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Abstract: We consider two models which lead to the prediction of a weight change of 

gyroscopes depending on the rate of rotation: mass-energy equivalence and Weber's force for 

gravitation. We calculate the order of magnitude of this effect in both models and show that 

Weber's model predicts a weight change depending on the spin axis orientation resembling 

close similarities to observed Earth flyby anomalies. However, our predicted effect is much 

smaller than the observed effect, which could explain why flyby anomalies were not detected 

anymore in recent spacecraft trajectories. 
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1. Introduction 

 

The influence of rotation on gravity is generally known as frame-dragging, shifting satellites in 

polar orbit or causing precession on spinning gyroscopes as demonstrated by the LAGEOS and 

Gravity-Probe B space missions.
1,2

 We will show that rotation can also influence weight 

providing a physical basis for the observed Earth flyby anomalies, which are unexplained 

velocity jumps of 3.9, -4.6, 13.5, -2, 1.8 and 0.02 mm/s observed near closest approach during 

the Earth flybys of six spacecrafts. According to Anderson et al,
3
 the change in velocity 

depends on the incoming i  and outgoing o  geocentric latitudes and can be expressed as 
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where ER  and 
E  are the Earth's radius and angular velocity, respectively. Lämmerzahl et al

4
 

analyzed possible errors from e.g. the solar wind or tidal forces on Earth without finding an 

explanation for the anomaly. McCulloch found a relationship with similar angular dependence 

but different prefactor using a modification of inertia due to a Hubble-scale Casimir effect,
5
 and 

Nyambuya suggested a new gravity model called Azimuthally Symmetric Theory of 

Gravitation
6
 that also shows a similar relationship but relies on measured values for its 

numerical prefactor. So up to now, equation (1) is an empirical guess without a physical basis 

obtained by data fitting.  

 

2. Weight Change According to Mass-Energy Equivalence 

 

According to the mass-energy equivalence, the energy E of a body is related to its mass m by 

the well-known formula 2mcE  , where 1810998.2  msc  is the value of light velocity in 

vacuum. Therefore, if the energy of a body increases, its mass should also increase. 

 

Consider a homogeneous sphere of radius r and mass m when at rest. Its kinetic energy K when 

it spins uniformly relative to an inertial frame of reference S around an axis passing through its 

center with an angular velocity   is given by: 

 

52

222  mrI
K            (2) 

 

where 52 2mrI   is the moment of inertia of a solid sphere about its central axis.
7
 

 

With the mass-energy equivalence we can predict an increase in the mass of the spinning 

sphere, m , by a factor 
2/ cKm  . Therefore a rotating sphere should have an effective mass 

 2222 5/1/ crmcKmmeff  . 

 

Utilizing the proportionality between gravitational and inertial masses, not only its inertial mass 

should increase, but also its weight. Suppose the sphere is interacting gravitationally with the 

Earth of mass M when the center of the sphere is located at a distance R to the center of the 

Earth. The weight of the sphere when not spinning will be represented by MmF  and is given by 
2/ RGMmFMm  , where 213111067.6  skgmG  is the constant of universal gravitation. 
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When the sphere is spinning uniformly around its axis, its effective weight should increase due 

to the principle of equivalence. That is, the weight of the spinning sphere should be given by: 
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The fractional change of weight is given by: 
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In principle the weight change should not depend on the orientation of the rotation of the sphere 

relative to the ground. 

 

3. Weight Change According to Weber's Law for Gravitation 

 

We now consider the same problem utilizing Weber's law for gravitation. Consider particles 1 

and 2 of gravitational masses 1gm  and 2gm  located at the position vectors 1r


 and 2r


 relative to 

the origin O of an inertial frame of reference S, moving relative to S with velocities dtrdv /11


  

and dtrdv /22


 , and with accelerations dtvda /11


  and dtvda /22


 , respectively. Weber's 

gravitational force 21F


 exerted by 2 on 1 is given by:
8-10
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where 2112 rrr


  is the distance between 1 and 2,   122112 /ˆ rrrr


  is the unit vector pointing 

from 2 to 1, dtdrr /1212   is the relative radial velocity between them, dtrdr /1212
   is the 

relative radial acceleration between them and 12F


 is the force exerted by 1 on 2. A similar 

equation was also proposed by Erwin Schrödinger who could correctly derive with his weberian 

expression the advanced of Mercury's perihelion.
11,12

 According to Schrödinger the presence of 

the Sun has, in addition to the gravitational attraction, also the effect that the planet has a 

somewhat greater inertial mass radially than tangentially. 

 

We want to calculate the gravitational force exerted by the Earth of mass M and radius R on a 

sphere of mass m and radius r according to Weber's law. We consider the Earth at rest relative 

to the inertial frame S with its center coinciding with the origin O of S. The center of the sphere 

will always be considered close to the surface of the Earth and located at zRro
ˆ


 along the z 

axis. When the sphere is also at rest relative to S, Weber's force reduces to Newton's law of 

gravitation. Therefore the force exerted by the Earth on the sphere is given simply by 
2/ˆ RzGMmFMm 


 pointing towards the center of the Earth. 

 

We now consider the change in the weight of the sphere due to its rotation relative to the 

inertial frame S. In a first situation the sphere we suppose the sphere rotating uniformly around 

the z axis with an angular velocity ẑ 


, figure 1 (a). 
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Figure 1: (a) Sphere rotating uniformly around the z axis with an angular velocity ẑ 


. (b) 

Sphere rotating uniformly around the y axis, ŷ 


. 

 

We consider the whole mass of the Earth as concentrated on its center in order to simplify the 

calculations and to get an order of magnitude for the effect. In the situation of figure 1 (a) the 

distance 12r  from each point of the spinning sphere to the center O of the Earth does not change 

as a function of time, 012 r  and 012 r . Therefore the force exerted by the Earth on the 

spinning sphere of mass m is simply its normal weight MmF


 no matter the value of the angular 

velocity  , namely: 
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We conclude that, according to Weber's law, there will be no change of weight when comparing 

a stationary sphere and a sphere spinning uniformly around an axis connecting the center of the 

sphere with the center of the Earth, namely: 
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           (7) 

 

Another situation is when the sphere rotates uniformly around the y axis, as in figure 1 (b). In 

this case it is necessary to take into account the velocity and acceleration of each portion of the 

sphere relative to the center O of the Earth. Weber's force complies with action and reaction. 

Therefore, the force exerted by the Earth on the spinning sphere is equal and opposite the force 

exerted by the spinning sphere on the Earth. The force Mms
F


 exerted by a spinning spherical 

shell of mass sm  and radius sr  centered at zRro
ˆ


 and acting on an external point particle of 

mass M representing the Earth, located at the origin of coordinates, which is at rest relative to 

the center of the shell has already been calculated.
8-10

 In the situation of figure 1 (b) the force 

reduces to: 
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where 
sMmF


 represents the force exerted by the point particle of mass M acting on the spinning 

shell. 

 

Replacing the mass sm  of the shell by ss drr  2 4 , where 3 4/3 rm    is the volume density 

of mass of the spinning shell and integrating over the volume 3/ 4 3rV   of the spinning shell 

yields the force mMF


 exerted by the spinning shell and acting on M as given by: 
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where MmF


 represents the force exerted by the Earth of mass M acting on the spinning sphere of 

mass m. 

 

According to Weber's force law and equations (6) and (9), the fractional change of weight when 

comparing a stationary sphere and a sphere spinning uniformly around an axis which is 

orthogonal to the direction connecting the center of the sphere to the center of the Earth as in 

figure 1 (b), is given by: 

 

2

22

5

3

c

r

F

F 



           (10) 

 

The same fractional change of weight happens when comparing the weight of a sphere spinning 

uniformly around an axis connecting the center of the sphere to the center of the Earth as in 

figure 1 (a) with the weight of the sphere of figure 1 (b). 

 

The increase of weight given equation (4) has the same order of magnitude of the increase of 

weight given by equation (10) although the numerical value is not the same. Moreover, while 

the prediction based on the mass-energy equivalence does not depend on the direction of 

rotation, the same is not valid from the prediction based on Weber's force, as can be seen 

comparing equations (7) and (10). 

 

4. Experimental Test of This Effect 

 

In order to estimate the order of magnitude of this tiny effect we consider the tensile stress 

induced at a section of an horizontal bar of length 2r and uniform cross section A, rotating in 

the xy horizontal plane about a vertical axis z passing through its center with a constant angular 

velocity   relative to the inertial frame of reference S. The volume density of this 

homogeneous bar of mass bm  and volume rAVb 2  is given by  rAm 2/ . The centrifugal 

force dF produced at the bar by an element of length ds and mass Adsdm   located at a 

distance s from the center of the bar is given by 2dmsdF  . By integrating this expression for 

the mass between s and r we obtain the centrifugal force acting on the cross-section at a 
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distance s from the center as given by   2/222  srAF  . The tensile stress   induced at 

this section is the force per unit area: 
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The maximum value of   happens at the origin, being given by 2/ 22

max  r . 

 

Replacing 22r  in equations (4), (7) and (10) by  /2 max  we obtain that the predicted 

fractional change of weight by comparing a rotating sphere with a sphere without rotation has 

the following order of magnitude: 
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In this equation   is a dimensionless constant. Its value is 5/1  according to the mass-

energy relation, equation (4), no matter the direction of rotation of the sphere. According to 

Weber's law for gravitation, on the other hand, we have 0  with a rotation of the sphere 

around the z axis, equation (7), or 5/3  with a rotation of the sphere around the y axis, 

equation (10). 

 

Consider a spinning sphere made of stainless steel. Its specific tensile stress, or specific 

strength, is given by 
225

max 105.2/  sm . According to equation (12) we are then led to: 
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This effect is very small and below detectability on Earth. The weight of horizontal spinning 

gyroscopes has been measured previously and no effect was observed up to 
5105.3/  FF  according to Nitschke and Wilmarth.

13
 The best mass comparators 

available today (Mettler-Toledo M\_One, Sartorius CCL1007) allow the measurement of a 

fractional change of weight of 10105.9/  FF , which is about 2 orders of magnitude 

above our steel example. Only carbon nanotubes have material properties that give 

9101/  FF , which is close to the resolution of mass comparators. However, we require a 

gyroscope mass of 1 kg to use the full scale of mass comparators and a single carbon nanotube 

with a length of 1 mm weights only kg21106.8  . 

 

But what about space measurements? A spinning satellite with its rotation axis tilted towards 

the Earth should feel a different gravitational attraction when compared with another satellite 

with its rotation axis orthogonal to the direction connecting the satellite to the center of the 

Earth. Likewise, the spinning Earth should attract bodies slightly different around the equator 

compared to its attraction of bodies around the poles. Although the Earth's angular velocity is 

quite small with sradE /103.7 5 , its large mass and radius still make it by far the 

dominant contributor with respect to a spinning satellite. For example, the Galileo spacecraft 

(which showed the Earth flyby anomaly) had a launch mass of 2380 kg and a maximum spin 

rate of 10.5 rpm. Under optimal conditions (i.e. horizontal spin axis with respect to Earth), we 
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can expect according to Weber's law 18

max , 101.8/  GalileoFF  assuming an average diameter 

of 1 m, in order to get the order of magnitude. On the other hand, the Earth would produce an 

effect of 12

max , 1041.1/  EarthFF . Therefore only this last contribution counts when 

analyzing satellite trajectories. 

 

If a satellite is approaching Earth at a geocentric latitude less than 90 deg, its velocity should 

increase due to an increase in gravitational attraction. If this force is different due to the 

spinning Earth, we would indeed expect a different velocity after the flyby manouver 
v . A 

different gravitational pull will lead to a different kinetic energy and therefore spacecraft 

velocity. By equalling the kinetic and gravitational potential energy, we will estimate the order 

of magnitude by comparing both the Weber gravitational potential with the standard Newtonian 

one, which leads to 
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Here we assumed that the Weber modification of the gravitational potential will vary with the 

cosine of the geocentric latitude to account in order to account for the directionality of the 

effect. By using  
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we can express the increase in speed taking a different incoming and outgoing geocentric angle 

into account as 
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Remarably, the prefactor is up to 10 % exactly the square of the empirical prefactor found by 

Anderson in equation (1).
3
 If this equation is correct, the effect should be also well below 

present satellite trajectory analysis capabilities as it predicts a maximum velocity shift due to 

Earths spin of   12104.1/ 

  vv , which is 6 orders of magnitude below the reported Earth 

flyby anomaly and 4 orders of magnitude below the resolution limit. 

 

Although Earth flyby anomalies were reported for a number of spacecraft including Rosetta in 

the past, two more recent Rosetta flybys did not show up an anomaly which is puzzling the 

community.
6
 According to Weber's law, the flyby velocity shifts should indeed be presently 

undetectable due to its extremely small order of magnitude, although it must exist at a lower 

order of magnitude with the same characteristic. The effect may reliably be detected by the 

following effects: 

 

 Studying flybys at Jupiter which should increase the effect at least by 3 orders of 

magnitude (which may still be below present detection capabilities). 

 Increasing the tracking accuracies e.g. by optical atomic clocks in space. 
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 Building better balances on Earth and testing weight changes of spinning gyroscopes in 

horizontal orientation. 

 Performing a dedicated space experiment e.g. with gyroscopes in vertical and horizontal 

orientation with respect to the Earth's surface. 

 

If, as suggested by Anderson,
3
 the square-root of the prefactor is correct, it should be possible 

to find the effect more easily. The best limit of weight changes with horizontal spinning 

gyroscopes today is an order of magnitude above the predicted effect. But today's mass 

comparators would allow to increase the sensitivity by three orders of magnitude if precession 

and vibration is properly taken into account.
14

 This would allow to test the Anderson effect in 

an Earth-based experiment.  
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