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Abstract

We calculate the potential, electric field and surface charges outside and inside
a resistive spherical shell carrying a steady azimuthal current. We obtain a time-
independent electric field different from zero in both regions.

1. Introduction

In the past few years there has been a renewed interest in the
electric field outside and inside ohmic conductors carrying steady
currents. The analytical cases known in the literature include
coaxial cables, [1, pp. 125–130], [2, pp. 318 and 509–511], [3],
[4], [5, pp. 336–337] and [6]; a long solenoid with azimuthal
current, [2, p. 318] and [7]; transmission lines, [8, p. 262] and
more detailed in [9]; a long straight wire, [10]; conductor plates
carrying steady currents, [11]; resistive strips of finite width, [12];
and a toroidal conductor carrying a steady current, [13].

Our goal in this work is to consider a steady azimuthal current
flowing in a resistive spherical shell.The mathematical difficulty is
at an intermediate degree between the infinite cylindrical shell, [7],
and the toroidal conductor, [13]. The importance of the present
case is that we can obtain exact analytical solutions for the external
and internal distribution of surface charges, potential and electric
field which are not so complex as in the toroidal conductor. Despite
this fact they show clearly the existence of an electric field outside
a resistive conductor bounded in a finite volume of space.

2. Description of the problem

Consider a resistive spherical shell of radius a, centered at the
origin. We suppose an idealized linear battery located along a
meridian of the shell (like Greenwich Meridian) and maintaining
a constant electromotive force (emf ) between its left and right
sides. That is, the battery is a semi-circle in the plane y = 0
with its extremities at (x, y, z) = (0, 0, ±a) and its central point
at (x, y, z) = (−a, 0, 0). Utilizing spherical coordinates (r, �, �)
the linear battery is then located at (a, �, �). We suppose that the
emf generated by the battery does not depend upon the polar angle
�. The battery generates a steady current flowing along the shell
in the clockwise direction (−�̂), see Figs. 1 and 2. The medium
inside and outside the spherical shell is supposed to be air or
vacuum.According to Ohm’s law, the potential � along the surface
is given by:

�(a, �, �) = �A + �B

�

2�
. (1)
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Fig. 1. Geometry of the resistive spherical shell with radius a projected in the
plane z = 0. Notice that the semi-circular battery, represented by the bold line, is
seen as a straight line for −a ≤ x ≤ 0. The idealized linear battery located at the
spherical coordinates (r, �, �) = (a, �, �) generates a steady current I (A) flowing
along the surface of the shell in the clockwise direction (−�̂).

Fig. 2. Projection of the spherical shell in the plane y = 0. The bold line represents
the semi-circular battery.

The goal is to find solutions of Laplace’s equation ∇2� = 0
outside and inside the spherical shell utilizing Eq. (1) as
a boundary condition, together with finite values of the
potential at the center of the shell and at infinity. The electric
field is then found by �E = −∇�. Lastly the surface charge
density � is obtained by the standard procedure of taking the
radial components of the external and internal electric fields
when r → a.
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3. General solution

Laplace’s equation in spherical coordinates can be written as:

∇2� = �2�

�r2
+ 2

r

��

�r
+ 1

r2

�2�

��2
+ cot �

r2

��

��
+ 1

r2 sin2 �

�2�

��2
= 0.

(2)

The electric potential � can be solved utilizing the method
of separation of variables, �(r, �, �) = R(r)�(�)�(�). This
yields the following equations for the functions R, � and �,
[14, pp. 24–27]:

R′′ + 2

r
R′ − �2

r2
R = 0, (3)

�′′ + �′ cot � +
(

�2 − �1

sin2 �

)
� = 0, (4)

�′′ + �1� = 0, (5)

where �1 and �2 are constants. The function �(�) must be
periodic in �, that is, �(0) = �(2�). This implies �1 = q2,
where q = 0, 1, 2, . . . The solutions of Eq. (5) are then �(1)

q =
sin(q�) and �(2)

q = cos(q�). Eq. (4) is the associated Legendre’
equation, [15, sec. 12.5]. In order to have finite solutions at
� = 0 rad and at � = � rad the constant �2 must have the form
�2 = p(p + 1), with p = 0, 1, 2, . . . The solutions of Eq. (4) are
then the associated Legendre functions of first and second kind,
namely, �(1)

pq = P
q
p(cos �) and �(2)

pq = Q
q
p(cos �). When q = 0

they reduce to Legendre polynomial, Pp(cos �), and to Legendre
function of the second kind, Qp(cos �), respectively. The solutions
of Eq. (3) with �2 = p(p + 1) are given by R(1)

p = rp and
R(2)

p = r−p−1.
The potential must remain finite at every point in space.

The solution R(1)
p = rp diverges when r → ∞ and p ≥ 1.

For this reason we eliminate it outside the shell. By imposing that
the potential goes to zero when r → ∞ we can also eliminate
the solution with p = 0. Analogously we eliminate the solution
R(2)

p = r−p−1 inside the shell as it diverges when r → 0. The
function P

q
p(cos �) is finite for 0 rad ≤ � ≤ � rad. On the other

hand, Q
q
p(cos �) diverges at � = 0 rad and at � = � rad. We then

eliminate it both inside and outside the shell. The finite solutions
for the potential outside and inside the shell are then given by
the combination of all possible values of Rp(r), �pq(�) and �q(�),
respectively:

�o(r ≥ a, �, �) =
∞∑

p=0

r−(p+1)

{
ApPp(cos �) +

∞∑
q=1

[Bpq sin(q�)

+Cpq cos(q�)]Pq
p(cos �)

}
, (6)

�i(r ≤ a, �, �) =
∞∑

p=0

rp

{
DpPp(cos �) +

∞∑
q=1

[Epq sin(q�)

+Fpq cos(q�)]Pq
p(cos �)

}
. (7)

In order to obtain the coefficients Ap, Bpq, Cpq, Dp, Epq and Fpq

we must apply the boundary condition at the surface of the shell,

r = a. Expanding Eq. (1) in Fourier series, [7]:

�(a, �, �) = �A + �B

�

2�
= �A + �B

�

[ ∞∑
q=1

(−1)q−1

q
sin(q�)

]
.

(8)

As there are no terms in cos(q�) in Eq. (8) we obtain immediately
Cpq = Fpq = 0.

First we find the coefficients Ap and Bpq for the region
outside the shell (r ≥ a). Eq. (6) calculated at r = a combined
with Eq. (8) yields the following equations:

�A =
∞∑

p=0

a−(p+1)ApPp(cos �), (9)

�B

�

(−1)q−1

q
=

∞∑
p=0

a−(p+1)BpqP
q
p(cos �). (10)

To find the coefficients Ap and Bpq we multiply both sides
of Eq. (9) by P�(cos �) sin � d�, both sides of Eq. (10) by
P

q

� (cos �) sin � d�, and integrate from 0 rad to � rad. We then
utilize the orthogonality relation of Legendre polynomials, [15,
Eq. (12.104)]:∫ �

0
Pq

p(cos �)Pq

� (cos �) sin � d� = 2

2p + 1

(p + q)!

(p − q)!
	p�, (11)

where 	p� is the Kronecker delta function, which is 1 for p = q,
and 0 for p 
= q. This yields:

Ap = a�A	p0, (12)

and

Bpq = �B

�
ap+1 (−1)q−1

q

2p + 1

2

(p − q)!

(p + q)!
Ipq, (13)

where we defined:

Ipq ≡
∫ �

0
Pq

p(cos �) sin � d�. (14)

Notice that Ipq = 0 for p + q odd due to the parity
property of the associated Legendre functions, [15, p. 725].
Recurrence formulas can be used to evaluate the integrals in
Ipq, [16].

We can change the upper limit of the summation over q in
Eq. (6) from ∞ to p, because P

q
p(
) = 0 for q > p. The final

solution for the potential outside a spherical shell conducting a
steady azimuthal current is given by:

�o(r ≥ a, �, �) = �A

a

r
+ �B

2�


 ∞∑

p=1

p∑
q=1

ap+1

rp+1

(−1)q−1

q
(2p + 1)

× (p − q)!

(p + q)!
IpqP

q
p(cos �) sin(q�)

]
. (15)

It is useful to keep in mind that the summation order can be
inverted, from

∑∞
p=1

∑p

q=1 to
∑∞

q=1

∑∞
p=q.

For the region far from the origin, r � a, the two most relevant
terms of Eq. (15) are:

�o(r � a, �, �) ≈ �A

a

r
+ �B

3a2

8r2
sin � sin �. (16)

This can be understood as the potential of a point charge
qsphere = 4��0�Aa at the center of the shell plus the potential of
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an electric dipole of moment �psphere located at the origin with
�psphere = (3��0�Ba2/2)ŷ, namely:

�o(r � a, �, �) = qsphere

4��0r
+ �psphere · �r

4��0r3
. (17)

Here �0 = 8.85 × 10−12 C2N−1 m−2 is the permittivity of free
space.

The solution for the potential inside the sphere (r ≤ a), �i, can
be found by changing (a/r)p+1 → (r/a)p, [17, p. 91]:

�i(r ≤ a, �, �) = �A + �B

2�

[ ∞∑
p=1

p∑
q=1

rp

ap

(−1)q−1

q
(2p + 1)

× (p − q)!

(p + q)!
IpqP

q
p(cos �) sin(q�)

]
, (18)

where Ipq is given by Eq. (14).
Utilizing that (as can be seen multiplying both sides of Eq. (19)

by P
q

� (cos �) sin � d�, integrating from � = 0 rad to � = � rad and
finally applying Eqs. (14), (13) and (8)):

∞∑
p=1

p∑
q=1

(−1)q−1

q
(2p + 1)

(p − q)!

(p + q)!
IpqP

q
p(cos �) sin(q�) = �,

(19)

we obtain from Eqs. (15) and (18) in the limit r → a that
�o(a, �, �) = �i(a, �, �) = �A + �B�/2�, as expected.

4. Electric field and surface charges

The electric field in spherical coordinates is given by:

�E = −∇� = −��

�r
r̂ − 1

r

��

��
�̂ − 1

r sin �

��

��
�̂. (20)

This yields the following components outside and inside the shell,
respectively:

Er,o = �A

a

r2
+ �B

2�

[ ∞∑
p=1

p∑
q=1

ap+1

rp+2

(−1)q−1

q
(p + 1)(2p + 1)

× (p − q)!

(p + q)!
IpqP

q
p(cos �) sin(q�)

]
, (21)

E�,o = �B

2�

[ ∞∑
p=1

p∑
q=1

ap+1

rp+2

(−1)q−1

q
(2p + 1)

× (p − q)!

(p + q)!
IpqP

q
p

′(cos �) sin � sin(q�)

]
, (22)

E�,o = −�B

2�

[ ∞∑
p=1

p∑
q=1

ap+1

rp+2
(−1)q−1(2p + 1)

× (p − q)!

(p + q)!
Ipq

P
q
p(cos �)

sin �
cos(q�)

]
, (23)

Er,i = −�B

2�

[ ∞∑
p=1

p∑
q=1

rp−1

ap

(−1)q−1

q
p(2p + 1)

× (p − q)!

(p + q)!
IpqP

q
p(cos �) sin(q�)

]
, (24)

E�,i = �B

2�

[ ∞∑
p=1

p∑
q=1

rp−1

ap

(−1)q−1

q
(2p + 1)

× (p − q)!

(p + q)!
IpqP

q
p

′(cos �) sin � sin(q�)

]
, (25)

E�,i = −�B

2�

[ ∞∑
p=1

p∑
q=1

rp−1

ap
(−1)q−1(2p + 1)

× (p − q)!

(p + q)!
Ipq

P
q
p(cos �)

sin �
cos(q�)

]
. (26)

In Eqs. (22) and (25) P
q
p

′(
) is the derivative of the associated
Legendre function P

q
p(
) relative to its argument 
.

From Eqs. (22), (25) and (19) we obtain in the limit r → a

that:

E�,o(a, �, �) = E�,i(a, �, �)

= �B

2�a

[ ∞∑
p=1

p∑
q=1

(−1)q−1

q
(2p + 1)

× (p − q)!

(p + q)!
IpqP

q
p

′(cos �) sin � sin(q�)

]

= �B

2�a

d

d�

[ ∞∑
p=1

p∑
q=1

(−1)q−1

q
(2p + 1)

(p − q)!

(p + q)!

×IpqP
q
p(cos �) sin(q�)

]

= �B

2�a

d

d�
� = 0. (27)

From Eqs. (23), (26) and (19) we obtain in the limit r = a that:

E�,o(a, �, �) = E�,i(a, �, �)

= − �B

2�a sin �

[ ∞∑
p=1

p∑
q=1

(−1)q−1(2p + 1)
(p − q)!

(p + q)!

×IpqP
q
p(cos �) cos(q�)

]

= − �B

2�a sin �

d

d�

[ ∞∑
p=1

p∑
q=1

(−1)q−1

q
(2p + 1)

× (p − q)!

(p + q)!
IpqP

q
p(cos �) sin(q�)

]

= − �B

2�a sin �

d

d�
�

= − �B

2�a sin �
. (28)

Eq. (27) indicates that the electric field and surface current
density at the surface of the shell are only in the azimuthal
direction, as expected from Eq. (1). The length of an azimuthal
circle at the polar angle � along the surface of the shell is given by
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2�a sin �. Eq. (28) indicates that E�(a, �, �) at each polar angle
� is given by the total electromotive force �B over the length of
the corresponding circuit at the polar angle �, as expected. By
Ohm’s law the same inverse proportionality with sin � will be
valid for the surface current density.

The surface charge distributions outside and inside the shell
are related to the electric field through Gauss’ law:

�o(a, �, �) = lim
r→a

�0 �Eo(r, �, �) · r̂

= �0

{
�A

a
+ �B

2�a

∞∑
p=1

[
p∑

q=1

(−1)q−1

q
(p + 1)(2p + 1)

× (p − q)!

(p + q)!
IpqP

q
p(cos �) sin(q�)

]}
, (29)

�i(a, �, �) = − lim
r→a

�0 �Ei(r, �, �) · r̂

= �0
�B

2�a

[ ∞∑
p=1

p∑
q=1

(−1)q−1

q
p(2p + 1)

× (p − q)!

(p + q)!
IpqP

q
p(cos �) sin(q�)

]
. (30)

The total surface charge density is the sum of these two
expressions, namely:

�t = �o + �i. (31)

In Fig. 3 we plot the equipotentials, Eqs. (15) and (18),
in the plane z = 0 of the spherical shell with �A = 0 (no net
charge in the shell). The current is in the clockwise direction,
the bold circle represents the shell. The electric field lines which
are perpendicular to these equipotentials are also contained in
the plane z = 0. This can be seen noting that for � = �/2 rad
we have P

q
p

′(cos �) = 0 for p + q even (see [15, p. 733] combined
with the recurrence relation (12.87) of [15]). Using the property
that Ipq is null for p + q odd, we have that E� = 0 for both r < a

and r > a.

Fig. 3. Equipotentials in the plane z = 0 obtained from Eqs. (15) and (18).
The resistive spherical shell carries a clockwise steady current. The bold
circle represents the shell. The projection of the battery is represented by the
bold straight line going from x = −a to x = 0. The electric field has no z

component so the electric field lines are orthogonal to the equipotentials in this
plane.

Fig. 4. Equipotentials in the plane x = 0 of the spherical shell with �A = 0. The
bold circle represents the shell. The current enters the plane of the paper at the left
side of the circle and leaves the paper at the right side. We have used Eqs. (15)
and (18).

t t

Fig. 5. Total surface charge density �t(�) as a function of the azimuthal angle � in
the equatorial plane z = 0 of a resistive spherical shell carrying a steady azimuthal
current, normalized by its value at � = �/4 rad. We utilized Eqs. (29) to (31) with
the summation in p going from p = 1 to p = 100.

In Fig. 4 we plot the equipotentials in the plane x = 0 obtained
from Eqs. (15) and (18). The current is entering the plane of
the paper at the left side of the bold circle and leaving the plane
of the paper at the right side. We utilized �A = 0. In this case the
electric field lines are not contained in this plane (E� or Ex are
not null in the entire plane).

In Fig. 5 we plot the total surface charge density �t in the
equatorial plane as a function of the azimuthal angle�, normalized
by the value of �t at � = �/4 rad. The presence of the term
(−1)q sin(q�) in Eqs. (29) and (30) causes a rapid variation in
the numerical calculation of �t . This can be seen in the oscillation
of Fig. 5.

The same effect can be observed in Heald’s analysis of an
infinite resistive cylindrical shell of radius a carrying a steady
azimuthal current, [7]. Beginning with a potential at the surface
of the shell given by Eq. (1) with �A = 0 he obtained the total
surface charge density along the shell as given by:

�cylinder
t (a, �, z) = �0�B

�a
tan

�

2
. (32)

This solution expanded in Fourier series is given by:

�cylinder
t (a, �, z) = 2�0�B

�a

∞∑
q=1

(−1)q−1 sin(q�). (33)
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Fig. 6. Total surface charge density �t of an infinite resistive cylindrical shell
carrying a steady azimuthal current as a function of the angle �, [7]. The bold line
is a plot of the closed form solution of �t(�), Eq. (32), while the oscillatory line
is a plot of �t(�) expressed in a Fourier series, Eq. (33).

In Fig. 6 we plot these two expressions. The bold line is given by
Eq. (32), while the oscillating curve is a plot of Eq. (33) including
100 terms of the summation. Increasing the number of terms does
not improve significantly the plot nor decrease the amplitude of
oscillation around each value of �. One way of smoothing out this
oscillation is to consider at each angle �i the average value of �t ,
�t(�i), namely:

�t(�i) ≡ 1

��

∫ �i+��/2

�i−��/2
�t(�) d�. (34)

Fig. 7 is a plot of Eq. (32) overlaid on a plot of �t(�i) obtained
from Eqs. (33) and (34). In this case we considered a whole
oscillation of �t(�i) around each angle �i. The plots coincided
with one another (the two curves are indistinguishable in Fig. 7),
indicating the correctness of this averaging procedure.

The oscillations on the plot of �t(�) shown in Fig. 5
probably occur because �t is proportional to the radial
component of the electric field that comes from differentiating
a Fourier series, Eqs. (15) and (18). And sometimes there are
convergence problems with the differentiation of Fourier series,
[15, Section 14.4]. By raising the number of terms in the Fourier
series of �t , Eq. (31), we increase only the number of oscillations
in the curve. Neither the wrapping of the oscillation nor the
wiggles at ±�/2 rad change significantly with a greater number
of terms. We also investigated if these oscillations might arise
from the numerical calculation of the coefficients Ipq given by
Eq. (14). The first approach was to utilize the associated Legendre

Fig. 7. Total surface charge density � of Heald, [7]. The summation that appears
as an oscillation in Fig. 6, given by Eq. (33), is smoothed out by taking the mean
value for each point of its surroundings (in this case, a whole oscillation around
each point), utilizing Eq. (34). The closed analytical form, Eq. (32), is overlaid
on it. Both plots coincided with one another, indicating the correctness of this
averaging procedure.

Fig. 8. Smoothed out plot of Fig. 5. We have used Eqs. (31) and (34).

functions directly to evaluate these definite integrals. The second
approach was to utilize the recurrence formulas for these functions
as developed by Leung, [16], with the initial values evaluated
analytically. Although this last approach made the numerical
calculations much faster than the first one, the final results and
oscillations were the same in both cases.

We did not succeed in putting the series solutions given by
Eqs. (29) and (30) in closed analytical forms. But utilizing the
averaging procedure above yielded Fig. 8. The wiggles around
� = ±�/2 rad should be due to the numerical approximation
methods mentioned in the previous paragraph. These wiggles
should not have any real physical significance, arising only from
the mathematical treatment of the problem, although we were
not able to reduce the size of the wiggles below what was
shown in Fig. 8. The real curve should be smooth like Fig. 7.
Fig. 8 indicates that �t(�) is linear with � far from the battery
(i.e., around� = 0 rad), diverging close to it (when� → ±� rad).
This is the important physical result.

It should be noted that the resistivity of the material and
the surface current involved in the problem are not explicitly
mentioned in this treatment. However, we used that the conductor
is ohmic, so that Ohm’s law applies. That is, �� = RI, where
�� is the potential difference, R is the resistance and I is
the current. Given the potential difference �� = �B between
the terminals of the battery and using the microscopic Ohm’s
law, �J = �E/�R, where �J is the current density and �R is the
resistivity of the material, we have that the current density
�J is inversely proportional to the resistivity �R, while �E and
the surface charge densities �o and �i are independent of this
resistivity.

5. Conclusion

We obtained the total surface charge density, �t , potential, �,
and electric field, �E, outside and inside a resistive spherical shell
carrying a steady azimuthal current. We plotted the total surface
charge density �t as a function of the azimuthal angle �. We
obtained that �t is linear with � far from the battery, diverging to
infinity close to it. At great distances from the spherical shell the
potential is that of a point charge plus that of an electric dipole,
Eq. (17). The total charge q and dipole moment �p of this system
is given by Eq. (17). Alternatively, they can also be found by
q = ∫∫

�t da and �p = ∫∫
�t �r da, where da is an area element and

the integration is over the surface of the system. Both approaches
agree with one another, as expected.
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