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Electric potential for a resistive toroidal conductor carrying a steady azimuthal current
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In this work we treat a resistive toroidal conductor carrying a steady azimuthal current. We calculate the
electric potential everywhere in space. We also present the electric field inside and outside the toroid and the
surface charge distribution along the conductor. We compare our theoretical result with Jefimenko’s experi-
ment.
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[. INTRODUCTION mental resulf{14]. This will be discussed in the final section
of the paper.
In the past few years there has been a renewed interest in
the electric field inside and outside Ohmic conductors carry-
ing steady currents. The analytical cases known in the litera-

ture include coaxial cableg®ef.[1], pp. 125-130 (Ref.[2], Consider a stationary toroidal Ohmic conductgreater
pp. 318 and 509-511[3,4], (Ref. [5], pp. 336—-33Y, and  radiusR and smaller radius,) with a steady currenit, con-
[6]; a long solenoid with azimuthal curre(Ref.[2], p. 318  stant over the length of the conductor. We assume that the
and[7]; transmission linegRef. [8], p. 262 and with more  conductor has uniform resistivity, and the current is in the
detail in[9]; a long straight wirg 10]; and conductor plates azimuthal direction, flowing along the circular loop. The tor-
carrying steady currentgll]. Sometimes this problem is oid is centered on the plarze=0, z being its axis of symme-
referred to as Merzbacher’s puz4l&2] and (Ref. [5], pp.  try. There is a battery located at=7 rad maintaining con-
336-337. stant potentials at its extremities; see Fig. 1. We initially
Here we consider a case not yet solved in the literatureidealize the battery as of negligible thickness. Later on we
namely, to find the electric field inside and outside a resistiveconsider the battery occupying a finite volume. The medium
toroidal conductor carrying a steady azimuthal current. Weoutside the conductor is supposed to be air or vacuum.
have three goals in mind. The authors who analyzed long Our goal is to find the electric potentigl everywhere in
straight conductors found that the potential and surfacéPace, using the potential at the surface of the conductor as a
charge density are linear functions of the longitudinal vari-20undary condition. The problem treated here can be applied

ablez [13]. As pointed out by GriffithgRef. [5], pp. 336— to two cases(a) the toroid is a full homogeneous solid and

337), this is a peculiar result since the answer depends on thttl,;‘e battery is a disk; see Fig(@; (b) the toroid is hollow

geometry of the circuit, that is, on the return conductor anoarn:b:zrenbast;erye':t: C;L(:e;;eer;%ﬁp -(I)—Petgor?drgletrcyogfrgilrjw;tes
on the location of the battery. So our first goal in order toP 99 bp

avoid the ambiguity of the return conductor is to utilize a(’LX"P) (Ref. [15], p. 112, defined by
toroidal conductor where the battery is clearly localized. Our
second goal is to find a solution for the potential due to a
current distributed in a finite volume of space, clearly creat-
ing an electric field outside the Ohmic conductor. The au-
thors above who obtained an electric field outside the con-
ductor considered normally infinite straight conductors. The
exception are Jefimenko and Heald, who dealt with a curved
conductornRef.[2], p. 318 and[7]. But their solution is also
idealized because the cylindrical resistive sheet with azi-
muthal current had an infinite length. The only author who
completely solved a problem with the current bounded in a
finite volume is Jackso[B], who considered a coaxial cable
of finite length. But as he considered a return conductor of
zero resistivity, he obtained an electric field only inside the
cable, with no electric field outside it. Our third goal is to
obtain a solution that can be compared with a known experi- g1 1. A toroidal Ohmic conductor with symmetry axis
smaller radiug o (m), and greater radiuR (m). A thin battery is
located atp=1r rad, maintaining constant potentidtepresented as

II. DESCRIPTION OF THE PROBLEM

*Electronic address: julioher@ifi.unicamp.br the “+” and “ —” signs) in its extremities. A steady current flows
"Electronic address: assis@ifi.unicamp.br; azimuthally in this circuit loop in the clockwise direction, from
URL: http://www.ifi.unicamp.br/assis o=+ to — rad.
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(a) z (m) tion of variables(by a procedure known aR separatioj
e S e leading to a solution of the fornfRef.[15], p. 112

d(1,x,¢)=+coshp—cosyH(n)X(x)P(¢), (5

where the functionsl, X, and® satisfy the general equations
% (m) (with é&=coshz, andp,q constants

(E=1)H"+2¢H" —[(p?— 1/4 +9% (£~ 1)]H=0,

(6)
X"+ p?X=0, (7)
®"+q?Pd=0. (8)

IIl. GENERAL SOLUTION

FIG. 2. The two cases being considered héag:a full solid . The squtio.ns (.)f Eqs(7) and(8) for p#0 andq+0 are
linear combinations of the general formsX,(x)

resistive toroidal conductor, with an azimuthal volume current den-_ s D. si 4@ —c
sity J (A/m?) through the cross sectiofl) a hollow resistive tor-  ~ZPx C.OS@XH Px Sll’?(p)() an o(¢) = Cq, COSCY)
oidal conductor, with an azimuthal surface current der§ityA/m) *Dg, Sin@e), respectively, wher€y, , Dy, Cqg, andDq,

. ; are constants. Whem= q=0 the solutions reduce to, respec-
through the perimeter2r, of the hollow toroidal shell. .
t|Ve|y, Xo(X) = COX+ DO)(X andCDO(<p) = C0¢+ D0¢(P. Equa'
tion (6) is Legendre’s equation, whose solutions are the

X:am, :am, associated Legendre functionsPd_,,(coshy) and
coshzn—cosy coshzn—cosy Qp_1(coshy), known as toroidal Legendre polynomials
. (Ref.[16], p. 173.
s—a Sinx 1) The solution must be periodic g, that is, ¢(7,x,¢+27)
coshn—cosy’ =¢(nx.¢), and iny, that is, ¢(n,x+2m¢)=¢(7,x,¢). This
) ) ) ) ) condition implies thaD(,=0, Dy, =0,9=1,2,3,..., and
wherea is a constant that gives the radius of a circle in thep=123 ... .
z=0 plane described by—- (that is, whenp— we have The functionsQ{ _,, are irregular inp=0 (which corre-

x=acose, y=asing, andz=0). The values assumed by gponds to the axis, or to great distances from the torpid
the toroidal coordinates aresty<, —m<x=<m rad, and  For this reason we eliminate them as physical solutions for
—w<e=m rad. The inverse transformations are given by this problem in the region outside the toroithat is, 7

< 10)- Our general solution consists of linear combinations
I\2 2
:arctanhZaX—ﬂ/ of all possible regular solutions d®J_, (cosh), X,(x),
n 2. 2122 P p
Xc+y“+z°+a andd)q(¢):
2za y il
X= arctanm, p=arctar . 2 H(7=<n0,x,¢)=/coshy— COSXqu [Cq, CcOLqe)
For the present work, it is convenient to present the expres- _ *
sions for coshy and for cosy: +DgeSin(ge)] 20 [Cpycogpy)
o=
x> +y?+z°+a’ +D,, sin(px)]PY_,(coshy).  (9)
coshy= ®) pX p—1/2

We used the fact that sinfD and cos 61 to sum up from
X2+ y2 4+ 72— g2 p=q=0 to . Here Pg_1,2(coshn)EPp_1,2(cosh7;) are the
Legendre functiongRef. [17], p. 729.
4

VOC+y?+22—a?)?+4a%2%

cosy=

IV. PARTICULAR SOLUTION FOR A STEADY

The surface of the toroid is described by a constggt AZIMUTHAL CURRENT

The internal(externa) region of the toroid is characterized

by #>mng (9p<mp). The greater radiuR and the smaller The surface of the toroid is described by a constggt
radius r, are related to o and to a by R Here we study the case of a steady current flowing in the
=acoshry/sinhz, andry=a/sinh7,; see Fig. 1 azimuthale direction along the Ohmic toroid. For this rea-

Laplace’s equation for the electric potentl@f$=0 can  son we suppose that the potential along the surface of the
be solved in toroidal coordinates with the method of separatoroid is linear in¢, ¢(7q,x,¢)=A+Bg. This potential
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¢/¢o By Ohm’s lawJ=gE, whereg is the uniform conductiv-
0.6 ity of the wire, we can see thak is also inversely propor-
0.4 tional to the distance from the z axis inside a full solid
homogeneous toroidal conductor.
0.2 We now consider the solution outside the conductor, valid
for the cases of a solid and a hollow toroid.
PR I 5 ¢ (rad) We calculate Eq(9) with 7= 17, and use Eq(10) as a
0.0 boundary condition of our problem. As we do not have terms
’ with cos@le) in Eq. (10), this means thaC,,=0 for q
-0.4 =1,2,3, ... . Comparing the resulting E§) at = 7y with
Eq. (10) yields two equations connectifgandB to theC's
-0.6 andD'’s, namely,

FIG. 3. Fourier expansion of the potential along the conductor o
surface as a function of the azimuthal anglgEq. (10), with A A=Co¢m2 [Cp, cOgPX)
=0 andB= ¢y/27. The overshootings at the extremities are due to p=0
the Gibbs phenomenaiiRef. [17], p. 783-787.

+ Dy, SiN(px) ]P,—12(coshzy), (14
can be expanded in a Fourier seriespin .
4Dg,
“ ()t B=5—11 Jeoshyo—cosy >, [Cp, cogpx)
b(70.x,0)=A+Bo=A+2BY, Tsm(q@_ (-1 &
=1 .
! (10 +Dp, sin(px)1PJ_ 1o coshp). (15

Figure 3 shows the Fourier expansion of the potential We now isolate the term {itoshzny—cosy in Egs. (14)
along the conductor surface as a functiongofThe oscilla- and(15), expanding it in Fourier series, that is,
tions close top==* rad are due to a Fourier series with a
finite number of terms. The overshooting is known as the 1

Gibbs phenomenon, a peculiarity of the Fourier series at a\\/—_
simple discontinuityRef.[17], pp. 783-7. coshro—cosy

We assume that the potential inside the full solid toroidal 1 - = cogpy)dy’
Ohmic conductorthat is, for > 7,) [see Fig. 2a)] is also =5 Z (2— dop) - cospy)
given by Eq.(10), namely, T p=0 —my/coshryg— Ccosy
> 70:x,¢) =A+Be. 11 V2 O
d(7>10,X,¢) ® (11) =— 20 (2= 80p) Qp-— 112 cOShyg) cOg pyx), (16)
The electric field inside the solid toroid can be expressed in -
cylindrical coordinatesd, ¢,z) simply as where 8,,, is the Kronecker delta, which is zero for+p
B and 1 forw=p, and we used an integral representation of
E=-V¢=——0. (12)  Qp-1p(coshy) (Ref.[16], p. 156.
P As in Eqg. (16) we do not have terms of sipf), this

means thaD, =0 in Egs.(14) and (15). Using Eq.(16)

This electric field does not lead to any accumulation ofWith Eq. (14) yields (for p=0.1,2,. . .)

charges inside a full solid conductor becal¥seE=0.

These are reasonable results. The potential satisfies A(2— 840) = cogpy')dy’
Laplace’s equatioiV2¢=0, as expected. The electric field is Ap=Co,Cpy= 5P 9p h -
inversely proportional to the distanpe= \x?+ y? from thez TPy 1/2(€0sho) J - =\/coshy,— cosy

axis. This was to be expected as we are assuming a conduc- VIA(2= 895) Qy_1y5(coshao)
_ P P—

tor of uniform resistivity. The difference of potentiAkp cre- . a7
ated by the battery ap=1 rad can be related to the azi- m Pp- 12 coshz,)
muthal electric field by a line integral: Using Eq.(16) with Eq. (15) yields
A¢=—fﬂr|§-d€=—E 27p. (13 B(—1)9"1(2—§ = cogpy’)dy’
o ¢ B,q=Di,Cpy = (=1 (2~ 6qp) Ipx’)dx

X" qmPd_y(coshmg) J -7 \coshyp,—cosy’
Herep is the radius of a circular path centered on #exis

and located inside or along the surface of the toroid. This — _ 2v2B(—1)97Y(2— 8pp) Qp-1/2(c0shrg)

_shows thaE, should b_e inversely proportional g as found g Pg_l,z(coshno) ' (18
in Eq. (12. Comparing Egs.(12) and (13 yields B
=A /2. The final solution outside the toroid is given by
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A(7=<10.X,¢) I'(p+q+1/2) p
" Pp-udl+e)~ 29%q!T (p—q+1/2) e
= Jcoshy—cosy| >, A, cospx)P,-1coshy) p2—1/4 q
p=0 X{1+emo———|f. (22)
2(1+q) 4

+ > sin(ge) X, ByqCogpx)PY_yy(coshy) |,
q=1 p=o " Pz The electric potential, for great distances from the toroid, is
(19) given, in spherical coordinates,@,¢), by

av2
where the coefficientd,, andB are given by Eqs(17) and ¢(r>a,l,¢)~ - 20 COE( p
=

(18), respectively.

For the region inside the hollow toroidhat is, 7> 7,),
Fig. 2b), we have PJ_,,(coshp—»)—», while X
Qg_l,z(coshn—>oo)—>0. For this reason we eliminate
Pg_l,z(coshn) as physical solutions for the region inside the
hollow toroid. The potential is then given by

2a cosa)
r

Ap+Bos . (23

, Ya. o
p°= 4| sinesin

so that¢(r—«)—0, as expected.

The potential close to the origitthat is,r<a) can be
calculated in the same manner. We have cpsti+2(x?
+y?)la? and cogy~—1+27/a?, so that\/coshy—cosy~v2.

d(n>m0,x,0)=A+ COShn_COSXqu sin(qe) The potential is then given by
- B(r<ab.0) \Qi 5{ 2r cosﬁ)
: r<a,t, o)~ co
xgo Bpq oS pPx)Qp_1/x(coshy),  (20) @ 2 D
, Lyr ]
X[ AptBpi| p°= 4| singsing|.  (24)

where the coefficientB{,q are defined by

Along thez axis we have\/x?+ y?=0. From Eqs(2)—(4)
we have =0, coshy=1, cosy=(Z—ad)/(Z+a°, and

, _B(- 1)9 12— 5qp) (= cogpx')dyx’ Jcoshy—cosy=ay/2/(z>+a?). The potential along the
Pa— qmQY_,(coshrg) J - =\/coshy,—cosy” axis can be written
_ 2‘/28(_1)(171(2_50')) Qp_l/z(COShno) (21) ¢(r:\/m:|z|,0"p)
qm Qp- 1 coshag)

. (25

B 2 i A 7?—a?
“AN 775az &, A COg Parccosy s
Note that the potential inside the solid toroid, Ef1), and

the potential inside the hollow toroid, E(0), are different.  \yg plotted the equipotentials of a full solid toroid on the
This happens because the discontinuous boundary conditigflane z=0 in Fig. 4 with A=0 and B= ¢/27. Figure 5
Eq. (10) applies for any»> 7, inside the solid toroid, shows a plot of the equipotentials of the full solid toroid in
particularly for ¢—m (¢—A+Bm) and ¢p——7 (¢—A  the planex=0 (perpendicular to the current
—B), where the disk battery is locatgsee Fig. 2a)]. This
does not happen to the hollow toroid, where the battery is a
circle, and the potential must be continuous inside the hollow V. ELECTRIC FIELD AND SURFACE CHARGES
toroid [see Fig. 2b)]. In toroidal coordinates the gradient is written as

We now analyze the potential outside the toroid for the
regions far away from the toroid, close to the origin, and

along thez axis. Vo= E(COShn—COS)() ;la_¢+5(ﬁ_¢+ g aid _

For great distances from the toroidthat is, r a dn " dx sinhy do
= X?+y?+7?>a), Egs. (2)-(4) yield p~2ayx?+y?/r? (26)
—0, coshp~1+2a2(*+y?)/r*=1, and cog~1—2a%2/r
—1. This means tha{coshy—cosy~av2/r—0. For coshy The electric field can then be calculated ﬁyt—VqS,
~1+e¢, where <e<1, we have the following expansion whose components for the region outside the toroig (
(Ref.[16], pp. 163 and 178 <1) are given by
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y/a

FIG. 4. Equipotentials for a resistive full solid toroidal conduc-
tor in the planez=0. The bold circles represent the borders of the
toroid. The current runs in the azimuthal direction, frgm + to
—a rad. The thin battery is on the lefio=7 rad. We have used

n

sinh#+/coshn—cosy
a

- 1
X 2, codpx)| Ay 5 Pp-walcosh)

+ (coshn—cosy) P, _1,(coshy)
e o] - 1 q
+ qgl Sin()Byq 5 P y(coshy)

+ (coshn—cosy) Py ,(coshy)

] : (27)

z/a

FIG. 5. Equipotentials in the plane=0 for a resistive full solid
toroidal conductor carrying a steady azimuthal current, @§),
with A=0 andB= ¢y/27. The bold circles represent the conductor
surface. We have usegl,=2.187.
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\Jcoshzy—cosy i siny cog px)
X a p:O 2

APPD— 1/2( COSh’/])

- p(Coshn—COSX)Sin(px)}

+q§=:1 Sin(q‘P)qungllz(COShﬂ) , (29
_ (coshp—cosy)¥? <
¢ asinhy ;1q003q¢)
XDZO qu CoipX)Pg_l/z(COShﬂ), (29

where P}, (coshy) are the derivatives oP}}_;,(coshz)
relative to coshy. The electric field inside the full solid tor-
oid (7> 7o) is given simply by

coshn—cosy B
E,=0, E,=0, E,=— . =-— .
aSlnh’)? 1/)(2_|_y2

(30

The surface charge distribution that creates the electric
field inside (and outsidg the conductor, keeping the current
flowing, can be obtained by Gauss’s lalwy choosing a
Gaussian surface involving a small portion of the conductor
surface for the full solid toroid, Fig. 2a):

(70, x¢) = 8o E(n<10) - (— 7)) +E(9> 1) 7],

A+Bop
2

€0 Sinh 7o
a

+ (coshzy—cosy)®?

AP 1/ coshro)

X >, cogpy)
p=0

+q§l Sin(q@)BpgPy’ 12(Coshno)

} . (31

VI. THIN TOROID APPROXIMATION

Suppose that the toroid is very thin, with its radii de-
scribed by an outer radiuR=a coshz/sinhnpy~a and an
inner radius o= a/sinh 7, such thatr ;<R (see Fig. L The
surface of the toroid is described lp¢>1, and consequently
coshn>1. The Legendre function of the second kind,
Qp-1(coshyy), that appears in Eqg17) and (18) for the
coefficientsA, and B, can be approximated utilizingRef.
[16], p. 169

Jal(p+1/2)
Qp-12(coshrg) ~ 2P 1251 CostP 12,

(32

wherel is the gamma functiogRef. [17], p. 59).
Because Eq32) has a factor of cosi?~*2 7,<1, we can
neglect all terms withp>0 in Eq. (19) compared with the
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term withp=0. The potential inside the full solid thin toroid w ™
is given by Eq(11), while the potential outside the full solid aa= f_ hy d)(f_ hyde o(x,¢)
thin toroid (7o>1) is i 7

42g Al 4m2goAa

d(1=<m0.X,¢) - In(8 coshyyg) - In(8alrg)’ (38)
_ . [coshn—cosy A P_yp(coshn) whereh,=h,=al(coshy—cosy) and h,=asinhz/(coshy
coshzyg P_15(coshng) —cosy) are the scale factors in toroidal coordinaféds].
) ] Notice that from Eq(38) we can obtain the capacitance of
“(—1)9 P9 ,s(coshn) the thin toroid(Ref. [19], p. 127:
+ZBZ ( q) Sin(qe) = 1/2(COSh77) . (33 ( [19], p 7
g=1 -12 o _Oa 4772808. _ 4’7T280a (39)

It is interesting to find the expressions for the potential A In(8 coshpg) In(8alrg)

and electric field outside but in the vicinity of the conductor T potential along the axis is given, from Eq(25) in
(that is, 7o>75>1). A series expansion of the functions nhe thin toroid approximation, by ,

P9 (&) and PY (&) aroundé—w gives as the most rel-

evant termgRef.[16], p. 173 Ja

o(r= \/x7+yz+ 2= |z|,0,0)=

4meg \[Z+a?’ (40
0 V27 In(2€)— y(1/12—q)—y
I:"1’2(§)~1“(1/2—q) NS : Equation (40) coincides with the Coulombic result for a
charged thin toroid of radiua in the z=0 plane and with
total chargeq, .
It is useful to define a new coordinate system:

@ (o V2T L[ InE-y(l2-a)-y
P—llz(g)““r(TZ_q)gﬂz - 2 )

(34 M=ap, =V -a2 (4D

where ¢(z)=I""(2)/T'(z) is the digamma function, and e can interpred’ as a distance along the toroid surface
y~0.577 216 is the Euler gamma. The potential just outsiden the ¢ direction, andp’ as the shortest distance from the
the thin toroid, Eq(19), can then be written in this approxi- cjrcle x2+y2?=a? located in the plang=0. When 7,> 7

mation far from the battery as >1 (that is,ro<p’<a), Egs.(41) and (3) result in coshy
~alp’ and coshyy=alr,, so that the potential just outside the
In(8 coshnp) thin toroid, Eq.(35), can be expressed as
d(no=n>1x,0)=(A+Bg) i ————. (39 g P
In(8 coshzg)
N\ In(8alp')
b=|A+B—|—n . (42)
The potential inside the hollow thin toroid, E(20), can a | In(8a/ry)

be written in this approximation far from the battery as Equation(42) can be written in a slightly different form.

Consider a certain piece of the toroid between the angles
and — ¢q, with potentials in these extremities given kg
=A+Bgy and ¢, =A—Bgg, respectively. This piece has a

mation is given by

d(n=ne>1x,¢)=A+Bo. (36)

[ 2Bgg_,|In(t/p")—In(¢/8a)
£5inh 7, ¢‘(A+ 7 )In(€/r0)—ln(€/8a)
aln(8 cosh )(A+B¢)
o brt b bRt ,)In(f/p')
2 P N nwany

0-( 770> 1:)(,90)“

(43

60(A+ BQD)
 roln(8alry) _ o
where in the last approximation we neglected the term
=g+ 0g0e. (37 In(€/a), utilizing the approximation,<p’'<a (so thatf/ry
>{[p'>{/8a). The electric field can be expressed in this
We definedsr, andog by this last equality. We obtained that approximation as
the surface charge density far from the battery is a linear .
function of the azimuthal angle in the case of a thin toroid. E= _( bt S + br— b ,) 7

We can calculate the total chargg of the thin toroid as 2 ¢ p"In(€/rg)
a function of the constant electric potential For this, we — by In(€lp")
integrate the surface charge densityin ¥ and ¢ (in the R rJ. (44)
te th _ ¢ In(tirg) &
approximation coshy,>1): 0
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Equationg43) and(44) can be compared to Eqd2) and  Utilizing the thin toroid approximationy,>1, one can ob-
(13) of Assis, Rodrigues, and Manfa0], reproduced below tain the capacitance of a circular ring, E§9).
as Eqgs(45) and(46), respectively. They studied the case of  Another case of interest is that of a charged circular wire
a long straight cylindrical conductor of radiug carrying a  discussed below, which is the particular case of a toroid with
constant current, in cylindrical coordinateg’ (¢,z) (note  ry—0. With 7y>1 and coshy>1 we haveR~a. Keeping
that the conversions from toroidal to cylindrical coordinatesonly the term withp=0 in Egs.(17) and(48) yields
in this approximation aréy~ —p’ and @~2). In their case,
the cylinder has a length and radiug o< ¢, with potentials coshy—cosy P_q,(coshy)
¢ and ¢ in the extremities of the conductor, afd= ¢ d(n=<m0.x.¢)= o\ coshyy  P_1(coshig)

L
e+ L dr—dL_| In(tlp") ~ I Jcoshy—cosx
_ R L R™ PL - -
pr=a)=|—5—+—7 Z) n(Cirg) " (45) 47mv2e4a
. X P_yp(coshy), (52)
E(p'=a)= ¢R+¢L+¢R_¢L p’'
(p'=2)= 2 ¢ p'In(€lrg) where in the last equation we combined E88). Expressed
) in spherical coordinatesr (6,¢), the potential for the thin
_ $r ¢ InClip) (46)  toroid becomes
€ In(€lrg) ™
1
Our result for the potential in the region close to the thin o(r,0,0)= 4qA TN " T
toroid coincides with the cylindrical solution, as expected. 7eo [(r?—a®)?+4a’r? cos 6]
r2+a?
VII. CHARGED TOROID WITHOUT CURRENT XP_q1p

. . . . J(r’=a?)2+4a%%cof 9
Consider a toroid described by,, without current but

charged to a constant potentig}. Using A= ¢, andB=0 (52
in Egs.(19), (11), and(20), we have the potential inside and
outside the toroid, respectively: From Egs.(47) and (38) we can see that the constant
electrostatic potential along the thin toroid expressed in
d(n=n9,x,0)=A= g, (47 terms of its total charge, is given by
* B gal2ma  8a
b(7=19.x,®) = /coshy— cosy zo A, cogpy) P1o<R,0,¢)= 5 —In . (53
X Py_1(coshy), (48 Even when the linear charge densgy/2ma remains con-

stant, we can see from this expression that the potential di-
where P, _4,(cosh) are the Legendre functions, and the verges logarithmically whea/r y— .

coefficientsAp are given by Eq(17). This solution is already We can expand Eq52) onr_/r-, wherer_ (r-) is the
known in the literature(Ref. [20], p. 239, (Ref. [21], p.  |esser(greatef of a and r = x*+yZ+Z2. We present the

1304. first three terms:
It is also possible to obtain the capacitance of the toroid,
by comparing the electrostatic potential at a distandar qr [ 1 1+3cog20) r2
from the origin, Eq.(23), with the potential given by a point o(r,0,p)~ Armeg |12 8 i
>

chargeq, ¢(r>a)~qldmeqr:
4

% 3 re
av2 V2ho(2— 6 _y(cosh + —[9+20c0%26)+35c0%40)] = .
¢(r>a,0,<p)~—2 ool Op) Qp v 70) 512[ $26) $40)] ri
r p=o ™ Pp—12(coshzo)
(54)
. q
T Ameyr (49) Equations(51)—(54) can be compared with the solution

given by JacksoriRef. [25], p. 93. Jackson gives the exact
The capacitance of the toroid with its surface at a constarglectrostatic solution of the problem of a charged circular
potential ¢, can be written a€=q/¢,. From Eq.(49) this  wire (that is, a toroid with radius,=0), in spherical coor-
yields (Ref.[20], p. 239, (Ref.[22], pp. 5-13, (Ref.[23], p.  dinates (,6,¢):
9), (Ref.[24], p. 375

o

2n
da re (=1"2n—-1)!!
- _y5(cosh (r,0,0)= 2 e P,n(coso),
C=8e0a Y, (2— py) 2 A 5 Amog i 12" 27 "
p=0 Pp71/2(005h770) (55)
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z/a

FIG. 6. Equipotential lines on the plaxe=0 (perpendicular to
the toroid for the charged thin wire without current. Both E¢51)
and (55) coincide with one another. We utilizegly=38(coshy,
=1.6x10'%) and a=1. Notice the difference between this figure
and Fig. 5: the left and right sides of the conductor here possess the
same charge signs, while in Fig. 5 they have opposite signs.

FIG. 8. Jefimenko’s experimefiRef.[14], Fig. 3 in which the

whereq, is the tQta| charge of the wire. Equati¢h5) ex-  |ines of electric field were mapped using grass seeds spread over a
panded ton=2 yields exactly Eq(54). We have checked glass plate. There is a circular conducting strip carrying a steady
that Egs.(52) and(55) are the same for at least=30. current. Figure 4 has been overlaid on it—the equipotential lines are

We plotted both Eqs(51) and (55) in Fig. 6. They yield orthogonal to the electric field lines.
the same result, as expected. It is worthwhile to note that in
spherical coordinates we have an infinite sum, Egp), tained here are orthogonal to the electric field lines. There is
while in toroidal coordinates the solution is given by a singlea very reasonable agreement between our theoretical result
term, Eq.(51). The agreement shows that E¢S1) and(55)  and the experiment.

are the same solution only expressed in different forms. In order to have a better fit to his data we should consider
Figure 7 shows the potential as functiongfin cylindri-  an extended battery. As we can see from his experiment, he

cal coordinatesin the planez=0. Equationg51) and (55) painted two sections of his strip with a conducting ink of

give the same result. much smaller resistivity than the remainder of the strip.

These sections located atpj<¢<—¢; and ¢;<e<g;

were charged to opposite potentials. Considering these sec-

tions as of zero resistivity, we can model analytically the
Figure 4 can be compared with the experimental resulpotential inside and along the surface of the toroid as

found by JefimenkdRef. [14], Fig. 3), reproduced here in

Fig. 8 with Fig. 4 overlaid on it. Jefimenko painted a circular B pi(m+ )

conducting strip on a glass plate utilizing a transparent con- (7= @;)

ducting ink. A steady current flowed in the strip by connect- “Bo  —0<o<—o

ing its extremities with a battery. By spreading grass seeds P TeSe @i

on the glass plate he was able to map the electric field lines ¢(7= 770,)(,90)=< Be, —¢i<e<g;,

inside and outside the striin analogy with iron filings map- Bo, ¢i<e<oi,

ping the magnetic field lings The equipotential lines ob- J

VIIl. DISCUSSION AND CONCLUSION

p
y TT<e<— @,

ei(m— @) o
/% (p=0) | (m—gp T
(56)
3
Notice that the potential described by EE6) no longer has
2.5 a discontinuity atp= rad. The potential is linear between
¢=—¢; and ¢=¢;, constant for—¢;<e<—¢; and ¢;
2 <¢<g;, and linear for— 7 rad<¢<—¢; and for p;<¢
< rad. The boundary condition EqL0) is now replaced
1.5 by
p/a Z s sin(qe;)  sin(qe;
0.5 1 \5\2 ¢(770,X,(P)ZZBE n(g@) r(q(P])-l- n(q‘Pl) .
0.5 =1 9 T @] @i
(57)

FIG. 7. Normalized potential as function pf(distance fromz ] ) o .
axis on the planez=0. Equations(51) and (55) give the same The potential from Eq(57) is represented in Fig. 9 with the
result. We utilizen,=38(coshy,=1.6x10'%) anda=1. values ¢;=97/10=2.83rad and ¢;=177/18=2.97 rad.
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¢/ 9o

¢ (rad)

FIG. 9. Fourier expansion of the potential along the conductor | "
surface as a function of the azimuthal angleEq. (57), with B
= ¢o/2¢; . Comparing this figure with Fig. 3 we can observe that
the oscillations, as well as the overshooting, no longer appear, as the FIG. 11. Jefimenko’s experimefRef.[14], Fig. 3 with Fig. 10
potential is now continuous for<@p=<2s rad. We have useg; overlaid on it—the equipotential lines are orthogonal to the electric
=97/10=2.83 rad andp; = 177/18=2.97 rad. field lines.

The equipotentials in the plare=0 are plotted in Fig. 10. 300-30). They utilized a radioactiver source to ionize the
Figure 11 represents Jefimenko’s experiment with Fig. 1Qir at the point where the field was to be measured. &he
overlaid on it. The agreement is now even better than insource acquired the same potential as the field at that point
Fig. 8. and the potential was measured with an electrometer con-

Despite this agreement, it should be mentioned that Jefinected to thew source. If one day a similar experiment is
menko’s experiment has a conducting strip painted on a glagserformed with a toroid, it will be possible to obtain a better
plate. On the other hand, our theoretical results presented gomparison with our theoretical results.

Figs. 4 and 10 represent an equatorial slice through a three- Qur solution inside and along the surface of the full solid

dimensional toroid. In another experiment Jefimenko, Bartoroid yields only an azimuthal electric field, name|IE<p|

nett, and Kelly succeeded in measuring directly the equipo=A ¢/27p. But even for a steady current we must have a

tential lines in_side and outside a hollow rectangularComloonent ofE pointing away from thez axis, E,,, due to

conductor carrying a steady currd@6] and (Ref. [2], pp.  he curvature of the wire. Here we are neglecting this com-
ponent due to its extremely small order of magnitude com-

32//a pared with the azimuthal compone#y, . To show this, con-

sider a conducting electron of chargee and massm
moving azimuthally with drift velocityv4 in a circle of ra-

-3 dius p around thez axis. In a steady state situation there will
be a redistribution of charges along the cross section of the
toroid, creating an electric fiel&,, which will exert a cen-
tripetal force on the conduction electrons. By Newton’s sec-
ond law of motion the forc@E, results in a centripetal ac-
celeration such thad!Ep=mv§/p. Suppose we have a 14-
gauge copper wirer=8.14x10 % m) of 1 m length bent

-2 - Y R P e in a circle of radiusR=p= (1/27) =1.59< 10" * m carrying

a current of 1 A. The drift velocity is given byy=3.55

X 10~° m/s, the resistance of the wire is 8:4320 ° 2, and

the potential difference created by the batterAig=28.13

- X10"% V. This yields E,=8.13<10 % V/m and E,=4.5

X 10" % V/m. That is, E,<E,, which justifies neglecting

the E, component of the electric field.

It has been pointed out elsewhdrE0] that a stationary
conductor carrying a steady current uniform over its cross
-2 section generates a charge distribution inside the conductor.
FIG. 10. Equipotentials in the plane=0 for a resistive toroidal | NiS charge distribution creates a radial electric field inside
conductor carrying a steady azimuthal current, using B@ as  the conductor. There is then an electric force on the conduc-
boundary condition anB= ¢o/2¢; . The bold circles represent the tion electrons that counteracts the radial magnetic force that
conductor surface and the bold straight lines represent the angl@ises due to the movement of the conduction electrons. This
¢=*¢;=+97/10=2.83rad andp=*¢;=*=177/18=2.97rad.  is known as the radial Hall effect. However, this electric field
We have used;,=2.187. is rather small (10° smaller than the electric field that main-
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tains the current flowing, on a typical copper conductor withazimuthal currentRef.[2], p. 318 and[7]. The only known
1 mm diameter and 4 10~ 3 m/s drift velocity; se¢10]) and  solution for the potential due to a closed steady current flow-
has been neglected in the present work. ing in a bounded volume is that of Jackd&), who consid-

The problem of a stationary toroidal conductor with aered a coaxial cable of finite length. However, as he consid-
steady current has never been solved in the literature. Hergred the external return conductor of zero resistivity, the
we have obtained the electric potential, the electric field, an@jectric field outside his cable was found to be zero. Here, on
the surface charges, respectively, EG9) and (27)-(31).  the other hand, we obtained a theoretical solution for the
The beautiful experimental result of Jefimenko showing theyotential due to a steady azimuthal current flowing in a tor-
electric field outside the conductor is complemented by thigidal resistive conductor which yielded an electric field not
present theoretical work, with excellent agreement, Figs. &nly inside the toroid but also in the space surrounding it.
and 11. The electric potential and electric field of the thinOur solution showed a reasonable agreement with Jefimen-
toroid approximation with a steady current, respectively, Eqsko’s experiment, which proved the existence of this external
(43) and (44), agree with the known case of a long straight electric field due to a resistive steady current.
cylindrical conductor carrying a steady current, E4®) and
(13) of [10]. The electric potential of the thin toroid approxi-
mation without current agrees with the known result for a ACKNOWLEDGMENTS
charged wirg[Ref.[25], p. 93.
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