SCHRÖDINGER, REISSNER, WEBER E O PRINCÍPIO DE MACH

A. L. XAVIER JR. e A. K. T. ASSIS

RESUMO - Apresentamos uma tradução comentada de um texto de Erwin Schrödinger sobre seu artigo intitulado "O cumprimento do postulado de relatividade na mecânica clássica", trabalho que já traduzimos para o português.

ABSTRACT - We present a commented translation of a text by Erwin Schrödinger about his article entitled "The possibility of fulfillment of the relativity requirement in classical mechanics", which we have already translated to Portuguese.

Introdução

Em 1925, Erwin Schrödinger publicou um artigo muito interessante sobre o princípio de Mach: O cumprimento do postulado de relatividade na mecânica clássica: (Schrödinger, 1925). Recentemente publicamos sua tradução comentada para o português: (Xavier e Assis, 1994). Uma tradução para o inglês saiu em (Schrödinger, 1995). Este artigo foi reproduzido no Volume 2 das obras completas de Schrödinger, que estão sendo publicadas atualmente: (Schrödinger, 1984, p. 181-192). Ao final deste artigo aparece uma nota de Schrödinger comentando este trabalho e é esta nota que traduzimos aqui: (Schrödinger, 1984, p. 192). A tradução a partir do original em alemão foi feita por A. L. X. Jr. e esta introdução é de A. K. T. A.

Schrödinger começa seu artigo de 1925 afirmando que a relatividade geral não implementa o princípio de Mach. Para tentar implementar este princípio Schrödinger propõe uma energia de interação entre duas massas m_1 e m_2 do tipo

$$W = -G \frac{m_1 m_2}{r} \left(1 - 3 \frac{\dot{r}^2}{c^2} \right).$$

Afirma que chegou nesta expressão heuristicamente, isto é, por conta própria, através de tentativa e erro. Integra esta expressão para um corpo de prova de massa m interagindo com o universo distante e consegue derivar a energia cinética clássica $mv^2/2$, como sendo uma energia de interação gravitacional entre o corpo de prova e o universo distante. Nesta expressão v é a velocidade de m em relação ao universo distante (considerado em repouso). Ou seja, consegue uma implementação quantitativa do princípio de Mach.

Nesta nota, que traduzimos aqui Schrödinger afirma que a história não foi bem assim, pois esta expressão seria propriedade intelectual de H. Reissner. Reissner havia publicado dois artigos anteriores discutindo este assunto em 1914 e 1915: (Reissner, 1914 e 1915). Há uma tradução completa para o inglês

deste primeiro artigo em (Reissner, 1995a) e uma tradução parcial do segundo em (Reissner, 1995b). No primeiro deles, propõe uma expressão do tipo

$$W = -G \frac{m_1 m_2}{r} + m_1 m_2 + \dot{r}^2 f(r),$$

e, considera o caso particular em que f(r) é uma constante. Em seu segundo artigo, considera o caso particular em que f(r)=K/r, ou seja, do mesmo tipo que Schrödinger vai propor dez anos depois. Nesta nota, Schrödinger afirma que, com certeza, conhecia o primeiro artigo de Reissner (embora não o houvesse citado em seu artigo de 1925), mas que não tem certeza se conhecia seu segundo artigo.

O mais curioso de tudo é que Reissner e Schrödinger não citam a energia de Weber. Weber propôs, em 1848, uma energia potencial entre duas cargas q_1 e q_2 do tipo

$$W = \frac{q_1 \, q_2}{r} \left(1 - \frac{\dot{r}^2}{2 \, c^2} \right).$$

Seu trabalho original está em (Weber, 1948) e uma tradução para o inglês em (Weber, 1966). Além de Weber ter escrito em alemão, assim como Reissner e Schrödinger, sua teoria foi amplamente discutida no século passado, inclusive por Maxwell. É curioso que eles não tivessem conhecimento disto, e, que nenhuma pessoa tivesse chamado a atenção deles após ver seus trabalhos publicados. Desde a década de 1870, uma expressão do mesmo tipo havia sido proposta para a gravitação por Weber e Zöllner, por Holzmuller, por Tisserand e por Gerber: (Assis, 1994, Seção 7.5: Weber's law applied to gravitation). Além disto, desde 1896 Immanuel Friedlaender já havia sugerido que se empregasse a lei de Weber para a gravitação com o intuito de se implementar o princípio de Mach: (Assis, 1994, Seção 7.7: The Mach-Weber model). Para uma discussão detalhada da aplicação da lei de Weber para a gravitação e sua ligação com o princípio de Mach, com diversas referências e citações, ver também: (Assis, 1989), (Assis, 1991), (Assis, 1992a), (Assis, 1992b), (Assis, 1992c), (Assis, 1993), (Xavier e Assis, 1994), (Assis e Graneau, 1995), (Assis, 1995a, Seção 5.2: Weber versus Lorentz), (Assis, 1995b), (Assis, 1995c) e (Assis e Graneau, 1996).

Diante de tudo isto o mais correto seria afirmar que a propriedade intelectual da expressão utilizada por Schrödinger é de Wilhelm Weber.

Agora apresentamos a tradução da nota de Schrödinger.

Tradução

Observação sobre meu trabalho: "O cumprimento do postulado de relatividade na mecânica clássica"; por E. Schrödinger

A idéia fundamental, exposta previamente no citado artigo, a saber, a de que a energia cinética entre duas massas pontuais m, e m, separadas da distância r, é proporcional a

$$\frac{m_1 m_2 \dot{r}^2}{r}$$

¹ Annalen der Physik (4), v. 77, p. 325, 1925.

é propriedade intelectual do Prof. H. Reissner, e não minha. Essa lei, juntamente com uma forma mais geral (f(r) ao invés de 1/r), se baseia em dois trabalhos muito interessantes de Reissner², o primeiro certamente conhecido, enquanto que o segundo não tanto por coincidir com o período da guerra. Lamento sinceramente o plágio involuntário que cometi, e peço, aqui, minhas devidas desculpas ao Sr. Reissner. Entretanto, menciono de passagem que o ponto de vista e tratamento exposto em meu trabalho é um pouco diferente, o que faz com que esse ainda possa ter algum interesse. Por outro lado, no trabalho de Reissner, seu conceito está muito mais bem desenvolvido. Nele o autor procura interpretar a própria gravitação como inércia relativa do movimento de massas, o que não fiz.

É interessante, também, chamar a atenção para outro trabalho por H. Osten³ sobre o mesmo assunto. Assinado: E. Schrödinger

REFERÊNCIAS BIBLIOGRÁFICAS

- ASSIS, A. K. T. On Mach's principle. Foundations of Physics Letters, v.2, p. 301-318, 1989.
- ASSIS, A. K. T. Wilhelm Eduard Weber (1804-1891) sua vida e sua obra. Revista da Sociedade Brasileira de História da Ciência, v. 5, p. 53-59, 1991.
- **ASSIS**, A. K. T. Deriving gravitation from electromagnetism. *Canadian Journal of Physics*, v. 70, p. 330-340, 1992.
- ASSIS, A. K. T. On the absorption of gravity. Apeiron, v. 13, p. 3-11, 1992.
- ASSIS, A. K. T. Teorias de ação a distância uma tradução comentada de um texto de James Clerk Maxwell. Revista da Sociedade Brasileira de História da Ciência, v. 7, p. 53-76, 1992.
- ASSIS, A. K. T. Compliance of a Weber's force law for gravitation with Mach's principle. In: KROPOTKIN, P. N. et al. (eds). Space and time problems in modern natural science, part. II, p. 263-270. St.-Petersburg: Tomsk Scientific Center of the Russian Academy of Sciences, 1993. Series: The Universe Investigation Problems, Issue 16.
- ASSIS, A. K. T. Weber's Electrodynamics. Dordrecht: Kluwer Academic Publishers, 1994.
- ASSIS, A. K. T. Eletrodinâmica de Weber teoria, aplicações e exercícios. Campinas: Editora da Universidade Estadual de Campinas UNICAMP, 1995.
- ASSIS, A. K. T. Gravitation as a fourth order electromagnetic effect. In: BARRETT, T. W., GRIMES, D. M. (eds). Advanced Electromagnetism: foundations, theory and applications. Singapore: World Scientific, 1995. p.314-331.
- ASSIS, A. K. T. Weber's law and Mach's principle. In: BARBOUR, J. B., PFISTER, H. (eds). Mach's Principle from Newton's Bucket to quantum gravity. Boston: Birkhäuser, 1995. p. 159-171.
- ASSIS, A. K. T., GRANEAU, P. The Reality of Newtonian forces of inertia. *Hadronic Journal*, v. 18, p. 271-289, 1995.
- Assis, A. K. T., GRANEAU, P. Nonlocal forces of inertia in cosmology. Foundations of Physics, v. 26, p. 271-283, 1996.
- **REISSNER**, H. Über die relatität der beschleunigungen in der mechanik. *Physikalishe Zeitschrift*, v. 15, p. 371-375, 1914.
- **REISSNER**, H. Über eine möglichkeit die gravitation als unmittelbare folge der relativität der trägheit abzuleiten. *Physikalishe Zeitschrift*, v. 16, p. 179-185, 1915.
- REISSNER, H. On the relativity of acceleration in mechanics. In: BARBOUR, J. B., PFISTER, H. (eds). Mach's Principle - from Newton's Bucket to Quantum Gravity. Boston: Birkhäuser, 1995. p. 134-142.
- REISSNER, H. On a possibility of deriving gravitation as a direct consequence of the relativity of inertia.

² H. Reissner, Physikal. Zeitschr., v. 15, p. 371, 1914; v. 16, p. 179, 1915.

³ H. Osten, Ueber ein neues Anziehungsgesetz und die relative Definition der Trägheit - Sobre uma nova lei de atração e definição relativa de inércia (Leipzig, E. E. Mayer 1925; publicado primeiro em Astr. Nachr. 219, S. 233; 220, 111; 222, 377.)

- In: BARBOUR, J. B., PFISTER, H. (eds). Mach's Principle from Newton's Bucket to Quantum Gravity. Boston: Birkhäuser, 1995, p. 143-146.
- SCHRÖDINGER, E. Die erfüllbarkeit der relativitätsforderung in der klassischen mechanik. Annalen der Physik, v. 77, p. 325-336, 1925.
- SCHRÖDINGER, E. Collected Papers. Vienna: Austrian Academy of Sciences, 1984. v 2.
- SCHRÖDINGER, E. The possibility of fulfillment of the relativity requirement in classical mechanics. In: BARBOUR, J. B., PFISTER, H. (eds). *Mach's Principle from Newton's Bucket to Quantum Gravity*. Boston: Birkhäuser, 1995. p. 147-158.
- WEBER, W. Elektrodynamische maassbestimmungen. Annalen der Physik, v. 73, p. 193-240, 1848.
- WEBER, W. On the measurement of electro-dynamic forces. In: TAYLOR, R. (ed). Scientific Memoir, v. 5, p. 489-529. New York: Johnson Reprint Corporation, 1966.
- XAVIER JR., A. L., ASSIS, A. K. T. O cumprimento do postulado de relatividade na mecânica clássica uma tradução comentada de um texto de Erwin Schrödinger sobre o princípio de Mach. Revista da Sociedade Brasileira de História da Ciência, v. 12, p. 3-18, 1994.

Ademir Luis Xavier Jr. é Doutor em Física pela UNICAMP.

Endereço: Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas - Unicamp

CEP: 13083-970 - Campinas, SP, Brasil - E-mail: xavier@ifi.unicamp.br

André Koch Torres Assis é Professor do Instituto de Física da UNICAMP.

Endereço: Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas - Unicamp

CEP: 13083-970 - Campinas, SP, Brasil - E-mail: assis@ifi.unicamp.br