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ABSTRACT

The preopagation of the Electromagnetic Waves in a
Gylindrical Waveguide filled with uniform magnetized plasma is
studied by the warm plasma theory. Dispersion relations are
obtained for several situations, such as, zero and finite
temperature, and zero, finite and infinite magnetic field. It is
found that the waves can not be separated into transverse magnetie
and trapnsverse electric modes; only hybrid mcdes are preopagated.
For the case of finite magnetic field the Faraday's rotation is

vbtained.
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I - Intreduction

Plasma heating and the generation of non inductive
curtents by radio frequency waves are very important topies in
the Termonuclear Controlled Fusion research. In particular,
plasma heating and torveidal ¢urrent generatiom in tokamakg by
high—power electromagnetic waves may hecome the definitive
solution te the termonuclear contrelled fusion ﬁroblem fil te
[4]. The researchs in the radio~frequency heating of rtoroidal
plasmas have been very-great {5] and {&]. When the vadio-frequency
wavelength is about the tokamak tranmsversal dimensions then it is
necessary to make z global treatmant of the problem and not a
local selution as it is usually donme in big tokamaks [7]. Usually
the propagation of electromagnetic waves in plasma—-filled
eylindrical waveguides have heen studied according to cold plasma
theory {81 to [10]. Wait [11] in 1968 included the electron .
temperature in a hydrowagnetic formulation, which, with
Maxwell's equations, gives the compressible plasma theory with
which it is possible to éexplain some facts that the cold plasma
theory could not.

The 2im of this papex is to apply this compressible
plasma theory to the Trivelpiece and Gould problem, {121 and
[13], in the case of the plaswma temperature he T 3 not using the
usual siwmplificatrions, as it was dome by Ghosh & Pal [14] . The
waveguide which limits the plasma is considered te be a perfect
conductor of cirecular ecross section and the analysed wave
prepagations occur along the suide axis. The electroctromagnetic

wave and plasma general equations are presented together with the
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boundary conditions in the plasma conductor interface and the
warm plasma dielectric constant is alse attained. This is no more
the usual scalar matrix as in the cold plaswa case or in the
infinite plasma case {where the plane wave propagation, [15], is
possible} and new it fermally rests as a matrix whose elements
are partial derivatives which will be applied in the electric
field components., In this way it is attained the dispersion
relations in several distinct szituations that ineclude: null
temperature or finite and arbitrary temperature To; null external
magnetic field, or of value tending te infinity, or of fimite aund
arbitrary wvalue Bo' In the general case (T0 £ 0 and Bc # 0 but
both finite) it is attained a differential equation of the sixth
order applied to the electric field longitudinal component, In
the literature the results to this case are fourth order
differential equations in Ez due to the simplifications which
were done in the calculations of these authors [ 7] and [14]. THB
other result of this work is that the dispersion relatious
attained are very general and they ineclude the cases in which the
perturbation does not show azimuthal symmetry {(that is, the
soluctions will depend on n, where it is supposed an e—ine
perturbation),

In section II we will show the basie equariens which
desecribe the plasma and their interactions with the electromagnetic
wave and the plasma dielecctric temsor will be gttained too. In
section III we will attain the equations for the transversal
components of the electric and magnetic fields, E and ﬁ, in terms
of the longitudinal components, Ez and Hz. In section IV we will

attain the equations for Ez and Hz and also the houndary conditions
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in the plasma-c¢onduetor interface, In section V we will show the
solutions te these equations and alse the dispersion relations
in several sitwations, a2ll of them in 2 gemneral and explicit
form. Throughout the work the Intermational System of Units will

be used.

II. The Basic Equations and the Flasma Dielectric Tensox

The Trivelpiece and Geuld problem [12] will be
studied ineluding now the plasma tewmperature, as it was derived
by wait [11], and the presence of a constant external magnetic
field. The plasma is treated as an adjabatic fluid in which the
ions are at rest. This approximaticn is valid in the high-frequency
;imit, w = L and w & wpi’ when the ions movement is then
completely worthless. In this way the egquations which describe
the system take the form (eguatiom of continuiry, egquation of
moment transfer, Faraday's equation, Ampere's equation and the

equation of state, respectively):
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p =1 k,T = an (5)
where n, :, m, -e, ﬁ, i, ¥ 5 E s Bs kB’ T, a, Y are, respectively,
the fluid density, the fluid welocity, electron mass, electron
charge, electric field, magnetic field, vacuum magnetic
permeability, vacuvum dielectric constant, plasma pressure,
Boltzmann's ceonstant, electron temperature, a proportiomnality
constant and the ratio of specific heats.

To solve these equations a linearization process is
used. Considering that in this case there is the presence of a
constant extermnal magretic field %0 and observing that in this
work the equilibrium situation is stationary, that is, :o(;] =0,
tnen the fellowing equations are attained for the first order

terms:

ivp, = o m ) V.ul (6)

; - _ e = S -+

ivn mu, = nDE{El+u1xBB) + Vpl (7)
-

VxE| = dwn H (8)

- n eu (9)
(o]

-+ A +
Vxd, = —-iwe E
a 1

1
where U is the sound wave veloeity in an adiabatic plasma:

T = () (10)

Thege are the basic equation which describe the possible
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phenomena in this model.
The next step is to obtain the plasma dielectrie

tensor. From (6}, (7) and (9) we obtain:

. 2

-+ e ~ =+ = u -

= - X2 SEyew
uy — (E1+ulx30 wz V( .El)) (i1
P
where Ve is the electron plasma frequency given by:
n_e 1/2
v, = (e {12}

- I3 - n - -
Using the fact that B0 is in the direction of the guide wave

axis, z axis of the coordinate system, and wvsing (11} and (5}

then we obtain
(13}

where
2
. w 2 2
Eo me - Tal e
o W wo—w dr r dr
nw
N S 2 14
7 7= (r 37 + 1311 (14)
T Tw
=+ ig W nw
=+ [e] 4] 2 1 4 1 I
@y, = (v S-aflz -5 a3
£712 wz_wi P W r dr r I
. 2
—_; lEUUk{d_nwc (1_6)
2 2 dr v
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where we supposad a wave

where Ve is the electron

.

3

£
t

15 then the warm plasm dielectric tensor.

propagation in the form El(kz—ns-wt)

cyclotron frequency defined by:

(23

It is important ¢

and

)

4]

observe that it returmns to be the usual cold plasma tensor in the

null

temperature case (when T
o

This dielectrie

0 aund U 0).

tensor will be used to obtain the dispersien relationm in che

general case. It will be

more useful in the case where the
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wavelength is about the transversal dimensions of the toroid,
that is, A ® 2R (where R is the guide radiusg). In this case it
is no more possible to use the plane-wave approxisation and then
the spatial derivatives of the electric fleld compeonents become

af fundamental importance.

III. Equations for the Transversal Components of the Electric

and Magnetic Flelds

Using a standard technigque (see, for example, f17]

or [14]) we obtain from equations (6) te (9):

GEr = ns,Ez+nB Hz+C, gfzwl :‘:z (24}
iGEe=nEriEz+n2—Hz+rAlgE%+rBl gz (25)
GH_ = na,Ez + uB,Hz + C, %%—z— + D, gfz (26)
iGH=nf§%Ez+nErsz+rA2§%+rBzgi}z (27
Ju, = a;E_ + biE, + C Bz + & :fz (28)
Juy = —blEr + 3129 + 1 ;& c,Ez # i;i dl 352 (29)
u, = C,Ez . (30)

where in these equations we have
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(43)

(44}

(45)

(46)

(47)

(48)

(49)

(50}

From egquations {24) to (30} it is observed thar all

components Er, Ee, Hr, HB’ Uos Ug, U
of the longitudinal components of the
fields. This fact reduces the problem

te {9) to the attainment of Ez{r) and

are obtalned ounly in terms
electric and magnetic
of zolving equatiocuns (6]

Bz{r). In the next section

we will obrtain the equations satisfied by these twe components,

while in the fifth section it will be

attained the solutions of

these equations and then the dispersion relation.



168

IV. Equations for the Lonmgitudinal Components of the Electric and

Magnetic Fields; Boundary Conditions

From equations (6) te {(9) and from manipulations of
them (with the rotacional, gradient and divergent operators) we

ebtain the following equations:

2
. e W 2 2 W
*2 2 . _. o= _ kU 2 2 2 7p
(Vi+kdEz = -1 2= [Q 2 Y]+ kD) + xk wzl Ez
{51)
(§2+k2)ﬁ S [xk§2 + L (-I—J-E 32 + kz)($2 +
TR 2 IR L7 5k T e’ Y1
wz—wz kZUz
+ ——-—22 - 35 3] E=z (523}
c c

These egquations are important because they show that
the longitudinal components of the electric and magnetic fields
are joined so that the transverse electric, TE, and transverse
magnetic, TM, modes can not propagate into the guide. From (51)
we obtain the egquation for Hz when B0 = 0 and alsoc the egquation

for Ez when B+ =2

(53)

il
[}

(ﬁf + kz)Hz

{(54)

1]
=

(ﬁf + ké)Ez

where
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2 (Cz—Uz)kzw2 112 '
K= (kv ————F) (55)

Cz(wz—szzJ

{51) together with (52) yields:

2
ig U c
we = - —2—— {(¥}
kw w
2
2 2 w
U 2 =
+ O S - DI - 5 la -
¢ U U
2.2 w
- ka )(33 + ki) + xkz ;%]}Ez (56)

From this equation we obtain the equation for Ez when

B =0
o
2 .2, w2 2 B
<§l+ke)(vl+ks}sz =0 57
where
22 1/2
W oew 2
ks = (__E‘E - k) (58)
U

2 :
Applying the operator ($E+ke) on both sides of (56)

and using (51) it finally ylelds:

26 24 2 _
(¥ eb, Vb, ¥ + bEz = 0 €59)

where
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wz 2
2 z _ Ve w2
bl = Zke - ks - ("T kD) (60)
W U
w? 2
4 2.2 _ ¢ 2 200w 2
by = kg ¥ 2k kg P [(ke+kf)(—f k7)o«
w u
2 2
2 2 -
a2 S (61)
L)
wz 2 2 2
_ o 62 _ e 2 2w 2 22 ¢ ~U
b3 = keks 7 kf [ke(—z' kET1+k T-I'P —'2'—2—] (62)
w U e U

Equation (5%) together with equation (56) are the
fundamental equations for rhis system and they are valid in the
cases in which the temperature and magnetic field have any finite
value {(theugh not a null value). This result is more genéral than
that obtained by Ghosh and Pal, [14)], becauvse these authors did
somée simplifications to get the final result and themn they
attzined only & fourth order equatien for Ez. The same can be
said about the works of Gore and Lashinsky, [ 7] and of other
authors whiech worked with the cold plasma theory (see Stizx, [16]),
because then ounly 2 fourth order eguation for Ez is ebrained.

As the conductor is comsidered to have a null

resistivity the boundary conditions are (see Jacksen, [17]1):

(62)

[]
(=]

Ez (R}

(63)

o
o

Ea(R)

Hr{R) = 0 (64)
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ur(R) =0 (65)

where R is the guide radius. &4s a last bouadary condition the
dielectric tensor of the plasma is used and the plasma is treated
as a dispersive dielectric without free charges, using & treatment

similar to that of Trivelpiece, [13]. Then we obtain:

(e, -E;) (R) =0 ' (66)

V. Dispersion Relatioms

¥.1. Case in which To = 0 and Bo =0

{57) yields, in the limit in which To + 0z
2 2 2 .2 _
(w ~wp)(3l+ke}zz =0 (67)

The first solution of (67) is w = wp, which does not
imply im propagation of energy because the group velecity of this

wave L1s mull., The second solution is
= 68
Ez(r) ﬁan(rke) (68)

where Jn(x} is a Bessel function of n order, and AH in an arbitrary
constant, Applying the boundary condition (62) to this solution,

it yields the follewing dispersion relatiom:

2

P 1/2
v = (2 c? vt . w;) (69)
R
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where pnY is a ¥ order reot of the n order Bessel functiomn. The

. 3 i *k
graphic of this dispersion relation is shown in figure 1.

w 4
__#_-f’/ 74
//
</
Y4
lﬂF I
/
/
o ¥V
Figure 1: Dispersion Relation when T, = 0 and B, = ¢
V.2, Casze in which To = @ and Bo -+ @

The solution of (65) in the limir inm which To + O is:

Ez = & J (xk,) {70}
n o i
where
wz_wp 222 1/2
k, = (—5 . 5 ) {71}
W c

Applying the boundary condition {62) it yields two possible

solutions:

1/2 172
b o+ {bz—z.kzczwz)

w o= ( 5 B (72)

where
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b = kzcz +ows o+ BY (73)

¢

k

Figure 2: Dispersion Relation when I, =0 and B, =
The result (70) is the same that was obtaimed by
Trivelpiece and Geuld, [12], in their study of cold plasmas. Here

this result appears as a particulaxr case of 2 more general study.

V.3. Case in whiech To has any Finite Value and Bo +> =

In this case we have (54} which sclution Is:
Bz = Aan(rkm) (74}

4pplying the boundary condition (62) it yields two possible
solutions:
172 Lfz2

£ ox (fz—ﬁkzcz(kzuz-l-wz'l-pi 2 /r%y)
p_ oy (75)

w o= {
2
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where

2 2
e

P
£ = kz(c2+U2)+u§+~EIE&_ (76)
R

The soluriom w_ is in the region

22,172

w > (kZU +wp) ;1 w ¥ ke {77}

The solution w_ is in the regiomn

2. 2,172

w < (kY ) 3 w < ke ; w > LU (78)

The graphic of thi: dispersion relation is shown in figure 3.

W

Figure 3: Dispersion Relation when 'I‘O has any Finite Value and

B F
a

V.4, Case in whieh To has any Finite Value and Bo =0

The expressions for this ease are {53) and (57} and

the soluticns of these eguations are in the feorm:
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Ez = Aann(rke) + Banﬂ(rks) (79)
Hz = C
z 1an{rke) (80)
i . 2 2
in the Tegion kS > 0 and kT > 0;
[
Ez = Aznln(rkB; + B, J {rk) (81
Hz = Eann(rke j (82}

2

in the region ki > 0 and kz < 0; and

Ez = &_ 1 (rk 3 + B
o n e

3 3nIu(rks ¥ {(83)

2 2z

Hz = C nIn(rkE ) {84)

3 2

in the rezgion ki < 0 amnd ki < 0, where

2 wz—w 1/2
(x* - —55) (85)
2 C
2 wz-wz 1/2
ko= (k- — D) (86)
Sq U

"
L}

and where In(x) iz the modified Bessel funetion of n order.
Applying (62}, (63) and (65} in these solutions we

obtain the follewing dispersion relations:
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2 3 1 r 2 ’
w kskeJn(Rke)Jn(Rks)Jn(Rke)+(kwpke) .

2

2 2 2
now —w v 2
Jn(Rks)Jn(Rke) = 0 (87}

'2
- T (RR )T (K ) - 2

. 2
in the region ko » 0 and ki > 05
w2k 12,1 (RE YI'(RR _JI'(Rk ,) -
s €2’n e’ n s "n a2

2 2
- (kwpkez) Jn(Rks)In (Rkez) +

2,2 2,2 )
R T 2
e — Jn(Rks)In(Rkez} =0 {88)
c R
. - 2 2
in the region ks > 0 and ke < 0; and
wlk__ k2 1 (Rk_)T'(Rk_,)I'(Rk_.)
s2 g2’ 0 e’ "o 527 n e
- (kw k )21 (Rk )Itz(Rk Y o+
wp 432 hid 52 n e
nz(wz—wi)wz P
+ 2R2 In(RkSZ)In(RkeZ) =0 (89)
c

in the region ki < 0 amnd kj < 0, In all these equations J;(x) and
I;(x) mean derivarive in relation to the argument.

Azakami, Warita and Aye Thein, [18], obtained a
dispersion relation for the cazse n = 0 in a similar geometry that
coincides with the results {(§7) to (89) when n is equal to zero,
Mareover it is observed that as the dispersion relations present

only gquadratie terms im n, then the Faraday's rotatien is not
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foreseen in the case in which the warm plasma completelly fills
the guide and whea B_ = 0, The graphic of this dispersion relation
is shown in figure 4;:

o vy
~¥
Wi
3

! %ﬁ/
wll &
V4
!/
f,/

0

Figure 4: Dispersion Relation when T, has any Finite Value and

when B =0
o

V.5, Case imn which I, = 0 and B_ has any Finite Value

The case now analised is that of a cold plasma in
which there is the presenmce of a constant, external and axial
magnetic field. In this case Ez is obtained from (5%9) in .he
limit in which 'I‘D -+ 0, while Hz is obtalined frowm {(56) in the

same limit, which yields:

. 2 2 2z
1€ & W W
Hze = - —2— {(wz—wzhwz)ﬁz + —Fb [Wz(w2 -

F p e 1 22

ky w W c

c P
- w?—kzcz—wz) + wzkzcz]}Ez (90)
F [ [

(91)

il
=3

2 2. +2 2
($l+ka)(vl+kb)ﬁz
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where

1/2
2 A-(3B)
ka S e— (92}
1/2
2 _ A+(B}
kb = {93)

A = sz(wz—wi"kzcz)(wz—wi—kzc2)—wfw§(w2+k2c2)
(94}
4 2 2 2 2 2.2 222 2 2
B = wpwc[wc(w ST et T A T kT e T {w —wp)] {953
2 2 2 2
D = 2¢%w (wz—wp-wc) (96)
The solution of (91) is, in general (accepting
complex arguments):
Ex = Aan(rka) + anu(rkb) (97)

Using the boundary conditions (62), {(63) and (65) we obtain then

the following dispersion relation:

2.2 2 .
vk e R[kaJn(Rkb}Jn(Rka)

1/2
¥ - . B =
= Ky J_(Rk YIS (Rl )] -nd_(Rk }J (RK. 3 . 7, 0 (98)
P

[

This is a very general resvlt because it is valid for
any integer n and it is important to note that im this relation »

appear with power one. This indicates that this model foresecs the
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appearance of Faraday's rotation in the case in which the plasma
completely £ills the guide and when there is the presence of a
finite and axial magnetie field, This is due to the fact that the
phase velocity of the wave is different in the case in which

n = +N and in which n = -N. This is a generalization of the
Irivelpiece and Gould results, [12], because now the magnetic
field ﬁl was considered and then the obtaimed solution Is wvalid

also for fast waves, that is, when the phase velocity is mnear the

light velocity.

V.6. Case in which TlD has any Finite Value and Bn has any Finite

Value

In this case the equations that rule the phencmena
in all its generality are {(56) and (5%). Through an algebraic
method we can obtain the roots of a cubic¢ equation, as in Smirmnev,

[15], and it is pessible to write {S9) as:
+2 2, =2 2. =2 2
(VI+E]I(V +k3) (V +k3)Ez = O (99)

where k_, kz and k3 are attained in function of the coefficients

1+ b2 and b3 of equation (59). The general solution of (5%} then

rests in the form (accepting complex arguments}:

b

Ez = Aan(rkl)+Ean(rk2)+Can(rk3) {100)

Using the boundary counditions (62), (63}, (653) and (66) then we

obtain the following dispersion relation for the axially symmetric
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case (that

%23

where

ij

is, when n 0):

JO(Rkl)+u31JO(sz)+a12Jo(Rk3) 4]

= Rk.k‘[wz(P.ﬁ,-P,n.)+Usz(n.+P.-ﬂ.
1] [+] J o1 L] b 1 h]
2 2 _ ' " 2
U kikjnj(ﬂi Pi)JD(RRi)Jo(Rkj) Uk
IRk )T (Rk ) +RUZK k.n,(n.-P.) .
1] 1 ] 3 13 3 1 1
2.3

J'(Rk,}IVV(RK,)-RUKRIL .M. {N.-P.)
o 1 [+ ] 131 ] |

[ ]

+Pj)] +

pd

k. .n.(n.-P.)
1] il bl J)

(101)

{102)

(103}

{104)

{1053

(1086}

(107)

L]
- T, (Rki)Jo(Rkj)
= w -y —wz—Hi
P g2
_ _ Go . (x2-x2)
Yhw ©
P
k(K> e K2y + vk a2ty - (a-k2y (b-k %)
- 1 - - - -
e w2 f vk m Yczk m m
cZ-y?
2
>
4 c &
- ke T2 kf
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s+(s2u4e) /2
(108)
2
2 1/2
_ s={s"=41¢)
b = (1093
2
w 2
2 2 w 2
s =kl kD -5 (5 - k%) (110)
w 4]
wz_wz 2 wz 2 kzuz
t=—— k (5 - k) + —F {111
e 2
W o H]

(101) is then the general dispersien relation for
this model. This result is wmuch more complex than the previous
cnes, even in this case in which n = 0. In special it is observed
that the dispersion relariom is obrained from the resolution of 2
sixth order differential equation, while in the ﬁrevious work of
Chosh and Pal, [ 14}, they used a fourth order differential

equation for Ez. This shows the general treatment of this work.

¥I. Conclusion

In this work it was used a fluid plaswa model in which
only the electrons movement was considered {approximarion §alid"
when w & LA and w ¥ wpi) and then it was zpplied a linearization
process to the adiabatic fluid equations. Then the dielectric
tensor of 2 warm plasma in the presence of a constant extermal
magnetic field was obtained.

Applying the boundary conditions we ohtained the
dispersion relations in several situations: 1 - Null remperature
and null magnetic field; 2 - MNull temperature and infinite

magnetiec field; 3 - Finite temperature and infinite magnetic
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field; 4 - Finite temperature and null magnetie field
(generalization fer any m of the results cbtained by Azakami,
Narita and Aye Thein, [18]);5 - Null temperature and finite
magnetic field (where we cobtained the Faraday's rotation):

6 .- Finite temperature and finite magnetic field, when the
dispersion relation is obtained from a sixth order differential

equation for Ez. This last case is a genevalization of all the

previous ones.

This work was supported by FAPESF znd CHFPq.

**  Applying also {63) and (65) to the case of null temperature
and null external magnetic field, it can be seen that no
propagation is possible. The dispersion relation of this case

reduces then to the curve w = w_.
P
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