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Schrédinger’s Potential Energy and Weber’s
Electrodynamics

J. J. Caluzi! and A. K. T. Assis™??3
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We discuss Schrodinger's approach to gravitational interactions and We-
ber’s electrodynamics. Then we make use of this model to caleulate the
energy of a charge moving inside and outside an ideal capacitor. This
results in an ultimate speed, ¢, and in the variation of the mass of the
particle with the electrostatic potential and its velocity.

1. INTRODUCTION

In this paper we discuss the uMtimate speed of a particle moving inside an
ideal capacitor. We utilize the potential energy for gravitation proposed by
E. Schrédinger to implement Mach’s principle [1], and a velocity dependent
potential energy for electric charges postulated by W. Weber [2].

2. GRAVITATIONAL INTERACTION

In 1925 Erwin Schrddinger proposed a gravitational energy between two
point masses m and m’ which is a funetion of their distance r,, and radial
velocity 7, = dr,,/dt [1]. This energy W,, is given by

Gmm’ 2
Wo =7, [“(14;-’,/&3/2]
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In this expression ¢ = 2.99 x 10%m/s and G is the gravitational constant
(G = 6.67 x 107 "'m?/s’kg). With 7, = 0 we recover the Newtonian
potential energy.

Expanding eq. (1) up to second order in 7,,/c yields the usually pre-
sumed unexplained portion of the advance of perihelion of the planets and
the implementation of Mach’s principle [1,3].

Schrodinger has shown that integrating eq. (1) for a test mass m inter-
acting with an homogeneous and isotropic universe with uniform matter
density pg yields the result {except for an unimportant constant)

_me (2)
VT—w2/c

In this equation v = |7] is the velocity of m relative to the frame of reference
in which the universe as a whole is stationary. The constant A is given
by 4mpeGRE/c?, where Ry is the characteristic length of the universe. If
Ry is estimated as ¢/ Hp, where Hy is Hubble’s constant, then A may be
taken as roughly unity, A ~ 1. From now on we will take 4 = 1.

W=A

3. ELECTRROMAGNETIC INTERACTION

We analyse here a charged particle moving orthogonally to the plates
of an ideal capacitor with surface charge densities +o on the plates situated
at -tz (Figure 1).

We utilize an electromagnetic energy given by

n2
Uy 4dmeg Ty (l 2 & ) 3)

The equation above was proposed by W. Weber [2]. With r,, = 0 we
recover Coulomb’s potential energy.

The interactibn energy of a charge g moving along the z axis is ob-
tained integrating eq. {3) on both plates. The result of this integration [4]
is given by

2
U(ﬂ:z—zo>0)=:|:q§zo(1+;—62), (4)
0

Ul—20 < 2 < 2) = g— 142 (5)
NS> —q&‘oz 2c? /7
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Figure 1. Geometry of the problem. A test charge ¢ moving orthogonally to the plates
of an ideal capacitor with surface charge densities ¢ at the plates situated at +z,.

4. TOTAL ENERGY

Adding eq. (2) to eqgs. (4) and (5) yields the total conserved energy E
of charge g, namely

B .
2 = 4 Fn 122’

5 T 1 et Aoea

In these expressions Ag is the voltage between the two plates of the ca-
pacitor, Ap = 2029/€q.

We now study the problem of an electron (g = —e) entering the ca-
pacitor at z = —2p with a negligible velocity {v/c =~ 0), being accelerated
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beiween the plates and leaving at z = z¢ with a final velocity v. As We-
ber’s electrodynamics is compatible with the conservation of energy [2],
we can equate {6) and (8). This yields

eAyp 2 eAp  eApv? mc?

= - b e 9
g TS a2t e )
or
eAyp 1 1
= -1 . 10
me? (\/1_1,2/92 )1+v2[4c2 (10)
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Figure 2. Behaviour of eq. {10) where we are supposing an electron being accelerated
from rest inside the ideal capacitor. We can see that the final velocity goes to ¢ when
Awp — oo,

A graphical analysis of this equation is presented in Figure 2. The
main result is that the velocity of the accelerated charge is always smaller
than e, and this is the asymptotic speed as Ay — oco.
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5. DISCUSSION AND CONCLUSION

Choosing the zero of the potential at z = 0, the middle of the plates,
yields ¢(z < —20) = ~A¢/2 = —020/20, H(—2% < 2 < %) = Apz/22% =
ozfeo, P(z > z) = Ap/2 = o2y /ep, wWhere ¢ is the electrostatic potential
at any point. With this choice we can write eqgs. (6) to {8) as

i1 2

where m.; for v 3 0 is defined by

me? 1
v /1 —v2/c? '

Equation (11) is equivalent to the classical result (Coulomb’s potential
plus T = mw?/2) with the mass m replaced by an effective inertial mass
m.; defined by (12), which is a function of the electrostatic potential where
the test charge is located and of the velocity of the charge. If we had
chosen the zero of the potential at z = —zp eq. {11) would be written as
E = q¢ + meiv? /2 — qo 20 /€0, Where in this case

qp 2
Mei = 5 + (12)

_ 99 + 2me? _ 9oz
v2 /1 —v?/c2 oc?

Mgy = c2 (13)

Experiments to test the variation of the effective inertial mass of a charge
with the electrostatic potential where it is located have been proposed
in [5,6]-

In Figures 3a—-3c we compare four models. In all of them we utilize
conservation of energy in the form E = T + U/. For the kinetic energy
we can have the classical one, T, = mv?/2, or the value mc?//1 — v%/c2,
apart from a constant. This last expression is analogous to the relativistic
one and has also been obtained by Schrédinger from a different approach
[1]. It will be called T} or T; accordingly. For the electric potential energy
we have Coulomb’s expression, eq. (3) with f,, = 0, represented here by
U, and Weber’s potential energy (3), represented here by .. When we
int.egrate these expessions for a charge interacting with an ideal capacitor
we get {4} and {5) for Weber (or for Coulomb, without the terms in »%).

The problem analysed by all these models is this one of an electron
being accelerated from rest since z = —z5 until z = zp, orthogonally to
the plates of an ideal capacitor (Figure 1). In the first model, T, + U, we
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Figure 3. Final velocity of an electron being accelerated from rest inside an ideal
capacitor as a function of the voltage Aw between the plates, according to four models.
We utilize the classical, relativistic and Schrédinger's kinetic energies (T., T, and T,
respectively), For the electric potential energy we utilize the Coulombian and Weberian
ones (U. and U,,, respectively).

have classical kinetic energy and Coulomb’s potential. Then »? is a linear
function of Ay and grows indefinitely without limits. In the second model,
T. + U, we have the relativistic kinetic energy and Coulomb’s potential.
Then the velocity tends asymptotically to ¢. In the third model, T; 4 U,
we have classical kinetic energy and Weber’s potential. In this case there is
no upper limit in v? and it diverges as Ay — 1 MV [4]. In the last model,
Ts+ U, we have Schrodinger’s kinetic energy plus Weber’s electromagnetic
potential energy. Now the result is very close to the second model and
the most striking feature is that even with Weber’s potential energy for
electromagnetism we obtained a limiting velocity for the electron, v — ¢,
as the potential difference between the plates goes to infinity. Only the
second and fourth models are physically reasonable and compatible with
the experimental findings.

In all these models we neglected border effects, energy losses due to
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electromagnetic radiation and induction of currents in the plates of the
capacitor as the electron is accelerated between them.

There is an important experiment carried out by Bertozzi, where he
measured the resulting time-of-flight velocity of an electron being acceler-
ated in a van der Graaff electrostatic generator and a linear accelerator [7].
There were five runs in his experiment in which the kinetic energies of the
electrons (in MeV) were as follows: 0.5, 1.0, 1.5, 4.5 and 15. From the
measured time-of-flight of the electrons in each run and the traversed dis-
tance of 8.4 meters he obtained the following values of v2/c?, respectively:
0.752, 0.828, 0.922, 0.974 and 1.000. In Figure 4 we compare the theo-
retical models discussed in this paper along with Bertozzi’s experimental
results. We plot v2/¢? against the potential difference accelerating the
electrons. As we can see from this figure and the previous one, only the
relativistic and Schridinger-Weber models are compatible with the data.
As there are only five experimental points, and border effects etc. were not
taken into account in the four models discussed in this paper, we cannot
decide between these two last theoretical curves for this experiment.

et

Ty + Uw -‘
——nr Tr + Ue
» axpatirnentol dota from Bertozzi's experftnent

0.5 1

0.0 - 1 PR X 1 N
[+ K1) 5.0 10.0 15.0 20.0

b (V)
Figure 4. A comparison between the theoretical predictions of the Schrédinger-Weber

model {T, + {/,,) and relativistic mode! (T, + U.) against the experimental data taken
from Bertozzi’s experiment. [7].
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Recently Wesley has entertained some similar possibilities (Ref. 8,
p.259-272, Table 6.3, Ref. 9). He worked with Weber’s electrodynamics
and with another potential energy for gravitation. His approach has also
been shown to be compatible with Bertozzi’s experiment.

Futher research in all these approaches is essential for a bettter un-
derstanding of this situation.
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