
The Relationship between Mach's Principle 
and the Principle of Physical Proportions 
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Mach's principle is compared with the principle of physical proportions. Laws 
that are compatible and others not compatible with the latter princlple arc dis­
cussed. A venues for the implementation of this principle arc also outlined. 
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1 Newtonian Mechanics and Mach's Principle 
In his book Mathematical Principles ofl-/alural Philosophy (1687) Newton laid 
the fOlmdatiolls of classical mechanics [1]. In the Scholium after the Definitions 
in the beginning afthis book Newton defined absolute time, absolute space and 
absolute motion, the concepts to be employed in his laws. According to New­
ton, absolute time flows equably without relation to anything external, while 
relative time is some sensible and exte01al measure of duration by means of the 
motion of bodies; absolute space remains always similar and immovable with­
out relation to anything external, while relative space is some movable dimen­
sion or measure of the absolute spaces which our senses determine by its posi­
tion to bodies; and absolute (relative) motion is the translation of a body from 
one absolute (relative) place to another. We can thus say that relative time is a 
measure of duration by means of motion of material bodies (like the angle of 
rotation of the earth relative to the fixed stars), relative space is a measure of 
dimension by means material bodies (a<; the distance between two bodies 
measured by a material rule; or the relative order of three bodies). 

In order to distinguish absolute from relative motion, Ne'iVion performed 
the famous bucket experiment, also presented in this Scholium: when the 
bucket and the water arc at rest relative to the earth, the surface of the water 
remains flat and horizontal; when the bucket and the water rotate together rela­
tive to the earth with a constant angular velocity, the water rises up the sides of 
the vessel, fanning a concave figure. Nevvton attributed this real and observed 
curvature to the absolute rotation of the water relative to absolute space, not to 
the rotation of the water relative to ambient bodies (earth and distant stars). 

Leibniz, Berkeley and Mach rejected these concepts, proposing that only 
relative time. relative space and relative motion could be perceived by the 
senses and produce observed effects. Accordingly, only these relative concepts 
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should appear in the laws of physics. For references and discussion sec the au­
thor's monograph, Relational Mechanics [2, Chapters 5 and 6]. 

Mach expressed these ideas clearly in 1883 in his book The Science oj" 
Mechanics [3]. In place ofNe\V1:on's absolute space, Mach proposed the frame 
of distant stars, that is, the frame in which the distant stars arc seen to be at rest 
[3, pp. 285-6 and 336-7]. Tn place of Newton's absolute, time Mach proposed 
the angle or rotation of the earth relative to the fixed stars [3, pp. 273, 287 and 
295]. According to Mach the curvature of the Vlrater in Newton's bucket ex­
periment was due only to its rotation relative to the distant stars, not to its rota­
tion relative to absolute and empty space [3, pp. 279 and 283-4]. Two key 
statements by Mach ill this connection arc as follows [3, pp. 279 and 284]: 
"Try to fix Newton's bucket and rotate the heaven of fixed stars and then prove 
the absence of centrifugal forces;" and "The principles of mechanics can, in­
deed, be so conceived, that even for relative rotations centrifugal forces arise." 

The ideas expressed by Mach became generally known by the name 
"Mach's principle." Formulations of this principle by different authors arc pre­
sented in Relational Mechanics [2, Section 6.8]. The main idea is that only mo­
tions of bodies relative to one another should enter in the laws of physics. No 
effccts should arise due to specific motions of bodies relative to empty space. 

2 The Principle of Physical Proportions 
We concur 'with Leibniz, Berkeley and Mach on this problem, and as a gener­
alization of their ideas [4] we propose the principle of physical proportions 
(PPP). Mach advocated doing away with all absolute quantities of motion (re­
ducing local, absolute quantities to global, relational quantities). Here we ad­
vocate the abolition of all absolute quantities, whatsoever. In classical physics, 
space and time are absolute, as well as mass, electrical charge, etc. We propose 
that none of these absolute quantities should appear in the laws of physics, but 
only ratios of these quantities. 

We fonnulate the principle as follows: (1) All laws of physics must de­
pend only on the ratio of known quantities of the same type. This principle can 
also be understood in four further ways in order to clarifY its meaning; (2) In 
the laws of physics, no absolute concepts should appear, only ratios of known 
magnitudes of the samc type should be present; (3) Dimensional constants 
should not appear in the laws of physics; (4) The universal constants (such as 
G, c, h, k/i' ... ) must depend on cosmological or microscopic properties of the 
universe; (5) All laws of physics and all measurable effects must be invariant 
under scale transformations of any kind (length, time, mass, charge, etc.). 

This principle shows tnmilarities with the principle of homogeneity, which 
was introduced by the Greeks. The idea of dimension had its origins in ancient 
Greek geometry. It was considered then that lines had one dimension, surfaces 
had two dimensions and solids had three dimensions [5, Vol. 1, pp. 158-9 and 
Vol. 3, pp. 262-3] and [6]. These dimensions were related to the rule or princi­
ple of homogeneity, according to which only magnitudes of the same kind 
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could be added or equated, and only such magnitudes could have a numeric ra­
tio (it is not possible to divide a volume by a length, for instance) [6]. Heath 
has called this principle the principle of similitude, and has also spoken of the 
theory of proportions [5, Vol. 1, pp. 137 and 351; VoL 2, pp. 112-113 and 
187]. The geometrical notion of dimension was extended by Fourier to include 
physical dimensions [7, §§160-161]. 

The principle of physical proportions presented here is thus related to the 
principle of homogeneity introduced by the ancient Greeks in geometry. It 
should therefore be extended to physics in a new way, a way not implemented 
by Newton, Fourier, etc. 

Perhaps the PPP will not be feasible in all laws of physics; but it can at 
least be utilized as a guiding principle in order to cxplore more deeply the 
known laws and see their possible limitations. It seems plausible that whenever 
a law can be put in this fonn, with known terms and ratios, a better understand­
ing of the physical principles involved will be achieved. 

3 Laws that Satisfy the PPP 
There are laws of physics that satisfy the PPP. The law of the lever is a prime 
example. It can be written as follows: two weights ~ and ~ at distances d, 
and d, from a fulcrum remain in horizontal static equilibrium (relative to the 
surface of the earth) when ~ / P2 = dJ / dl • Only ratios of local weights and lo­
cal distances are relevant here, No fundamental constants appear in this law. 
Doubling all lengths or all weights (or gravitational masses) in the universe 
docs not affect the equilibrium of the lever. 

The law of the inclined planc also satisfies this principle. Consider a fi"ic­
tionless triangle ABC in a vertical plane with its side AC parallel to the horizon 
and the two bodies abovc hanging on sides AB and BC, respectively, con­
nected by a string. They will be in equilibrium relative to the surface of the 
earth when ~ / Pc = AB / Be , Once more, only ratios of weights and of known 
lengths are involved here. 

Another example is the law of floating bodies discovered by Archimedes. 
Consider a homogeneous solid body of density Ps lower than the density of 
the fluid PI" ill which its floats. The condition of equilibrium (no motion rela­
tive to the fluid) is obtained when 

VE Ps 

Vr PI-" 
(1 ) 

Here VJj is the submersed volume of the body (below the surface of the fluid) 
and VI its total volume. Only ratios of known volumes and knovm densities 
appear in the law. No fundamental constants are involved in this law. Doubling 
all densities in the universe will not affect the ratio Vii / Vr . 

Another example involves communicating vessels filled with liquids. If 
the cross-sectional area of vessel 1 (2) is AI (A2 ) and if the forces ~ (~), re-
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spectively, are applied on the vessels' free surfaces, equilibrium (no motion 
relative to the surface of the earth) will result if ~ I p,. = All A2 • 

There are also dynamical laws which satisfY this principle. One example 
is Kepler's second law of planetary motion: Areas swept out by the radius vec­
tor from the sun to the planet in equal times are equal [8, p. 135]. In other 
words, the area is proportional to the time. In algebraic terms if one planet de­
scribes an area Al in time f] and area A} in time 12 then Al j ~ = 11/1'2 . 

Another example is Newton's second law of motion coupled with his 
third law. Consider two bodies of inertial masses mil and m ,2 interacting with 
one another along a straight line. If they are subjected to accelerations a1 and 
a2 relative to an inertial system of reference, from Newton's laws we obtain 
(assuming constant inertial masses): mil / m i2 = -a2 / a l • 

4 Laws that do Not Satisfy the PPP 

The majority of physical laws do not comply with the PPP. A number of ex­
amples were discussed in earlier work [4]. Here we briefly present some of 
them. 

The free fall acceleration a near the surface of the earth according to clas­
sical mechanics is given by a == GMie / R; , where G = 6.67x 1 0-11 Nm2 kg-2 is 
the constant of gravitation, M ,e = S.98xJ 024 kg is the earth's inertial mass and 
Rc =6.37xIO"m its average radius. This acceleration is known to be inde­
pendent of the mass of the falling body. Hence there is no ratio of masses in 
this law, and the acceleration of free fall would then be a measure of the abso­
lute value of the earth's mass: doubling this mass would double the accelera­
tion of free fall, independent of what happens to the mass of the test body, to 
the mass of stars and galaxies, etc. This shows that not only space and time are 
absolute m classical mechanics, but mertial mass is as welL 

The flattening of the earth due to its diurnal rotation is also an example of 
this absolute aspect of mass in classical mechanics [4]. 

The law of elastic force is a further example of a law that does not comply 
\vith the PPP. Consider a spring of relaxed length (, and elastic constant k. A 
body of weight P can be suspended in static equilibrium when this spring is 
fixed vertically, provided that its final length ( satisfies the relation 
p= kef -f",,). Thcrc arc no ratios of weights here. This law is correct in the 

sense that it describes the behaviour of springs. (It is valid as long as the 
lengthening of the spring is not so great as to become irreversible.) But because 
it does not satisfy the PPP, it must be regarded as incomplete. 

The great majority of laws of physics do not comply with the principle of 
physical proportions. Whenever we encounter physical laws expressed in terms 
of equalities in which there appear local constants (such as the spring constant 
k, the dielectric constant E of the material, etc.) or universal constants (such as 
G, Eu ' kB , h, etc.), they must be incomplete, although correct. Examples in­
clude: the law of ideal gases, PV = kBNT = RnT (P being the pressure, V the 
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volume, klJ ;= 1.38x iO 2.l JK-' Boltzmann's constant, N the number of atoms or 
molecules, T the temperature, R;= 8.3 JK-'mor' the universal gas constant, 
and n the number of moles); the velocity of sound, v,;=.J B / P (B being the 
bulk modulus of the fluid with density p); Ohm's law, V = R1 (where V is the 
voltage or potential difference between two points A and B of a conductor of 
resistance R in which the constant current I flows), etc. 

5 Implementation of the PPP 
We now discuss a method for implementing this principle in order to make 
natural laws complete. We first consider hydrostatics and Archimedes's princi­
ple. Although Eq. (1) satisfies the principle, we will discuss an incomplete 
form of this law. 

It is easy to imagine how people unaware of Archimedes's results might 
arrive at a correct but incomplete law when experimenting with floating bodies. 
They might set a piece of ice, cork, wood, etc. afloat only III water, and observe 
that the ratio of the submersed to the total volume was proportional to the den­
sity of the material, namely 

v, 
-;= API·' v;. . (2) 

where A would be a constant of proportionality with dimensions of the inverse 
of density. This constant would be the same for all solid bodies specified 
above. This equation is correct dimensionally and is invariant under unit trans­
formation (the numerical value of A will depend on the system of units em­
ployed, for instance A;= 10' kg/m.1 or A;= 2.2 x 10.1 lb/m ~ , but the form of the 
equation will be the same in all systems of units). 

Although this law correctly describes the behaviour of bodies floating in 
water, it is incomplete. In order to transform this law into one that is compati­
ble with the PPP, it would be necessary to discover if A was of cosmological, 
local or microscopic origin. Specifically, it would be necessary to discover if 
lIA was proportional to the mean density of mass in the universe, to the density 
oftlIe local fluid in which the solid was floating, or to the density of the mole­
cules composing the fluid, for instance. By floating the same solids in different 
fluids like liquid mercury, gasoline and aleohol it would be possible to arrive at 
A;= 11 PI'. The situation would then be described by Eq. (1) and the Jaw could 
be considered complete. 

Relational mechanics completely satisfies Mach's principle and the more 
general PPP [2,4]. It is based on Weber's law for gravitation and electromag­
netism [9]. Weber's force depends only on the relative distance between the in­
teracting bodies, on their relative radial velocity and on their relative radial ac­
celeration, so that it is completely relational. Relational mechanics is also 
based 011 the principle of dynamical equilibrium [10, 2 Section 8.1]: The sum 
of all forces of any nature (gravitational, electric, magnetic, elastic, nuclear, 
etc.) acting on any body is always zero in all frames of reference. As the sum 
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of all forces is zero, only ratios of forces will be detectable or measurable. The 
system of unil" (MKSA, egs, etc.) to be employed is not relevant. Moreover, 
the llllit or dimension of the forces can be arbitrarily chosen. 

According to the theory of relational mechanics [2, Sections 8A, 8.5 and 
9.2], the acceleration of free fall am" of a test body of gravitational mass m~ 
toward the earth is given by 

a~, [2 )(R,,)'[M'''J 
00 = 2"'; -;:- .i\1

go
• 

Here M"" is the gravitational mass of the earth, r is the distance of the test 
body fro~ the center of the earth, Ro = c I H" is the radius of the known uni­
verse (c is the value of light velocity in vacuum and Eo is Hubble's constant), 
M~o is the gravitational mass of the known universe (mass inside a sphere of 
radius R,,) and Q o =R"H,: is a fundamental acceleration characteristic of the 
universe. In this expression there arc only ratios of accelerations, distances and 
gravitational masses. Doubling all distances or all masses in the universe, for 
example, will not affect the ratio a",," j a" . According to this expression, the ac­
celeration of free fall is independent of the mass of the test body, as known 
since Galileo. On the other hand, it shows that this acceleration is not only di­
rectly proportional to the mass of the earth, as known by Newton, but also in­
versely proportional to the mass of the distant galaxies. We can double a"I<' ei­
ther by doubling the mass of the earth (compared to any standard, without si­
multaneously affecting the masses of the distant galaxies according to this 
standard), or by halving the masses of the distant galaxies (compared to any 
standard, without simultaneously affecting the mass of the earth according to 
this standard). If the distance of the test body from the earth is doubled, the ac­
celeration of free fall decreases by a factor of 4. According to the expression 
above, the same should happen even if the distance between the earth and the 
test body is not changed, but the size of the knOWTI universe is shrunk by a fac­
tor 2. The meaning of a" is not yet clear, but it must be the acceleration of 
some material object. Perhaps it is the average acceleration of all bodies in the 
universe, or some other as yet unknown acceleration. In the future, it may 
prove interesting to investigate the relationship bet\veen this acceleration and 
the acceleration mtroduced by Jaakkola in his research on cosmology and 
gravitation [Ill In any event, the important aspect of the result above is that 
only ratios of gravitational masses, of distances and of accelerations are rele­
vant here. 

The implementation of the PPP as regards the flattening of the earth has 
already been discussed in a recent essay [4], where we also discussed applica­
tions of the PPP to electromagnetism and the equation of ideal gases. There it 
was shown that these laws III their present form do not comply with this princi­
ple, indicating that they may be incomplete. Possible ideas and avenues for 
completing them were also outlined. 



Mach's Principle and the Principle ofPhysicai Proportions 43 

6 Discussion 

In closing, it may be appropriate to quote a very pertinent passage from the last 
chapter of Amitabha Ghosh's book Origin oj Inertia [11]: 

When I find school students nowadays solving mechanic~ problems involv­
ing pulleys, inclined planes, rockcts, cars, I cannot but help think ofthc early 
summcr of 1956. I had just completed my high school in a remote village of 
Bengal and was waiting for my admission to the district college for the In­
termediate Science programme_ My father thought that the time might be 
better utilized if 1 were to get some prior exposure to science. In tho~e days, 
up to Class-J 0 therc were hardly any scicnce topics in thc programme, and 
wc had absolutely no introduction to mcchanics_ Even the teons like veloc­
ity, acceleration, momentum, etc. were totally lUlfamiliar to us in the high 
schooL One of my cousins had finishcd his Intermediate Science and was a 
trainee in a steel plant. He came to spend a few weeks at our home, and first 
introduced me to the names of Newton and Galileo. He gave me my first 
ever lesson in clementary kinematics, the parallelogram laws of the addition 
of forces and motion paramctcrs_ Soon afterwards, I was introduccd to the 
laws of motion by another young postgraduatc in Mathematics from the vil­
lage. By then he had left Mathematics and was studying Law, but had re­
turncd to ~pend his summcr vacation at home. 

I remember the tremendous mental block I had in conceiving of thc basic 
conccpts_ By that time, I was familiar with multiplying physical quantities 
by numbers. Somehow, ideas of velocity and acceleration, which involved 
length and time, I could gra~p_ What was very difficult for me at that time 
was to conceive of the idea of one physical quantity being multiplied by an­
other physical quantity. For me the st\lIDhling block was thc concept of mo­
mennlm-the product of mass and velocity_ I can still rememher the utter 
exasperation of the young law student who had already completed a Master 
of Science in Mathematics from Caleutta University. Hc was completely 
baffled by my difficulty. It took a long time for me to accept the concept of 
momentum. 

As we saw above, Prof. Ghosh's difficulty in conceiving the idea of linear 
momentum reflects a deeper problem in the laws of physics themselves. Ac­
cording to the PPP we should only have ratios of quantities of the same type. 
When we examine the problem more closely, we see that it makes no sense to 
multiply a mass by a velocity. These are two completely different physical 
concepts, with different units and operational definitions for their measure­
ments. The most we can say is that, by definition, the linear momentum .u of a 
body 1 is to the linear momentum of a body 2 as the ratio of their masses m 
multiplied by the ratio of their velocities v, namely: 

!:!.l. - !5.. 2 (3) 
J.l2 m 2 v2 

According to the principle of homogeneity of the ancient Greeks, only magni­
tudes of the same dimension should be added or equated. The same must be 
valid for physical magnitudes, as postulated here by the PPP. How should the 
concept of velocity be handled? Instead of defining it as the ratio of a length by 
a time interval, as is usually done, the same procedure as above should be util-
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ized, as indicated by Mach [3, p. 273]: "A motion is tenned uniform III which 
equal increments of space described correspond to equal increments of space 
described by some motion with which we fonn a comparison, as the rotation of 
the earth. A motion may, with respect to another motion, be uniform. But the 
question whether a motion is in itselfunifonn, is senseless." Accordingly, the 
ratio of velocities should be defined operationally as VI! v2 "" (Sj / s'2 )(t:! j i l ), 

where v means velocity and s space described in time t. "When the ratio Vi I Vo is 
a constant in time, we can say by definition that the motion of body 1 is uni­
fonn in comparison with the motion of body 2. The same should be applied to 
other magnitudes. For instance, instead of defining density as the ratio of mass 
to volume, only ratios of densities should be defined. That is, the ratio of den­
sity of two bodies 1 and 2 should be defined as the ratio of their masses multi­
plied by the inverse ratio of their volumes, namely: PI j P2 = (ml j m2 )(V2 j r~) . 

Because not all laws of physics are written in tenns of ratios of known 
quantities of the same type, they must be incomplete. The ideas presented in 
this work may help to indicate possible ways to complete thcse laws. 
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