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RESUMEN 
 

En este trabajo consideramos una capa resistiva cilíndrica que transporta una corriente constante. Una batería genera la 
corriente en el centro del conductor. Estudiamos el comportamiento del potencial, campo eléctrico y cargas superficiales 
cerca de la batería. 
 
Palabras clave: Potencial eléctrico, potencial cerca de la batería, cargas superficiales. 
 
 

ABSTRACT 
 

In this work we consider a long, resistive cylindrical shell carrying a steady current. A battery in the middle of the wire 
generates the current. We study the behavior of the potential, electric field and surface charges close to the battery. 
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INTRODUCTION 
 
There has been recently a great interest in the electric 
field outside resistive conductors carrying steady 
currents and a number of problems have been published 
in the literature: coaxial cables, [14], [8], [13], [1] and 
[2]; cylindrical shell with azimuthal current, [12], [10] 
and [16]; planes, [13]; twin leads, [15] and [4]; a long 
strip, [9]; and a long straight cylindrical conductor with 
longitudinal current, [5]. In this last case it has only 
been considered the region far from the battery. It was 
then found that the potential and surface charges vary 
linearly with the longitudinal component. Here we 
analyse the situation close to the battery in order to 
understand the behaviour of surface charges at a 
discontinuity in the potential. 
 
We consider a hollow cylindrical shell of radius a  and 
length 

�
 with a>>

�
. The shell has an uniform 

resistivity and carries a steady current I  along the 
positive z  direction which coincides with its axis. We 
suppose an idealized linear battery at ( ) ( )0,,,, ϕϕρ az = , 
see Fig. 1, in analogy with Heald's treatment which 
considered a “line” battery at ( ) ( )zaz ,,,, πϕρ =  driving 
current azimuthally in a uniform cylindrical resistive 

sheet, [10]. We suppose a vacuum inside and outside the 
shell. 

 
Fig. 1  A resistive cylindrical shell of radius a  and 

length �  carrying a steady current in the z  
direction. There is a linear battery in 0=z  
generating a difference of potential of 02φ . 

 
Ohm's law can be written as EgJ

��
= , where 

( )zatIJ ˆ2/ π=
�

 is the volume current density 
( at << being the thickness of the shell), g  the 

conductivity of the wire and E
�

 the driving electric 
field. We are supposing g  and J

�
 as constants 

independent of ϕ , z  and time. Therefore the same 
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must be true for E
�

. As φ−∇=E
�

, φ  being the 
potential, this implies that φ  along the shell ( a=ρ ) 
must be a linear function of z . Supposing that the 
battery generates a potential difference of 02φ  between 

its two terminals located at −→ 0z  and +→ 0z , the 
linear potential at a=ρ  can be written as (Fig. 2): 
 
 ( ) ( ) 02

0,, φφφφφϕφ −++−=< LR
LR

z
za �  ( )1  

 ( ) ( ) 02
0,, φφφφφϕφ +++−=> LR

LR
z

za �  ( )2  

 
 

 
 

Fig. 2 Potential along the shell. 
 
Our goal is to find the potential and electric field at 

a<ρ  and at a>ρ  given the boundary conditions 
above. Then we can obtain the surface charge densities 
at the inner and outer surfaces of the shell. 
 
This problem can be separated in two parts: a) the 
electrostatic situation of a cylindrical shell separated at 

0=z  by a thin insulating barrier held at 0φ−  for 0<z  
and at 0φ  for 0>z ; and b) a continuous linear potential 

( ) ( ) ( ) 2,, LRLR zza φφφφϕφ ++−=
�

 for 
22

��
≤≤− z , see Fig. 3. The first part has been 

partially solved in [7] and the second one in [5]. Our 
intention is to deepen these studies in order to 
understand the behaviour close to the battery. 
 

 
 

 
 

Fig. 3   The potential of Fig. 2 can be decomposed in 
two parts: the shell held at constant but 
discontinuous potentials (dashed lines), and the 
shell with a continuous potential varying 
linearly with the longitudinal coordinate 
(continuous line). 

 
 

ELECTROSTATIC SOLUTION OF THE 
CYLINDRICAL SHELL WITH IS TWO HALVES 

HELD AT CONSTANT AND OPPOSITE 
POTENTIALS 

 
Suppose two semi-infinite cylindrical shells, located at 

0<z  and 0>z , see Fig. 1. The shell at 0<z  is held at 
the constant potential 0φ− , while the shell at 0>z  is 
held at 0φ , [17]. We can solve Laplace's equation, 

02 =∇ φ , in cylindrical coordinates using separation of 

variables in the form ( ) ( ) ( ) ( )zZRz kjjkjk ϕρϕρφ Φ=,, , 

where the functions jkR , jΦ  and kZ  obey the 

equations: 
 

0
1

2

2
2

2

2

=





+−+ jk

jkjk R
j

k
d

dR

d

Rd

ρρρρ
,

 02
2

2

=Φ−
Φ

j
j j

d

d

ϕ
,

 02
2

2

=+ k
k Zk

dz

Zd
 

( )3  

 
The final solution ( )z,,ϕρφ  is a linear combination of 
all possible solutions ( )zjk ,,ϕρφ . 
 
Due to the rotational symmetry of the system, the 
solution will not depend on ϕ . This means 0=j  and 

constant=Φ j . 
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In this situation, the boundary conditions are anti-
symmetric about the z  coordinate, 

( ) ( )zaza ,,,, ϕφϕφ −=− , so the solution must also be 
anti-symmetric at all points: ( ) ( )zz ,,,, ϕρφϕρφ −=−  
and ( ) 00,, =ϕρφ . Additionally, we must have a limited 
solution in both ρ  and z  coordinates, 

( ) ∞<≤∞→ 0,, φϕρφ z  and ( ) 0,, →∞→ zϕρφ . 

This leads to a solution for kZ  of the form: 

( ) ( )kzzZk sin= . The equation for jkR  is the modified 

Bessel equation, whose solutions are ( )ρkI j  (regular 

for 0→ρ  and irregular for ∞→ρ ) and ( )ρkK j  

(regular for ∞→ρ  and irregular for 0→ρ ), [6]. 
 
The general solution has then the form: 
 
 

( ) ( ) ( )∫
∞

=≤
0

0 sin,, dkkzkIAza k ρϕρφ  ( )4  

 
( ) ( ) ( )∫

∞
=≥

0
0 sin,, dkkzkKBza k ρϕρφ  ( )5  

 
where the coefficients kA  and kB  must be determined 
from the boundary conditions. Eqs. (4) and (5) can be 
seen as a sine Fourier transform of a function Ψ : 
 
 

( ) ( ) ( )

( )
( )





≥
≤

=

==Ψ ∫
∞

akKB

akIA

dzkzzk

k

k

ρρπ
ρρπ

ϕρφ
π

ϕρ

0

0

0

2
,2

,,
2

,, �	��
�	��

 ( )6  

 
Calculating Eq. (6) in a=ρ  and applying the boundary 

conditions ( ) 00,, φϕφ −=<za  and ( ) 00,, φϕφ =>za  
yields the coefficients kA  and kB : 
 
 

( )kakI
Ak

0

02
π

φ
= , ( )kakK

Bk
0

02
π

φ
=  ( )7  

 
The final solution can be written as (see Appendix): 
 
 

( ) ( )
( )

( )
∫
∞

=≤
0 0

00 sin2
,, dk

k
kz

kaI
kI

za
ρ

π
φϕρφ  ( )8  

 ( )
( ) 











−= ∑

∞

=

−

1 1

0
0

e
2
1

2
n n

azx

n

n

xxJ
axJ

z
z nρφ  ( )9  

 
( ) ( )

( )
( )

∫
∞

=≥
0 0

00 sin2
,, dk

k
kz

kaK
kK

za
ρ

π
φϕρφ  ( )10  

 
In Eq. (9), nx  are the zeroes of the Bessel function of 
order zero, ( ) 00 =nxJ , with �,2,1=n  
 
 

SOLUTION FOR THE CYLINDRICAL SHELL 
WITH STEADY CURRENT AND BATTERY 

 
Eqs. (13) and (14) of [5] give the solution of a 
conducting wire with radius a , length a>>


 and 

carrying a steady current as: 
 
 ( ) ( )

2
,, LR

RL
z

za
φφφφϕρφ ++−=≤   ( )11  

 ( ) ( ) ( )
( )

( )
( )a

z
a

za

LR

RL

�
�

��
�

������
������

������
������

ρφφ

ρφφϕρφ

2

,,

+
+

+−=≥
 ( )12  

 
The solution of the problem with the battery is the sum 
of Eqs. (8) and (11) for the region inside the shell, and 
the sum of Eqs. (10) and (12) for the region outside the 
shell, namely: 
 

 
( )13  ( ) ( )

( )
( )

( )
2

2
,,

0 0

00

LR
RL

z

dk
k

kz
kaI
kI

za

φφφφ

ρ
π
φ

ϕρφ

+
+−+

+=≤ ∫
∞

�

��� ��	� �

 

 

( ) ( )
( )

( )

( ) ( )
( )

( )
( )a

z
a

dk
k

kz
kaK
kK

za

LR
RL �

�
��

�
������
������

������
������

�	� ��	� �

ρφφρφφ

ρ
π
φ

ϕρφ

2

2
,,

0 0

00

+
+−+

+=≥ ∫
∞

 

 
 
 
 
 
 
 

( )14  

 
Fig. 4 shows the equipotentials with 0φφ =L , 0φφ −=R  
and 10=a

�
. 
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Fig. 4   Equipotentials of conducting wire close to 

0=z . This is a plot of Eqs. (13) and (14) with 

0φφφ =−= RL  and 10=a
�

. There is a steady 
current flowing along the positive z  direction. 

 
The electric field E�  can be obtained from the potential 
utilizing the relation φ−∇=E� . This yields: 
 

( )

( )
( ) ( ) ( )

( ) ( )

�

�

RLz

dkkz
kaI
kI

zdkkz
kaI
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zaE
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+
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ˆˆ
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0 0
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0 0
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0
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 ( )16  

 
The surface charge distribution ( )za ,,ϕσ  can be found 
by applying Gauss' law and choosing a gaussian surface 
surrounding a small piece of the conductor surface. In 
the limit of an infinitesimal surface this yields the 

internal and external densities of surface charge as given 
by, respectively (where 21212

0 mNC1085.8 −−−×=ε ): 
 
 ( ) ( )

( )
( ) ( )

∑

∫
∞

=

−

∞

→
−

=

==

=<−=

1

00

0 0

100

0

e
2

sin
2

,,lim,,

n

azx

a

n

z
z

a

dkkz
kaI
kaI

zaEza

εφ

π
εφ

ϕρεϕσ ρρ
2 32 3

 

( )17  

  

( ) ( )

( )
( ) ( )

( )
( )

( )
( )aa

z
aa

dkkz
kaK
kaK

zaEza

LRRL

a

444
ln2ln

sin
2

,,lim,,

00

0 0

100

0

φφεφφε

π
εφ

ϕρεϕσ ρρ

+
+

−
−

+=

=>=

∫
∞

→
+576586

 ( )18  

 
Fig. 5 shows these normalized densities of surface 
charge as a function of az . Both of them diverge to 

infinity when 1<<az . For 1>>az  the internal 
density of surface charge goes to zero faster than the 
external one. 
 
 

 
 

Fig. 5  Densities of surface charge as a function of the 
z  (longitudinal) coordinate for a resistive 
hollow cylindrical shell carrying a steady 
current. The dashed (continuous) lines is the 
normalized internal (external) density of 
surface charges. Both densities are normalized 
by the internal density ( −= aρ ) at az =  
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DISCUSSION 
 
Jefimenko and Heald considered a similar geometry 
(resistive cylindrical shell of radius a  coaxial with the 
z  axis) but carrying a steady azimuthal current, [18], 
[10] and [16]. A line battery located at 
( ) ( )zaz ,,,, πϕρ =  had its terminals at potentials 0φ± . 
They found equal internal and external surface charge 
densities given by: 
 

 
                    

2
tan00 ϕ

π
φε

σσ
a

== 98:98:; <; <  ( )19  

 
For angles close to the battery, ( )δπϕ ±=  rad, with 

πδ <<<0 , this reduces to δπφεσσ a00exin 2±≈= . 
This indicates that σ  diverges inversely proportional to 
the distance δad =  to the battery. 
 
A numerical fitting of Eq. (18) with the function: 
 
 ( )

z
az

π
αφεσ 00

in
2=<<  ( )20  

for the region 210−<az  yields the value of the 

unknown dimensionless constant α  as given by 
998.0=α . This indicates that α  should be exactly 

equal to 1 , as expected. 
 
We can also approximate the summation of Eq. (18) by 
supposing that the zeroes nx  of the Bessel function of 
order zero, ( ) 00 =nxJ , are evenly spaced. That is, 
supposing 0nxxn ≈ , where 12988.30 =x  and 

=,2,1=n  Using the known series: 
 
 

x
x

x
n

n

−
=∑

∞

= 11
, ( )21  

 
we obtain: 
 
 

( )
zx

a
azx

n

nazx

n

aznx

n

azxn

01

11

1e

1
e

ee

0

0

0

≈
−

==

=≈

−

∞

=

−

∞

=

−
∞

=

−

∑

∑∑
 ( )22  

 
where in the last approximation the observation point is 
close to the battery, 1<<az . Eq. (18) can be written 
in this approximations as: 
 
 ( )

zx
aza

0

00
in

2
,,

φεϕσ ≈<<−  ( )23  

 
Eqs. (20) and (23) differ by %6.0 . 
 
A similar result can be obtained by approximating the 
integrals that appear in Eqs. (17) and (18) for the region 

1<<az . For Eq. (17), we divide the integral in two 

regions, ak 10 <<  and ∞<< ka1 . Defining kax ≡  
and utilizing αα ≈sin  for 1<<α  rad yields: 
 
The functions ( )1<<xIν  and ( )1>>xIν  can be 
approximated as, [AW95, pp. 664–671]: 

 
 

( ) ( ) ( )
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≈<<

2
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1
1
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1

2

ννν

ν

ν
xx

xI , ( )24  
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 −+≈>>
xx

xI
x

8
41

1
2

e
1

2ν
πν  

 
( )25  

 
With these results we can neglect the first integral of 
Eq. (19) and approximate the result as: 
 ( )

( )

z
dx

a
xz

a

dx
a
xz

a
dkkz

kaI
kaI

1
sin

1

sin
1

)sin(

0

10 0

1

≈




≈

≈




≈

∫

∫∫
∞

∞∞

, ( )26  

 
where in the last approximation we extended the 
integral from 0  to ∞ , because the integral from 0  to 1  
is also negligible in the approximation 1<<az . To 

arrive at the final value of z1  we utilized that the 

sequence ( )( ) kkNdxkxN cos1)sin(0 −=∫  diverges as 

∞→N , but it is weakly convergent for a suitable 
chosen set of test functions ( )kg  defined for ∞<≤ k0 , 
[20]. 
 
Analogously for Eq. (18), the approximation of the 
integral yields: 
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 ( )
( ) z

dkkz
kaK
kaK 1

)sin(
0 0

1 ≈∫
∞

. ( )27  

 
Eqs. (17) and (18) can be written in this approximations 
as: 
 
 ( )

z
aza

π
φεϕσ 00

in
2

,, =<<− , ( )28  

 ( ) ( )
( )

( )
( )aa

z
aaz

za

LR

RL

>

>>

ln2

ln
2

,,

0

000

φφε

φφε
π

εφ
ϕσ

+
+

+
−

−=+?8@?8@
 ( )29  

 
For a long cylindrical conductor ( a>>

A
), Eqs. (28) and 

(29) show that the surface charges diverge in the 
vicinity of the battery as za  when 0→z . 
Additionally, in the vicinity of the battery the 
electrostatic contribution is greater than the terms that 
maintain the current flow. This implies that the 
situations with and without current have little difference 
in the surface charge distribution, although they 
correspond to different phenomena, as had already been 
observed by Jackson, [11]. 
 
The total surface charges for the symmetric case 

0φφφ =−= RL  can be written as: 
 

( ) ( ) ( )
( )
( )

( )
( ) ( )

( ) z
aa

dkkz
kaK
kaK

kaI
kaI

zazaza

>>
ln
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0
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φε

π
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−
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+=

=+=

∫
∞

?8@?8@B CB C

 ( )30  

 
We want to find the position 0z  where the surface 
charge distribution is null, ( ) 0, 0 =zaσ . In the interval 

1001 ≤≤ a
A

, equating Eq. (31) to zero yields 

aaz
A

05068.00890.00 += , or 
A

507.00 ≈z  for 
1>>a

A
. Although our solution is valid only for 

2
A

<<z  (we have neglected border effects), we found 
that the surface charges are null at the extremities of the 
cylindrical shell. This can be interpreted as follows: if 
we bend the wire, so that the extremities at 2

A
±=z  

touch each other, the surface charges at that position 
should be null. This is very reasonable. 
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APPENDIX 
 
Calculation of the integral of Eq. (8). As it is an even 
function of k  it can be written as: 
 

( )
( )

( ) ( )
( )

( )

( )
( )∫

∫∫
∞

∞−

∞

∞−

∞

=

==

dk
k

e
kaI
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i

dk
k
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kaI
kI

dk
k
kz

kaI
kI

ikz

0

0

0

0

0 0

0

2
1

sin
2
1sin

ρ

ρρ

 ( )31  

 
The integral above is part of a contour integral on the 
complex variable k : 
 
 ( )

( )∫=
C

ikz

dk
k

e
kaI
kI

I
0

0 ρ
, ( )32  

 
with an appropriate contour C . The integrand has a 
simple pole in 00 =k  and infinite simple poles in nk  
such that: 
 ( ) 00 =akI n  →  ( ) 00 =nxJ , ( )33  

 
where aikx nn −=  are the zeroes of the function ( )xJ0 : 

4048.21 =x , 5201.52 =x , D  and D,2,1=n  As 
zziikz βα −= ee , for βα ik +=  (α  and β  being real 

numbers), the integral converges for 0>zβ . We choose 
a contour of the type shown in Fig. 6 for 0>z . The 
contour integral can thus be divided in three parts: along 
the real k  axis, along the path rC  and along the path 

RC . The integral along the path rC  is given by: 
 
 ( )
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ρ
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ϕ
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ϕ
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Fig. 6  Contour to calculate the integral of Eq. (8), for 

0>z . For 0<z  we choose a symmetrical 
contour reflected at the horizontal (real k ) axis 

 
The integral along the path RC  is limited, and vanishes 
for ∞→R : 
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( ) 0
e

lim
e

lim
0

0 =≤ ∫∫
→∞→∞
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Using Cauchy's theorem, the integral I  is 

given by: 
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where ( )nkRes  is the residue of the integrand in 

aixkk nn == . In the equation above we utilized the 
relation ( ) ( )xIxI 10 ' =  involving modified Bessel 
functions, where ( ) ( ) dxxdIxI 00 ' ≡ . Therefore the 
integral of Eq. (8) for 0>z  is given by (using the 

relation ( ) ( )xIiixJ ν
ν

ν = ): 
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∞
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n
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k
kz

kaI
kI nρππρ
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Analogously, the integral of Eq. (8) for 0<z  is given 
by: 
 
 ( )
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( ) ( )
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∞
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