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Telegraphy Equation From Weber’s Electrodynamics
A. K. T. Assis and J. A. Hernandes

Abstract—We derive the telegraphy equation according to
Weber’s electrodynamics for signal propagating along a very long
bidimensional wire in the shape of a rectangular strip of zero
thickness. We also derive this equation for a twin lead composed
by two of these parallel very long bidimensional wires facing each
other. We compare this result with classical electromagnetism.

Index Terms—Circuit theory, propagation of electromagnetic
signals, telegraphy equation, twin leads, Weber’s electrodynamics.

I. INTRODUCTION

THE FIRST TO DERIVE the telegraphy equation taking
into account the capacitance, self-inductance and resis-

tance of the wire were Weber and Kirchhoff in the year 1857
[1, vol. 1, pp. 144–146, 296–297], [2], [3], [4, , pp. 230–232],
and [5, Sec. 3.1]. They published independent works but both of
them were based on Weber’s action at a distance theory. For a
wire of negligible resistance, they showed that the signal would
propagate at light velocity. Kirchhoff’s original papers are [6]
and [7], with English translations in, respectively, [8] and [9].
Weber’s simultaneous and more thorough work was delayed in
publication and appeared only in 1864 [10]. It was only in 1876
that Heaviside succeeded in deriving the same equation based
on Maxwell’s equations [4, pp. 228–229].

Weber and Kirchhoff considered the propagation of signals in
conducting wires of circular cross sections. Our goal here is to
extend their works for signals propagating through a long rect-
angular strip and along a twin lead composed of two of these
strips. We will also compare this result based on Weber’s elec-
trodynamics with classical electromagnetism. Modern theoret-
ical and experimental discussion of Weber’s electrodynamics
can be found in [5], [11]–[15], [16, ch. 6], and [17]–[26].

Suppose a charge element located at , moving with ve-
locity and acceleration relative to an inertial frame of ref-
erence , and a point charge located at , moving with ve-
locity and acceleration relative to . According to Weber’s
electrodynamics the force exerted by 2 on 1 is given by [5, ch.
3] and [24, ch. 8]

(1)
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Fig. 1. Geometry of the problem.

where C N m is the permittivity of
vacuum, ms

, and is the unit
vector pointing from 2 to 1. This is the basic expression we will
employ here, integrating it over the wire.

II. RECTANGULAR STRIP

The first case to be considered is that of a long rectangular
strip of length and width in the plane centered on the
origin of the coordinate system, with the longer side along the

axis, Fig. 1. We suppose air or vacuum outside this bidimen-
sional conductor. As we have a bidimensional problem an ele-
ment of source charge is given by ,
where is the surface density of free charges at
the position of the strip in time , and is
an element of area. As regards the velocity and acceleration
of the source charges we will assume a longitudinal current
and propagation, namely and

. The test charge will be located
at , in such a way that its distance to the source
charge is given by .

The first component of Weber’s force acting on charge is
the Coulomb force which can be obtained as the gradient of a
potential , where

(2)

Here, is the potential at the location of due to
all source charges .

In order to solve this equation, we utilize the approximation

(3)

where is the distance of the test charge to
the center of the strip.
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We now employ Kirchhoff’s main idea in order to solve
this integral. For any given and , the maximum value of

is for
and , when . For far from ,
the value of will be close to due to the approx-
imation (3). In this case, will be of the order of ,
namely . By approximation (3) we
have . Kirchhoff’s idea is then to remove

from the integrand by taking its value at the
maximum value of , that is, when and .
We are then led to the approximate result (see Appendix)

(4)

To solve this last integral, we integrated first in and utilized
once more approximation (3).

The longitudinal Coulomb force is then given by (with
)

(5)

The terms proportional to and to are usu-
ally small compared to the Coulomb term and will be neglected
here. The reason for this is that is of the order of the drifting
velocity , which is known to be much smaller than the light
velocity . The terms depending on and
give rise to the magnetic force [5, Sec 6.6, 7.4] and
[27]–[30]. As the current is in the longitudinal direction , the
magnetic field on the strip will be in the direction. The test
charge considered here will be a conduction electron on the strip
moving in the direction, so that will be in the direc-
tion. As we are interested only in the longitudinal propagation
of the signal along the direction, we will not consider these
terms either.

We then need to take into account the acceleration term of
Weber’s force acting on the test charge due to the accelerated
conduction electrons, which can be written as

(6)

Here, is the surface density of conduction electrons (typically
one electron per atom in copper conductors). It has a constant
value which does not depend on position. This means that it can
be removed from the integrand.

By Kirchhoff’s approximation method, we can remove
from the integrand taking its value at and

(that is, at the maximum value of ). Considering
only the component of the force we obtain the approximate
result (utilizing also that )

(7)

We now suppose the test charge to be a conduction elec-
tron: C, , and

. In this case we must also include the frictional
force due to its collisions with the lattice. The average value of
this force can be represented by , where the coefficient of
friction is given by , with being the resis-
tance of the strip, [31]. This is the necessary value of in order
to obtain Ohm’s law for constant current in a bidimensional con-
ductor.

We can now write down the component of the equation of
motion for a conduction electron applying Newton’s second law
of motion in the longitudinal direction , namely: .
Considering the frictional force plus (5) and (7) in Newton’s
second law of motion, dropping the subscript 1 and writing

yields

(8)

Usually , [31], so that we can
neglect the term in this equation compared with the term

. For instance, for a 1-m wire with
1-mm width, we have, with C and
Cm for copper: kg,
which is much greater than the electron mass
kg. Neglecting for this reason the term ma we can then equate
the left-hand side of (8) to zero.

We can relate the drifting velocity of the source charges
with the surface current density utilizing

. As the surface density of conduction electrons
has a constant value we have . Utilizing
this in (8) without the right-hand side, multiplying it by

and utilizing yields

(9)

There are two unknowns in this equation, and . In order
to relate them we utilize the equation for the conservation of
charges, . For the case considered here of a
current flowing in the direction over the surface of a strip of
length and width this is equivalent to

(10)
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Applying in (9) and utilizing (10) yields

(11)

This is the equation of telegraphy, which will also be satisfied
by , by and by the total current .

If the resistance of the strip is negligible, Weber’s electrody-
namics plus Newton’s second law of motion predicts a current
flow obeying the wave equation. That is, with a signal propa-
gating at light velocity.

III. TWIN LEAD

We now perform the same calculations as above but consid-
ering a twin lead composed of two of these strips facing one
another and separated by a distance such that ,
with currents flowing longitudinally along the axis. The par-
allel planes of the strips are located at and at .

Beyond the conditions above, we need only two further re-
lations connecting the free surface charge densities and surface
current densities in both strips. The most reasonable conditions
are that (see [32, pp. 125–130]

(12)

and

(13)

The approximation utilized here is

(14)

With these conditions, integrating for both strips as in the pre-
vious Section and utilizing Kirchhoff’s approximation method
yields

(15)

(16)

(17)

The longitudinal Coulomb force given by
yields

(18)

(19)

(20)

The longitudinal component of Weber’s force depending on
the acceleration yields

(21)

(22)

(23)

Following the procedure of the previous Section, substituting
by the expression (where is the resistance of

one strip, [31]) and by yields

(24)

Utilizing once more (10) and neglecting the right-hand side
of (24) yields

(25)

where is the resistance of the system of two equal
strips.

The same equation is obtained for , for and for the total
current .

IV. CLASSICAL ELECTROMAGNETISM

Equations (11) and (25) can be put in the form

(26)

where , and are the resistance, self-inductance, and ca-
pacitance of the system. This can be seen observing that the
self-inductance and capacitance of a single strip of length
and width , with , are given by, respectively,

and . In the case
of the twin-lead considered above, the values of these quantities
are and .

Equation (26) is the equation of telegraphy obtained in clas-
sical electromagnetism,[4 , p. 229] and [33 , p. 318]. We then
conclude that as regards the telegraphy equation for long straight
strips or for twin leads composed of these strips we obtain the
same result with classical electromagnetism and Weber’s elec-
trodynamics.

APPENDIX

Herein, we calculate the integral that appears in (4) as shown
in the equation at the bottom of the page, where we used the
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approximation given by (3). Now we calculate the last integral,
yielding

(27)

where again we used the approximation (3). The integral can
then be given by

(28)

This is a good approximation for .
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