VIRIAL THEOREM FOR WEBER’S LAW
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We derive the virial theorem for Weber’s law applied to gravitation and electromag-
netism.

Recently there has been a renewed interest in Weber’s law as applied to gravita-
tion and electromagnetism (for discussion and references see, for instance, [1 - 7]).
In the case of gravitation, for instance, it has been shown that Weber’s law gives
a complete mathematical implementation of Mach’s principle (the inertia of any
body being due to its gravitational interaction with the distant universe). There
have been many people working along this line including E. Schrodinger, [8] and
[9].

Most theoretical treatments related to Weber’s law up to now have been re-
stricted to a single body or to only two bodies. Our goal in this work is to begin
the extension of these approaches to an statistical treatment of a many-body inter-
action. We concentrate here on the virial theorem.

Suppose two particles ¢ and j located at 7; and 7 relative to the origin of an
inertial frame of reference O. Their velocities and accelerations relative to this
frame are represented by, respectively: @; = d7;/dt, ¥; = dF;/dt, @; = d*7;/dt* and
@; = d*r;/dt*. They are separated by a distance r;; = |F; — 7| = |7i;|,moving with
radial relative velocity and acceleration given by 7;; = dr;;/dt and ¥;; = d*r;; /dt?.
According to Weber’s law their energy of interaction is given by ([3, Chapter 3]):
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where ¢ = 3 x 10®m/s. For gravitation k;; = —Gm;m; and £ = 6 (G = 6.67 x
1071 Nm?2kg~2 is the constant of gravitation), while k;; = ¢;q;/4me, and £ = 1 for
electromagnetism (g, = 8.85 x 10712 C2N~1m~2 is the permittivity of free space).
There are two ways of deriving the force exerted by j on i. The first is to utilize

—

Fji = —14;dU;; /dri;, where 75 = 75 /|7 = (7 — 7;)/r4; is the unit vector pointing
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The second form is to utilize the function S defined by ([10, p. 203]):

from j to i:
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The central force is then given by the standard procedure:

., d 0S8 oS
F..=¢.. — _ . 4
7 r” (dt 81”1] 8rij) ( )

It is also possible to obtain directly the force components, see [11, pp. 525-535].
For instance, the x component of the force is given by (similarly for the y and z

components):

. dds as
ji*%axj 78.%‘1‘. (5)

It should be observed that there is a sign difference in front of the velocity

dependent terms as regards U and S. If two bodies interact with one another
according to Weber’s law the conserved energy of the system (when there are no
other forces present) is given by T + U, where T = Y m;7; - ¥;/2 is the kinetic
energy of the particles. On the other hand the Lagrangian L of the system is
given by L = T — S. The same change of sign in the velocity terms happens
in classical electromagnetism with Darwin’s Lagrangian, [12, pp. 593-5] and [3,
pp. 177-9]. In order to derive the virial theorem we first define the usual time
average of an arbitrary variable A(t) over a time interval 7, namely, < A > =
(1/7) [, A(t)dt. Accordingly the time average of the time derivative of A is given
by < dA/dt >= [A(T) — A(0)]/7. If the motion is periodic so that all coordinates
repeat after a certain time then this last equation vanishes if we choose 7 as this
period. Alternatively it will also vanish for non periodic motions if we choose 7
sufficiently large and assume that A(¢) remains finite for all time. As one or the
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other of these conditions are usually valid for all physical systems, [13, p. 83|, we
will assume them here, namely, < dA/dt >= 0.

Consider now a system of N particles interacting only through Weber’s law
(2). Newton’s law of motion applied to particle ¢ reads Zj# f‘ﬂ = dp;/dt, where
p; = m;U; is the linear momentum of the particle of mass m; and the summation
goes from j =1 to N, excepting the case j = i.

Making a dot product of both sides of this equation with 7;, adding for all
particles and performing a time average yields

N N
SN B =< i > ®
i=1

i=1 j#i

where we are assuming constant masses. The right hand side can be written as
<N d(mT - T Jdt > — < SN myd; - @ >, With < dA/dt >= 0 the first term
goes to zero. Defining the kinetic energy of the system of N particles by the usual
expression T = vazl m;U; - U;/2 we conclude that the right hand side of Eq. (6) is
given by —2 < T >. We can express the left hand side as (utilizing that F}i = —ﬁm
as is the case for Weber’s law):

N
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where in the last sum ¢ and j go from 1 to N, with the condition that j > i. Up to
now the algebra is standard and applicable to any force satisfying Newton’s law of
action and reaction.
We now make a direct use of Weber’s law. With < dA/dt >= 0 and Eqgs. (2)
and (1) this can be written as (utilizing that 7; - 7;; = r4;):
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where U is Weber’s potential energy for the whole system. To arrive at this result
we utilized < dA/dt >= 0 in the term k;;&i;/c?, which can also be written as
d(k;j&ri;/c®)/dt. We then derived the virial theorem for Weber’s law: < U >=
—2 < T >. The difference as regards the usual newtonian inverse square law lies in
the fact that now the potential energy is the weberian one, U;; given by Eq. (1).

Although specific applications of the virial theorem are beyond the scope of this
letter, a few possibilities should be outlined. This theorem creates, for instance, the
possibility of a full statistical treatment of plasma physics based on Weber’s elec-
trodynamics. It can also be applied in astrophysics in order to deal with problems
related with the formation or stability of the solar system or of galaxies utilizing
Weber’s law applied to gravitation. This letter represents a first step in this direc-
tion.
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