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Self-Inductance of Solenoids, Bi-Dimensional Rings
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Abstract. We compare the self-indunctance formulae of Neumann, Weber, Maxwell and Graneau. To
this end we present exact and algebraic formulae for the self-inductance of solencids, bi-dimensional
rings and coaxial cables. We show that these four formulas agree exactly with onc another for
closed circuits.

PACS number(s): 03.50.De, 41.20.Gz, 41.90.+e, 84.90.4a

1 Introduction

We shall utilize in this work a powerful method of calculating inductances. With this method
onec can obtain exact and algebraic results, instead of approximation formulae that are pre-
sented is most situations. We have recently presented this method[1]. Although Sonunerfeld
had presented a similar formula in his book ([2], p. 108), he dealt only with Neumann’s
expression. In this work, and in the preceding one [1], we exiend the method for the nduc-
tance formulac of Weber, Maxwell and Graneau. Let us first discuss briefly their historical
appcarance.

Consider a frame of reference S with origin O and two current elements Igdé_’; and deé;
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lacated relatlve to § at 7, and ¥, respectively. In 1826 Ampére obtained the force exerted
by 3 on 1, d>Fy, as ([3], Chapter 4):

d?ﬁpz—_n“f [2(dZ, - df) - 3(7,, - dE)(7y - dE)] (1.1)

where yi, = 47 x 107 kgmC ™ is the vacuum permeability, ry, = |7, — 7| and #,, = (F, — 7)) /r,,.

When we integrate this expression over the two closed circuits G, and C, the force can
be written as:

il x (dF,
Fioc = ““’Mj{ f(c b x (dhy X ) Hf ff ""‘Jdﬂ 4z, (1.2)

2
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In 1845 F. Neumann introduced the coefficient of mutual inductance M showing that
this force between two rigid closed circuits might be written as I,V MY, where

M“’:ﬁf f i, -dby (1.3)
arJe Jo, r, ’

In 1846 W. Weber introduced a force luw from which he could derive as special cases
Coulomb's force and Ampére’s force (1.1}, {3], Chapter 3. In 1848 he introduced a potential
energy d°U" between two point charges dg, and dg, from which he could derive his force as

- dgdg, 1 72

PUY = T~ (1 - —3‘—) , (1.4)
dmre, Ty

where g, = 8.85 x 10712C? N~1m~? is the permittivity of free space, ¢ = 1/ /fate = 3 X

10%ms~! and 7, = dr,,/dt.

Considering the neutral current clements as being composed of positive and negative
charges (dg_, = —dq,. and dg_;, = —dg,,} and adding the energy of interaction between
the positive and negative charges of one current element interacting with the positive and

negative charges of the other current clement yields: d*U} = LLd?M,Y, where

1. _; A'x' ) f'_’
dZM‘W 4’T (T :l ,)_(TJ ‘ £J) . (15)
7 r,_?

Here it was utilized Ldf, = dgy.(Ty, — 9.} and Lde, = dq,,(7,, — ©_,), where ¥, is the
velocity of the charge dy, relative to S, see [3], Sections 4.2 and 4.6.

Maxwell worked with an expression for M which was half Neumann’s expression plus half
Weber’s expression. Nowadays the simplest way to derive Maxwell's formula is to work with
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Darwin’s lagrangian. Accordingly the energy of interaction between the charges dg, and dg,
moving with velocities 7, and 7, is given by ([3], Section 6.8; [4], Section 12.7, pp. 593-595):

&2U

_ d‘i’:dQ.?i 1 — U+ (B - Py)(T) - Py) ‘ (1.6)
dreg 1y, 2c?

Adding this expression for the positive and negative charge of one current element in-
teracting with the positive and negative charge of the other current element as we did for

Weber’s law yields Maxwell’s expression d*U,)" = I,[,d>M)!, where

(L.7)

oy _ ol |dh-dl (7, dE)(E, - dE)
eMy = 4 2 [ + '

Tz Tay
More recently P. Graneau introduced a fourth formuia to calculate the mutual energy

or mutual inductance between two current elements from which he could derive directly
Ampére’s force (1.1), namely ([5], p. 212):

e tin [ NGy By dE- 0 s
3 A Ty Ty .
Al these four expressions for °M can be swunmarized in a single formula, namely:
: de, - d¢, — B\ (A, - dE)E, - dE,
M, = Ho | (14 kY dE - dé, 4 1 — kY (F, - d&)(7, - dE) | 19)
dar 2 Tay 2 T4

where if ¥ = 1, —1,0 or — 5 we obtain, respectively, the formmulas of Neumann, Weber,
Maxwell and Graneau.

It has been known for a long time that all these formulas agree with onc another when
we calculate the mutual inductance between any two closed circuits. Only recently we have
been able to prove that the same is also valid for the self-inductance of a single closed cireuit
of arbitrary form, {6]. In this work we illustrate this equivalence calculating exactly with the
four formulas presented above the self-inductance of a solencid and bi-dimensional ring, as
this detailed comparison had never been done before.

For filiform circuits the integration of Eq. (1.9) yields infinite results. To avoid this we
generalized this expression for current flowing over the surface of bi-dimensional conductors,
namely ([1}}:

d‘lﬂffgj _ @ 1 {(1 + k) (ez i f}) 4+ (1 — k) (Thn:.r ) En)(ﬂ: ) EJ) dﬂ;dﬂh {1_10)

A o, 2 Ty 2 oy
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where £ is the unit vector indicating the direction of the current flow, w is the width (trans-
verse to £) of the conductor and do is an element of arca in the conductor (see Figure 1 for
an example).

da,

~i
N
|

f1 ‘

_--_-""d(]i

Figure 1: Bi-dimensional circuit illustrating the meaning of w, ¢ and da.

2 Solenoids and Bi-Dimensional Rings

The self-inductance of the solencid and of the ring will be calculated with the geometry
presented in Fig. 2. The cylinder has a length ¢ and radius o, in which flows an uniform
surface poloidal current density I’ siven by (I/ f)q?), where qﬁ is the unit vector in eylindrical
coordinates (p, @, z). Here I is the total current flowing through the length £.

1

-

- a
{ <

Figure 2: Cylinder with surface poloidal current density.

On replacing in Eq. (1.10]: i =g, EJ = qf)J, da, = adzd, da, = adzde,, w, = w, = £,
7y, = af, + 2,2, ¥y, = af; + z,£ and the limits of integration yields

2 D 2w £ £
Ho @
) - == ) . z f d
Lpofmdai ir £2 0 dﬁbfo d@fo d fﬂ 25
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x [(l —; k) [2a%(1 — cos(f;&(_(i)‘ #,)) +)(z‘ — 2,)?|\/?

+ {15 e e e

= %?{?K@ E@D+p((® Q], (2.1)

where p = 2a/¢, ¢ = p/{1 +p*)}/?, K and E are, respectively, the complete elliptic integrals
of the first and second kinds[7], pp. 907-908. The first to obtain the self-inductance with
this geometry in terms of elliptic integrals was Lorenz [8}, p. 142. He worked only with
Neumann'’s formuls. Here we obtained for the first time in the literature the same result
with the other formulae. This is a highly non trivial resnit.

The result in (2.1) is independent of &, so it has the same value for the formulae of
Neumann, Webcr, Maxwell and Graneau. It is also exact and presented as an analytically
simple expression. As it was obtained without restrictions on £ and a, it is valid either for
the self-inductance of a long solenoid of length ¢ and radius a (£ 3 ¢), cbtained by winding
N turns of wirc on a cylindrical form, or for the self-inductance of a bi-dimensional ring
(£ < a).

The cxpansions of Eq. {2.1) for the two limits cited above (£ > o and £ < a) are,
respectively:

2 2
HoTa S8a 1la
Lso enotd = l1— —-= - 7 2.2

fened Ty ( w£+2@) (22)

8a 1
Lring = ot (ln (7) - E) . (2.3}

In most textbooks we find a result for the solenoid with IV turns valid for £ = a (see, for
instance, [9], p. 442). The methed utilized in the textbooks is given by L = d®/df;, where
& is the magnetic flux over the circuit, and [ is the current in each turn. This methed is
ouly useful in highly symmetrical situations in which we can easily calculate ®. The result
they obtain is given by

2
texthooks _ 3
Lpu:}.im'dr:l = ptam N 7

(2.4)

Eq. {2.2) presents this result with corrections of higher orders.

The difference in the factor N? is only a matter of definition. In the textbooks the
magnetic energy of this system is given by LI7/2, with I given by (2.4), as they concentrate
their analysis in the current [; in each turn. If we concentrate om the total current I = NI;
over the whole length £ of the cylinder, the magnetic energy will be given by LI%/2, with L
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given by (2.2}, so that the measurable self energy agrees with the previous value. Howover,
this last approach is preferable in some respects as it preserves the idea of L depending only
on the geometry of the system. In the sclenoid when we change the number of turns N,
keeping I constant, the peometry (length £ and radius a of the eylinder) is not modified, so
that L should remain the same. This happens with (2.2) but not with (2.4).

3 Coaxial Cable

In Fig. 3 we present the geometry for calculating the self-inductance of the coaxial cable.
There are two coaxial cylinders of radius ¢ aud b, and length £ The surface current density
K flows uniformly along the 2 direction on the outer cylinder and — £ on the inner one.

I
— }

| T b
a
K, z
e

Figure 3: Two concentrical cylinders making a coaxial cable, with opposite currents fowing
along the axial direction.

The self-inductance of the coaxial cable s given by: L, + Ly + 2M,. Here L, (L) is the
self-inductance of the cylinder with radius ¢ (b}, and M, is the mutual inductance between
the two cylinders. For L, we substitute in (1.10}: i = {?J = %, da, = adz,dé,, da, = adz,dg,,
un = wy = 2Wa, 5, = af, + 2, ¥, = af, + 2,2 and the limits of integration to obtain:

o 2w /-Z'Jr ff fﬂ
L. = e, d dz,
1672 /0 ¢ o 2 o ol 4
1

1+ k&
) [( 2 ) [2a2(1 — cos(d, — &) + (2 — 2,)°]*/*

-k (.~ 2)°
+ ( 2 ) [2a2(1 — cos(¢, — &)} + (2 — 2 PPr2] {3.1)
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For the coaxial cable we are just interested in the result of Eq. (3.1) for the limit £ > .
Considering this approximation we obtain:

La_::%g[ln(%ﬁ)+(k23)+——(3—k)+;€:( —2)]. (3.2)
Analogously:
Ly~ ‘;—‘f [m (2;) + (?) ——(3 K) + (k 2)} (3.3)

For ca,ltiula,ting\ the mutual inductance between the two cylinders of Fig. 3 we substitute
in (1.10): 4, = —¢, = £, da, = adzde,, da, = bdz,dg,, w, = 2ma, w, = 2ab, ¥, = ap, + 2,3,
7y = bp, + 2,2 and the limits of integration:

M Lo Ewd 271'd Ed Ed
Hab = _16»,?3[0 ¢‘fo gé’fu Zfo K

1+E% 1
x |: 2/ [a®+ b —2abcos(d, — ) + (2 — 2,)%]V2

N 1-k% (z, — 2,)? ]
2 ] [a® 4+ b% — 2abcos(d, — ¢,) + (2 — 2,232
Ho 28 E—3 (3—ka 2i4/T
_Fo =) 1o e MR il A0
Qﬂ[ln(a) nr—!—( 2 )+ o £|1 e 1=
(k—2) 2 &
where 1 = /-1 is the imaginary unit, » = b/a > 1 and we have considered £ > b > a.

Finally, a8 Leougiat = La + Ly + 2M s, from (3.2) to (3.4) we obtain:

ey 2% ISR i) 5
Locoawiat By |:lIIT‘+ ?TE(S &} (1 +r |1 T|E( )):| . (30)

17|

In [10], Vol. 2, pp. 24-1 to 24-3, we find the self-inductance of a coaxial cable analogous
to that of Fig. 3. It was obtained utilizing 7 = LI%/2, where U is the magnetic energy
calculated through [ f [ B2dV/(2uy) (B being the magnitude of the magnetic field). The
result they obtained {supposing £ > b > g) was:

, i)
Lt = £2 (3.6)

This result is exactly the zeroth approximation erder of Eq. (3.5).
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4 Conclusions

In this work we have obiained analytically cxact expression for the self-inductance of a
solenoid or a bi-dimensional ring, Fig. 2 and Eq. (2.1}, using a powerful method of inductance
calculation [1]. With this method we have also caleulated the self-inductance for the coaxial
cable, Fig. 3, in the limit of its length being much greater than its outer radius, Eq. (3.5).

For the cylinder with closed poloidal lines of current, Fig. 2, we have obtained an exact
equivalence between the formulac of Neumann, Weber, Maxwell and Graneau, see Eq. {2.1).
This exact equivalence is the main result of this paper.

On the other hand, for the cylinders with open axial lines of current, Fig. 3, we hiave not
cbtained this equivalence as the final expression depends on &, see Eqgs. (3.2) to {(3.5). This
dependence on k will disappear if we consider closed lines of current {taking into account,
for instance, the radial currents at the lids in the two extremities of the coaxial cable of Fig.
3) [6]. This means that this dependence on & is not important for any experiment involving
only closed circuits as it will disappear and will not be detected by any experimental means,

For a general proof that the self inductance of a closed circuit of arbitrary form is the
same with all these expressions, see [6]. In this work we have been concerned in showing this
complete equivalence in specific examples which allowed exact integrations, as was the case
of the solencid and bi-dimensional ring,
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