(πx/a) + cos(πy/a)
ŷ, (15)

E(x, |y| > a) =−
[
2φ0

π

|y| − a

x2 + (|y| − a)2
+

29x/π − |y|
29x/π − a

φR − φL

29x

]
x̂

+
y

|y|
[
2φ0

π

x

[x2 + (|y| − a)2]
+

φR − φL

29x(29x/π − a)
x

+
φR + φL

2(29x/π + (29x/π) ln(29z/9x)− a)

]
ŷ. (16)
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We can see that this electric field satisfies Maxwell’s equations
for steady currents because ∇ · E = 0 and ∇ × E = 0 between the
plates (|y| < a) and outside them (|y| > a), as expected.

The electric field lines can be obtained by a similar procedure to
that given by Sommerfeld, [15, p. 128]. That is, we look for a function
ξ(x, y) such that ∇ξ · ∇φ = 0. This yields:

ξ(x, |y| < a) = arctanh

(
sin(πy/2a)

cosh(πx/2a)

)
− y

9x

π

2

φL − φR

2φ0

, (17)

ξ(x, |y| > a) =
1

2
ln

(
x2 + (|y| − a)2

92
x

)
− x2 − y2

92
x

π

4

φL − φR

2φ0

− |y|
9x

9x

29x/π − a

φL − φR

2φ0

+
x

29x/π[1 + ln(29z/9x)]− a

π

2

φR + φL

2φ0

. (18)

Figure 4 shows the equipotentials and lines of electric field utilizing
Eqs. (13), (14), (17) and (18) with φL = φ0, φR = −φ0 and 9z/9x =
9x/a = 10.

The surface charge distribution σ(x, y = ±a) can be found by
applying Gauss’ law and choosing a gaussian volume surrounding a
small piece of the conductor surface. In the limit of an infinitesimal
surface we have the internal and external densities of surface charges
of the upper plates as given by, respectively:

σ(x, a−) =− lim
y→a

ε0Ey(x, 0 < y < a) =
ε0φ0

a sinh(πx/2a)
, (19)

σ(x, a+) = lim
y→a

ε0Ey(x, y > a) =
2ε0φ0

πx
+

ε0(φR − φL)

29x(29x/π − a)
x

+
ε0(φR + φL)

2[(29x/π)(1 + ln(29z/9x))− a]
. (20)

And similarly for the lower plates:

σ(x,−a−) = lim
y→−a

ε0Ey(x,−a < y < 0) = σ(x, a−), (21)

σ(x,−a+) = lim
y→−a

ε0Ey(x, y < −a) = σ(x, a+). (22)

When |x|/a ' 1 the terms proportional to φ0 can be neglected
and we recover the linear behaviour found before, [14]. For |x|/a * 1
the terms proportional to φ0 will be the dominant ones and the surface
charge densities will be reduced to

σ(x,±a±) ≈ 2ε0φ0

πx
. (23)
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Fig. 4. Equipotentials (continuous lines) and electric field lines (dashed
lines) of resistive parallel plates with a battery in x = 0. This is a plot of
Eqs. (13), (14), (17) and (18) with φL = −φR = φ0, 9z/9x = 9x/a = 10.
There is a steady current flowing in the plates along the positive x
direction.

Figure 5 shows the normalized surface charge densities given by
Eqs. (19) to (22) as a function of x/a. Figure 6 shows Eqs. (19) and
(20) normalized by (20).

We can see from these expressions that, for |x| * 9x, the electro-
static solution has the main contribution to the values of the potential,
electric field and surface charges. It has been noted elsewhere [12] that
the difference in the surface charges is small between the electrostatic
situation and its equivalent with steady current. Even so, these physi-
cal situations are completely different.

When a → 0 these solutions reduce to that of a single resistive
plate in the y = 0 plane carrying a steady current along the positive x
direction, namely:
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Fig. 5. Normalized surface charge distributions as a function of the x
(longitudinal) coordinate for two parallel plates conducting a steady
current. The internal surface charge distributions given by Eqs. (19)
and (21) are represented by the continuous lines, while Eqs. (20) and
(22) expressing the external surface charge distributions are represented
by the dashed lines. The internal (external) surface charge density is
normalized by the internal (external) surface charge density at x = a.
We utilized φL = −φR = φ0 and 9x/a = 10.

Fig. 6. External (y → a+, continuous lines) and internal (y → a−,
dashed lines) surface charge distributions on parallel plates carrying a
steady current in the x direction. There are line batteries at x = 0.
Both distributions were normalized by the internal (y → a−) surface
charge distribution at x = a. We utilized φL = −φR = φ0 and 9x/a =
10.
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φ(x, y) =
2φ0

π
arctan

(
x

|y|
)

+
29x/π − |y|

29x/π

φR − φL

29x

x

+
29x/π + (29x/π) ln(29z/9x)− |y|

29x/π + (29x/π) ln(29z/9x)

φR + φL

2
, (24)

E(x, y) =

[
2φ0|y|

π(x2 + y2)
− 29x/π − |y|

29x/π

φR − φL

29x

]
x̂ +

y

|y|
[

2φ0x

π(x2 + y2)

+
π(φR − φL)

492
x

x +
π(φR + φL)

49x(1 + ln(29z/9x))

]
ŷ, (25)

σ(x, 0±) =
2ε0φ0

πx
+

ε0π(φR − φL)

492
x

x +
ε0π(φR + φL)

49x(1 + ln(29z/9x))
. (26)

The electric field lines are given by

ξ(x, y) =
1

2
ln

(
x2 + y2

92
x

)
− x2 − y2

92
x

π2

8

(
φL − φR

2φ0

)
− |y|

9x

π

2

(
φL − φR

2φ0

)
+

x

9x

π2

4[1 + ln(29z/9x)]

(
φR + φL

2φ0

)
. (27)

Figure 7 is a plot of Eqs. (24) and (27) with φL = −φR = φ0.

5. DISCUSSION

Jefimenko, [9, p. 509–511], and Heald, [10] studied the problem of an
infinite resistive cylindrical shell of radius R, centered on the z axis and
carrying an azimuthal steady current. They supposed the battery to
be an infinite line, located at ϕ = ±π rad, in cylindrical coordinates.
Supposing that the terminals of the battery were at potentials ±φ0

they found the potential at all points in space to be given by (with

r =
√

x2 + y2):

φ(x, y) =
2φ0

π
arctan

(
y

R + x

)
, for r ≤ R, (28)

φ(x, y) =
2φ0

π
arctan

(
Ry

x2 + Rx + y2

)
, for r ≥ R. (29)

When we take R ' √
x2 + y2 in Eqs. (28) and (29), we obtain the

same result as Eqs. (13) and (14) with a → 0 and 9x ' a, |x|, |y|.
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Fig. 7. Equipotentials (continuous lines) and electric field lines (dashed
lines) of a single resistive plate carrying a steady current in the x di-
rection. There is a line battery at x = 0. We utilized φL = −φR = φ0.

Something similar occurs with the surface charge distribution close to
the battery, given by Heald as:

σ(ϕ) =
ε0φ0

πR
tan

ϕ

2
. (30)

For angles close to the battery, ϕ = (π ± δ) rad with 0 < δ * π, we
have σ ≈ ±2ε0φ0/πRδ. The same happens with Eq. (23) close to the
battery, observing that Rδ is analogous to x in our linear case.

These results prove that the discontinuity in the potential due
to the battery creates a nonlinear divergence of the densities of surface
charge close to the battery. This happens even in very long straight
conductors, as we have seen here.

Eqs. (9) and (10) are valid for semi-infinite plates. Eq. (11), on

the other hand, is valid at points (x, y, z) such that
√

x2 + y2 + z2 *
9x * 9z, [14]. This means that the combination of both solutions given
by Eqs. (13) and (14) is valid only close to the battery, but not close
to the extremities x = ±9x.

For long and wide plates (9z ' 9x ' a), Eqs. (13) to (22)
show that close to the battery the contribution from the electrostatic
solution is greater than the contribution from the terms that maintains
the current flow. This means that there is little difference between
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the situation with and without current, and has already been noted
elsewhere, [12]. Despite this fact, these two situations are completely
different, namely: plates kept at constant potentials, and plates with
a steady current.
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APPENDIX

Calculation of the integral of Eq. (9). As the integral is an even function
of k it can be written as∫ ∞

0

cosh(ky)

cosh(ka)

sin(kx)

k
dk =

1

2

∫ ∞

−∞

cosh(ky)

cosh(ka)

sin(kx)

k
dk

=
1

2i

∫ ∞

−∞

cosh(ky)

cosh(ka)

eikx

k
dk. (31)

The integral above is part of a contour integral I on the complex
variable z:

I =

∮
C

cosh(yz)

cosh(az)

eizx

z
dz, (32)

with an appropriate contour C. The integrand has a simple pole in
z0 = 0 and infinite simple poles in zn such that

cosh(azn) = 0 → zn =
2n + 1

2a
πi, (33)

for integer n. As we have the term eizx = eiαx−βx, for z = α+ iβ (α and
β being real numbers), the integral converges for xβ > 0. We choose a
contour of the type shown in Fig. 8 for x > 0. The integral I can thus
be divided in three terms: along the real z axis, along the path Cr and
along the path CR. The integral along the path Cr is given by

lim
r→0

∫
Cr

cosh(zy)

cosh(za)

eizx

z
dz = lim

r→0

∫ 0

π

cosh(reiθy)

cosh(reiθa)

exp(ireiθx)

reiθ
ireiθdθ = −iπ.

(34)
The integral along the path CR is limited and vanishes for R →∞:

lim
R→∞

∣∣∣∣∫
CR

cosh(zy)

cosh(za)

eizx

z
dz

∣∣∣∣ ≤ lim
R→∞

∫
CR

∣∣∣∣eizx

z

∣∣∣∣ dz = 0. (35)
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Fig. 8. Contour to calculate the integral of Eq. (9), for x > 0. For
x < 0 we choose a symmetrical contour reflected at the horizontal (real
z) axis.

Using Cauchy’s theorem, the integral I is given by:

lim
r→0,R→∞

I =

∫ ∞

−∞

cosh(ky)

cosh(ka)

eikx

k
dk − πi = 2πi

∞∑
n=1

Res(zn)

= 2πi
∞∑

n=0

2(−1)n+1

π(2n + 1)
e−πx(2n+1)/2a cos

[πy

2a
(2n + 1)

]
, (36)

where Res(zn) is the residue of the integrand in z = zn. Therefore, we
have the integral of Eq. (9) for x > 0 as:

(37)
Using the series

arctan z =
∞∑

n=0

(−1)n

2n + 1
z2n+1, (38)

we can write the above integral as

=
π

2
−

∞∑
n=0

(−1)n

2n + 1
e−π(x−iy)(2n+1)/2a −

∞∑
n=0

(−1)n

2n + 1
e−π(x+iy)(2n+1)/2a
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∫ ∞

0

cosh(ky)

cosh(ka)

sin(kx)

k
dk =

π

2
+2

∞∑
n=0

(−1)n+1

2n + 1
e−πx(2n+1)/2a cos

[πy

2a
(2n + 1)

]
.

∫ ∞

0

cosh(ky)

cosh(ka)

sin(kx)

k
dk =

π

2
+2

∞∑
n=0

(−1)n+1

2n + 1
e−πx(2n+1)/2a cos

[πy

2a
(2n + 1)

]
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For x < 0, the integral of Eq. (9) is analogously given by∫ ∞

0

cosh(ky)

cosh(ka)

sin(kx)

k
dk = −π

2
−2

∞∑
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(−1)n+1

2n + 1
eπx(2n+1)/2a cos

[πy

2a
(2n + 1)

]

= arccot

[
cos(πy/2a)

sinh(πx/2a)

]
. (40)
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