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We present some properties of mathematical and physical mmterest in
generalized algebras of two, three and four dimensions. We give a new
formulation for these algebras, stress some important applications related to the
wave equation, and emphasize a novel didactic approach to this subject.

1. Introduction

In 1986 Fjelstad [1] presented an application of perplex numbers to interpret
superluminal phenomena. In this way he extended special relativity to the case
|| >¢. Band [2] obtained the essential mathematical results of Fjelstad from two
simple postulates. As was shown by Ronveaux [3], the mathematics based on perplex
numbers is not new [4]. Despite this fact the underlying mathematics and the
possible physical applications are not known by most mathermaticians and physicists
in general, contrary to complex numbers.

The aim of this paper is to extend the analysis of Fjelstad showing some different
and new applications and also to present a mathematical structure which allows an
extension of the algebra in any number of dimensions [5]. This has not been done in
this way before. In particular the algebras in three and four dimensions will be
analysed and it will be seen that the quaternions are only a particular case of this four
dimensional case.

2. Two dimensions
A general algebra in two dimensions is based on the variable s defined by
s=xdy +yd, (1)

where the coefficients x and v are real variables and the basal elements @, and &, are
defined by their product. The sum of 5, and s, and the product of s, by a scalar «
(meR) are given by the usual rules

sytsy=(xdy +y,da}+ (%28, + ¥12d5) 2)
=(xy+x)d +(y; ty2)d,
sy =ox @, +y,d,)=(ox,)d; + (ay,)dz, (3)

The algebra of the variable 5 is obtained with the defimition of the products 4,4,
&,d,, d,d, and &,d4,. We assume that each of these products gives a number
proportional to a single basal element and not to a linear combination of them. In this
way we restrict our arbitrariness so that we can have &,d, =ad, or 4,4, = ad, but we
cannot have d,d,=ad, + fd,. If we further assume that the four products will
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generate two numbers proportional to &, and two numbers proportional to &, then
we get six possibilities, two of which are represented below.

d, 8, =ad; d, d, =ud,

d,d, = fa, d,d, = fa,

L. N and . (4)
201 =74y dyfy =vya,

.8, =0, dydy, =088,

whete x, fi, 7 and d are arbitrary real constants. We could normalize to remove one of
the constants but we leave it this way for the sake of clarity. Restricting our analysis
to the situations in which &4, is proportional to 4,4, and assuming that the
multiplication of s, 5, and s, is associative (5,(555;) =(5;5;)55) we are left with only
two possibilities out of these six, namely

ad, =od; &, d, =—od,

d d,=0d, &1&2=351 -
L i and . _ (5)
24 =2y @,a, = pa

5252=ﬁ51 5252=ﬁ52

By an index change and the permutation of @ and f we can obtain the second set of
equations (5} from the first one. For this reason we will analyse only the first set of
equations (5) from now on.

A coherent defimition of the quotient between these two basal numbers is given by

& _4 4 _4 4 4 & _4 (6)
& o a, a § d, a

where we arc assuming a #0 and 20,

With equations (1} to (6) we have a complete commutative algebra. We did not
begin with this last hypothesis and this was a consequence of the previcus
assumnptions, As we will see later, this also happens in three dimensions but not
necessarily in four dimensions. This was not noted by others before, and this will be
an essential point in the following. It is easily seen that &/« works as a unit element in
this algebra.

The algebra of complex numbers is a particular case of the first set of equations
(5) witha=1and f= —1. Then the basal elements &, can be represented by 1 and 4,
can be represented by i={— 1)!/2. The algebra of perplex numbers is obtained from
the first set of equations (5} with =1 and f=1. Again &, can be represented by 1 and
now d, represented by j such that =1 and j#1 (that is, &, #4,).

One of the main applications of perplex {or complex) numbers is through the
equivalent Cauchy--Rieman equations and the wave equation (Laplace e¢quation)
that we obtain with it. It 1s a known fact that some students have great difficulty in
accepting or in dealing with equations which have ¢ =1, =1, etc. For this reason we
will let % and § be arbitrary (but not zero) real constants and then we will get the wave
veloaity explicitly. We suggest this route when trying to present this subject to
students, in order to avoid their resistance.
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Any analytic function of s {for instance, s° 45, or exp(s), or sin (s, +$,)) can be
written 1 the form

F&)=ulx, y)d, +ol(x, ¥})d, (7)

where u and v are real functions of x and v. We define in the usual way the derivative

of f(s).
e tim FEFAIFO)

As— 0 AS

(8)

at the points for which thas limit exists. If we take two different limits (namely
As=Axd, and As=Ayd,) then we obtain, equating these two derivatives, the
1 2 | g
generalized Cauchy—Riemann equations.
du B ov

du v
—=— and — 9
dx  dv dv o dx )
This is a necessary condition for the analyticity of f(s). In analogy with the complex
functions we can show that this is also a necessary condition.
Assuming the existence and continuity of the second order derivative of # and ¢
we obtain easily from equations (9)

Mu o Hu Pv a &?

U

= d o= 10

x Boay: Y o By (10)

If we have a=1= —§§ we get the usual Laplace equation. With perplex number,

a=f=1, we obtain the wave equation with unitary velocity.

The advantage of retaining @ and § as arbitrary real numbers is that now we can
abtain equations in which the wave velocity appears explicitly. For instance, the
wave equation in a stretched string can be obtained from equations (9) and (10) with
the substitutions, u— — Fjg, flu—1/0, y—t. Fix, 1) is the upward component of force
exerted from left to rnight due to tension in a stretched string, ©(x, 1} is the upward
velocity of any point on the string, ¢ is the density of the string per unit length, T is the
tension in the string and # is time [6]. Similarly the equations of a plane
electromagnetic wave travelling in the x-direction and linearly polarized in the
vy-direction can be obtained from equations (9) and (10) with substitutions
u——ck (x,1), =B (x, 1), Bia—c?, y—1 (Gaussian units) [6]. As an application in
clectrical circuits we can obtain the equations relating the voltage E(x, £} across the
transmission line and the current f{x, £} with the substitutions u— —E/L, #=1,
Bla—(CL)™1, y—t (where C is the shunt capacitance per unit length and L is the
series Inductance per unit length) [6]. In this way we can see that with a single
mathematical formulation we can construct solutions to many equations which are
very important in physics, e.g. the «(x, ¥) or v(x, ¥) of any analytic function (s} like

H

A
S+Sorexpn=) —
n=0 !

When we develop these generalized algebras we need to take care with the
‘divisors of zero’, namely, numbers s, #0 and s, #0 such that 5,5, =0 [7]. It 1z easy to
sce that ss* = (xd; +yd,{xa@, —yd,) = (ax* — fv*)d,, so that the points which satisfy
ox? — By? =0 are divisors of zero. As we are taking x and y to be real numbers, if aff <0
then the algebra will not have divisors of zero, as is the case with complex numbers.
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On the other hand if ¢f > 0 then the algebra will have divisors of zero, as is the case
with perplex numbers. In particular the function f(s)=(s) "' =(x+jy)~* with j2=1,
is not defined at the points which satisfy x= 1+ v. So we need to take care when
working in these generalized algebras,

The perplex algebra can be written in the form: w=x+vj, with 2=1. When
explaining this algebra to some people | observed that they had a resistance to accept
it. They usually asked me: how can 72=1 and j#1. An analogy with complex
numbers may help to understand this pont. It is a known fact that the algebra of
complex numbers can be expressed in a matrix form utilizing as our basal elements

I and § defined by
1 0 0 -1
l= d f=
(0 1) an (1 0) ab

Using the usual matrix operations we can show that [-0=10, - /=4, /- 1=4 and
f-§= —1, s0 we can write the complex ‘number’ Z and the function F(Z) in the form

Z=xl+yf
F(Z)y=u(x, Y)Y +olx, y)]

and then we have a representation of the complex algebra. A similar representation
exists for the perplex numbers if we take as our basal elements the matrices | and P

defined by
1 0 01
= d P= 12
(0 1) " (1 0) 4

Observing that b-[=01,1-P=P, P-1=P and PP- P =1 we see that the perplex algebra
can be obtained based on the perplex ‘number’ given by U =xl4 vP. As we are
utilizing the normal rules for matrix product and as we can see from matrices (12)
that [ £[P, this can be a better form to introduce the perplex algebra to the students.
As was pointed out by de Boer [8], this subring received many different names by
different authors.

3. Three and four dimensions
We can easily extend this formulation [5] to any number of dimensions through
an extension of equation (1).

s= Y xd; (13)
i=1

[5], where we restrict our coefficients to be real variables. We will consider here
algebras of three and four dimensions. The general treatment which we present for
these algebras is new in the literature. It allows a better understanding of this subject
and is more appropriate for applications in mathematical physics.

In three dimensions we can have 1680 (=91/(3! 313!)) different possibilities of
defining the products &, d,, d,4,, etc., if we restrict the product of two basal elements
to be a number proportional to a single basal element and the nine products &4,
d,d,, ete. to give three numbers proportional &,, three to 4, and three to 4,. If
moregover wWe assume &;4; is proportional to 4;4; then we get only 36 possibilities.
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Imposing also associativity in the multiplication we are left with only three

possibilities

dy by, =dydy =
dydy=d3d; =
5253=53§2=
dd, =ad;
&2&2= 53
J— oy .
Aydy=—rdy

:&'3&1 :aal
253&‘2 2{152
pa,
2y ..
B

(14)

Again we can see that any of these three remaining algebras are also commutative.
A coherent definition of the quotient between two base elements is given by (first

possibility in equations (14})

| 1
W |k
Il

3

The unit element in this algebra is again given by &, /. The quotients in equations
(15) exist because a multiplicative group was singled out (the semi-explicit
assumption that dd;=4&4, if and only if 4;=4, guarantees the existence
of inverses). The simplest conjugate of s, =x,d, +y,d,+%,4; can be shown

t0 be

s5¥= —1/B(3aByx v, —fleﬁx? _32731';’ _?2053?)51- All

7= (rxx% —Yy¥121)d, +05f,8(?3% — Bxyv 1), +(ﬁy% —Oxy %),
points

that
than

x, =y, ==, =0 which satisfy 5,s¥ =0 are divisors of zero. As there are many such
points the algebrain three dimensions is not a division algebra [9]. So the existence of
this algebra in three dimensions does not violate the Frobenius theorem which
asserts that the only divisior algebras over the real field R are R, C, and the algebra of

quaternions [10,11].

As in two dimensions, a function of 5 can be written in the form

Flsy=ulx,y, 2)é; +v(x, v, 2)d, +plx, v, 2)d;s

(16)
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where #, v and p are real functions of x, v and z. Taking
f(s)=lim [f(s+ As}—f(s)]/As
As— O

and As to be equal to, alternatively, Axd, or Ayd, or Aza3 we obtain that «, v and p
satisfv the partial differential equations

Ou _dv _0p
ox dy oz
du ,8 v 7 ap
— —- 17
dy  « 8z o Ox a7
du_yov _yop
dz adx ﬁ dy
Pu _B 8% v« &p
8x2 y 822 B o2
u ﬁ‘y 8%y ﬁ 2p
18
3?2 u® dx? « 227 8
oy 0 y? @
322 B oyr uf ot
Pu o Pu ocﬂ *u
ax® ,8]} Wy 8z
539_052 v af 83_v (19)
ox> " By 0y® 321
#p_ Pp_ab
dx® By dv® ¢ 82°

where we assumed that the partial derivatives of second and third order #, v and p
exist and are continuous in a region R around (x, v, 2).

We now analyse the quaternions and we show that they are a particular case of the
general case equation (13). The quaternion is a four dimensional vector g=x, + x,7
+ 237+ x4k, with real coefficients x,, %5, x5, ;. The product of two quaternions is
obtained using the rules

= —ji=k

! (20)
jhk=—kj=i

ki= —ik=j

(1 is an identity).
An algebra in four dimensions is given by equation (13) with n=4.

s=x,8) +xyd; +xydz+ x,d, (21)
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A particular choice of the product between two basal elements &; and &; which
mimics the quaternion product is given by

a=r, 22)

where 7, is an element of the matrix R given by

mn
Oy 1y Upqly Maidy Gy dy
Cypdy Oaady Uaads  Oapdy
re| 2% M0 Faade Gazd (23)
Hyaddy  Wpady Oz3dy  Og3dy
0148y  Oaadz O34y 0448
where the 4,5 are real constants,
Imposing associativity in the multiplication (4,,(d,.4,) = (4,.4,)d,) we restrict our
matrix B to the form

00y 18y %1147 116, 144

o = ~ Xy1®%a3
Fg1d2 g ptly X33y T as

33
R=| ) ﬁ ) 24)

Oy is T oy;d, X336y Ty i,

o Xy1%za " LISLI T
o8y L——dy o8, ——d,

Bya Gaz

We then reduce our 16 &,,,5 to only three arbitrary constants and a possible choice of
sign. If we choose the upper {lower) signn r,, the same sign should be utilized in 745,
734 aDd 74, We will get a commutative algebra if we choose the upper sign and an
algebra equivalent to the quaternion algebra if we choose the lower sign. This is only
evident due to this treatment of the matter. Perhaps this is the reason why these
points were not observed by others previously.

With the upper sign the best choice for the conjugate is given by

=X1§1+x2&2+.}':3§3+x4§4 (25)
where
_ 2 .2 24 24 *11%22 x 122 2
Ky =20X,) —o7 X 0y 0 X T8 (Ha3X3 X3 8y 1% %2 X35,
O33
— i F11%22 4 11037 X2 2 3
Xy = FogaXaxy ’35113"34- Xy |y xxy| T— +9€11x1 — 2y X X5,
%33 (ST
o o oot
— 2.2 .2 9 2 ENas p Vo, H11%22
X3 =x3| oy1Xy 0y 0ap¥3 Ty 03ty | T2 x x40y
3y X33
o2
X11%a3

3 2.2
x4 —x3(+a11a33x3x4+211 1%33% X%+ x4+a11a22x4+a11x1x4)

%33

so that

_ _ — 0ty —
11%22 -
ss*:(rxuxlxl F oy %% + 0y X Xy +—"|x x4x4)a1 (26)
33
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It must be remarked that this is the first time in which this generalized conjugate
appears in print, A more complete study including its application in solving physical
problems will appear in another paper.

With the lower sign the conjugate is much simpler, namely

s¥=x, @) — Xaly — Hally — X6, (27)
50 that
[
11%22 "
55%_—'(“511“%_O‘fzzxg“3‘335"7%"‘—[_)C xi)al (28}
33

T'he algebra of quaternions is obtained with the lower sign and with the particular
choice of the coefficients such that o, =1, ot,;=—1 and %33=—1.

The important point to note in this exercise is that the quaternion algebrais onlv a
very particular one between many possible algebras of four dimensions. This should
be explored and emphasized in the classroom. Interesting applications of quater-
nions in electromagnetism are given [12]. Applications of perplex numbers to
problems in hydrodynamics are well described in an interesting and very readable
book by Lavrentiev and Chabat [13]. We suggest this book, especially Chapter T1, be
used in the classroom.

In a later work we will concentrate on the application of these results in specific
problems relevant to mathematical physics (electromagnetism, hydrodynamics and
elasticity).
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