
General Relativity and Gmuitation, Vol. 27, NQ. ~, 1995 
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We discuss Schrooinger's approach to gravitational interactions and We­
ber's electrodynamics. Then we make use of th15 model to calculate the 
energy of a charge moving inside and outside an ideal capacitor. This 
results in an ultimate speed, c, and in the variation of the IIlIlBS of the 
particle with the electroetatic potential and its velocity. 

1. INTRODUCTION 

In this paper we discuss the ultimate speed of a particle moving inside an 
ideal capacitor. We utilize the potential energy for gravitation proposed by 
E. Schrodinger to implement Mach's principle [1], and a velocity dependent 
potential energy for electric charges postulated by W. Weber [2]. 

2. GRAVITATIONAL INTERACTION 

In 1925 Erwin SchrOdinger proposed a gravitational energy between two 
point masses m and m' which is a function of their distance r~) and radial 
velocity i., = dr.,/dt [1]. This energy W., is given by 

Cmm' [ 2 1 W., = ------;:;;- 3 - (1 i~/c2)3/2 
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In this expression c = 2.99 x lOSm/s and G is the gravitational constant 
(G = 6.67 x IO-l1 m3/s2kg). With T.] = 0 we recover the Newtonian 
potential energy. 

Expanding eq. (1) up to second order in r,ic yields the usually pre­
sumed unexplained portion of the advance of perihelion of the planets and 
the implementation of Mach's principle [1,3]. 

Schrodinger has shown that integratingeq. (1) for a test mass m inter­
acting with an homogeneous and isotropic universe with uniform matter 
density Po yields the result (except for an unimportant constant) 

W=A mil 
Vl-v'/c' 

(2) 

In this equation v = liiI is the velocity of m relative to the frame of reference 
in which the universe as a whole is stationary. The constant A is given 
by 47rpoG!?J/Cl, where Ro is the characteristic length of the universe. If 
.no is estimated as c/ HOI where Ho is Hubble's constant, then A may be 
taken as roughly unity, A ~ 1. From now on we will take A = 1. 

3. ELECTROMAGNETIC INTERACTION 

We analyse here a charged particle moving orthogonally to the plates 
of an ideal capacitor with surface charge densities ±a on the plates situated 
at ±zo (Figure 1). 

We utilize an electromagnetic energy given by 

(3) 

The equation above was proposed by W. Weber [2). With r'J = 0 we 
recover Coulomb's potential energy. 

The interactibn energy of a charge q moving along the z axis is ob­
tained integrating eq. (3) on both plates. The result of this integration [4] 
is given by 

u ( V') U(±z-ZO >0) = ±qco zo 1 + 2c2 ' (4) 

u ( v') U(-zo::::: z::::: zo) = q~z 1+-, . 
cO 2c 

(5) 
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Figure 1. Geometry of the problem. A test charge q moving orthogonally to the plates 
of an ideal capacitor with surface charge densities ±". at the plates situated at ±zo. 

4. TOTAL ENERGY 

Adding eq. (2) to eqs. (4) and (5) yields the total conserved energy E 
of charge q, namely 

q6.rp q6.cp v 2 mC2 
E(z < -zo) ~ -- - - - + --",;;;;~" 

- 2 4 0' )1-v'IO' 
(6) 

q6.cp z q6.rp v 2 z ~ 
E( -zo < z < zo) = -- - + -- - - + ",;;;~"" 

- - 2 zo 4 r? zo Vl-v'J.lr? 
(7) 

E(zo < z) = q6.rp + q6.rp v
2 + mC2 

- 2 4 0' JI v'IO' 
(8) 

In these expressions 6.rp is the voltage between the two plates of the ca­
pacitor, 6.cp = 2crzol€o. 

We now study the problem of an electron (q = -e) entering the ca­
pacitor at z = -zo with a negligible velocity (vic ~ 0), being accelerated 
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between the plates and leaving at z = Zo with a final velocity v. As We­
ber's electrodynamics is compatible with the conservation of energy [21. 
we can equate (6) and (8). This yields 

el:::.ip 2 eArp el:::.r.p v 2 mCl 
-2- + me = --2- - -4- r:? + J1 _ v2jc2 (9) 

0' 

e.6.cp _ ( 1 -1) 1 
mc2 - ../1 _ v2/O' 1 + v'/4O' . 

(10) 
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Figure 2. Behaviou;r of eq. (10) where we a.re supposing an electron being accelerated 
from rest inside the ideal capacitor. We can see that the final velocity goes to c when 
d<p ---> 00. 

A graphical analysis of this equation is presented in Figure 2. The 
main result is that the velocity of the accelerated charge is always smaller 
than c, and this is the asymptotic speed as D.rp --+ 00. 
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5. DISCUSSION AND CONCLUSION 

Choosing the zero of the potential at z = 0, the middle of the plates, 
yields 1>(z :::; -ZO) = -6.cp/2 = -UZo/EO, ¢( -Zo :::; Z :::; ZO) = 6.cpz/2Zo = 

UZ/EO, ¢(z::::: zo) = 6.cp/2 = UZO/EO, where ¢ is the electrostatic potential 
at any point. With this choice we can write eqs. (6) to (8) as 

(11) 

where me.: for v =F 0 is defined by 

q1> 2mc2 1 
"'" '" -", + -v-2- -.jr,I~v='2r,/ ",'if (12) 

Equation (11) is equivalent to the classical result (Coulomb's potential 
plus T = mv2 /2) with the mass m replaced by an effective inertial mass 
Tne.: defined by (12), which is a function of the electrostatic potential where 
the test charge is located and of the velocity of the charge. If we had 
chosen the zero of the potential at Z = -zo eq. (11) would be written as 
E = q1> + meiv'l/2 - qUZ()/EO, where in this case 

quZQ 
- EOe? . 

(13) 

Experiments to test the variation of the effective inertia! mass of a charge 
with the electrostatic potential where it is located have been proposed 
in [5,6]. 

In Figures 3a-3c we compare four models. In all of them we utilize 
conservation of energy in the fonn E = T + U. For the kinetic energy 
we can have the classical one, Tc = mv2 /2, or the value mc2 / JI v 2 / c2 , 
apart from a constant. This last expression is analogous to the relativistic 
one and has also been obtained by Schrodinger from a different approach 
[1]. It will be called Tr or T,. accordingly. For the electric potential energy 
we have Coulomb's expression, eq. (3) with r'J = 0, represented here by 
Ue , and Weber's potential energy (3), represented here by Uw . When we 
integrate these expessions for a marge interacting with an idea! capacitor 
we get (4) and (5) for Weber (or for Coulomb, without the terms in v 2

). 

The problem analysed by all these models is this one of an electron 
being accelerated from rest since z = -zo until z = zo, orthogonally to 
the plates of an ideal capacitor (Figure 1). In the first model, Tc + Uc , we 
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Figure 3. Final velocity of an electron being accelerated from rest inside an ideal 
capacitor as a function of the voltage l:J.<p between the plates, according to four models. 
We utilize the classical, relativistic and SchrOdinger's kinetic energies (Te, T. and To, 
respectively). For the electric potential energy we utilize the Coulombian and Weberian 
ones (Ue and U." respectively). 

have classical kinetic energy and Coulomb's potential. Then v2 is a linear 
function of D.I.{J and grows indefinitely without limits. In the second model, 
Tr + Uc, we have the relativistic kinetic energy and Coulomb's potential. 
Then the velocity tends asymptotically to c. In the third model, Tc + Uw • 

we have classical kinetic energy and Weber's potential. In this case there is 
no upper limit in v2 and it diverges as l:!.rp --+ 1 MV [4]. In the last model, 
Ts+Uw • we have SchrOdinger's kinetic energy plus Weber's electromagnetic 
potential energy. Now the result is very close to the second model and 
the most striking feature is that even with Weber's potential energy for 
electromagnetism we obtained a limiting velocity for the electron, v --+ c, 
as the potential difference between the plates goes to infinity. Only the 
second and fourth models are physically reasonable and compatible with 
the experimental findings. 

In all these models we neglected border effects, energy losses due to 
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electromagnetic radiation and induction of currents in the plates of the 
capacitor as the electron is accelerated between them. 

There is an important experiment carried out by Bertozzi, where he 
measured the resulting time-oC-flight velocity of an electron being acceler­
ated in a van der Graaff electrostatic generator and a linear accelerator [7]. 
There were five runs in his experiment in which the kinetic energies of the 
electrons (in MeV) were as follows: 0.5, 1.0, 1.5, 4.5 and 15. From the 
measured time-ot-flight of the electrons in each run and the traversed dis­
tance of 8.4 meters he obtained the folIowing values of v 2 / c2, respectively: 
0.752, 0.828, 0.922, 0.974 and 1.000. In Figure 4 we compare the theo­
retical models discussed in this paper along with Bertozzi's experimental 
results. We plot v 2J Cl against the potential difference accelerating the 
electrons. As we can see from this figure and the previous one, only the 
relativistic and Schrodinger-Weber models are compatible with the data. 
As there are only five experimental points, and border effects etc. were not 
taken into aCCOWlt in the four models discussed in this paper, we cannot 
decide between these two last theoretical curves for this experiment. 

--T.+Uw 
- •• --. Tr + U<: 

.... pw1m.ntol data from BorlaD:I' ... parfrn.nt 

,., L ___ ~_~_~ ___ ~~_~-' 

0.0 5.0 10.0 15.0 20.0 

Figure 4. A comparison between the theoretical predictions of the SchrOOinger-Weber 
model (T. + U .. ) and relativistic model (T. + U~) against the experimental data taken 
from Bertozzi's experiment [7). 
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Recently Wesley has entertained some similar possibilities (Ref. 8, 
p.259-272, Table 6.3, Ref. 9). He worked with Weber's electrodynamics 
and with another potential energy for gravitation. His approach has also 
been shown to be compatible with Bertozzi's experiment. 

Futher research in all these approaches is essential for a bettter un­
derstanding of this situation. 
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