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BOOTSTRAP EFFECT IN CLASSICAL ELECTRODYNAMICS

A. K. T. Assis1                  Marcelo Bueno2

RESUMEN

Se calcula la fuerza en una parte de un circuito producida por el resto del mismo. Para ello se utiliza la Fuerza de
Ampère y la fuerza de Grassmann. Al mismo tiempo, considerando una configuración simétrica, realizamos los cálculos
utilizando elementos lineales de corriente. Se demuestra que ambas expresiones dan el mismo resultado. Presentamos
entonces algunos argumentos generales para demostrar que aún con la Fuerza de Grassmann, un circuito cerrado único
de forma arbitraria, no puede ejercer una fuerza resultante sobre el mismo. Además demostramos que la fuerza sobre
cualquier conductor rectilíneo, perteneciente a un circuito cerrado de forma arbitraria, debida a la parte restante del
circuito, es ortogonal a este conductor y tiene el mismo valor de acuerdo con la fuerza de Ampère y con la fuerza de
Grassmann.

ABSTRACT

We calculate the force on part of a circuit due to the remaining circuit using Ampère's force and Grassmann's force.
Using a symmetrical configuration we perform the calculations using linear current elements. We show that both
expressions give the same result. Then we present some general arguments to show that even with Grassmann's force a
single closed circuit of arbitrary form cannot exert a net force on itself. Moreover, we show that the force acting on any
straight conductor belonging to a closed circuit of arbitrary form, due to the remaining of this circuit, is orthogonal to
this conductor and has the same value according to Ampère's force and to Grassmann's force.
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INTRODUCTION

One of the open problems in electrodynamics is to know
which one is the correct expression for the force
between two current elements, [1]. Ampère obtained an
expression for this force as the main result of his
experimental work. In modern notation his force can be
written as
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In this expression 2
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 is the force exerted by a
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r
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r
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r
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. This expression follows Newton's

action and reaction law in the strong form, for any
configuration and orientation of  the current elements.
Beginning with this force it can be derived the famous

circuital law oB dr I⋅ = µ∫
r rÑ .

Ampère's formula does not appear in almost any book
of present day physics. Instead of that, we only have
Grassmann's force, given by
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In this expression 2dB
r

 is the magnetic field as first
given by Biot and Savart, namely
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Performing the double cross product in Eqs. (2) and (3)
yields
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Changing the symbols 1 to 2 and 2 to 1 yields
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Eqs. (4) and (5) show that we do not always have
2 2

21 12d F d F= −
r r

 with Grassmann's force. This is one
of the main differences between the expressions of
Ampère and Grassmann. Another difference is that
when we have two current elements collinear and
parallel to one another, there should exist a repulsion
between them according to Ampère's force. On the other
hand, no force should be exerted on one another
according to Grassmann's force.

Although these two forces are different from one
another they do give the same result for the force on a
current element of one circuit due to a closed second
circuit, [2]. The reason for this remarkable fact is that
the difference between Eqs. (1) and (2) is an exact
differential, which integrates to zero round any closed
circuit.

In recent years controversy has appeared again. The
important aspect now is that some physicists are
performing experiments to decide the matter and not
only discussing philosophical matters or questions of
taste, [1]. As the force on one circuit due to another
closed circuit is the same with both expressions, the
central point has been focused on the question: "What is
the force on part of a circuit due to the remaining of this
circuit?" The first of these experiments was done in
1982, [3], and dealt with jet propulsion in liquids. Since
then, many others have been done dealing with railgun
accelerators, [4]; the exploding wire phenomena, [5],
[6]; the electromagnetic impulse pendulum, [7], [8]; and
with liquid mercury, [9], [11]. Although most of these
experimenters seem to favor Ampère's force against
Grassmann's force, there is not yet a consensus on this
conclusion, [12], [18].

The proof of the equivalence between Ampère's force
and Grassmann's force, for the interaction of a closed
circuit with a part of itself, has been claimed by some
authors in recent years, [19], [23]. With this work we
present a new demonstration of the equivalence, trying
to overcome the difficulties raised by other authors,
[24], [28], against those demonstrations. Moreover, our
demonstration is not restricted to the magnetostatic case
only, as in [19], [20], since there are some experiments
which have been performed using alternate currents, [4],
[13].

It has always been very difficult to decide the question
even theoretically because when we try to calculate the
force on part of a circuit due to the remaining circuit
usually the result diverges (the force goes to infinity)
with both expressions. To avoid this divergence some
people have tried to introduce an explicit finite
separation distance between the two parts of a circuit

(see citation in [4], p. 183), or introduced a current
element of finite size to use finite element analysis in
computer calculations, [29]. An unquestionable way of
doing these calculations obtaining finite values without
arbitrary assumptions is using surface current elements

KdA
r

 or volumetric current elements JdV
r

, instead of

linear current element Id
rl . The first to calculate

explicitly the force between two parts of a circuit which
are in contact by this correct but quite involved method,
using volumetric current densities was Wesley, [30],
[32].

In this paper we utilize a different idea to perform the
calculations. We utilize only linear current elements so
that the calculations are relatively simple. We calculate
the force on part of a circuit due to the remaining circuit
in the simplest of all configurations that gives non
trivial results. This is shown in the next sections. The
analysis of this paper have appeared up to now only in
Portuguese, [33].

AMPÈRE'S FORCE

In Fig. 1 we show the circuit utilized for the calculations
and the corresponding geometry and labels. We
represent the force on part i of a circuit due to another

part j by jiF
r

. The circuit composed of parts 1, 2, ..., 12

is a closed one where flows the constant current I. What
we want to know is the force on bridge 1 due to the
remaining circuit 2 to 12 (called the support). We can
think that bridge 1 is joined to the remaining circuit by
liquid mercury cups (or by arc gaps) at both extremities
so that the force on it can be measured without
interrupting the current. As we are utilizing linear
current elements, this calculation is valid only when the
diameter d of the wire is much smaller than all other
dimensions in the system. In this case this means
d M= , d L= , d N=  and d P= .

We devised this geometry guided by an ingenious idea
of Moyssides and Pappas, [34]. As we said in the
Introduction, the problems faced by all whom tried to
perform calculations using linear current elements were
the parts in contact of the circuit. But Moyssides and
Pappas circumvented this difficulty bending the bridge's
ends. We can explain this technique in Fig. 1. If we
calculate the force on part 11 due to the remaining
circuit (1 to 10 plus 12) it goes to infinity with linear
current elements (this happens with Ampère and
Grassmann's forces). But this does not happen with
bridge 1 due to the support 2 to 12. If we calculate the
force of part 2 on part 1 using Eq. (1) we get an infinite
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result, 21 ˆF x= −∞
r

. But part 12 is symmetrically
located relative to part 1 and has the same size so that

12,1 ˆF x= +∞
r

. Then 21 12,1 0F F+ =
r r

. Although the

infinite result we obtained for 21F
r

 may appear artificial,

the null result for 21 12,1F F+
r r

 is an exact one arrived at

by symmetry considerations as above or by supposing
volumetric current elements and integrating for the
cross section of the wire. For instance, using a wire with
a cross section in the form of a square with side ω ,
Wesley (we checked his calculations) obtained using
Ampère's force and supposing Lω =  and Mω = ,
[30], [32]:
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Again 21 12,1 0F F+ =
r r

, although now each part of this

sum is finite. What matters is that parts 3 to 11 give the
net force on the bridge. As Moyssides and Pappas were
more interested in the experiment and did not make the
complete calculations for this case, we decided to do it.
Performing these calculations with Eq. (1) we obtain the

net force on bridge 1 due to the support as given by
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It should be remarked that although the bridge is not
symmetrically located in the middle of the side 12 to 4,
the resultant force on it has no component along the x
direction according to Ampère's force. This is an
important fact, which will be extended later here.

Fig. 1.- Electrical circuit  with steady current I. The bridge is represented by 1 and the remaining circuit (The support)
by 2 to 12
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GRASSMANN'S FORCE

We now utilize Eqs. (2) to (5) in order to calculate the
force  on  the  bridge  in  Fig. 1.  The first  result  is  that

21 12,1 0F F= =
r r

. This happens not only integrating

with linear current elements but also with surface or
volumetric current elements. What matters is that once
more parts 3 to 11 give the net force on the bridge

because 21 12,1 0F F+ =
r r

. Performing the calculation

with Eq. (4) we get as our final result for the force on
the bridge due to the support exactly Eq. (7).

Our conclusion is that the force on bridge 1 in Fig. 1 is
given by expression (7) both for Ampère's force and for
Grassmann's force. This is a non-trivial result because
we are not integrating in a closed circuit. We now
calculate the force on the support and discuss the
possibility of a bootstrap effect.

BOOTSTRAP EFFECT

By symmetry considerations we obtain with Ampère's

force 12 1,12F F= −
r r

 so that 12 1,12 0F F+ =
r r

. Integrating

Ampère's force for the force on the remaining circuit
due to the bridge we obtain exactly Eq. (7) with an
overall reversal of sign. This was expected because
Ampère's force always follows Newton's action and
reaction law even in differential form, Eq. (1). Adding
these two results we obtain that the net force of the
circuit on itself is zero according to Ampère's force.

We now make the same calculation using Grassmann's

force. From (5) we get 12 1,12 0F F= =
r r

, so that

12 1,12 0F F+ =
r r

. Performing the remaining calculation

we obtain the force on the support due to the bridge 1 as
given by:
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Adding this expression to Eq. (7) yields a result
different from zero. Our first impression is that the
circuit should exert a net force on itself according to
Grassmann's force. Supposing the bridge to be
mechanically linked with the remaining circuit this
would indicate that the circuit should move in space
without being acted on by external forces. This
bootstrap effect has never been observed in nature.

But this is a wrong conclusion. The main point to take
notice is that we only calculated the force on the bridge
due to the support and the force on the support due to
the bridge. We did not calculate the force on the bridge
due to itself or the force on the support due to itself.
This is what we make now.

The force on bridge 1 (Fig. 1) due to itself is zero
according to Ampère's force or Grassmann's force. This
is easily seen or calculated.

The force on the support due to itself is zero according
to Ampère's force. This follows straight away from the

fact that 2 2
21 12d F d F= −

r r
 for any orientation of the

current elements. In order to calculate the force of the
support on itself with Grassmann's force we use once
more a consideration of symmetry. The force on parts
10, 11 and 12 due to themselves is x̂−α , where α >0.
The value of α  is equal to infinity if we utilize linear
current elements. On the other hand, α  equals to a
finite value if we utilize surface or volumetric current
elements and integrate also in the cross section of the
wire. And if this cross section goes to zero, α → ∞ .
On the other hand parts 4, 5 and 6 are symmetrically
located relative to the other end and have the same size
so that the net force of these parts (4, 5 and 6) on
themselves is x̂+α . In this way we have

10,11,12 on 10,11,12 456 on 456 0F F+ =
r r

. All the other

calculations can be performed now using only linear
current elements and linear integrations. The final result
using Eqs. (4) or (5) is that the net force of the support
(parts 2 to 12) on itself is given by

2
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Adding Eq. (9) to Eq. (8) we obtain exactly Eq. (7) with
an overall change of sign. This means that even with
Grassmann's force in this single circuit the resultant

force on the support ( )BS SSF F+
r r

 is minus the resultant

force on the bridge ( )SB BBF F+
r r

. Moreover, the

resultant force on each one of these parts according to
Grassmann's force is the same as according to Ampère's
force. As we will show in the next section, this is a
general result valid in any circuit with any geometry,
and not only in this rectangular one. Our conclusion is
that the resultant force of this closed circuit on itself is
zero according to both expressions, so that even with
Grassmann's force there is no bootstrap effect in this
configuration of a closed circuit. This happens due to
the fact that there is bootstrap effect in part of a circuit
interacting with itself according to Grassmann's force,
see Eq. (9).

The main non trivial result of this section can be
summarized as follows: If we divide a closed circuit in
two parts A and B and want to know the resultant force
on part A according to Grassmann's expression, we need

to calculate not only BAF
r

 but also AAF
r

. This is an
extremely important fact neglected by most authors.

GENERAL EQUIVALENCE

We first prove that the resultant force on any straight
conductor (with the diameter small compared to its
length) of an arbitrary closed circuit has the same value
according to Ampère's force and to Grassmann's force.

Then we prove that the resultant force (being finite or
infinite) is orthogonal to the conductor. The proofs of
these facts are given in Figs. 2A, 2B and 2C. In Fig. 2A
is represented a closed circuit C with arbitrary form. In

Fig. 2B is represented a square circuit of sides 3 d
rl

and a circuit C´ which is similar to C in most points,
except those near the square circuit. The element ab of

length d
rl  is in the middle of the lower side of the

square. There is a distance d between the sides of the
square and the equivalent pieces of the circuit C´. The
force on the current element ab in Fig. 2B is given by
the force of the open square circuit befa on it (which has
the same value according to Grassmann's force and to
Ampère's force, as we showed in the earlier sections)
plus the force of the circuit C´ on it (again this has the
same value according to both laws because now C´ is a
closed circuit, [2]). Although the resultant force on ab
can depend on the value of d, the fact that this resultant
force has the same value according to both laws does
not depend on the value of d, and so this will remain
valid when 0d → . In this situation ( 0d → ) the
force of the open square on ab plus the force of the
circuit C´ on ab is equivalent to the force of the open
circuit bca (Fig. 2A) on ab as can be seen in Fig. 2C,
which is equivalent to Fig. 2A. And this was what we
wanted to prove.

From Fig. 2B we can also prove an important fact. By
considerations of symmetry (which were confirmed by
our calculations in Sections 3 and 4) the force on the
element ab due to the open square befa is orthogonal to
this element. But we know that the force of the closed
circuit C´ on ab is also orthogonal to ab. We know this
from two reasons. (I) Ampère himself proved this fact
experimentally, [1]. (II) The force of a closed circuit on
an element of another circuit has the same value
according to Ampère's force and to Grassmann's force,
[2]. But Grassmann's force can be expressed as Eq. (2).
For this reason we see straight away that the force of a

closed circuit 2 in an element 1 1I d
rl  is orthogonal to

1d
rl . As this last fact is independent of the distance d

(Fig. 2B) it will remain valid when 0d → . But when

0d →  we recover the situation of Fig. 2A, which was
what we wanted to prove.

As there is no bootstrap effect with Ampère's force
since it follows Newton's action and reaction law, we
conclude with this proof that the same will happen with
Grassmann's force when considering a single closed
circuit.
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Fig. 2 - (A) A closed circuit C of arbitrary form where

flows the current I. The straight conductor Id
r
l

is represented by the segment ab. (B) An

infinitesimal square circuit abefa of side 3 d
r
l

and a closed circuit C´, in both of them flowing
in the same direction a current I. The conductor

ab of length d
rl  is in the middle of the lower

side of the square. (C) Situation when 0d →
and ´C C→  except near ab. This is equivalent
to Fig. 2A.

CONCLUSION

Wesley calculated the force on parts 10 to 12 (Fig. 1)
due to parts 1 to 9 and vice-versa, using volumetric
integrations, [30-32]. He obtained finite but different
results for these two forces using Grassmann's force. He
thought he had found a bootstrap effect with these
calculations. But he did not calculate the force of parts
10 to 12 on themselves nor of parts 1 to 9 on
themselves. This shows that his calculations are correct
(we checked them) but incomplete because these forces
needed to be taken into account as we showed here.

As regards the experiments, what we can say is that the
repulsive force between two parts of a single closed
circuit, which some physicists are measuring, can be
equally accounted by Ampère's force or by Grassmann's
force. For instance, the repulsive force acting on
Ampère's bridge in Fig. 1 (force along the negative x
axis acting on parts 10 to 12) is due, according to both
laws, to the force acting on piece 11. As pieces 10 and
12 are mechanically linked to piece 11, they will move
together to the left if there are mercury cups (or arc
gaps) between 12 and 1, and between 9 and 10. Even
according to Ampère's force the resultant force acting
on piece 12 due to the whole circuit is along the positive
y-axis, and this is balanced by an opposite resultant
force acting on 10. Even in Ampère's bridge both
expressions agree with one another. So, these
experiments do not seem to be decisive either.

There are however other experiments which have shown
conclusively the existence of longitudinal forces (or at
least tensions and compressions) in closed current
carrying circuits: exploding wires, [4, 6, 35, 36] and
railgun recoil, [4, 37-39], for instance. These
experiments cannot be explained by Grassmann's
expression (2), which can never predict forces parallel
to the current. In this work, we have shown that
Ampère's expression (1) is not responsible for these
effects either. We have no doubts about the existence of
these longitudinal forces, but their quantitative
explanation is as yet unknown for us.

Recently Robson and Sethian have performed an
experiment and have found that there is no longitudinal
forces in closed current carrying circuits, [14]. The
geometry of their experiment can be simplified to that
of our Fig. 1. In the experiment they utilized arc gaps of
equal lengths separating piece 1 from 2 and 12. Then,
they have obtained the non-existence of longitudinal
interaction between piece 1 and the whole circuit. Their
important null experiment is a confirmation of the
findings of this paper.
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