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Abstract

We utilize the Green’s function method in order to calculate the electric potential due to an
infinite conducting cylinder held at zero potential and a point charge inside and outside it. We
calculate and plot the net force upon the point charge as a function of its distance to the axis of
the cylinder. We show that this force goes to zero when the radius of the cylinder goes to zero,
no matter the distance of the external point charge to the conducting line.
© 2005 Published by Elsevier B.V.
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1. Introduction

The goal of this work is to calculate the electrostatic force between an infinite
conducting cylinder of radius a held at zero potential and an external point charge g.
To our knowledge this has never been done before. To this end we consider the
Green'’s function method, [1, Chapters 1-3]. We begin reviewing a known solution of
the potential inside a grounded, closed, hollow and finite cylindrical box with a point
charge inside it [1, p. 143]. We analyse the limit of an infinite cylinder and explore the
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force exerted upon the point charge. We then perform a similar analysis for the case
of an external point charge. We consider in detail the particular situation of a thin
wire, that is, with the point charge many radii away from the axis of the cylinder.

2. Finite conducting cylinder with internal point charge: solution to Poisson’s equation

Consider a finite conducting cylindrical box of radius ¢ and length L>a, with z
being its axis of symmetry, see Fig. 1. With cylindrical coordinates (p, ¢, z) the center
of the box is supposed to be at (p,z) = (0, L/2). We consider also a point charge ¢
located at X' = (p'<a,¢’,z) inside the box. We wish to calculate the electric
potential of the system, the electric field, the surface charge distribution induced by ¢
and the net force between the cylinder and g.

The electrostatic potential @ obeys Poisson’s equation:
Vf@ = —4nép,

where & = 1/4mey in SI units (g is the electric permittivity of vacuum) or £ =1 in
Gaussian units. In this work, we will suppose a vacuum inside and outside the
cylinder. The derivation and results might also be useful with a homogeneous
dielectric or insulating liquid inside and outside the cylinder, by utilizing the
standard approach described in most textbooks dealing with electromagnetism.

By the standard Green’s function method, the solution of Poisson’s equation for
this case with Dirichlet boundary conditions (potential specified on a closed surface)
is given by

— =/ - =2 =/ 1 =/ aG a
O(X) = 5///Vp(x )G(X,X")dx —Eﬁstb(x )Gn” dd’, ()

where 7 is the volume of the cylindrical box, S its closed surface and 0/0n” is the
p—7t

normal derivative at the surface S of the box directed outwards. Here, G(X,X") is
Green'’s function satisfying the equation

V2, G, %) = —4nd(% — ¥). )

As the surface of the cylinder in electrostatic equilibrium is at a constant potential @

= 2

we imposed that G(X,X") = 0 at this surface.

No D,

— > Z
" a qlp U
Yy

Fig. 1. Finite conducting cylinder of length L and radius a centered at (p,z) = (0, L/2), with z being its
axis of symmetry. There is a point charge ¢ located at (p, ¢,z) = (p' <a,¢’,0<z' <L).
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We can expand the Dirac delta function in cylindrical coordinates as given by

5 _ 14
5()? ~>//) _ 5(p ((rb p d) ) 6(2 _ ZH). (3)
The delta functions for ¢ and z can be written in terms of orthonormal functions:
2 nnz’ 4
=7 Z sm— sin “)

LIS~ gmo-s)

_ " —- m(p—

Ap =9 =5 | 2 ¢ : 5)

Note our particular choice of expansion for z, Eq. (4). This choice satisfies the

= 2

condition G(X,X") =0 in the upper and lower covers of the cylindrical box. The
Green function can be expanded in a similar fashion:

G ¥ _,// _ { Z elm(¢—9") [Z sln— sm gm(k P, p”)] } (6)

where k = nn/L and g¢,,(k, p,p") is the radial Green function to be determined.
Substituting this expression into Eq. (2) and using (3)—(5) we obtain

1d dg ) ( ) mz) 4n Y
1. =)=k +— Im = __5( - ) (7)
pdp ( dp p? p P

For p#p” the right-hand side of Eq. (7) is equal to zero. This means that g, is a
linear combination of modified Bessel functions, /,,(kp) and K,,(kp). Suppose that
Y, (kp) satisfies the boundary conditions for p<p” and that y,(kp) satisfies the
boundary conditions for p>p”:

l/jl(kp<) = Alm(kp<) + BKm(kP<), (8)

Yolkp.) = Cln(kp.) + DKp(kp..). ©)

Here, A, B, C and D are coefficients to be determined. The symmetry of the Green
function in p and p” requires that

Ik, p,p") = Yy (kp Wo(kp-), (10)

where p. and p_ are, respectively, the larger and the smaller of p and p”. The
potential must not diverge for p — 0, so we must have B = 0. The Green function
must vanish at p = a, that is, ¥,(ka) = 0. This yields C = —DK,,(ka)/I,,(ka). The
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function g,, can then be written as

K’n(ka)
In(ka) |

gk, p,p") = HI,(kp ) [Km(kp>) — Iy (kp-) (11)

The normalization coefficient H = AC is determined by the discontinuity implied by
the delta function in Eq. (7):

dg,,
dp

_49m
dp

4
=—§=kM%Wﬂ (12)

+

where the £ signs mean evaluation at p = p” + ¢ and taking the limit ¢ — 0. In the
last equality, W[y, ] is the Wronskian of i, and y,. Substituting g,, into Eq. (12),
and using that Wl (kp"), K, (kp")] = —1/(kp"), we find H =4n. The Green
function for the problem of a finite conducting cylinder with a charge inside it can be
finally written as

G(x,X') = %{ > eim(M”){ sin(kz) sin(kz" ) u(kp ) [Kn(kp-.)
m=—o0 n=1

m(k
_Im(kp>)%:|}}- (13)

2.1. Cylinder held at zero potential

=/

Consider the cylinder to be held at zero potential, namely, &(X") = 0:
P(a,$,0<z<L) =P(p<a, P, L) = P(p<a,¢,0) =0. (14)

Substituting Eqgs. (13) and (14) into Eq. (1) yields the potential inside the cylinder as
(with p(X") = go(X — X))

d(F,X) = %{ i {i Sm6—0) g (”_ZZ) sin (%Z’)Im (nan<)

m=—o0 \ n=1

» [K (102 g, (7 >)If,f<g>)] }} "

L

Here, p. (p.) is the larger (smaller) of p and p'.

3. Infinite conducting cylinder with internal point charge

The solution for an infinite cylinder differs from the solution of the finite cylinder
by changing essentially the expansion of the delta function in Eq. (4). In the infinite
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cylinder, there is no restriction on the choice of n (or k):
iz 1 * ik(z—zn) 1 * iz
oz—z")Y=— e dk =— coslk(z — Z")]dk. (16)
21 ) o T Jo

The Green function can be written as

2 P
G(x,X") = ;{ > e / coslk(z — 2" )Wu(kp <)
0

m=—0o0

< [Km<kp>) _ Im(kp>)’f"’((,f;‘))} dk}. (17)

Note that we can pass from Eq. (4) to Eq. (16) by transforming the Fourier series

into the Fourier transform. That is, by letting L — oo, setting nn/L =k, dk = n/L,
z—>z+L/2,7" — 7z’ + L/2 and by replacing the infinite sum by the integral over k.

3.1. Cylinder held at zero potential
Consider the cylinder to be held at zero potential, namely, ®(a,¢,z)=0.

Substituting Eq. (17) into Eq. (1), the potential inside the cylinder can be written
as (with p(¥") = g6(X¥ — X))

o) = 220

x {Km(kp>) — 1,,,(kp>)K’"(k“)] dk}. (18)

Z eim(d)—if”)/ cos[k(z — Z/)]Im(kp<)
0

m=—0o0

I(ka)

Once more p. (p_) is the larger (smaller) of p and p’.
The electric field is given by £ = —V®, with components

, 0P 2 N oo [ f—
E,(p<p)= — ——ﬁ{ Z e m/o k coslk(z — 2L, (kp)

|
K,,(k
« {m(kp’)—z,n(kp’) : ((k;’))} dk}, (19)

! oo = 2 { i m(@=9) /oo k cos[k(z — 2 .(kp")
0

m=—0o0

m(k
x [K@(kp) ) ((kj))} dk}, (20)
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Ep= ——~—

100 4éq
pdp  mp

stm[m(as #0 [ costhtz = 20t

m=

m(k
« {K,,xkpg Lo T ((k;’))] dk}, 1)

E. = -—==
- 2z on

Z eim(d)—(ﬁ’) / k sin[k(z — Z/)]]m(kp<)
0

m=—0o0

b 2 {

m(k
y [Km(kpg ~Iutkp) ((kj))] dk}. 22)

The force F = ¢gE(¥) acting upon the charge ¢ is given by Eq. (19) at X =¥
without the first term between brackets (it is the field generated by the charge ¢
itself). There is only a radial component when the cylinder has an infinite length

2 K, (k

& /°° SN { Km(xa/P')} .
- 1 — |x ——=—=|d . 23
np’? m:Z_OO 0 () dx |* I(xa/p) (P (23)
In the last equation we integrated by parts. We plotted in Fig. 2 the force of Eq. (23),

normalized by Fy = ¢¢?/a?, as a function of p’/a. This force goes to zero when
p'/a =0 and diverges when p’ — a, as expected.

F/F,

40

20

o/a

=20

-40

Fig. 2. Force F between an infinite grounded conducting cylinder of radius a centered on the z axis and a
point charge ¢ at a distance p’ from the z axis, normalized by Fy = é¢*/a?.
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The surface charges can be calculated using Gauss’ law, yielding

ola, ¢,z) = L(j;r?’ 2
m nyIm(kp')
2n2 [_Zoo e9=9) / cos[k(z — 2)] T (kd) dk|. (24)

The surface charges per unit of length A(z) is given by

Io(kp')
1o(ka)

2n 00
Ma,z) = /0 o(a, d, 2)adp = — % /0 cos[k(z — 2')] dk. (25)

The total charge induced in the cylinder supposing z' =0 can be obtained
integrating Eq. (25) from z = —oo to oco. Utilizing

o(k) = % /_ ” cos(kz)dz = % /0 ” cos(kz)dz, (26)

oo

this yields

- /_ ” Na,z)dz = —q. @7)

4. Infinite conducting cylinder with external point charge

Suppose that the point charge ¢ is located at ¥ = (p/, ¢, 2'), with p’>a. Green’s
function can be written analogously in this case as

G(%,¥") lz 69" / cosfk(z — 2)gk. p, p") dk | (28)

m=—0o0

where g,, can be written as the product of Y/ (p < p”)W5(p > p”). The functions /| and
5 satisfy the modified Bessel equation. They can be written as a linear combination
of the possible solutions

l//1 (kp<) = A/Im(kp<) + B/Km(kp<)a (29)

l//2(kp>) = C/Im(kp>) + D/Km(kp>) (30)

For p — oo Green’s function must remain finite. This means that C' = 0.
Additionally, Green’s function must be zero at the boundary surface. That is, G = 0
at the surface of the cylinder p = a. This yields

L (ka)
Kin(ka)

Vi(a) = ALyka) + BKy(ka)=0 — B =—4A' 31)
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In order to obtain the function g,, we still have to find the constant H':

(AN 2 4 Im(ka)
o) = ' |10 ) = Kothp )20 K., (32)
where p. (p.) is the larger (smaller) of p and p”.
From Eq. (12) we have that H' = 4n:
AN Im(ka)
gulk,pp) = 4 {Im(kpa Knlkp ) Km(ka)] Knlkp..). (33)

The Green function is then given by

o0 . p oo
Z em(@=4") / cos[k(z — )]
0

m=—0oQ

2
G X = —{
T

I(ka)
Kn(ka)

X [Im(kp<) — Ku(kp ) }Km(kp>)dk}. (34)

4.1. Cylinder held at zero potential

Suppose that the surface of the cylinder is held at zero potential, namely
D(a, p,z) = 0. (35)
Applying Egs. (34) and (35) in Eq. (1) with p(X”) = ¢6(X' — ¥") yield

PR, X) = %{ i eim(@=¢") /0 ” cos[k(z — 2')]

m=—00

y [zm(kpa - Km(kp<)M] Km(kp>)dk}. (36)

K(ka)
Here, p. (p.) is the larger (smaller) of p and p'.

Far from the origin, p is much larger than p’, hence we can express Eq. (36) in
approximate form. The first term that appears between brackets is given by
Lu(kp )Kp(kp. ), with p_ = p’ and p. = p. Note the presence of the term K,,(kp),
with p>p’, which decays rapidly for increasing k. This implies that the main
contribution of the integrand is in the region 0 <k <1/p. Then we can approximate
I,(kp') for small arguments, that is, for kp’ <1, yielding I,,(kp’) = (kp'/2)" /m.
From this we can see that the most relevant term is the first one, m = 0. The integral
of the first term between brackets in Eq. (36) is then given by

D> p)~ 20 /0 cosl(z — YKo (ep) dic = % (37

where we  have  used in the last  equation the identity:
2/n) [37 cos(xt)Ko(yt)dr = 1/4/x% + »2, [2, Problem 11.5.11]. The second term that
appears between brackets in Eq. (36) can be treated in a similar way. The main
contribution of the integrand is in the region 0 <k <1/p. Again, the most relevant
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term is the first one. Accordingly, we approximate the function Ky(kp') for small
arguments: Ko(kp') &~ —In(kp’). This yields

In(kp’)
In(ka)

2 o0
Dlp> )~ — 21 /0 cosfk(z — ) 2P g kp) dik. (38)

From Eq. (36) the electric field is given by E = —V®, with components

Ep<p)= - 2?{ 3o o) /0 " kcoslk(z )
In(k ,
1000 - k) 25 ik >dk}, (39)

2%q

Ey(p>p) = — n{ > o) /0 " kcoslk(z )

m=—00

IITI (ka)
Kn(ka)

x [1 m(kp") = Ku(kp') ] K, (kp) dk } (40)

Ey= i—épq {g m sin[m(¢ — ¢")] /OOO cos[k(z — )]

1y(ka)
Kin(ka)

x [lm(kpa — Ku(kp) }Km(kpgdk}, (1)

T
m=—00

Efzﬂﬁ{fieww¢ﬂéwhmm@—zn

In(ka)
Ky(ka)

« [1m<kp<) — Knlko) }Kmacpgdk}. 42)

The force F = gE(¥) acting upon the charge ¢ is given by Eq. (39) at X = ¥’

without the first term between brackets (it is the field generated by the charge ¢
itself). There is only a radial component

2eq°

- X [ I(ka)

Kin(ka)

3 /O KK n(kp' K, (lcp)

m=—0o0

T

dk] P

| & /°° 20 4 [ Tlax/p’) .

K20 | xS 2  dx p, 43
np/Z m:z—oo 0 ’n(X) dX me(ax/p’) (P ( )
In the last equation we integrated by parts. We plot the force of Eq. (43) in Fig. 2,

normalized by Fy = ¢¢*/a?, as a function of p’/a. This force goes to zero when
p'/a — oo and diverges when p’ — a, as expected.
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The surface charges can be calculated using Gauss’ law, yielding

o, ,7) = "‘jﬁ? 2
i g Km(kp')
27'52 l;oo em=9) / cos[k(z — 2)] X () dk|. (44)

The surface charge per unit of length A(z) is given by

Ko(kp")
Ko(ka)

2n oo
Ma,z) = / o(a, d,2)adg = —% / coslk(z — 2)] dk. (45)
0 0
It is interesting to obtain the behaviour of A for a thin wire, far from z’'
(|z — Z'|> p’>a). Utilizing Eq. (3.150) of [1] we obtain

PR | L (46)

2In(lzl/a) \/p? + 22

The total charge induced in the cylinder can be obtained integrating Eq. (45) from
z = —o0 to oo. Utilizing Eq. (26) this yields

0= /700 Ma,z)dz = —q. 47)

A plot of A(a, z) as a function of z, with z/ = 0 and normalized by ¢/p’, is given in
Fig. 3. The maximum value of A(a, z) is given at z = Z/, as expected. In Fig. 4 we plot
/max as a function of p’/a, normalized by ¢/p’. From this figure we can see that

. 2/a

A(2)
a/e

Fig. 3. Induced linear charge density A on the conducting cylinder with a point charge outside it, Eq. (45),
as a function of z/a. We utilized z’ = 0, p’/a = 2 and normalized by ¢/p’.
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2 3 4 s Pla

-1.75 |

" Amax

a/p’
Fig. 4. Maximum induced linear charge density Am.x(z = z’) on the conducting cylinder with a point
charge outside it, Eq. (45), as a function of p’/a. We normalized the plot by ¢/p’.

Jmax — 0 when p’/a — oo, that is, for a conducting cylinder of zero thickness, a
simple conducting straight line.

4.2. Thin wire held at zero potential

Consider that the grounded conducting cylinder is very thin, i.e., a<p’. The
modified Bessel functions can be approximated for small argument by [3, Section
8.44]

1 71
Ly <)~ 20 (48)
-1 !2171—]
Km@@%%, >0, (49)
~ Y
Koy <)~ ~In3—7. (50)

Here y = 0.577 is the Euler—Mascheroni constant.
The term between brackets in Eq. (43) for m =0 and for m>0 can be
approximated by, respectively,

d 1 ~ 1

dx [" —In(ax/2p") - «J ~In(a/p)

d { 1 (ax/p)"  (ax/p’)" }N(zm+1>x2m(a/p’)2'"
d b ~ .
dx " m! 2" (m— 1! ml(m — 1)122m~!
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The most relevant term for p'>a is therefore m =0. Using the identity
fg’o Kﬁ(x) dx = n?/4 we have the force acting upon the charge ¢ as given by

N 2 oo In2p’ /xa) —y+1 . .
F(p'>a)~ _5;’// K201 pl/xa) =y — dxp
mp [ — In(2p'/xa)]
2 o 2
~ —ZL/ Ké(x)dxﬁ:—fqinﬁ.
mp” In(p' [a) Jo 47 In(p'/a)
Alternatively, another expression for the force can be found by integrating the
force exerted by the linear charge density of a thin cylinder, A(«, z) of Eq. (45), acting
upon the point charge ¢. Utilizing that

* _plcoslk(z— )] :
/—oo [p/2 —+ (Z — Z/)2]3/2 dz= 2kK1(kp )

(1)

we obtain
, > ' 2 2847 [ KoK
F&) = —¢a R LN < o < P
oo pr 2P+ 2 np’ Ko(xa/p")

(52)
To compare Egs. (51) and (52) we can expand the latter using the approximation
p'>a. Using that K,(x) = —dK,/dx, integrating by parts, and Ko(xa/p')~
—In(xa/2p") — y ~ In(p’ /a) we obtain
L 28 [ K dK,/d S In(2p’ —y+1
B éqz . Kot 0// ) dxp ~ — iq// K20 RGP /xa) L
np'= Jo Ko(xa/p’) mp’ Jo [y — In(2p’/xa)]
(fm
4 n(p'ja) "
which is exactly Eq. (51).

2

(53)

4.3. Infinite cylinder held at constant potential

Suppose that the conducting cylinder is held at a constant potential,
®(a, p,z) = @9. From Eq. (34) we obtain (with n” = p_ and p. = p)

oG _ _ = im(¢p—¢”) o m(kp)
p'=a B {m—z:oo ) / ke cosfk(z = 2] K, (ka)

an//

1"

x[1,,(kp")Km(ka) — In(ka)K, (kp")] dk}

p'=a

= { Z eim(¢—9") / cos[k(z — ”)]K’"gp 3 dk} (54)

In the last equality, we used the Wronskian relation W]I,(kp"), K,,(kp")]
= —1/(kp").
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The second term given by Eq. (1) can be written as

00 2n
Pt = — ﬁs = gm[maw(é d¢”
{ Z elm(d— ¢)/ cos[k(z — 2] ::gipi dk}
_ 1" KO(kp)
= / dz / cos[k(z — )]K(k)

:Mv)”/cmW—]ggﬁk (55)

—>//

In the last equality, we changed the limits of the integral over z”.
In order to calculate the last integral, we utilize Eq. (16). Changing variables, we
have

/00 cos[k(z — 2)]dz’ = =d(k). (56)
0

The approximation for small argument of Ky(y), namely, K¢(y)~ —In y, is in
this case inappropriate, because the term limy_.o Ko(kp)/Ko(ka) — 1 for any p.
This is true for an infinite cylinder, but gives no physical insight into the behaviour
of the potential as a function of p. We should use instead k<1/p<l1/a,
yielding

In(kp)
&~ P ka)

The potential outside an infinite conducting cylinder with an external charge,
held at a constant potential @, is then given by the summation of Egs. (36)
and (57).

We can find the potential of a cylinder held at a constant potential &, by a
different method. Suppose we have a long straight line of length ¢ along the z axis,
uniformly charged with a linear charge density A. The potential at a distance p from
the z-axis, for £>p, is given by

for k<1/p<1/a. (57)

@mzzamg. (58)

At a distance p = « from the z-axis, we have a constant potential @, = 21 In({/a),
which is the same boundary condition as before. This implies that the solution is the
same. Substituting A, we obtain the potential as given by

In(¢/p)
*In(t/a)’
Note that Eq. (57) with k<1/p<1/a and Eq. (59) with £>a> p are essentially the
same. Henceforth, we utilize Eq. (59) as the solution for a long cylinder held at a
constant potential.

¢line =

(39)
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The final potential of the problem of a long conducting cylinder held at a constant
potential @y with an external charge ¢ is given by

O, %) = %{ Z em(d=9) /0 cos[k(z — 2K (kp.)

I(ka) In(¢/p)
) {I'"(kp <= Ky(ka) In(¢/a)’

The electric field, the force exerted on ¢, the surface charge density and the linear
charge density are given by, respectively,

Km(kp<):| dk} + P (60)

Ep<p)= — {mzf_joo o) [k costz = )
< 1,00) = {220 Kk ) dk} b 6D
Eyp>p) = — % {ioo Gl d /O "k cosfk(z — 2]
[t 8 e+ e
£y =2 {i:j sl — 91 [ coslitz — 2
Ualhp ) = 250 Kollp K m(kp>)dk}, (©3)
E.= 275‘] {iw emo=*) /0 Tk sin[k(z — 2)]
|1tk = 250 Koo ) Km<kp>)dk}, (64

F®) =

I(ax/p’) . q® .
{m__oo/ K)271( )_ [ m(ax/p’)} dx}p + p/ ln(f/a) I (65)

O'(a,(,b,Z): —z;zz{ Z elm((b ¢)/ kCOS[k(Z— )] m((/;p)) }

L N
4n§a In(¢/a)’

(66)
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Ko(kp") Dy
Kotka) KT 35 ne/a)
From Eq. (67) we can calculate the total charge on the cylinder:
_ Ko(kp') (D,
0= / Ma,z)dz = / dz/ cos[k(z ]Ko(k)dk+2£ln(£’/a)
4 i DK oy )
T2 20 Tntka) T2/ - 17T 2¢ ln(f/a)
For a neutral charged cylinder, i.e., Q = 0, we can relate the constant potential @
with the charge ¢ by
2¢q In(¢/a)
7 .

MNa,2) = — % /0 ~ cosfk(z — 2] (67)

(68)

Py = (69)

5. Discussion

We can express the force exerted by the grounded conducting infinite cylinder of
radius a upon the external point charge ¢ at a distance p’ from the axis of the cylinder
as given by

= &gt
Fz_m-p%p, (70)

where oy, is a dimensionless parameter. In this work, we obtained three different
expressions for this force, namely, Eqgs. (43), (51) and (52). The parameter o for
these three cases is given by, respectively,

2 (x)— m(“x/p/)}
{"7—2—200/ * (X) |: m(ax/p/) dx}, (71)

1 ® 5, . In(2p' /xa) —y+1 ~ i

= n/ Ko~ [y — 1n(2,0’/xcz)]2 * 41n(p’/a)’ 72
2 [® Ko®)Ki(x)

=l Rl "

We plot these three values of «;, as functions of a/p’ in Figs. 5 and 6. We can see
that these three values of o, converge to one another as a/p’ — 0. This was expected
because Eq. (43) is valid for a cylinder of finite thickness with arbitrary value of a/p’,
while Eqs. (51) and (52) are valid only for a thin cylinder, that is, for a/p’ — 0.

From Eq. (72) we can see that when a/p’ <1, the parameter oy behaves as
n/[41n(p’ /a)]. That is, it goes to zero when a/p’ — 0. According to these calculations
we conclude that there is no force between a point charge and an idealized grounded
conducting line (of zero thickness). One of the authors (AKTA) had expected
0<ar <1 [4], not specifically for a grounded conducting line, but for a conducting
line with zero total charge. In particular, he expected that 0.1 <a; <0.9, by guessing
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Fig. 5. Dimensionless parameter ¢z given by Eq. (70) as a function of @/p’. The continuous line represents
the parameter from Eq. (71); the tight-dashed line that of Eq. (72); and the light-dashed line that of Eq.
(73).

. i i i . a/P'
0.0002 0.0004 0.0006 0.0008 0.001

Fig. 6. Dimensionless parameter o, given by Eq. (70) as a function of a/p’, for the region a/p’ <1. The
continuous line represents the parameter from Eq. (71); the tight-dashed line that of Eq. (72); and the light-
dashed line that of Eq. (73).

the result based on dimensional analysis and in analogy with the case of a point
charge ¢ at a distance p’ from an infinite conducting plane. In this last case, the net
force upon the test charge is given by cxpfqz/p’z, with ap = %. The results of the
calculations presented here, on the other hand, indicate that oy = 0 when a/p’ =0
(in the case of a grounded infinite line). This is an interesting result indicating that
the existence of a force upon the external test charge requires not only that it is at a
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finite distance to the cylinder, but also the existence of a surface area different from
zero in the conductor with which it is interacting.
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