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DETERMINATIONS OF ELECTRODYNAMIC MEASURE: 

Concerning a Universal Law of Electrical Action 

 

by Wilhelm Weber 

 

[Treatise at the founding of the Royal Scientific Society of Saxony on the day of the 200th 

anniversary celebration of Leibniz's birthday, published by the Prince Jablonowski Society, Leipzig 

1846, pp. 211-378.] 

 

[Translated by Susan P. Johnson and edited by Laurence Hecht and A. K. T. Assis (homepage: 

http://www.ifi.unicamp.br/~assis/) from Wilhelm Weber, “Electrodynamische 

Maassbestimmungen: Ueber ein allgemeines Grundgesetz der elektrischen Wirkung,” Werke, Vol. 

III: Galvanismus und Electrodynamik, part 1, edited by H. Weber (Berlin: Julius Springer Verlag, 

1893), pp. 25-214. The author’s notes are represented by [N. A.], the notes by H. Weber, the editor 

of this third volume of Weber’s Werke, are represented by [N. H. W.], while the notes of the editors 

of this English translation are represented by [N. E.].] 

 

The electrical fluids, when they are moved in ponderable bodies, cause reciprocal actions on 

the part of the molecules of these ponderable bodies, from which all galvanic and electrodynamic 

phenomena arise. These reciprocal actions of the ponderable bodies, which are dependent upon the 

motions of the electrical fluids, are to be divided into two classes, whose differentiation is essential 

to the more precise investigation of the laws, namely, (1) such reciprocal actions which those 

molecules exert upon one other, when the distance between them is immeasurably small, and which 

one can designate galvanic or electrodynamic molecular forces, because they occur in the interior 

of the bodies through which the galvanic current flows; and (2) such reciprocal actions which those 

molecules exert upon one another, if the distance between them is measurable, and which one can 

designate galvanic or electrodynamic forces acting at a distance (in inverse proportion to the square 

of the distance). These latter forces also operate between the molecules which belong to two 

different bodies, for instance, two conducting wires. One may easily see, that for a complete 

investigation of the laws of the first class of reciprocal actions, a more precise knowledge is 

required of molecular relationships inside the ponderable bodies than we currently possess, and that 

without it, one could not hope to bring the investigation of this class of reciprocal actions to a full 

conclusion by establishing complete and general laws. The case is different, on the other hand, with 

the second class of galvanic or electrodynamic reciprocal actions, whose laws can be sought in the 

forces which two ponderable bodies, through which the electrical fluids are moving, exert upon 

each other in a precisely measurable position and distance with respect to one another, without it 

being necessary to presuppose that the internal molecular relationships of those ponderable bodies 

are known. 

From these two classes of reciprocal actions, which were discovered by Galvani and 

Ampère, a third class must meanwhile be fully distinguished, namely, the electromagnetic 

reciprocal actions, discovered by Oersted, which take place between the molecules of two 

ponderable bodies at a measurable distance from each other, when in the one the electrical fluids 

are put into motion, while in the other the magnetic fluids are separated. This distinction between 

electromagnetic and electrodynamic phenomena is necessary for presenting the laws, so long as 

Ampère's conception of the essence of magnetism has not fully supplanted the older and more 

customary conception of the actual existence of magnetic fluids. Ampère himself gave expression 

to the essential distinction to be made between these two classes of reciprocal actions in the 

following way:  
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“As soon as Mr. Oersted had discovered the force which the conducting wire exerted on 

the magnet,” he said on page 285 of his Treatise,1, 2 “one could in fact suspect that a reciprocal 

action might exist between two conducting wires. But this was not a necessary consequence of that 

famous physicist's discovery: for a soft iron bar also acts upon a magnetic needle, without, 

however, any reciprocal action occurring between two soft iron bars. As long as one knew simply 

the fact of the deflection of the magnetic needle by the conducting wire, could one not assume, that 

the electrical current simply imparted to this conducting wire the property of being influenced by 

the magnetic needle, in a way similar to that in which the soft iron was influenced by the same 

needle, for which it sufficed that it [the wire] acted on the needle, without any sort of effect 

resulting thereby between two conducting wires, if they were withdrawn from the influence of 

magnetic bodies? Simple experimentation could answer the question: I carried it out in September 

1820, and the reciprocal action of the voltaic conductors was proven.” 

Ampère rigorously develops this distinction in his Treatise, declaring that it is necessary for 

the laws of reciprocal action discovered by himself and Oersted to be separately and completely 

derived, each by itself, from experimental evidence. After he has spoken of the difficulties of 

precisely observing the reciprocal action of the conducting wires, he says on page 183, loc. cit.: “It 

is true that one meets with no such difficulties, when one measures the effect of a conducting wire 

on a magnet; however, this method cannot be used when it is a matter of determining the forces 

which two voltaic conductors exert upon each other. In fact, it becomes clear, that if the action of a 

conducting wire on a magnet, proceeds from a cause other than that which occurs between two 

conducting wires, the experiments made on the former would prove nothing at all with respect to 

the latter.” 

From this, it becomes clear, that even if many fine experiments have been conducted more 

recently in further pursuit of Oersted’s discovery, nothing has directly occurred yet toward further 

pursuit of Ampère's discovery, and that this requires specific and unusual experiments which 

hitherto have been sorely lacking. 

Ampère's classic work itself is concerned only in a lesser way with the phenomena and laws 

of the reciprocal action of the conducting wires vis-à-vis each other, while the larger part is devoted 

to the development and application of his conception of magnetism, based on those laws. Nor did 

he consider his work on the reciprocal action between two conducting wires as in any way 

complete and final, either from an experimental or theoretical standpoint, but on the contrary, 

repeatedly drew attention to what remained to be done in both connections. 

He states on page 181 of the cited Treatise, that in order to derive the laws of reciprocal 

action between two conducting wires from experimental evidence, one can proceed in two different 

ways, of which he could pursue only one, and presents the reasons which kept him from attempting 

the other way, the most essential being the lack of precise measuring instruments, free of 

indeterminable foreign influences. 

“There is, moreover,” he says on page 182 f., loc. cit., “a far more decisive reason, namely, 

the limitless difficulties of the experiments, if, for example, one intended to measure these forces 

by means of the number of vibrations of a body subjected to their influence. These difficulties arise 

from the fact that, when one causes a fixed conductor to act on a moveable part of a voltaic circuit 

those parts of the apparatus, which are necessary to connect it to the dry battery, have an effect on 

this moveable part as well as the fixed conductor, and thus destroy the results of the experiments.” 

                                                 
1
 [N. A.] Mémoire sur la théorie mathématique des phénomènes électrodynamiques uniquement déduite de 

l'expérience. Mémeoires de l'académie royale des sciences de l'institut de France, 1823. 
2
 [N. E.] There is a partial English translation in R. A. R. Tricker, Early Electrodynamics – The First Law of 

Circulation (New York: Pergamon, 1965), pp. 155-200: A. M. Ampère, “On the Mathematical Theory of 

Electrodynamics Phenomena, Experimentally Deduced.” 
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Likewise, Ampère repeatedly drew attention to what remains to be done from the 

theoretical standpoint. For example, he says on page 299, after showing that it is impossible to 

account for the reciprocal action of the conducting wires on each other, by means of a certain 

distribution of static electricity in the conducting wires: 

“If one assumes, on the contrary, that the electrical particles in the conducting wires, set in 

motion by the influence of the battery, continually change their position, at every moment 

combining in a neutral fluid, separating again, and immediately recombining with other particles of 

the fluid of the opposite kind, then there exists no contradiction in assuming that from the 

influences which each particle exerts in inverse proportion to the square of the distance, a force 

could result, which did not depend solely upon their distances, but also on the alignments of the 

two elements, along which the electrical particles move, combine with molecules of the opposite 

kind, and instantly separate, in order to combine again with others. The force which then develops, 

and for which the experiments and calculations discussed in this Treatise have given me the 

quantitative data, depends, however, directly and indeed exclusively, on this distance and these 

alignments.” 

“If it were possible,” Ampère continued on page 301, “to prove on the basis of this 

consideration, that the reciprocal action of two elements were in fact proportional according to the 

formula with which I have described it, then this account of the fundamental fact of the entire 

theory of electrodynamic phenomena would obviously have to be preferred to every other theory; it 

would, however, require investigations with which I have had no time to occupy myself, any more 

than with the still more difficult investigations which one would have to undertake in order to 

ascertain whether the opposing explanation, whereby one attributes electrodynamic phenomena to 

motions imparted by the electrical currents of the ether, could lead to the same formula.” 

Ampère did not continue these investigations, nor has anyone else published anything to 

date, from either the experimental or theoretical side, concerning further investigations, and since 

Ampère, science has come to a halt in this area, with the exception of Faraday's discovery of the 

phenomena of galvanic currents induced in a conducting wire when a nearby galvanic current is 

increased, weakened, or displaced. This neglect of electrodynamics since Ampère, is not to be 

considered a consequence of attributing less importance to the fundamental phenomenon 

discovered by Ampère, than to those discovered by Galvani and Oersted, but rather it results from 

dread of the great difficulty of the experiments, which are very hard to carry out with present 

equipment, and no experiments were susceptible of such manifold and exact determinations as the 

electromagnetic ones. To remove these difficulties for the future, is the purpose of the work to be 

presented here, in which I will chiefly confine myself to the consideration of purely galvanic and 

electrodynamic reciprocal actions at a distance. 

Ampère characterized his mathematical theory of electrodynamic phenomena in the title of 

his Treatise as derived solely from experimental results, and one finds in the Treatise itself the 

simple, ingenious method developed in detail, which he used for this purpose. In it, one finds the 

experiments he selected and their significance for the theory discussed in detail, and the 

instruments for carrying them out fully and precisely described; but an exact description of the 

experiments themselves is missing. With such fundamental experiments, it does not suffice to state 

their purpose and describe the instruments with which they are conducted, and add a general 

assurance that they were accompanied by the expected results, but it is also necessary to go into the 

details of the experiments more precisely, and to state how often each experiment was repeated, 

what changes were made, and what influence those changes had, in short, to communicate in 

protocol form, all data which contribute to establishing a judgment about the degree of reliability or 

certainty of the result. Ampère did not make these kinds of more specific statements about the 

experiments, and they are still missing from the completion of an actual direct proof of the 

fundamental electrodynamic law. The fact of the reciprocal action of conducting wires has indeed 



 4 

been generally placed beyond doubt through frequently repeated experiments, but only with such 

equipment and under such conditions, that quantitative determinations are out of the question, not 

to speak of the possibility that these determinations could achieve the rigor required to consider the 

law of those phenomena as empirically proven. 

Now, Ampère, of course, more frequently made use of the absence of electrodynamic 

effects which he observed, similar to the use of measurements which yield the result = 0, and, by 

means of this expedient, he attempted, with great acuity and skill, to obtain the most necessary 

basic data and means of testing for his theoretical conjectures, which, in the absence of better data, 

was the only method possible; we cannot, however, in any way ascribe to such negative 

experimental results, even if they must temporarily take the place of the results of positive 

measurements, the entire value and the full force of proof which the latter possess, if the negative 

results are not obtained with the use of such techniques, and under such conditions, where true 

measurements can also be carried out, which was not possible with the instruments used by 

Ampère. 

One may consider more precisely, for example, the experiment which Ampère describes on 

page 194 ff. of his Treatise as the third case of equilibrium, where a metal arc lies on two trays 

filled with mercury, from one of which the current is introduced and from the other drawn off, and 

where, additionally, the arc is fastened by a hinge to an arm which connects it with a vertical shaft 

pivoting between the ends.3 Ampère now observed that, while a galvanic current is passing through 

                                                 
3
 [N. A.] Ampère gives in another location the following description of his instrument: On a frame TT' (Figure 1) in the 

form of a table two vertical poles EF and EF' protrude, bound together by crosspieces LL' FF'; an axle GH is held in a 

vertical position between these two crosspieces. Its two ends G and H are sharpened and are seated in conical 

depressions, one of which is in the lower crosspiece LL', the other on the end of a screw KZ which passes through the 

upper crosspiece FF' and which serves to steady the axle GH without fixing it. An arm QO is fastened at C to the axle. 

The end of the arm is equipped with a hinge, into which fits the middle of an arc AA', which is formed from a 

conductor. The arm, whose radius is equal to the distance from O to the axle GH, is always in a horizontal position. 

This arc is balanced with a counterpoise at Q, in order to decrease the friction at points GH where it is seated in the 

conical depressions. 

Under the arc AA' are two trays M and M' filled with mercury, so that the surface of the mercury, which rises 

above the rim of the tray, just touches the arc AA' at B and B'. These two trays communicate through the metallic 

conductors MN and M'N' with the mercury-filled cups P and P'. The cup and the wire MN which connects it with the 

tray M are fastened on a vertical axle, which sits on the table so that it can turn freely. This axle passes through the cup 

P', with which the wire M'N' is connected, in order that it may turn independently from the other cup. The axle is 

insulated by a little glass tube which surrounds it, and is kept separate by a little glass disc from the conductor of the 

tray M, so one may form an arbitrary angle with the conductors MN and M'N'. 

Two other conductors, JR and J'R', fastened to the table, are submerged respectively in cups P and P', and 

connect these with mercury-filled depressions in the table R and R'. Finally, between these two depressions, there is a 

third, S, also filled with mercury. 
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that arc, it is not displaced from its supports, if a closed circuit of current is made to act upon the 

arc, provided that the midpoint of the arc falls on the axis of the shaft to which the arc is attached. 

However, one easily sees that, in order to put the arc into motion, a fourfold friction must be 

overcome, namely, the friction on the two supports on which the arc is lying (arc AA' on B and B' in 

Figure 1), and the friction on the two ends G and H, on which the vertical shaft pivots. Further, it is 

known that the electrodynamic forces which are produced with the strongest imaginable galvanic 

current in a simple wire, like the section of the arc BB' with current flowing through it, are so weak, 

that the wire must be extremely mobile, in order to show any perceptible effect at all. One would 

accordingly be inclined to expect, that that arc would not be displaced in the case where its 

midpoint lay in the axis of rotation, but also that in the opposite case, where its midpoint did not 

coincide with the axis of rotation, no displacement would occur, because the just-cited fourfold 

friction would counterpose far too great a resistance. Ampère now says, nevertheless, on page 196, 

loc. cit.: “When, by means of the hinge O, the arc is placed in such a position that its center lies 

outside the GH axis, the arc takes on motion and slides on the mercury of the little troughs M and 

M', in virtue of the action of the closed curvilinear current which goes from R' to S. If, on the 

contrary, its midpoint is on the axis, it remains immobile.” It is regrettable, that Ampère did not 

mention the obvious problem of that fourfold friction, and never explicitly says that he himself saw 

and observed the movement of the eccentric arc. However, aside from the doubt that could 

therefore be raised about the actual observation of the datum, and assuming that Ampère himself 

                                                                                                                                                                 

 
 

The apparatus is used in the following way: One battery lead, for instance, the positive, is dipped into 

depression R, and the negative into depression S, and the latter is connected with depression R' through an appropriately 

bent conductor. The current goes through the conductor RJ to cup P, from there through the conductor NM to tray M, 

through the conductor J'R', and finally from the depression R' through the arbitrarily curved conductor to depression S, 

in which the negative battery lead is dipped. 

The voltaic circulation is accordingly formed: (1) from arc BB' in contact with conductors MN and MN'; (2) 

from a circuit, which from the part RJP and P'J'R' of the device, out of the curved conductor which goes from R' and S 

and from the pillar itself originates. The latter circuit works like a closed one because it is only interrupted by the 

thickness of the glass plate which separates the cups P and P'; hence, it suffices to observe its action on the arc BB' in 

order to experimentally confirm the effect of a closed current on an arc at the different positions which one can set up 

with respect to it. 
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saw the displacement of the arc under the conditions described, and also made certain that it had 

actually been the effect of electrodynamic forces, which were strong enough, to overcome all 

opposing obstacles, it is still in no way stated at what eccentricity of the arc this motion began, and 

within which limits it did not occur. Yet without determining such limits, no full force of proof can 

be attributed to this experiment. It is not known to me whether, since that time, this experiment has 

been successfully repeated and more precisely described by other physicists, yet this much can be 

summarily stated, that even in the most favorable of cases, the displacement occurred only at great 

eccentricities, from which, however, it cannot be concluded that the electrodynamic force acts 

precisely at right angles to the elements of the arc. 

By means of these remarks about Ampère's experiments, I have only wished to demonstrate 

that the electrodynamic laws have found no sufficient proof in these experiments, communicated as 

they are without more precise details, and why I believe that such a proof could not be given by 

means of observations with Ampère's instruments, but instead, observations are required with 

precise measuring instruments which have not previously been used. If, despite the lack of direct 

factual proof, one remains convinced of the correctness of the laws advanced by Ampère, this 

conviction is based on grounds which in no way make direct proof superfluous. Electrodynamic 

measurements hence remain desirable in order to provide the direct proof which is lacking. 

In fact, amidst the universal attempt to determine all natural phenomena according to 

number and measure, and thereby to obtain a basis for theory which is independent of either 

sensory perception or mere estimation, it seems amazing that in electrodynamics, no attempt of this 

kind has been made; nevertheless, I am aware of neither refined nor gross measurements of the 

reciprocal actions of two conducting wires vis-à-vis each other. All the more do I consider myself 

authorized to present here the first attempts which I have made toward such measurements. I hope 

thereby to prove, that these electrodynamic measurements possess importance and significance in 

quite other respects than as proof of the fundamental electrodynamic laws, namely, by becoming 

the source of entirely new investigations for which they are uniquely suited, and which, indeed, 

cannot be conducted without them. 

 

1. 

 

Description of an instrument for the measurement of the reciprocal action of two conducting wires. 

 

The instruments Ampère used for his electrodynamic experiments, are not of the sort that 

allow the probative force of more rigorous measurements to be ascribed to the experiments made 

with them. The reason for this lies in the friction which often annuls the entirety of the electrical 

force to be observed, or a large part of it, and eliminates it from observation. Neither is it possible 

with those instruments, even under favorable conditions, to overcome this adverse friction by 

means of the weak electrodynamic forces, while by any more rigorous measurement it must be 

presupposed that the friction is a negligible fraction in comparison with the force to be measured. 

Already, twelve years ago, for the purpose of excluding friction and introducing truer 

measurements, I equipped a wire wound on a thin wooden frame, through which a galvanic current 

was to be conducted, and which then was to be set into motion by the electrodynamic attraction and 

repulsion of a multiplier, with a bifilar suspension of two fine metal wires (in future, I will call 

these wire spirals with bifilar suspension the bifilar coils) and used one of these suspension wires 

for supplying the galvanic current, the other for drawing it off. I first came to know the full 

significance of this apparatus for the purpose of measurement, however, by way of the bifilar 

magnetometer of Gauss, from whom I then borrowed the use of a mirror fastened to the bifilar coil. 

In the summer of 1837, I made such an instrument and carried out a series of experiments with it, 

all of which prove, that one can achieve the greatest refinement in the observation of 
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electrodynamic phenomena with currents so weak, that previously, no one ever succeeded in 

eliciting these phenomena with them. 

The instrument to be described here firstly, was constructed by Inspector Meyerstein in 

Göttingen in 1841, yet it was in Leipzig that I first found occasion to provide a suitable setup for a 

greater series of measurements. 

This instrument consists essentially of two parts: the bifilar coil with a mirror, and the 

multiplier. 

 

 
 

The bifilar coil, which is presented in a vertical cross-section in Figure 2, consists of two 

thin brass discs aa and a'a' of 66.8 mm diameter, which are held in a fixed position by a 3-mm 

thick brass axis bb' at a distance of 30 mm apart. Around this axis between these discs is wound 

roughly 5,000 times a copper wire cc of 0.4 mm diameter, sheathed in silk, which completely fills 

up the space between the two discs. Figure 3 presents this coil in a vertical cross-section 

perpendicular to the previous one. One end of the wire is led, close to the brass axis, through a 
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small opening lined with ivory in one disc at e (Figure 3) outward from e to e' ; the other end is 

fastened at d on the periphery of the cylinder formed by the wire windings with silk thread.  

 

 
 

A plane mirror ff' (Figure 3) is now attached to this wire coil, and fixed by three screws to a 

small brass plate; the brass plate is equipped with two right-angled extensions g and g', of which in 

Figure 3 only the rear one, g, is visible. Figure 4, which gives the horizontal cross-section, shows 

both extensions connected with the brass plate holding the mirror ff'. These two extensions are 

screwed at their ends to the outsides of the two brass discs aa and a'a'. The mirror ff' is located in a 

plane parallel to the axis bb' of the wire coil close to the periphery of the coil; diametrically 

opposite to it, a counter-weight h is mounted. I use now a square plane mirror ground in Berlin by 

Oertling; its sides are 40 millimeters long. 
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The bifilar suspension of this wire coil consists of three parts: the halter fastened onto the 

coil, the two suspension wires, and finally the immovable support from which the wires hang. The 

halter consists of a forked brass bracket or bow (Figure 3, ll'), with two 100-mm-long parallel 

vertical arms lk and l'k', 100-mm apart. The ends of both arms are screwed fast at k and k' to the 

brass plate which holds up the mirror, and, diametrically opposite, to the holder of the counter-

weight. Figure 5 in particular shows this halter; at d and d', the two wires coming from b and c pass 

under two ivory plates which can be adjusted by means of screw a, and pass through two grooves 

in the ivory plates, which are in contact with each other at the center, and vertically upward through 

the opening e. Figure 6 gives the view of the halter from below; at f and g, the connection of the 

screw a with the two ivory plates is represented. The vertical going through the center of gravity of 

the coil passes through the middle of the area between the two grooves. At each arm of the bow, 

finally, is located at d' and e' (Figure 3) a clamp insulated with ivory for fastening and connecting 

one of the silk-coated wires from each end of the coil with the lower end of one of the two uncoated 

suspension wires. The suspension wire is led from this clamp d' or e' through a small opening lined 

with ivory o or o', along the underside of the bow, to one of the two already mentioned grooves on 

the ivory plates which meet each other at the center, whence the wire goes upwards to the little 

brass cylinder at n and n' (Figure 2). The two suspension wires are copper, 1 meter long, and 1/6 

meter thick; their distance apart, to be regulated by screw a (Figure 6), is usually 3 to 4 millimeters. 

The support, to which both upper ends of the two suspension wires are fastened, consists of 

a strong piece of ivory p (Figure 2), which is fitted tight like a lid on the upper end of a 30-mm-

wide brass tube qq'. This brass tube is 150 mm long and allows a second brass tube, rr', to pass 

through it, be rotated, and be adjusted by a set-screw s (Figure 3). These two tubes surround the 

two suspension wires along their entire length, and protect them from the influence of the air. On 

the underside of the piece of ivory, are attached two little movable brass rollers t and t' (Figure 2) of 

10 mm diameter, fastened to the ivory with screw clamps u and u'; over each of these little rollers is 

led a suspension wire, which terminates in an eyelet. Both eyelets of the two wire ends are bound 

together with a strong silk thread between t and t', without touching each other. By means of these 

two little rollers and the binding together of the two wires, the two suspension wires are made to 
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always have the same tension. To each of the two clamps u and u', which fasten the two little 

rollers to the ivory, is, finally, fastened a coated copper wire, of which uv (Figure 2) serves to 

supply the galvanic current, u'v' to draw it off. 

The multiplier, finally, consists of two square copper plates ww and w'w' (Figs. 3, 4), with 

sides of 140 mm, with a circular hole of 76 mm diameter. These two copper plates stand parallel 

and vertical, and are connected by a horizontal brass tube xx' of 76 mm diameter, by means of 

which they are kept at a 70-mm distance from one another. In the space yy above these tubes 

between those two parallel plates is wound approximately 3,500 times the 0.7-mm-thick multiplier 

wire. The upper side of the multiplier is closed off with a brass cover zzz'z' (Figure 2), which is 

screwed tight onto it, and has a circular opening in the center of its upper side, above which the 

brass tubes surrounding the suspension wires stand. On both sides of this cover, slots are placed, 

through which the bow of the bifilar coil can pass and swing freely. The space between the 

uppermost windings of the multiplier wire and the cover is also wide enough, that each arm of the 

bow finds sufficient room for its movements. The bow is first stuck through without the bifilar coil 

and fastened to the suspension wires, and only then is it screwed to the bifilar coil. The protruding 

lower edges of the two brass plates on the multiplier stand on a wooden plate, which can be made 

level by means of three screws. In this wooden plate are two holes aa and a'a' (Figure 3), through 

which the two ends of the multiplier wire are led toward the outside. The whole instrument, with 

the exception of the brass tubes in which the suspension wires are located, is contained in a 

mahogany casing, for protection against the influence of the air. This mahogany casing has no 

floor, but is placed with the level edges of the side walls flush with the wooden plate, by means of 

which it is closed off from below. On the upper side is placed a round opening, through which the 

already mentioned brass tube passes. A second opening is made on the front side of the casing and 

can be closed with a plane of glass. Through it the light of the scale falls on the mirror of the bifilar 

coil and is thrown back to the telescope. The entire casing is vertically divided in two halves, of 

which an individual half can be taken away. The arrangement of the telescope and the scale is 

exactly the same as in the magnetometer. In future I will designate the instrument described here 

with the name electrodynamometer, or dynamometer for short, because its most immediate destiny 

is to measure the electrodynamic forces discovered by Ampère. 

 

2. 

 

The electrodynamic force of two components of a circuit is proportional to the square of the 

current intensity. 

 

The intensity of a constant current is determined by the amount of electricity, which during 

the time-unit (during a second) goes through a cross-section of the circuit. This determination of 

the intensity of the current is, however, not suitable as the basis of a practical method for 

measurement of the intensity of the current; for that, two measurements would be required, of 

which one cannot be performed at all, the other not with precision: namely, a definite amount of 

electricity cannot be precisely measured under the prevailing conditions, and the length of time in 

which it flows through the cross-section of the conducting wire can not be measured at all. For 

actual practical application, it is necessary to make use of another method of measuring the current-

intensity. Such a method, wholly conforming to requirements, is offered by the magnetic effects of 

the currents, and will always be the standard method here. Accordingly, two currents, conducted 

successively through the same multiplier, that exert the same force on the same permanent magnet 

at the same distance and in the same position, have the same intensity; if the force they exert 

differs, then their intensities are related as these forces, and can be measured with the help of the 

usual galvanometer. 
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If different currents are now put through the same circuit successively, whose intensities, 

according to this measurement, are in the ratio 1 : 2 : 3 and so forth, then the electrodynamic 

reciprocal actions of two components of the circuit, through which these different currents are 

passing, are in the ratio of the series of the square of those intensities, i.e., 1 : 4 : 9 and so forth. The 

correctness of this law is now to be proven by means of the following electrodynamic 

measurements, which, even if the above law required no proof, would have their own interest, as 

the first example of the general rigor which it is possible to achieve in electrodynamic 

measurements.  

The dynamometer described in the previous Section was placed on a stone ledge, without 

any iron or magnets in its immediate surroundings, in such a way that the plane of the fixed coil, or 

multiplier, was parallel to the magnetic meridian, and the plane of the bifilar coil was also vertical, 

but formed a right angle with the plane of the multiplier. The position of the multiplier could easily 

be adjusted, since it was possible to examine the vertical placement with sufficient exactness by 

means of a level, which was set on the cover of the multiplier, and the orientation was regulated by 

means of a compass also placed on the cover of the multiplier. The bifilar coil assumed a vertical 

position on its own when it was hung up, but whether the plane of the bifilar coil formed a right 

angle with the magnetic meridian, had to be tested by means of special experiments. 

I.e., it is a proof of the correct position of the latter, if it remains unchanged even when an 

arbitrarily strong positive or negative current is put through the bifilar coil alone, because in the 

event of any appreciable deviation from that position, the terrestrial magnetism had to either 

increase or decrease this deviation. In this way, the magnitude of the deviation can also be 

determined. Such a test came about when the western radius of the bifilar coil was to be turned by 

14 minutes toward the north, in order to place the plane of the bifilar coil exactly perpendicular to 

the magnetic meridian. The instrument offered no suitable way to carry out this small correction 

with precision, and apart from the fact that such a small deviation did not appreciably affect the 

results, doing away with it would have had no lasting utility, because continued observations 

showed, that hanging the bifilar coil at the upper end of a one-meter-high free-standing brass 

cylinder offered no security against rotations on the part of the bifilar coil which began gradually 

and increased for a few minutes. Suspension from an isolated fixed stone column was the only way 

to provide complete security from such small deviations. 

The mirror fastened to the western radius of the bifilar coil stood vertically, and in the 

vertical plane, its horizontal normal was placed about 6 meters distant from a telescope equipped 

with crosshairs. A scale, as used in the magnetometer, was mounted on the fixed base of the 

telescope, just as in the magnetometer. Measurement showed the horizontal distance of the mirror 

from the scale:  

= 6018.6 scale degrees, 

from which the arc measure of a scale degree resulted:  

= 17.136". 

After this setup of the dynamometer for measuring the electrodynamic reciprocal action of the 

multiplier and the bifilar coil when a galvanic current is put through them, an electromagnetic 

apparatus for measuring the intensity of the current was now required for the investigation in hand. 

 

3. 

 

Description of an electromagnetic apparatus for measuring the intensity of galvanic currents, 

which are conducted through the dynamometer. 

 

Measuring the intensity of galvanic currents, which are conducted through the 

dynamometer, would have been easily effected by means of a so-called sine- or tangent-



 12 

galvanometer adapted for fine measurements, if it had been installed at a greater distance from 

the dynamometer, and the same current which passed through the dynamometer, had also been 

conducted through the multiplier of that galvanometer. This shunting of the galvanic current can be 

dispensed with when one places a small (transportable) magnetometer in the magnetic meridian of 

the dynamometer at a distance from the dynamometer such that the dynamometer's fixed coil itself 

educes a deflection of the magnetometer which can be measured by fine fractions. It is obvious that 

at such a slight distance, the use of a large magnetometer (with a 600-millimeter-long needle) 

would be unsuitable, since in the case in question, it was a fundamental advantage to confine the 

distribution of the magnetism in the magnetometer to the smallest space possible. This occurred 

with the small or transportable magnetometer, which I have described in the “Resultaten aus den 

Beobachtungen des magnetischen Vereins im Jahre 1838” (“Results from observations by the 

Magnetic Society in 1838”). 

I have, however, contrived another instrument which suited this purpose still more fully, 

and will describe it here, because not only can it often replace the transportable magnetometer to 

advantage, but it provides for other purposes, especially thermo-magnetic measurements, an 

instrument which is often more precise than those previously applied. The advantages are well-

known of using for such measurements a needle equipped with a mirror, along with a telescope and 

scale, instead of the compass with pointer and graduated scale. Yet using the mirror with small 

needles is risky, because the mirror is an inertial mass, which must be drawn along with the needle, 

and consequently, when a small needle has to draw a larger mirror along with it, the force of 

acceleration is greatly weakened, which is just as disadvantageous for the precision of the 

measurements to be made with the needle, as if a weakly magnetized needle were used. This 

disadvantage, however, can be removed from the outset if a magnetic mirror is employed, and this 

mirror is suspended by a silk thread as itself a magnetic needle. I have obtained such a mirror from 

the instrument-maker Mr. Oertling in Berlin. It consists of a tempered round steel plate ab (Figure 

7), 33 millimeters in diameter and 6 millimeters thick. This steel plate is ground so completely 

smooth, that the mirror image of a scale appears very bright and clear through a telescope of tenfold 

magnification, and is little inferior to the image in a glass mirror. At the edge of this circular disc, 

small screw-threads are tapped at two diametrically opposed points, a and b, into each of which a 

little brass eyelet can be screwed, from which the mirror is hung with a silk thread. Only one of 

these threads is actually used, but soon the one, soon the other, according to whether the steel plate 

is to turn its mirror surface toward east or west. Now, I magnetized this tempered steel plate, by 

placing two 25-pound magnetic rods in a straight line one behind the other, but in such a way, that 

there remained an interval of space, equal to the diameter of the mirror, between the south and 

north poles of the two rods, the poles being turned toward each other. The mirror was placed in this 

space, so that that diameter of the mirror which was perpendicular to the line connecting the two 

eyelets, a and b, linked the two magnets. Given the strength of the magnets and the smallness of the 

mirror, this sufficed to impart to the mirror the maximum magnetism it was capable of assuming. 
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This magnetic mirror was suspended by a silk thread ac (Figure 7) and made to oscillate. 

The arc of the oscillation decreased only very slowly, so that the oscillations could still be observed 

after a quarter of an hour, without the mirror having received any new impetus in the meantime. 

The period of its oscillations, however, was too small for the observational series to be carried out 

according to the rules for larger magnetometers, as the maximum and minimum of the curve of 

oscillation was repeatedly observed right after one another. In order to make precise observations 

of the average position of the mirror, it was an essential requirement that the oscillations of the 

mirror be powerfully damped and the mirror brought to a complete halt in the shortest possible 

time, without exerting any sort of influence on the position of the mirror itself. I completely 

satisfied this essential requirement for using this sort of magnetic mirror, by constructing a solid 

copper sphere ddd (Figure 8) of 90-millimeter diameter. Into one side, a hole eeee of 40-millimeter 

diameter was drilled 70 millimeters deep into this sphere, and this hole could be closed with a flat 

glass pane. This hole was somewhat enlarged at its back end for the magnetic mirror, and was also 

enlarged in the form of a funnel toward the exterior, in order to give the mirror more access to the 

light. In the enlarged back space eeee was suspended the magnetic mirror, which can be seen in 

Figure 8 in the horizontal rectangular cross-section ns. From above, an 8-millimeter-wide, 40-

millimeter-long opening ffff (Figure 7) led to this enlarged space, through which the mirror, 

suspended from a silk thread, could be let down to the center of the sphere. The silk thread was led 

through a brass tube gggg, whose lower end was screwed to the sphere, with the help of a brass 

plate hh, which covered the mouth of the opening ff to the sphere. Inside this brass tube was a 
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second exit-tube kkkk, which bore on its upper end a rotatable torsion circle ll with a hook, at c, 

to which the silk thread was tied. The thread could be raised through the exit tube, until the mirror 

swung freely in the center of the copper sphere. Then the exit tube was fixed in place by means of a 

push-screw m. To fix this copper sphere in place, a simple copper ring nnnn was installed, 20 

millimeters high, of 70-millimeter diameter, and 2 millimeters thick, which formed a base into 

which the copper sphere was put. To level the instrument, a small box-level was placed on the 

torsion circle and the copper sphere was rotated in the ring until the level showed the correct 

alignment, which had to be carried out with great delicacy and precision. Owing to its great weight, 

the copper sphere lay so tightly in the ring, that no disturbance was ever noted. 

The effect of this strong copper sphere on the oscillating mirror now consists in a magneto-

electric damping, in virtue of which the preceding arc of oscillation was in the ratio to the 

succeeding one of 11 : 7 (the decrementum logarithmicum was = 0.19697), so that after 16 

oscillations or about 1 minute (the period of oscillation was 3.78 seconds for this damping), the arc 

of oscillation was only about 1/1400 its original size, thus negligible. As a rule, given constant 

currents, it thus suffices to let 1 minute pass after the current begins, before one observes the 

deflected position of the mirror. 

If such deflection experiments possess not merely a relative, but an absolute, value, then, 

according to the instructions given by Gauss in the Intensitas vis magneticae terrestris ad 

mensuram absolutam revocata,4 the deflecting magnet or current must at most be placed at a 

distance 3 or 4 times that of the needle's length, for which in our case the triple or quadruple of the 

mirror diameter will be 105 to 140 mm, at which slight distance even very weak currents of the 

multiplier suffice to elicit sharp measurable deflections of the mirror. If now 105 or 140 mm would 

be a distancing of the multiplier, sufficient to give an absolute value to the measurement of the 

deflection, then this would take place still more, by far, at a distance of 583.5 mm, at which the 

multiplier was placed from the mirror in our experiments. The mutual position of the two 

instruments, the dynamometer and the mirror magnetometer, is presented in Figure 9, where the 

dotted line NS is the magnetic meridian, which goes through both instruments: A is the horizontal 

cross-section of the dynamometer, as in Figure 4; B is the horizontal cross-section of the mirror 

magnetometer, as in Figure 8, CD are the telescopes for readings, aimed at the mirrors of both 

instruments; EF are the attached scales, whose mirror-image is observed. The use of the mirror 

magnetometer for thermo-magnetic observations, in which some additional devices come into play, 

will be treated on another occasion. 

 

                                                 
4
 [N. E.] This paper by C. F. Gauss has already been translated to English: “The intensity of the Earth’s magnetic force 

reduced to absolute measurement,” translated from the German by Susan P. Johnson, July 1995, available in: 

http://www.21stcenturysciencetech.com/  
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4. 

 

After this description of the essential equipment, which was designed for electromagnetic 

measurement of the intensity of currents and for electrodynamic measurement of the reciprocal 

action of two portions of the circuit, and before we proceed to a description of the experiments 

themselves, we wish to make a prefatory remark about the elicitation and regulation of the currents 

which were used in those experiments. 

Three small Grove’s elements from the instrument-maker Mr. Kleinert were used, which 

were brought into the circuit, either all three, or only two, connected column-wise in series, or 

individually. Despite the fact that the currents were conducted through a very long, thin wire 

circuit, which formed the bifilar coil and the multiplier of the dynamometer, and which was even 

further extended by means of a long auxiliary wire, these currents, even given the great weakening 

which they underwent because of the great resistance of such a circuit, remained much too strong 

and deflected the dynamometer from its equilibrium position much too far, for this deflection to be 

measured by means of the 1-meter long scale. On the other hand, the intensity of these currents in 

the multiplier was quite suitable for eliciting a rigorously measurable deflection of the mirror 

magnetometer. Hence the deflection of the bifilar coil had to be diminished at a constant rate, 

without decreasing the intensity of the current in the dynamometer's multiplier. There were two 

ways for this to occur, either by increasing the separation of the suspension wires of the bifilar coil 

from each other, which would decrease the sensitivity of the dynamometer at a constant rate, or, the 

current could be apportioned so that only a small fraction of the current passing through the 

dynamometer, would be conducted through the bifilar coil. I preferred the latter method, in order to 

maintain the dynamometer's sensitivity, which was necessary for other experiments. A step or 

bridge was constructed for the current, by means of a short, thick copper wire, designated vv' in 

Figure 2, by which the current, outside the bifilar coil, was conducted directly to the wire returning 
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back out of the bifilar coil before the current entered the bifilar coil. A precise comparison of the 

resistance of this connecting wire with that of the bifilar coil, yielded the ratio 

1 : 245.26, 

from which it follows, according to Ohm's law, that the current intensity in the bifilar coil after this 

apportionment stood in the constant ratio of5 

1 : 246.26 

to the current intensity in the multiplier of the dynamometer, by means of which, thusly, without 

decreasing the deflection of the mirror magnetometer by the dynamometer's multiplier, the 

deflection of the dynamometer itself was diminished 246.26-fold. This 246.26-fold diminished 

deflection of the dynamometer could then be rigorously measured on the scale; the current might 

come from 3, 2, or only 1 Grove’s element. 

The measurements contained in the following table were made in that way. 

                                                 
5
 [N. A.] For if a denotes the intensity of the completely unapportioned current, as it passes through the multiplier, b 

and c the intensity of the two currents, into which each divides itself, b passing through the bifilar coil, c through the 

auxiliary wire vv' which connects the beginning and the end of the bifilar coil; then a = b + c, and according to Ohm's 

law, the intensities b:c are related inversely to the measured resistances, that is, 

b : c = 1 : 245.26; 

consequently 

b : a = b : (b + c) = 1 : 246.26. 
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Table of corresponding positions of the Mirror Magnetometer and the Dynamometer under the 

influence of currents of different intensity. 

No. Number of Grove’s 

elements 

Observed Position of 

Magnetometer 

Observed Position of 

Dynamometer 

1. 3 388.17 650.88 

2. 0 279.74 209.79 

3. 3 388.30 650.66 

4. 0 279.68 209.47 

5. 3 388.37 650.07 

6. 0 280.05 209.70 

7. 3 388.73 649.84 

8. 0 279.95 209.55 

9. 3 388.35 649.78 

10. 0 279.78 209.53 

11. 3 388.30 649.71 

Average deflection 3 – 0 108.566 440.508 

12. 0 279.54 209.25 

13. 2 352.15 407.52 

14. 0 280.00 208.99 

15. 2 352.35 407.35 

16. 0 280.00 208.82 

17. 2 352.50 407.18 

18. 0 280.15 208.87 

19. 2 352.60 407.15 

20. 0 280.17 208.92 

21. 2 352.95 406.89 

22. 0 280.40 208.80 

Average deflection 2 – 0 72.438 198.305 

23. 0 280.40 208.80 

24. 1 316.77 259.68 

25. 0 280.50 208.72 

26. 1 216.93 259.53 

27. 0 280.60 208.68 

28. 1 316.90 259.50 

29. 0 280.50 208.45 

30. 1 316.85 259.38 

31. 0 280.60 208.43 

32. 1 216.90 259.35 

33. 0 280.55 208.33 

Average deflection 1 – 0 36.332 50.915 

 

The following explanations should be appended to this table: 1.) During all these 

experiments, the relationships of the conductors always remained the same, so that the conditions 

of current intensity in all portions of the circuit were always the same. 2.) The corresponding 

observations on the magnetometer and dynamometer were always carried out simultaneously by 

two different observers at both instruments. The observers were, in addition to myself, Dr. Stähelin 
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from Basel, and my assistant Mr. Dietzel. 3.) Every single dynamometer observation shown in 

the table is not a simple reading, but each such observation is based on 7 readings: namely, as the 

oscillation occurred, the highest and lowest position were alternately read and the 6 averages from 

each two successive readings taken to begin with; the 5 second averages, taken in turn from two 

such successive averages, were considered as partial results, and the average value of these 5 partial 

results entered in the table. 4.) Between every two observations of the deflected position, the circuit 

was broken, in order to observe the natural position without galvanic influence, because this 

position changes appreciably, though very slowly, over time. This breaking of the circuit is 

indicated by a zero in the column which shows the number of elements. 5.) The average values of 

the deflection for the observations in the table from 1 to 11 are derived from the 11 preceding 

observations, by taking the 10 differences from each two successive observations during the closed 

and broken circuit, and the 9 averages were taken from every second such initial successive 

difference, of which, as a partial result, the overall average is given in the table. 6.) Finally, as for 

the magnetometer, the horizontal distance of the mirror from the scale is to be noted during the 

experiments contained in this table, because it later had to be frequently altered: it amounted to 

1,251 scale units. 7) The 11 observations, from which the average deflections of the magnetometer 

and dynamometer were calculated, give a proof of the exactness of the measurement; for one sees, 

that the 5 or 6 repetitions of the experiments, with the circuit closed and broken, which the 11 

observations comprise, always agree, up to a fraction of a scale unit, in which connection it is to be 

noted, that even these small differences originate for the most part in the actual changes in current 

intensity; further, in the case of the magnetometer, they originate in the variations in declination 

appearing during the experiment; and, in the case of the dynamometer, from a placement which 

was not perfectly fixed and invariable. 

The results of all these experiments can be briefly surveyed in the correlated average values 

of the deflection of the magnetometer and dynamometer by the current of 3, 2, and 1 Grove’s 

elements, namely: 

 

 Average deflection of 

magnetometer 

Average deflection of 

dynamometer 

for 3 elements 108.566 440.508 

for 2 elements 72.438 198.305 

for 1 element 36.332 50.915 

 

According to the optical law of reflection, these numbers are proportional to the tangent of the 

doubled angle of deflection and are to be reduced to the tangents of the simple angle of deflection, 

which give the measure of the deflecting forces, in which a small influence on the part of the 

eccentricity of the mirror is to be taken into consideration. The corrections emerging from this are: 

 

0.14 0.47 

0.04 0.05 

0.00 0.00, 

 

from which, if these corrections are taken into account, the following corrected values are yielded, 

i.e., for the deflecting force  

 

of the magnetometer of the dynamometer 

108.426 440.038 

72.398 198.255 
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36.332 50.915. 

 

Now, according to the measure of electromagnetic intensity taken above as the foundation, the 

numbers in the first column are proportional to the current intensity, while the numbers in the 

second column give the corresponding electrodynamic forces, according to which, therefore, the 

dependency of the electrodynamic forces on the current intensity can be determined, which was the 

chief purpose of these experiments. Before this occurs, however, let it be noted, that it could seem 

as though a small extraneous influence must still be excluded from the numbers in the first column, 

i.e., that which originates from the influence of the bifilar coil on the magnetometer. That is, those 

numbers, then, could only hold true as a measure of current intensity, if the magnetometer is always 

deflected by that same fixed, uninterrupted segment of the circuit. This segment of the circuit was 

the uninterruptedly fixed multiplier of the dynamometer. In point of fact, this multiplier was located 

in a position vis-à-vis the magnetometer, such that it exerted the greatest deflecting force, while the 

bifilar coil suspended in the multiplier was brought originally into such a position, where, even if a 

stronger current was conducted through it, it was able to exert no deflecting force whatever. Now, 

however, in the foregoing experiments the bifilar coil was appreciably deflected or twisted, and 

after this twisting, it had to exert a deflecting force on the magnetometer, wherefore the numerical 

values above required a correction, in order to make them correspond to the exclusive influence of 

the multiplier. This correction is, however, merely very small, because the intensity of the current 

passing through the bifilar coil amounted to only a 246.26th of the current intensity in the 

multiplier, because of the separation [of the current] mentioned above. I have ascertained for 

myself, that even in the case where the correction was greatest, it still remained below 1/500 scale 

units, and hence can be disregarded. 

If one now multiplies the square roots of the observed values for the electrodynamic 

reciprocal action, namely, 038.440 , 255.198 , 915.50 , by the constant factor 

5.15534, 

one obtains nearly the observed values for the electromagnetic effect, namely, the series: 

108.144 

72,589 

36,786, 

whose comparison with the observed values yields the following differences: 

- 0.282 

+ 0.191 

+ 0.454. 

The greatest difference, which appears between these calculated values and the directly observed 

values for the electromagnetic force, thus amounts to less than half a scale unit, in virtue of which, 

the law underlying the calculation can be considered as proven, that the electrodynamic force of 

two portions of a circuit is proportional to the square of the electromagnetic force, consequently 

proportional to the square of the current intensity. 

This experiment also makes it evident, that the method of electrodynamic measurement 

utilized here permits a rigor and precision almost equal to that permitted by the method of magnetic 

measurement with the magnetometer. 

 

5. 

 

Proof of the fundamental electrodynamic law by means of measurement. 
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After this first test of the precision to be achieved with the described instruments of 

electrodynamic measurement, I proceed at once to a system of the measurements carried out then, 

which is suited to a complete examination of the fundamental electrodynamic law. 

Ampère, in his Treatise cited above, page 181 f., presents two methods of deriving the law 

of reciprocal action of two conducting wires from experimentation. “The one way,” he says, 

“consists of first measuring with the utmost precision the values of the reciprocal action of two 

pieces of finite size, by successively bringing them at different distances and positions vis-à-vis 

each other; then one must make a hypothesis about the value of the reciprocal action of two 

infinitely small parts, conclude from this the value of the [reciprocal] action, which emerges for the 

conductors of finite size, with which one has operated, and modify the hypothesis, until the results 

of the calculation agree with those of observation.” ... “The other consists of experimentally 

confirming, that a moveable conductor stays in perfect equilibrium between equal forces or equal 

rotational moments,
6
 when these forces or moments come from parts of fixed conductors, whose 

shape and size can be altered in any way whatever, under conditions, determined by the 

experiment, without disturbing the equilibrium, and from this to directly conclude by means of 

calculation, what the value of the reciprocal action of two infinitely small parts must be, in order 

that the equilibrium may be actually independent of all changes of form or size, which are 

compatible with those conditions.” 

Ampère preferred the latter method for reasons among which one was already sufficient, 

namely that he did not possess the instruments indispensable for the former method. Of course, 

under such conditions the second method had to be preferred, which does not require the 

performance of actual measurements. Yet Ampère seems to have overvalued the latter method, 

when he expressed the view that it deserved an absolute preference over the former. An instrument 

for precise measurements has two prerequisites: 1.) a great refinement and sensitivity, which allows 

us to recognize the effects to be measured clearly and independently of extraneous, uncontrollable 

influences; 2.) a measuring apparatus suited to these effects. It is clear, however, that this latter 

requirement can always be easily fulfilled, if the former is satisfied, thus the former must be 

regarded as the main requirement. Fulfillment of this main requirement, however, is just as 

essential for the second method as for the first, because otherwise it will be quite illusory. The 

essential difference between these methods, in relation to experimentation, is thus simply that 

according to the former method, one holds the equilibrium of the electrodynamic forces by means 

of other known and measurable forces of nature, while according to the second method, one seeks 

conditions in which the electrodynamic forces will mutually maintain the equilibrium between 

themselves. There can be no doubt, that the latter method, if it is to lead to reliable and precise 

results, is less direct and less simple, in the experimental connection, than the former. Hence, at 

most, the fact can be brought to bear in favor of the second method, that in the theoretical 

connection, the fundamental law can be more easily and more directly derived from the results 

achieved by this method, which, however, is no longer a consideration, if the fundamental laws to 

be tested are already fully in hand, as occurs, through Ampère's services, in the foregoing case. In 

virtue of this, we are in a position to carry out a very simple system of measurements, which meets 

the requirements. 

The two conducting wires, which act reciprocally upon each other, should form circles, or 

systems of parallel circles, which have a common axis and are called conducting coils. These two 

axes should have a position horizontal and right-angled to each other, specifically, so that the 

extension of the one axis goes through the center of the other coil. One of these coils is fixed, the 

other can be rotated around its vertical diameter. Now, either the extended axis of the fixed coil can 

go through the center of the moveable coil, or, vice versa, the extended axis of the moveable coil 

                                                 
6
  [N. E.] In German: Drehungsmomenten. This can also be translated as rotatory actions or torques. 
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can go through the center of the fixed coil. In both cases, one can make measurements at 

different distances of the centers from each other. It is easily seen, that these two ways of ordering 

electrodynamic measurements fully correspond to those of the magnetic measurements, which 

Gauss has presented in the Intensitas vis magneticae terrestris ad mensuram absolutam revocata 

(Commentationes Soc. regiae Scient. Gottingensis recentiores, Vol. VIII, page 337). For the 

electrodynamic reciprocal actions, we can add still a third ordering of measurements, where the 

centers of the two coils coincide, as occurs in the dynamometer described above. In all these cases, 

Ampère's law can be applied, and the results calculated, in order to compare them with the results 

of observation. 

If the fixed coil acts at a distance on the moveable coil, then the two coils can have 

arbitrarily like or unlike diameters; if, however, the centers of the two coils are to coincide, as was 

the case with the measuring instruments described above, then the interior diameter of the one, 

ring-shaped coil must be larger than the exterior diameter of the other, so that the former can 

contain the latter. In the dynamometer described above, the moveable coil was the smaller, and was 

contained by the fixed coil. If, finally, the three series of experiments just indicated are to be carried 

out, by simply placing the fixed coil in different places in succession, without changing the 

suspension of the moveable coil, which is advantageous for more precise comparison of all the 

measurement results with each other, then the moveable coil must be larger, so that it can contain 

the fixed coil, because that is the only way the latter, unimpaired by the suspension wires, can be 

introduced through the moveable coil. This is the reason why, for this system of measurements, a 

special measuring apparatus was constructed by the instrument-maker Mr. Leyser in Leipzig, which 

will be described here. 

The bifilar coil aaa in Figure 10 consists of a thin brass ring of 100.5 mm diameter and 30 

mm high, which lies between two parallel brass discs or washers of 122.7 mm exterior diameter 

and 100.5 mm interior diameter, and holds them at a distance of 30 mm from one another. A copper 

wire of 1/3 mm diameter, coated with silk, is wound around that brass ring/cylinder about 3,000 

times, between these two discs, so that it entirely fills up the space between the two discs. After the 

wire is wound, the two brass discs are held together by a fixed brass clamp bb, which encloses the 

wound wire and holds up the torsion-circle at its center. The torsion-circle consists of two 

horizontal (when the bifilar coil is situated vertically) discs, of which the lower is rigidly connected 

by means of the brass clamp to the bifilar coil, while the upper can rotate on the lower around a 

vertical axis. The upper disc is furnished with a circular scale of units, the lower with an index. On 

the upper disc rests a wooden peg d, which at the upper end holds the prong ee of a very moveable 

roller of 20 mm diameter. A silk thread ff is led around this roller, passes vertically upward over 

both sides of the roller, and is fastened on both sides, a few millimeters above the roller, to the two 

suspension wires fg and fg. To these connection-points f and f, the two ends of the wire wound 

around the bifilar coil are also brought, in such a way that the galvanic current can be conducted 

through the one suspension wire to one end of the bifilar coil, and out the other end of the bifilar 

coil into the second suspension wire. The two suspension wires go upward from these connection-

points vertically toward the ceiling, where they are fastened to two brass hooks insulated from one 

another. From these two hooks, two other wires are led away, one to a commutator, the other to the 

galvanic battery. 

 

                                                 
7
  [N. H. W.] Gauss, Werke, Vol. V, page 107.  
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With the help of the torsion-circle, one can give the horizontal axis of the bifilar coil any 

arbitrary position, while the suspension wires maintain their natural parallel position. The torsion-

circle was adjusted in such a way, that the axis of the bifilar coil coincided with the magnetic 

meridian NS, so that the terrestrial magnetism did not alter the position of the bifilar coil, when a 

galvanic current passed through the coil. 

To the wooden peg on the torsion-plate a vertical flat mirror k was fastened, at which at 

about a 3.3 meter distance, a telescope with crosshairs was directed, in order to observe the image 

of a horizontal scale set up near the telescope. 

The fixed coil lll in Figure 10 consists of two thin parallel brass plates of 88.8 mm diameter, 

which are held in a fixed position 300 mm distant from each other by a 5.5 mm thick brass axle m. 

This brass axle goes through both plates and extends 10 mm on both sides. Around the same axle 

between the two discs, a copper wire of 1/3 mm diameter, sheathed in silk, is wound roughly 

10,000 times, so that it entirely fills the space between the two discs. One end of this wire is led 

outward, close to the axle, through a small opening lined with ivory at m in the one disc, from m to 

n; the other end is fastened to the periphery of the coil at m' with silk thread and goes outward from 

m' to n'. The one wire end n'n' is brought to the commutator A (Figure 11), the other nn to the 

multiplier B (Figure 11) of a galvanometer. 
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A small wooden stand pp serves to keep this coil fixed (Figure 10), which presents two 

sockets q, into which the two protruding parts of the axle are laid. This stand stands on three feet 

which are fitted with screw-tips α , β , γ  for levelling. One of these feet is fitted with a hinge r, 

and can be pushed open in such a way that one can freely move it, along with a part of the stand 

and of the fixed coil, through the bifilar coil, and then can push it down again. The fixed coil then 

comes to stand in the center of the bifilar coil, and the stand then rests with two feet on this side of 

the bifilar coil, and with the third foot on that side, on the immovable table, which is close below 

the bifilar coil. 

On the flat horizontal table-top, the positions are precisely drawn ahead of time, at which 

the fixed coil is to be successively placed. Namely, the three screw-tips, which, with concentric 

placement of the two coils, stand on points α , β , γ  of the table-top, are shifted in such a way that 

they come to stand either north at points 111 γβα  or 222 γβα  and so on, or south at points 111 γβα  or 

222 γβα  and so on, or east at points 111 γβα  or 222 γβα  and so on, or west at points 111 γβα  or 
222 γβα  or 333 γβα  and so on. For protection against the influence of the air, the bifilar coil is 

surrounded with a wooden casing, in which a glass sheet is inserted, through which the light can 

fall from the scale onto the mirror, and thence back into the telescope. The casing consists of two 

parts, one of which can be removed when the fixed coil is to be placed in the center of the movable 

coil. 

In order, now, to make the system of electrodynamic measurements carried out with this 

instrument comparable among themselves, it was necessary to measure, independently of the 

system, the intensity of the current which was conducted through the two coils during each 

measurement. For this purpose, the apparatus described in Section 3 could not be applied, because 

of the adjustment of the fixed coil to be undertaken from one measurement to another. Hence the 

one end nn of the wire wound around the fixed coil was connected to a third wire coil B (Figure 

11), which consisted of 618 parallel windings, enclosing an area of 8,313,440 square millimeters, 

and was placed 217 mm west of a transportable magnetometer, C, 8 meters away from the 

dynamometer (Figure 11), and which with the magnetometer formed a galvanometer. With its other 

end ss, this third wire coil was, finally, connected with the commutator A (Figure 11), to which one 

conducting wire tt of the galvanic battery D also led. 

Figure 11 gives a clear representation of the ordering and connection of the different parts 

of the apparatus. It may be noted in this connection, that the two wire ends of the fixed coil, when 
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they were located close to the bifilar coil, were wound around each other in such a way that the 

opposite currents passing through them had no influence on the bifilar coil. E represents the 

dynamometer in outline, F the accompanying telescope for the readings, along with the scale; C 

represents the magnetometer in outline, and G the accompanying telescope for the readings, along 

with the scale; B is the multiplier coil through which the same galvanic current is conducted as 

through the dynamometer, and which acts at a distance on the needle of the magnetometer C, 

whose deflection from the magnetic meridian is measured, in order to determine the intensity of the 

applied current and its variations during the experiments. 

The galvanic battery, which was used for these experiments, consisted of 8 Bunsen carbon 

elements. The direction of this current always remained the same in the wire of the bifilar coil of 

the dynamometer E, and was, as is clear from the placement of the commutator A, reversed in the 

fixed coil of the dynamometer E and in the third coil B, which took the place of the multiplier in the 

galvanometer, simply by means of the alternation of the commutator. It was necessary for the 

current in the bifilar coil to maintain its constant direction, in order to eliminate the influence of 

terrestrial magnetism. The reversal of the current in the fixed coil was necessary, in order to deflect 

the north end of the axis of the bifilar coil alternately eastward and westward by means of the effect 

of this fixed coil on the bifilar coil, and, through repeated measurement of these positive and 

negative deflections, to determine this effect with greater rigor. The reversal of the current in the 

third coil had the same purpose, in relation to the deflection of the magnetometer, which served to 

determine the current intensity. This purpose is attained by means of the equipment described, with 

the help of the commutator A; for the direction of the current constantly remained the same in the 

battery D and in all those portions of the circuit which the battery D connects with the commutator 

A, namely, in the wire tt, in the battery D, in the wire uu, in the bifilar coil of the dynamometer E 

and in the wire vv; on the other hand, the direction of the current can be changed by the commutator 

A in all those portions of the circuit which are separated by the commutator A from the battery D, 

namely, in the wire n'n', in the fixed coil of the dynamometer E, in the wire nn, in the multiplier coil 

B, and in the wire ss. 

The period of oscillation of the bifilar coil without current was = 13.3259". The horizontal 

distance of the mirror of the bifilar coil from the scale was 3,306.3 scale units; the horizontal 

distance of the magnetometer's mirror from the scale was 1,103 scale units. The results of these 

measurements are contained in the following table, in the same order in which they were made. 
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A Dynamometer Galvanometer 

 516.27   250.47   

  26.41   321.49  

 542.68   571.96   

  26.74   321.48  

600 515.94   250.48   

westerly  26.37 26.35  321.12 320.14 

 542.31   571.60   

  26.24   319.41  

 516.07   252.19   

  26.00   317.22  

 542.07   569.41   

 506.37   254.05   

  44.47   314.65  

 550.84   568.70   

  44.87   314.22  

500 505.97   254.48   

westerly  43.89 44.31  314.77 314.32 

 549.86   569.25   

  44.50   314.33  

 505.36   254.92   

  43.84   313.63  

 549.20   568.55   

 517.27   566.80   

  20.34   312.08  

 537.61   254.72   

  20.43   312.98  

500 517.18   567.70   

northerly  20.19 20.30  312.82 312.48 

 537.37   254.88   

  20.36   312.63  

 517.01   567.51   

  20.19   311.89  

 537.20   255.62   

 505.06   257.92   

  43.04   308.39  

 548.10   566.31   

  43.09   308.98  

500 505.01   257.33   

easterly  42.53 42.89  308.05 308.80 

 547.54   565.38   

  42.32   309.09  

 505.22   256.29   

  43.46   309.50  

 548.68   565.79   
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A Dynamometer Galvanometer 

 517.96   564.05   

  19.51   306.09  

 537.47   257.96   

  19.80   306.07  

500 517.67   564.03   

southerly  19.19 19.49  305.14 305.56 

 536.86   258.89   

  19.79   305.47  

 517.07   564.36   

  19.17   305.03  

 536.24   259.33   

 514.31   260.23   

  24.19   304.46  

 538.50   564.69   

  23.65   305.02  

600 514.85   259.67   

easterly  24.06 23.72  304.58 304.92 

 538.91   564.25   

  23.72   305.36  

 515.19   258.89   

  23.85   305.17  

 539.04   564.06   

 568.21   562.50   

  81.67   303.54  

 486.54   258.96   

  81.85   304.67  

400 568.39   563.63   

easterly  81.77 81.64  303.35 303.79 

 486.62   260.28   

  81.57   303.32  

 568.19   563.60   

  81.35   304.08  

 486.84   259.52   

 546.32   261.44   

  36.27   300.95  

 510.05   562.39   

  36.25   302.42  

400 546.30   259.97   

northerly  36.14 36.15  302.73 302.07 

 510.16   562.70   

  35.96   301.58  

 546.12   261.12   

  36.12   302.69  

 510.00   563.81   
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A Dynamometer Galvanometer 

 488.36   261.99   

  79.71   300.99  

 568.07   562.98   

  79.78   301.45  

400 488.29   261.53   

westerly  79.60 79.60  300.97 300.80 

 567.89   562.50   

  79.49   300.80  

 488.40   261.70   

  79.40   299.83  

 567.80   561.53   

 510.23   561.18   

  35.34   298.95  

 545.57   262.23   

  35.53   299.67  

400 520.04   561.90   

southerly  35.45 35.43  299.40 299.30 

 545.49   262.50   

  35.56   299.37  

 509.93   561.87   

  35.28   299.11  

 545.21   262.76   

 566.29   263.73   

  79.48   298.81  

 486.84   562.54   

  79.39   300.31  

300 566.23   262.23   

southerly  78.13 78.85  300.30 299.89 

 488.10   562.53   

  78.64   300.30  

 566.74   262.23   

  78.62   299.71  

 488.12   561.94   

 431.18   263.96   

  192.57   298.05  

 623.75   562.01   

  192.40   298.25  

300 431.35   263.76   

westerly  192.20 192.17  297.99 297.81 

 623.37   561.75   

  191.96   297.30  

 431.41   264.45   

  191.91   297.45  

 623.32   561.90   
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A Dynamometer Galvanometer 

 566.96   265.93   

  78.30   297.12  

 488.66   563.05   

  78.37   299.13  

300 567.03   263.92   

northerly  77.93 78.08  299.12 298.33 

 489.10   563.04   

  77.98   298.15  

 567.08   264.89   

  77.80   298.14  

 489.28   563.03   

 433.52   266.49   

  190.26   296.69  

 623.78   563.18   

  109.43   298.16  

500 433.35   265.02   

easterly  190.23 109.08  296.98 297.30 

 623.58   562.00   

  189.89   297.09  

 433.69   264.91   

  189.59   297.60  

 623.28   562.51   

 

The following explanations are to be appended to the table. In column A, the distance 

between the centers of both coils of the dynamometer is given in millimeters, and it is noted, in 

which direction, taking the bifilar coil as the point of origin, the fixed coil was placed; under north 

and south, the direction is to be understood as aligned with the magnetic meridian; under east and 

west, the direction is to be understood as perpendicular to the magnetic meridian. – In the second 

column, headed “Dynamometer,” the position of the bifilar coil is given in scale units, alternating 

between the direct and reversed direction of the current in the fixed coil. Each of these numbers is 

based on 7 readings, in which from oscillation to oscillation, the maximum and minimum of the 

oscillation arc were alternately taken 7 times after one another, and from this, according to 

recognized rules, the average state of equilibrium of the oscillating coil was calculated. With the 

reversal of the current in the fixed coil, a procedure was applied which did not increase the arc of 

oscillation of the bifilar coil. In the table, next to the observations of position, which relate 

alternately to the direct and reversed current in the fixed coil, are noted the differences for every 

second immediately successive observation, which provide in scale units the double deflection of 

the bifilar coil by means of the influence of the fixed coil. Finally, next to these particular values of 

the double deflection, their average value for each placement of the fixed coil is noted. – In the 

third column, headed “Galvanometer,” the position of the galvanometer is given, alternately with 

direct and reverse current direction in the coil B serving as multiplier. This position has been 

observed and calculated in the same way as with the dynamometer, and next to it are noted the 

differences and the average value of the double deflection of the galvanometer. The corresponding 

observations at the dynamometer and at the galvanometer were always made simultaneously by 

two observers at the two instruments. 
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All the observations assembled in the table above were made in the order presented, on 

one day, immediately after one another, and, since all external conditions remained exactly the 

same, all the results are directly comparable with one another. On this day, it had not been possible 

to carry out as well those observations, whereby the fixed coil received its placement in the center 

of the bifilar coil, because the re-positioning of the fixed coil required several time-consuming 

precautionary measures. This last series of experiments was hence postponed to the next day. 

However, because it was then no longer possible to be confident that all external conditions 

remained exactly the same as in the earlier experiments, on this second day, for comparison, two 

series of experiments, which had already been made on the first day, were repeated, namely, at a 

300-mm east and west distance of the fixed coil from the bifilar coil, which could be used to reduce 

the last series of experiments in such a way, that the results became comparable with the results of 

the earlier experiments, independently of the small variations which might have occurred in the 

external conditions in the meantime. Also, the fact that on the next day, another galvanic battery 

was used, namely of 2 Grove (platinum-zinc) elements instead of 8 Bunsen carbon elements, had 

no influence on this comparison. This was necessary because otherwise, the deflection of the 

dynamometer when the fixed coil was placed in the center of the bifilar coil would have been too 

large to be measured on the scale. Finally, it may be noted that the constant direction of the current 

in the bifilar coil was the opposite on the next day from the first, which likewise had no influence 

on the reduced results. The results of this second series of experiments are contained in the 

following table. 
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A Dynamometer Galvanometer 

 48.05   359.78   

  905.69   64.51  

 953.74   424.29   

  904.84   64.46  

 48.90   359.83   

0  904.00 903.97  64.47 64.45 

 952.90   424.30   

  903.01   64.40  

 49.89   359.90   

  902.31   64.39  

 952.20   424.29   

 485.70   529.30   

  27.58   125.08  

 513.28   454.38   

  27.18   124.99  

300 486.10   329.39   

easterly  27.25 27.54  124.89 125.08 

 513.35   454.28   

  28.26   125.10  

 485.09   329.18   

  27.43   125.35  

 512.52   454.53   

 512.37   454.50   

  25.65   125.18  

 486.72   329.32   

  27.77   125.29  

300 514.49   454.61   

westerly  27.43 27.20  125.35 125.23 

 487.06   329.26   

  27.60   125.30  

 514.66   454.56   

  27.55   125.05  

 487.11   329.51   

 

Herewith it is to be noted that the current of 2 Grove’s elements also elicited a larger 

deflection of the dynamometer than could be measured with the 1,000-unit scale, when the fixed 

coil was placed in the center of the bifilar coil, and that therefore in this case the current was 

weakened through increasing the resistance of the circuit by inserting a long, thin conducting wire, 

which was removed again when the coils were placed 300 mm apart, because otherwise the 

deflection of the dynamometer would turn out to be too small for an exact measurement. This is 

discerned from the difference in the magnetometer deflection, which measures the current intensity, 

and in the latter case amounted to almost double that of the former. 

The results of this series of experiments can easily be surveyed in the following compilation 

of all the average values of the simultaneous deflections of the dynamometer and galvanometer, 

namely: 
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Distance in mm Dynamometer Galvanometer 

0 903.97 64.45 

300 easterly 27.54 125.08 

300 westerly 27.20 125.23. 

 

These numbers are, according to the optical law of reflection, proportional to the tangents of the 

doubled angles of deflection, and are to be reduced to the tangents of the simple angles of 

deflection, because these will give the measure of the deflecting force. Here a slight influence of 

the eccentricity of the mirror is still to be taken into consideration. One obtains from this the 

following reduced values: 

 

0 899.79 64.44 

300 easterly 27.54 124.98 

300 westerly 27.20 125.13. 

 

We take the average from the last two series, which differ very little from one another, because 

they should be almost equal if the current intensity is the same and the position of the fixed coil 

easterly and westerly of the bifilar coil is totally symmetric, whereby we obtain the following 

values: 

 

0 899.79 64.44 

300 27.37 125.055 

 

The results of the foregoing series of experiments can be surveyed in the compilation of all 

the average values for the dynamometer and galvanometer deflections in the following table: 

 

Distance Easterly Westerly Southerly Northerly 

Milli-

meter 

Dynamo-

meter 

Galvano-

meter 

Dynamo-

meter 

Galvano-

meter 

Dynamo-

meter 

Galvano-

meter 

Dynamo- 

Meter 

Galvano-

meter 

300 190.08 297.30 192.17 297.81 78.85 299.89 78.08 298.33 

400 81.64 303.79 79.60 300.81 35.43 299.30 36.15 302.07 

500 42.89 308.80 44.31 314.32 19.49 305.56 20.30 312.48 

600 23.89 304.92 26.35 320.14 - - - - 

 

I have convinced myself, that the influence of the reduction of these numbers to the tangents 

of the simple deflection angles for the dynamometer is so slight, that it can be left out of 

consideration; that is, it is smaller than the unavoidable observational errors. This correction also 

comes into consideration in the galvanometer observations, because no large differences emerge in 

the deflection of the galvanometer. 

 

6. 

 

The observed electrodynamic forces in the foregoing Section can not immediately be used 

for the intended test of the dependence of these forces, determined by Ampère's law, on the mutual 

position of the conducting wires acting upon each other, because they are based on different current 

intensities. Hence these observations are first to be reduced to the same current intensities, for 

which the law proven in the fourth Section comes into application, according to which the 
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dynamometer deflections are proportional to the square of the galvanometer deflections. The 

application of this law to the observations at hand, however, itself presupposes another reduction, 

namely, the reduction to the same directional force of the bifilar coil, which underwent appreciable 

changes during these experiments. In the observational results presented in the fourth Section, 

through which the cited law was proven, the correction resulting from this was negligible and hence 

did not need to be taken into account, because there the current which passed through the fixed coil 

of the dynamometer, was divided, and only a small part, namely 1/246 of the entire current, was 

conducted through the bifilar coil, which had no appreciable influence on the directional force of 

this coil. With regard to the present observational results, on the contrary, this reduction cannot be 

ignored, because here the entirety of the current conducted through the fixed coil, went further 

through the bifilar coil. 

The directional force of the bifilar coil separates into a constant and a variable component. 

The constant component, which is called the static moment, depends on the weight of the bifilar 

coil and on the length and distance of separation of the suspension wires, and can be calculated 

from the observed period of oscillation and from the inertial moment of the bifilar coil. The period 

of oscillation of the bifilar coil, if no current is passing through it, was determined by means of 

special observations, 

t = 13.3259''. 

The inertial moment K was found according to the formula given by Gauss in the Intensitas, 

K = 864,800,000, 

in which millimeters and milligrams are the basis for measuring length and mass. The static 

moment S is obtained from 

.000,064,48
2

2

==
t

K
S

π
 

The variable component of the directional force of the bifilar coil, which is called the 

electromagnetic moment, depends on the intensity of the horizontal component of the terrestrial 

magnetism T, on the intensity of the current of the bifilar coil, χ , and on the size of the area, λ , 

which is demarcated by the wire windings of the bifilar coil, and is to be set equal to the product of 

these three magnitudes. The intensity of the horizontal component of the terrestrial magnetism was 

found to be, at the location of the bifilar coil, 

T = 1.83. 

The size of the area, which was demarcated by the wire windings of the bifilar coil, could not be 

determined by direct measurement, because the number of wire windings was not precisely known. 

Hence this area was indirectly determined by comparison of the electromagnetic effect of this coil 

with that of another of known area on a distant galvanometers, by which 

λ  = 29,314,000 square mm 

was obtained. The current intensities, finally, were given for all individual experiments by means 

of the galvanometer observations in scale units, which nevertheless are to be reduced for present 

purposes to the fundamental electromagnetic measure of current intensity. To do this, the observed 

number of scale units is multiplied by a constant factor, which in accordance with the proof to be 

given in the ninth Section is to be 

= 0.000 361 4. 

Thus, if y denotes the number of scale units observed on the galvanometer, then the current 

intensity is 

.4 361 000.0 y⋅=χ  

From these elements results the electromagnetic moment of the bifilar coil 

.400 19 yT ⋅=χλ  
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This value for the electromagnetic moment is to be subtracted, in the first series of experiments, 

from the static moment, in the second series of experiments, however, it is to be added to the static 

moment, in order to obtain the directional force of the bifilar coil, because, as already noted on 

page 29,8 the direction of the current in the bifilar coil in the last series was opposite to that in the 

first. For the first series of experiments, the directional force in units of static moment resulted as 

,
000 064 48

400 19
1 y⋅−=  

for the second series of experiments 

.
000 064 48

400 19
1 y⋅+=  

The observed dynamometer deflections are accordingly reduced to a constant directional force 

equal to the static moment, if one multiplies the number of scale units observed on the 

dynamometer x in the first series of experiments by ( 640 480/1941 y⋅− ), in the second by 

( 640 480/1941 y⋅+ ). 

After performing this reduction, one obtains for the first series the values of the 

dynamometer and galvanometer deflections, assembled in the following table. 

 

Distance Easterly Westerly Southerly Northerly 

Milli-

meter 

Dynamo-

meter 

Galvano-

meter 

Dynamo-

meter 

Galvano-

meter 

Dynamo-

meter 

Galvano-

meter 

Dynamo-

meter 

Galvano-

meter 

300 167.26 297.30 169.06 297.81 69.30 299.89 68.67 298.33 

400 71.63 303.79 69.93 300.81 31.15 299.30 31.74 302.07 

500 37.54 308.80 38.69 314.32 17.09 305.56 17.74 312.48 

600 20.95 304.92 22.94 320.14 - - - - 

 

For the second series one obtains the following correlated values: 

 

Distance Easterly or Westerly 

Millimeter Dynamometer Galvanometer 

0 923.19 64.44 

300 28.75 125.055 

 

The sensitivity of an instrument is inversely proportional to its directional force, i.e. the force to be 

measured generates an all the greater deflection, the smaller its directional force is. The foregoing 

observational data, reduced to the same directional force, are thus equivalent to those obtained 

under the condition of equal sensitivity of the dynamometer. 

After this reduction of the dynamometer observations to the same directional force, it is 

now possible to bring into application the law proven in the fourth Section and to reduce all 

observations, for better comparison among themselves, to the same current intensity. For this, it is 

only necessary to determine more closely the normal current intensity for which the reduced 

observational data are supposed to be valid. Since it is not necessary to utilize for both series of 

experiments equal normal current intensities, that intensity may be chosen for the first series which 

corresponds to a galvanometer deflection in scale units, whose square = 100,000, for the second 

series a five-times-smaller one, for which this square = 4,000. According to the law proven in the 

fourth Section, one then obtains from the dynamometer deflection x, given in the table, which 

                                                 
8
 [N. E.] Page 62 of Weber’s Werke, Vol. 3.  
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corresponds to the galvanometer deflection y, likewise given in the table, the reduced value for 

the first series 

2
000 100

y

x
⋅= , 

for the second series 

2
4000

y

x
⋅= . 

In the following table, the values of the first series reduced by this method are assembled: 

 

Distance Easterly Westerly Southerly Northerly 

300 189.24 190.62 77.06 77.16 

400 77.61 77.28 34.77 34.78 

500 39.37 39.16 18.30 18.17 

600 22.53 22.38 - - 

 

The reduced values of the second series are as follows: 

 

Distance Easterly or Westerly 

0 889.29 

300 7.35. 

 

From this latter it results that the electrodynamic force of the fixed coil on the bifilar coil, when the 

midpoints coincide, was 

9.120
735

88929
=  

times greater, than when the midpoints were 300 mm distant from one another in the west-east 

direction. 

In the table for the first series, we see that the corresponding values very closely agree, in 

east and west as well as in south and north, which is a proof for the precision of the measurement, 

as well as for the symmetrical placement of the fixed coil on both sides of the bifilar coil. If we 

now take the mean of these already closely agreeing values, and introduce for 0 distance, in 

conformity with the results just taken from the second series, the 120-fold value for the effect for 

300-mm distance perpendicular to the magnetic meridian, we obtain the following table: 

 

Distance Perpendicular to Magnetic 

Meridian 

In the direction of Magnetic 

Meridian 

0 22960 22960 

300 189.93 77.11 

400 77.45 34.77 

500 39.27 18.24 

600 22.46 - 

 

7. 

 

Before we use this system of measurements of the reciprocal action of two conducting wires 

in order to directly test Ampère's law, we wish to make an interesting, if only indirect and partial, 

prefatory test. Namely, it is known, that one of the most important consequences of Ampère's law 
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for the reciprocal action of two current elements, is, that the reciprocal action of two magnets, 

given all the differences in their respective positions, would also be elicited by means of constant 

galvanic currents, which occur in a specific way on the surface or in the interior of the magnets, 

and, conversely, that the reciprocal actions of two galvanic coils, like those with which our 

measurements were carried out, given all the differences in their respective positions, would also be 

elicited by two constant magnets, contained in areas surrounded by the wire windings of those 

coils, if the free magnetism were distributed in a specific way in the interior or on the surface. 

Accordingly, all the results which Gauss has proven for such magnets in the Intensitas vis 

magneticae..., can be carried over to our two coils, and this can happen all the more easily, because 

we have ordered our measurements of the reciprocal actions of the two coils precisely as Gauss 

determined the measurements of the reciprocal actions of the two magnets. Gauss, ibid., gave the 

distance of the two magnets in meters, and instead we use millimeters; further, Gauss determined 

the simple deflections, calculated with the natural state of rest of the needle as the starting-point, in 

degrees, minutes, and seconds, while we have stated the doubled tangents of the simple angle of 

deflection in scale units (that is, multiplied by the constant coefficient 6612.6). If, therefore, we 

wish to bring our measurements of the reciprocal action of the two conductor coils into the same 

form as those magnetic measurements, we obtain the following table of measured deflections: 

 

R v v' 

0.3 m 0º 49' 22'' 0º 20' 3'' 

0.4 m 0º 20' 8'' 0º 9' 2'' 

0.5 m 0º 10' 12'' 0º 9' 2'' 

0.6 m 0º 5' 50'' - 

 

The tangents of v and v' should then, here as there, be developed according to the descending odd 

powers of R, and specifically, 
53tan −− += bRaRv  

53

2

1
'tan −− += cRaRv  

where a, b, c are to be experimentally determined. If, now, in our case 
53 000002755.00003572.0tan −− += RRv  
53 000001886.00001786.0'tan −− −= RRv  

so the following table of calculated deflections is yielded, to which the differences from the 

measured deflections is adjoined: 

 

R v Difference v' Difference 

0.3 m 0º 49' 22'' 0 0º 20' 4'' - 1 

0.4 m 0º 20' 7'' + 1 0º 8' 58'' + 4 

0.5 m 0º 10' 8'' + 4 0º 4' 42'' + 2 

0.6 m 0º 5' 49'' + 1 -  

 

A better agreement between observed and calculated values can not be hoped for, and accordingly, 

Ampère's law finds itself experimentally confirmed in one of its most general and most important 

consequences. 

 

8. 
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The Ampère formula for the reciprocal action of two current elements, which is to be 

tested with respect to the present system of measuring this reciprocal action, itself consists 

essentially of the following: The reciprocal action of two current elements is the inverse of the 

square of their distance from one another, and directly proportional to the current intensity and the 

length of each current element, and moreover to a factor, which depends on the angle which the 

directions of the two current elements form with each other, and on the two angles, which the two 

current elements form with their straight connecting-line. Let r be the distance of the two current 

elements from each other, i and i' the two current intensities, ds and ds' the lengths of the two 

current elements, ε  the angle which the directions of the two current elements form with one 

another, and finally ϑ  the angle of the one current element with the line r, and 'ϑ  the angle of the 

other current element with the extended line r, then 

''coscos
2

3
cos

'
dsds

rr

ii







 −− ϑϑε  

is an expression for the magnitude of the reciprocal action of both elements; the direction of both 

current elements coincides with their connecting-line, and for the two opposed current elements it 

is repulsive, when the above expression has a positive value, in the opposite case attractive. 

From this law it is now possible first of all to find the expression for the combined effect 

which a number of current elements, which together form a closed line, exert on any other current 

element. 

This effect can be separated according to three rectilinear coordinate axes. If these three 

components are denoted X, Y, Z, and the angles are denoted λ , µ , ν , which the current element 

ds' which is acted upon forms with the three coordinate axes, and the center of the element ds' is the 

point of origin of the coordinates, Ampère has already proven that 
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(see Mémoires de l'acad. roy. des sc. de l'Institut de France, 1823, page 214). If now, the closed line 

is a circular line of radius m, and the x-axis is parallel to the projection onto the plane of the circle 

of the straight line connecting the midpoint of the circle with the point of origin of the coordinates, 

and the y-axis [parallel] to the diameter of the circle perpendicular to that projection; further, p 

denotes the distance projected onto the plane of the circle, of the center of the circle from the point 

of origin of the coordinates, and ω  denotes the angle which the line p forms with the radius of a 

circle element ds; finally, q denotes the perpendicular from the point of origin of the coordinates to 

the plane of the circle, so that in this case, for the foregoing values of X, Y, Z, 

qz = , ωsinmy = , ωcosmpx −= , 

therefore, since 2222 zyxr ++= , 
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If, finally, we substitute for dr the value yielded by the equation for r, namely: 

ωcos22222222 mpqpmzyxr −++=++= , 

that value being 

r

dmp
dr

ωωsin
= , 

and extend the integral value to the entire perimeter of the circle, then we obtain 
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consequently 
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If the element ds' is part of a circle, whose radius is n, and whose plane is parallel to the coordinate 

axis z, and a denotes the perpendicular from the center of the circle m to the plane of circle n, c 

denotes the perpendicular from the center of circle n to the plane of circle m, b the distance between 

the two perpendiculars, and, as was the case in the previous experiment, 

b = 0, 

so we obtain the following equations for the angle α , β , γ , which the perpendicular to the plane 

of circle n forms with the coordinate axes: 

º90=γ  

1coscos 22 =+ βα  

0coscoscoscos =+ µβλα . 

Since, moreover, it is posited that 

1coscoscos 222 =++ νµλ  

we obtain 

ν
µ

α
sin

cos
cos = , 

ν
λ

β
sin

cos
cos −= . 

For p and q we further obtain the following equations: 

νβ coscos np =  

ν2222 cosnap +=  

νsinncq += . 

If we now multiply the components X, Y, Z respectively with the cosine of angle α , β , γ  which 

the perpendicular makes on the plane of the circle with the coordinate axes, then the sum of these 

products yields the components in the direction perpendicular to the plane of the circle, namely: 

γβα coscoscos ZYX ++= , 

or, if one substitutes the derived values for X, Y, αcos , βcos , and γ , and eliminates p and q, 
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in which 

( )νων 22222222 coscos2sin2 namcnnmcar +⋅−++++= . 

If one writes in the foregoing expression for the length of the circle elements ds' its value expressed 

in terms of arc value and radius νnd= , and then multiply by the distance of the elements of the 

vertical diameter of the circle νsinn= , one obtains the rotational moment of the force, in relation 

to the vertical diameter of the circle as rotational axis, 
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If this expression is now integrated between the limits 0=ν  to πν 2= , then one obtains the 

rotational moment which the circular current m exerts on circular current n. 

For the given placement of the two circles with respect to each other (namely, where their 

planes are perpendicular to one another, and the perpendiculars to their centers intersect one 

another), three principal cases can be differentiated, which occur solely in the foregoing 

experiments, namely, either 

1. the plane of circle m halves the plane of circle n, or c = 0; or 

2. the plane of circle n halves the circle m, or a = 0; or, lastly, 

3. both elements mutually halve each other, or a = 0 and c = 0. 

For the first case, there results the following expression for the rotational moment acting on 

circle n, namely: 
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For the second case, the following rotational moment results: 
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in which 
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For the third case the following rotational moment results: 
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The first integration of the foregoing expressions, namely, with respect to ω , can only be carried 

out by developing 3/1 r  and 5/1 r  in series of rising powers of ωcos . Since 2r  has the form: 

( )ωcos12 kl − , 

the result is: 








 +++++= ...cos
128

315
cos

16

35
cos

8

15
cos

2

3
1

11 443322

33
ωωωω kkkk

lr
 



 39 








 +++++= ...cos
128

1155
cos

16

105
cos

8

35
cos

2

5
1

11 442222

55
ωωωω kkkk

lr
. 

Since, further 
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we obtain 
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If we substitute these values, we obtain for the first principal case, where c = 0, the value of the 

electrodynamic rotational moment 
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where Σ  denotes the following integral value: 
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If we substitute this value of 2k , and integrate the expression ordered according to the powers of 

ν2cos , then we obtain the electrodynamic rotational moment 
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Thus this expression yields for the first principal case under consideration the measure of the 

rotational moment, which a ring of radius = m exerts on a ring of radius = n. For a system of rings, 

whose radii progress arithmetically from 0 to m, one obtains as measure of the rotational moment, 

which the system exerts on the ring of radius = n, the integral of the above expression multiplied by 

dm, taken between the limits m = 0 to m = m. If, for the sake of brevity, we set 
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then the sought-for electrodynamic rotational moment 
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where S denotes the following series: 



 40 

( )

( ) ( )

( ) ( )

( ) ( )
etc.  

159261394
11

9

128

315

137111173
9

7

16

35

1153952
7

5

8

15

73
5

3

2

3

3

1

8222

6222

4222

222

2

−






 −+−−−+






 −+−−−−






 −+−−−+






 −−−−






 −+=

vgwfww

vgwfww

vgwfww

vfww

wS

 

 

A precise comparison with the observational results requires a determination of the rotational 

moment which a system of such ring-systems with a common axis would exert on another similar 

system, for which still further integrations would be necessary. Meanwhile, it is easily seen that, if 

one proceeds from the most central of these ring systems located on an axis, its effect must be taken 

as the median value for each two symmetrical systems lying on both sides of it, because the effect 

of one of the two latter nearly exceeds by just as much that median value, as the effect of the other 

remains below it. This is all the more true, the smaller the fractions which the radii m and n are of 

the distance a of the midpoints of both systems. Hence we can hold to the last given expression as 

the measure of the effect. 

If we now insert the values known from observation of m and n, specifically, in millimeters: 

m = 44.4 

n = 55.8, 

and the successively following different values for a: 

1. a' = 300 

2. a'' = 400 

3. a''' = 500, 

then one obtains the following values of the rotational moment, to be multiplied by 22iπ : 

1. - 1.454 4 

2. - 0.654 7 

3. - 0.345 2. 

If a similar procedure is applied to the second principal case, where a = 0, then one obtains 

the value of the electrodynamic rotational moment 
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is formulated, and S denotes the following series: 
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If one now inserts in this expression the values known from observation of m and n, specifically in 

millimeters: 

m = 44.4 

n = 55.8, 

and the successively following different values for c: 

1. c' = 300 

2. c'' = 400 

3. c''' = 500 

4. c'''' = 600, 

then one obtains the following values of the rotational moment, to be multiplied by 22iπ : 

1. + 3.562 5 

2. + 1.466 1 

3. + 0.742 0 

4. + 0.426 7. 

For the third principal case, finally, where a = c = 0 and m/n is a proper fraction, it does not 

suffice for our purpose to assume for n a median value, but rather one must multiply any value 

found for n by dn, and take the integral of this product between the limit values of n given by 

observation, which we choose to denote by n' and n''. The resulting expression is then to be divided 

by ''' nn − , in order to reduce its value to the measure of the expressions given for the first and 

second cases, which have not been integrated with respect to n. One then obtains for this third case, 

where a = 0 and c = 0, the following expression for the rotational moment: 
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If one inserts in this expression the values of m, n', and n'' known from observation, specifically in 

millimeters: 

m = 44.4 

n' = 50.25 

n'' = 61.35, 

one then obtains the following value of the rotational moment, to be multiplied by 22iπ : 

442.714. 
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Given the proximity of the coils in this case, heed must be taken, finally, that the combined 

windings of each coil do not lie in one plane. Hence, if for the midpoint of the central cross-section 

of both coils, the distances are also a = 0 and c = 0, this does not hold true for the remaining cross-

sections. From this results, as one easily sees, a diminution of the effect. In what relation this 

diminution stands to the total effect, can be determined with sufficient rigor, if, in the general 

formula given on page 38,
9
 after substitution of the values of 3/1 r  and 5/1 r , one simply keeps to 

the first term, independent of χ , and integrates its integral, taken between the limiting values 

0=ω  to πω 2= , after it is multiplied by νsinn  and with dmdndadc, and νnd  is substituted for 

ds', between the limits 0=ν  to πν 2= , 0=m  to m =44.4, n = 50.25 to n = 61.35, a = 0 to a = 15 

and c = 0 to c = 15. If this calculation is carried out, an expression of the following form is obtained 
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22a
A , 

in which A is simply dependent on i and i' and depends on the limiting values of m and n, and α  

and γ  denote the greatest values for a and c. The sought-for reduction, expressed in components of 

the total effect, is accordingly 

22

22000

1

5000

1
γα ⋅−= , 

and amounts to, according to the given numerical values, 15== γα , 

29

1
. 

Thus if 714.442
29

1
⋅  is subtracted from the foregoing values, one obtains the following value, to be 

multiplied by 22iπ , for the electromagnetic rotational moment, corresponding to the third case, 

= 427.45. 

If, by analogy with the observations, one compiles the results of the calculations, one obtains the 

following table for the calculated values of the electrodynamic rotational moment: 

 

Distance Perpendicular to the magnetic 

meridian 

In the direction of the magnetic 

meridian 

0 + 427.45 + 427.45 

300 + 3.5625 - 1.4544 

400 + 1.4661 - 0.6547 

500 + 0.7420 - 0.3452 

600  + 0.4267 - 

 

These values, if Ampère's law is correct, must be proportional to the observed values. In fact, if all 

the values are multiplied by the constant factor 

53.06, 

then one obtains values very closely approaching the observed ones, which are contained together 

with the differences from the latter in the following table. 

 

Distance Perpendicular to 

the magnetic 

meridian 

Difference In the direction of 

the magnetic 

meridian 

Difference 

                                                 
9
 [N. E.] Page 72 of Weber’s Werke, Vol. 3. 



 43 

0 + 22 680 + 280 + 22 680 + 280 

300 + 189.03 + 0.90 - 77.17 - 0.06 

400 + 77.79 - 0.34 - 34.74 + 0.03 

500 + 39.37 - 0.10 - 18.31 - 0.07 

600 + 22.64 - 0.18 - - 

 

Here the first calculated value, namely, +22,680, is compared with the 120.9-fold values of those 

which were obtained at distances of 300 millimeters east or west, because this value, in accordance 

with the results drawn from the second series of experiments in Section 6, corresponds to the effect 

of the fixed coil, when its midpoint coincides with that of the bifilar coil. The indicated difference 

of 280 units appears exaggerated, and corresponds to an observational error of 1/3 scale units, 

which was made in the second series of experiments (Section 5) in the determination of the 

dynamometer deflection at a 30-mm distance. 

This complete agreement between the values calculated according to Ampère's formula and 

the observed values (namely, the differences never exceed the possible amount contributed by 

unavoidable observational error) is, under such diverse conditions, a full proof of the truth of 

Ampère's law. 

From the foregoing table, one sees that the calculated values of the electrodynamic 

rotational moment result partly as positive, partly as negative. The significance of the difference in 

signs is as follows. The planes of the two wire coils were presumed to be at right angles to one 

another. The electrodynamic rotational moment, which the fixed coil exerts on the moveable one 

(the bifilar coil), endeavors to make the plane of the latter parallel to the plane of the former, which 

can occur in a double fashion, starting from the original right-angled position, namely, by means of 

rotation toward both sides. The one rotation leads to the kind of parallelism of the planes, in which 

the currents go around an axis perpendicular to both planes in the same way; the other rotation, in 

contrast, leads to the kind of parallelism in which the currents go around such an axis in opposite 

ways. The electrodynamic rotational moment, according to whether it effects the former or the 

latter rotation, will be designated in the calculation as positive or negative. The signs of the 

calculated values in the foregoing table thus teach us, that if the fixed coil acts on the bifilar coil at 

a distance from north or south, a rotation of the bifilar coil results, which, if it amounts to 90 

degrees, will cause the currents to go in opposite directions around axes aligned in the same way. 

The latter then takes place, according to calculation, if the midpoints of both coils coincide. 

These results of calculation also find themselves fully confirmed by the results of all 

observations. The conditions to be therefore taken into consideration are not extensively discussed 

in the description given above, simply because to completely state the direction of the current in all 

particular parts of the conducting circuit and the direction of the observed rotations would have 

expended too much space. Moreover, since no exact measurements are necessary for testing these 

results of calculation, it was also possible to achieve their confirmation, by the methods used up to 

now, and that confirmation has already been thereby obtained, for which reason it suffices here, to 

take note merely in a general way of the agreement of the observations communicated with the 

foregoing results of calculation. 

 

9. 

 

Ampère's law gives the calculated rotational moments expressed in absolute measurements, 

assuming that, for the values of the current intensity i, an absolute measure of intensity is taken as 

the basis; specifically, in so doing, the fundamental measure of current intensity is to be considered 

as that current intensity, with which two equal, parallel current elements perpendicular to the 
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connecting-line, at the same distance from the unit of length, exert a force on each other, which 

forms the same fraction of the unit of force established in mechanics, as the square of the length of 

those current elements does of the unit of area. Then we put into Ampère's formula for the 

magnitude of the electrodynamic force of two current elements of length α  and of equal intensity, 

namely: 
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1. the angle ε , which the two current elements form with each other, = 0º or = 180º; 2. the angles 

ϑ  and 'ϑ  which both current elements form with the connecting line, = 90º or = 270º; 3. the 

distance r = 1; and so the value of the electrodynamic force obtained for the unit of current 

intensity is 
2α± , 

i.e. in Ampère's formula, a unit of current intensity is presupposed, in which the electrodynamic 

force in the designated case is in the ratio to the unit of force, as 
2α : 1, 

that is, as the square of the length of those current elements is to the area. Thus the electrodynamic 

principle itself underlies this fundamental metric of current intensity. 

For the purpose of our measurements, we have, however, based the electromagnetic 

principle on the unit of current intensity, according to which the fundamental unit of current 

intensity is to be posited as that current intensity, which must occur in a conductor demarcating the 

area, in order to elicit the same effects on a distant magnet, as a magnet in the same place, whose 

magnetic moment is equal to that specified by Gauss in the Intensitas..., and whose axis has the 

same direction as the normal of the plane of the current. 

These two fundamental measures may now be compared with each other according to the 

relationship given by Ampère between electrodynamics and electromagnetism. For, according to 

this relationship, the other distant magnet can also be deflected in the same way as the first, by 

means of a closed current. 

The rotational moment of a magnet on another distant magnet, when their magnetic 

moments = m and m' according to the absolute metric, as easily results from Gauss's formula 

(“Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1840,” pp. 26-34
10

), 

ψδ 2

3
cos31sin

'
+⋅=

r

mm
 

will be found, where ψ  designates the angle which the axis of the first magnet makes with the 

connecting line r, and δ  the angle, which the axis of the second magnet defines with that 

alignment, for which the rotational moment is = 0. 

If a current of intensity χ  is now applied at the location of the first magnet, which bounds 

the small plane λ , whose normal has the same alignment as the magnet's axis, then according to 

the electromagnetic law (which gives the strength of the electromagnetic force of a current element 

of length α  and intensity χ  on an element of magnetic fluid µ  at distance r, when r and α  

enclose the angle ϕ , as 2/sin rϕαχµ= , specifically normal to the plane which is parallel to α  and 

r) the rotational moment exerted by this current on the distant magnet 

ψδ
χλ 2

3
cos31sin

'
+⋅

⋅
=

r

m
, 

                                                 
10

  [N. H. W.] Gauss’ Werke, Vol. V, page 427 to 435. 
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in which for the current intensity χ , the electromagnetic measure given above is the basis. Thus, 

according to this metric, it must be the case that 

m=χλ  

if this rotational moment is to equal the preceding one. 

According to the relationship given by Ampère, without changing the effect, in the same 

way the second magnet can be replaced by a closed circuit, for which 

''' m=λχ , 

and this yields the magnitude of the rotational moments, which the first current exerts on the 

second, 

ψδ
λλχχ 2

3
cos31sin

''
+⋅=

r
, 

in which the electromagnetic measure given above is the basis for the current intensities χ  and 'χ . 

If, however, we now calculate according to Ampère's formula (page 36)
11

 the rotational 

moment, which such a small plane-current exerts on another at a great distance, the result is
12

 

                                                 
11

  [N. E.] Page 70 of Weber’s Werke, Vol. 3. 
12

  [N. A.] The case in which º90==ψδ , and consequently the electrodynamic rotational moment 

3

''

2

1

r

ii λλ
−= , 

corresponds to the first major case considered above, for which the strength of the rotational moment on page 39 [[N. 

E.] page 74 of Weber’s Werke, Vol. 3.] was found 
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For large distances, as assumed here, m and n become negligible vis-à-vis l, and r can be substituted for a and l; thus 

for this case, the rotational moment will 

'
2 3

222

ii
r

nmπ
−= , 

which is identical with the values derived for this case from the formula above, because 
2

mπ  and 
2

nπ  designate the 

areas λ  and 'λ . 

The above-cited analogous laws of magnetism, electromagnetism, and electrodynamics, from which the 

simple association of these different classes of phenomena can easily be perceived, which does not immediately appear 

from the fundamental laws, can be derived from the latter in the following way. 

 

1. Derivation of the law of magnetic effect, which one magnetic rod exerts on another at a distance. 

 

Gauss, in the “Resultaten, etc. 1840” [[N. H. W.] Gauss, Werke, Vol. V, page 427], derived from the 

fundamental law of magnetism, the law of magnetic effect, which one magnetic rod exerts on the unit of north-magnetic 

fluid, conceived of as concentrated in a distant point. This law is the following: If (Figure 12) A is the midpoint of the 

magnetic rod, whose magnetic moment is designated as m, n an arbitrary other point on the north pole side of its 

magnetic axis, which goes through A, C the point, for which the magnetic effect of the magnetic rod on the unit of 

north magnetic fluid conceived of as concentrated in that very place, is to be determined, and if CB is a normal with 

respect to CA in the plane in which n, A, C lie, and B its point of intersection with the magnetic axis, and if, finally, D 

cuts from AB the segment 3/ABAD = : then the strength of the force, which the magnetic rod exerts on the unit of 

north magnetic fluid, conceived of as concentrated at point C, 

3
AC

m

AD

CD
⋅= . 

The direction of this force is, if nAC is an obtuse angle, CD, and, if nAC is an acute angle, DC. 
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Now, in triangle ABC, because ACB = 90º, 

DACADBACABAC cos3cos == . 

Further, in triangle ACD, 

DACADDACADACADACCD
222

cos31cos2 +⋅=⋅⋅−+= , 

and therefore, 

DAC
AD

CD 2
cos31+= . 

If we make AC = r and ψ=nAC , then, because ψ222
coscos == nACDAC , the strength of the force 

ψ2

33
cos31+⋅=⋅

r

m

AC

m

AD

CD
. 

If, in a steel rod, the north magnetic Masse µ+  and the south magnetic Masse µ−  are divided at C by line α , which 

is infinitely small with respect to r, then 'm=αµ  is the magnetic moment of the steel rod and ψ
µ 2

3
cos31++

r

m
 and  

ψ
µ 2

3
cos31+−

r

m
 are the two forces, which act on it in the direction CD or DC. If n' is the end-point of the small line 

α , in which the Masse µ+  is thought of as concentrated, and C its midpoint, and δ  designates the angle which Cn' 

forms with the direction CD or DC of the force defined above, then δα sin  is the distance of the points of action of 

both forces, estimated perpendicular to their direction. The product of this distance into the value of the force above, 

then yields the rotational moment, which the magnetic rod at A exerts on the magnetic rod at C, 

ψδψ
µ

δα 2

3

2

3
cos31sin

'
cos31sin +=+⋅=

r

mm

r

m
. 

The magnet at C is thereby rotated in the plane ACD in the way in which Cn approaches the direction CD or DC of the 

force defined above. 

 

2. Derivation of the law of electromagnetic effect, which a closed plane current exerts on a magnetic rod. 

 

From the electromagnetic law, the effect of a closed current on the north magnetic measure µ+  of the 

magnetic rod, which is thought of as concentrated in a point at C (Figure 12), can first of all be determined. One puts 

through C and through the midpoint A of the plane delimited by the current, a plane ACB perpendicular to the latter, CB 

being perpendicular to CA; s and s' are the intersection-points of the current with this plane. Further, each current 

element is separated into three elements perpendicular to each other, the first directed to C, and the second 

perpendicular to the direction CB. The elements directed toward C have no effect on the magnetism at C, and thus can 

remain entirely out of consideration, because, in the general expression for the force strength, 2/sin rϕαχµ= , the 

value for them of ϕ  is = 0. To the second class belong the two perpendicular elements in s and s' on the plane ACB, 

whose length is designated as ds. The force which the former exerts on the magnetism at C has, according to the 

electromagnetic law, the direction σC  perpendicular to Cs; the force of the latter has the direction 'σC  perpendicular 

to Cs', and the strength of this force is, if χ  designates the current intensity according to the basic electromagnetic 

measure, 

2
Cs

dsχµ
 and 

2
'Cs

dsχµ
. 

If one now separates these forces parallel to CA and perpendicular to it, then we obtain  
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the components parallel with CA 'cos
'

cos
22

σ
χµ

σ
χµ

AC
Cs

ds
AC

Cs

ds
+=  

the components perpendicular to CA 'sin
'

sin
22

σ
χµ

σ
χµ

AC
Cs

ds
AC

Cs

ds
−= . 

If we now use ψ  to designate the angle which the normal of the current plane AB forms with AC = r, and take note that 

As and As' will become negligible with respect to r, then we obtain 

ψcosAsrCs −= , ψcos'' AsrCs +=  

or 






 += ψcos1
11

r

As

rCs
, 







 −= ψcos
'

1
1

'

1

r

As

rCs
; 

ACsACsAC == sincos σ  

( )
ψcos

'
'

r

ss
sCs = . 

Substituting for these values, and designating the distance ss' as x, we obtain the components parallel to CA 

xds
r

⋅= ψ
χµ

cos
3

. 

Since all current elements surround A very closely, the factor ψ
χµ

cos
3
r

 can be regarded as constant, and we thus 

obtain the components parallel to CA for all current elements of the second class: 

∫⋅= xds
r

ψ
χµ

cos
3

. 

But the integral ∫ xds  represents the area λ=  delimitated by the current; accordingly the components parallel to CA 

for all current elements of the second class are given by 

ψ
χλµ

cos
3
r

= . 

Likewise, the components perpendicular to CA for all current elements of the second class are 

ψ
χλµ

sin
3
r

= . 

In a similar way we further find the components parallel to CA for all current elements of the third class 

ψ
χλµ

cos
3
r

= , 

the components perpendicular to CA for all current elements of the third class  

= 0. 

The resultant of all these forces is thus 

ψ
χλµ

ψψ
χλµ 2

3

22

3
cos31sincos4 +=+=

rr
. 

The direction of these resultants falls on the plane ACB and forms with CA an angle, whose tangent is equal to the 

components perpendicular to AC, 3
/sin rψχλµ= , divided by the components parallel to AC, 3

/cos2 rψχλµ= , that 

is, 

ψtan
2

1
= . 

Since ψ=CAB  and ACB = 90º, then, if 3/ABAD = , 

CDABACD :
3

1
sin:sin =ψ  

CDABACD :
3

2
cos:cos =ψ , 

therefore 

ψtan
2

1
tan =ACD , 

whose result is that CD is the direction of the resultant. It is assumed in these derivations, that if one thinks of oneself 

as perpendicular to the current plane standing on A, with the head at B, the current circulates in the manner of the 

apparent daily motion of the sun. If the opposite is the case, then the force direction DC is to be substituted for CD. 
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ψδ
λλ 2

3
cos31sin

''

2

1
+⋅−=

r

ii
, 

in which the current intensities i and i' are based on the electrodynamic measure given above. 

Now, from this it follows that, if the latter value, according to the electrodynamic measure, 

is to be identical with the former, according to the electromagnetic measure, the electrodynamic 

and electromagnetic measures of current intensity defined above must stand in relation to one 

another such that χ  and 'χ , according to the latter measure, designate the same current intensities 

as 2/1i  and 2/1'i  according to the former. Consequently, all determinations of current intensity 

made according to the fundamental electromagnetic measure are to be multiplied by the constant 

factor 2 , in order to reduce them to the measure of electrodynamic intensity underlying the 

Ampère formula. 

                                                                                                                                                                 
Accordingly, the closed circuit at A has the same effect on the magnetism at C, as according to [derivation] (1) a 

magnetic rod, whose magnetic moment is 

χλ=m , 

and whose magnetic axis coincides with the normal of the current plane, specifically, the south pole runs on that side of 

the current plane, taking which as the point of observation, the current runs in the direction of the apparent daily motion 

of the sun. It follows from this, that if we place, as in (1), a magnetic rod at C, whose magnetic moment = m', and 

whose magnetic axis forms the angle δ  with CD, the rotational moment, which the closed circuit exerts at A on this 

magnetic rod, is equal to that rotational moment found in (1), if one substitutes therein χλ  for m, thus 

ψδ
χλ 2

3
cos31sin

'
+=

r

m
, 

which was to be proven. 

 

3. Derivation of the law of electrodynamic effect, which a closed plane current exerts upon another at a distance. 

 

The law of the effect exerted by a closed plane-current on a current element at a distance, was already derived 

by Ampère on pp. 214 and 227 of his Treatise on the law of electrodynamics. It can be expressed in the following way: 

If the current element is located at C (Figure 12) and the closed plan-current at A, AB is the normal to the current plane, 

CB is perpendicular to CA, and 3/ABAD = , then the force, which the current at A exerts on the current element at C, 

is perpendicular to the two directions of the current element itself and of the line CD; and if, according to the basic 

electrodynamic measure we designate the intensity of the closed current as i, and that of the current element as i', and 

further, the length of the current element as ds', r = AC, and CAD=ψ , the strength of the force is then 

ψ
λ 2

3
cos31''

2

1
+=

r
dsii . 

If, now, a closed plane current is also located at C, and the normal to its plane forms with CD the angle δ , 

then each element of this current can be separated into two elements, one parallel to the line in which a plane normal to 

CD cuts the plane of the current, the other perpendicular to this cutting-line. The first elements can be ordered pairwise 

in the same length ds' and connected to that cutting-line by means of a perpendicular. If the length of this perpendicular 

is designated as x, then the result is that the effect of the closed circuit at A on such a pair consists of a rotational 

moment, which is equal to the product of δsinx  in the force cited above, that is, 

'cos31sin'
2

1 2

3
xds

r
ii ⋅+= ψδ

λ
. 

The current at A thus exerts on all current elements parallel with the cutting-line above the rotational moment 

∫⋅+= xds
r

ii ψδ
λ 2

3
cos31sin'

2

1
, 

where the integral ∫ 'xds  designates the area 'λ=  demarcated by the current at C; therefore this rotational moment is 

ψδ
λλ 2

3
cos31sin

'
'

2

1
+=

r
ii . 

If one considers in a similar way the effect of the closed circuit at A on the elements perpendicular to the foregoing 

cutting-line, then the rotational moment will be = 0, from which it follows, that the just-given rotational moment is the 

entire effect, which the closed current at A exerts on the closed current at C, which was to be proven, Q.E.D. 
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Assuming this, the constant factor, by which all calculated values are to be multiplied, in 

order to give the observed values, can also be derived from the galvanometer observations, and the 

comparison of the factors thusly determined with those utilized above, namely, with 

53.06, 

then finally there results a touchstone for the correctness of the absolute values calculated from 

Ampère's formula, or for the correctness of the relation posited between electrodynamics and 

electromagnetism. 

For this purpose, there is a triple requirement: 1. determining the factor with which all 

dynamometer effects observed by us are to be multiplied, in order to reduce them to the absolute 

measure of rotational moment; 2. determining the factor with which all galvanometer effects 

observed by us are to be multiplied, in order to reduce them to the fundamental electromagnetic 

measure of current intensity; 3. determining the areas which are demarcated by the bifilar coil and 

by the fixed coil of the dynamometer. 

 

1. Determination of the factors for reduction of the observed dynamometer effects to 

absolute measure. 

 

The observed dynamometer deflections are measured according to scale units and hence, in 

order to transform them into absolute angular measurement, given the smallness of the angle, are to 

be divided simply by the doubled horizontal displacement of the scale mirror (= 6,612.6 scale 

units). Further, the given number of scale units corresponds to the difference between the positive 

and negative displacement, and hence, moreover, is still to be divided by 2, in order to reduce it to 

the simple deflection. Thus if x designates the number of scale units in the foregoing tables, then 

225.2 13

x
 

yields the simple angular displacement in radius units. Further, if S designates the static moment of 

the bifilar coil given in Section 6, to which the deflections have been reduced, then, if x designates 

the reduced value, one need only multiply the angular displacement = x/13,225.2 with that value of 

S, to obtain the electrodynamic rotational moment, which the deflection elicited, expressed 

according to the fundamental measure specified by statics. Thus, this moment is 

xS
x

⋅=⋅= 634 3
225.2 13

. 

Consequently, 3,634 is the constant factor, with which the dynamometer deflections stated at the 

end of Section 6 are to be multiplied, in order to be reduced to absolute measure. 

 

2. Determination of the factors for reduction of observed galvanometer effects to absolute 

measure. 

 

The galvanometer effects are likewise stated above in scale units, and specifically, the given 

number y corresponds to the difference between the positive and negative displacement. Since the 

horizontal distance of the mirror from the scale amounts to 1,103 scale units on the galvanometer, 

the simple angular displacement according to absolute angular measure, i.e. in radius units, will be 

412 4

y
= . 

This angular displacement is elicited by means of a wire coil, through which the current to be 

determined is passing, and which was placed at a 217-millimeter distance west of the small 

magnetometer. 
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If the sine of this angular displacement is multiplied by the directional force = m'T, which 

the terrestrial magnetism = T exerts on the compass, then we obtains the rotational moment with 

which the terrestrial magnetism drives the deflected compass back to the magnetic meridian, 

π
º180

412 4
sin' ⋅⋅=

y
Tm . 

According to absolute measure, in this formula the value of 

T = 1.91 

is to be used, as it was found at the location of the compass.13 

The compass was now kept in equilibrium in that deflected position, by means of that 

rotational moment, which the current in the 217-mm-distant wire coil exerted on it, and 

consequently the strength of this latter rotational moment was 

π
º180

412 4
sin'91.1 ⋅⋅=

y
m . 

According to the law demonstrated on page 46 in Section 2 of the footnote,
14

 if the current had 

acted from a great distance r, this latter rotational moment would be 

ψδ
χλ 2

3
cos31sin

'
+⋅=

r

m
, 

in which the value of ψ  for our case = 0, and δ  is the expansion of the observed displacement 

angle to 90º, by means of which this expression becomes 

π
χλ º180

412 4
cos2

3
⋅=

y

r

m
. 

Now, however, the distance of 217 millimeters becomes far too small to bring this law into 

immediate application. Hence, in order to facilitate this application, I carried out special 

experiments to compare the effect of the coil at the 217-mm distance with its effect at greater 

distances r, for which the foregoing law is applicable, and found the ratio of these effects to be 

3

410
388 1:1

r
⋅ . 

The observed rotational moment 
π

º180

412 4
sin'91.1 ⋅⋅=

y
m  must thus be multiplied by the factor 

3

4

217

10
388 1 ⋅  

if it is to be made equivalent for the expression which is valid for large distances; thus we obtain 

π
χλ

π
º180

412 4
cos

217

'
2

º180

412 4
sin'91.1

217

10
388 1

33

4

⋅⋅=⋅⋅⋅⋅
ymy

m , 

and from this results, by small arcs, the value 

y⋅= 004 3χλ . 

By means of precise measurement, however, it was found that 

440 313 8=λ  square millimeters. 

From this results 

y⋅= 4 361 000.0χ , 

from which it follows that 

                                                 
13

  [N. A.] The compass stood near the wall of an adjoining room, in which large magnets were installed; if these 

magnets were removed, the value of T sank to 1.83, which is approximately the present value for the horizontal element 

of terrestrial magnetism in Leipzig. 
14

  [N. E.] Page 84 of Weber’s Werke, Vol. 3. 
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0.000 361 4 

is the factor for reduction of the observed galvanometer effects to the fundamental electrodynamic 

measure of current intensity. This is the factor already introduced above in Section 6 for the 

purpose of reducing the observations to equal directional force of the bifilar coil. The current 

intensity i according to the fundamental electrodynamic measure underlying Ampère's formula is 

finally obtained by means of multiplying the effects observed in scale units by the factor 

24 361 000.0 ⋅ . It is to be noted, however, that this reduction factor rests on empirical data, which 

were in part obtained only in approximation, and therefore make claim to no great precision. 

 

3. Determination of the area, which is demarcated by the bifilar coil and by the fixed coil of 

the dynamometer. 

 

The area of the bifilar coil is already given in Section 6 as  

= 29,314,000 square millimeters. 

In the same way, the area of the other fixed coil of the dynamometer was also determined, namely, 

= 31,327,000 square millimeters. 

It is evident that, in view of the indirect method by which it was made, this determination, too, can 

make claim to no great precision. 

With the help of these three determinations, it is finally possible to also subject to empirical 

proof the absolute value of electrodynamic effects, as yielded by Ampère's law. Namely, from (2) 

is obtained the value of 2i , which corresponds to the normal current intensity, to which the 

observations are reduced. That is, if, in accordance with page 33,
15

 for [the intensity] we make 

000 1002 =y , 

then 

12 026.04 361 000.022 2222 =⋅⋅== yi χ . 

Further, one easily sees that in the calculation of electrodynamic rotational moment on page 40 

made according to Ampère's formula,
16

 the area of the bifilar coil was taken into account only as 
28.55⋅π  square millimeters 

instead of, according to (3)  

= 29 314 000 square millimeters, 

and that in the same way, the area of the fixed coil of the dynamometer (in the place cited) was 

calculated only as 

34.44
3

1
⋅π  square millimeters 

instead of, according to (3) 

= 21, 327,000 square millimeters. 

From this it follows that the calculated values presented in the table on page 42
17

 are to be 

multiplied by 

000 180

4.448.55
3

1

000 327 21000 314 29 22

222

=⋅
⋅⋅

⋅
iπ

π
 

in order to determine the electrodynamic rotational moment according to Ampère's law in absolute 

measure. From (1), however, one sees that the dynamometer effects observed in scale units in the 

                                                 
15

  [N. E.] Page 67 of Weber’s Werke, Vol. 3. 
16

  [N. E.] Page 76 of Weber’s Werke, Vol. 3. 
17

  [N. E.] Page 78 of Weber’s Werke, Vol. 3. 
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table on page 34
18

 are to be multiplied by the factor 3,634, in order to reduce them to absolute 

rotational moments. Thus if the previous factor is divided by this latter one, the factor 49.5 is 

obtained, with which the calculated values presented in the table on page 4219 are to be multiplied, 

in order to be compared with the observed values presented in the table on page 34.20 This factor is 

about 6% smaller than the factor 53.06 above, which was immediately derived from the comparison 

of the calculated and observed values, a difference of the kind that had to be expected with so many 

elements taken from experimental evidence which are necessary for the determination of factors, 

among which several were only approximately determined (see [2] and [3]). Thus, the correctness 

of the absolute values calculated from Ampère's formula, or the correctness of the relation between 

electrodynamics and electromagnetism, is thereby confirmed only in so far as the experiments 

which were made can be validated. This test of the absolute values or of the stated relationship 

between electrodynamics and electromagnetism was not originally among the purposes of the 

experiments communicated here, which merely concerned the dependence of the electrodynamic 

force on the mutual position and distance of the conducting wires which acted on each other, 

otherwise arrangements would have been made to determine the galvanic current with greater 

precision also according to its absolute intensity, as well as to directly ascertain the number of 

windings on the part of the two coils of the dynamometer; that test, however, is presented at the 

same time in approximate fashion, because the experiments described placed the essential data at 

our disposal. Yet, because not all these data possess the requisite precision, a more rigorous 

execution of this test must be reserved for a future occasion. It is readily evident which 

arrangements and alterations are to be made in the experiments in order to lend greater precision to 

the data determined here with less exactness, and requires no further discussion. 

 

Volta-induction with the electrodynamometer. 

 

10. 

 

Up to now we have considered the first class of electrodynamic phenomena, namely, those 

discovered by Ampère, having to do with the forces with which the conductors seek to move one 

another at a given current intensity, and we have confirmed the law established by Ampère for this 

class of phenomena. Ten years later, Faraday's discovery adds to this first class of electrodynamic 

phenomena a second class, where the electrodynamic effects consist of forces which seek to move, 

not the conductors, but the electricity in the conductors. For these phenomena, comprehended 

under the name Volta-induction,21 we can distinguish two fundamental experiments, both of which 

originate from Faraday. 

At the very beginning of his “Experimental Researches in Electricity” (“Experimental-

Untersuchungen über Elektricität,” Poggendorff's Annalen 1832, Vol. XXV, page 93, Section 10), 

Faraday describes the first fundamental experiment in voltaic induction, where two insulated 

copper wires were wound close to another on a wooden roller, and one was connected with the 

galvanometer, the other with a voltaic battery, and where the generation of a current in the first 

                                                 
18

  [N. E.] Page 68 of Weber’s Werke, Vol. 3. 
19

  [N. E.] Page 78 of Weber’s Werke, Vol. 3. 
20

  [N. E.] Page 68 of Weber’s Werke, Vol. 3. 
21

  [N. E.] The expression utilized by Weber, “Volta-induktion,” had been first suggested by Faraday himself in 

paragraph 26 of his first paper on electromagnetic induction published in 1831, see M. Faraday, Experimental 

Researches in Electricity, in Great Books of the Western World, Vol. 45, §26, page 267 (Encyclopaedia Britannica, 

Chicago, 1952): “For the purpose of avoiding periphrasis, I propose to call this action of the current from the voltaic 

battery, volta-electric induction.” In this English translation we utilized the expressions “Volta-induction” and “voltaic 

induction” for this class of phenomena which is nowadays called Faraday’s law of induction. 
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wire was observed each time at the moment when the circuit involving the second wire, was 

either broken or closed again. The second fundamental experiment follows in Section 18, where he 

fastened two copper wires bent in the same zigzags, separated from each other, to two boards, and 

connected one with the galvanometer, the other with the voltaic battery, and where the generation 

of a current in the first wire was observed each time at the moment when the board with this wire 

was either suddenly brought close from far away and laid on the board with the second wire, or the 

board lying on the other board was suddenly lifted and taken away from that other board. 

After Faraday, Nobili and Lenz in particular occupied themselves with this kind of 

induction, and the latter established a simple law, by means of which the induction of a current in a 

conductor which is moved, can be reduced to Ampère's law of electrodynamic motions. 

“Immediately upon reading Faraday's Treatise,” says Lenz (Poggendorff's Annalen 1834, 

Vol. XXXI, page 484 f.), “it seemed to me as though it must be possible to very simply reduce the 

collective experimental results of electrodynamic distribution to the formulations for 

electrodynamic motions, so that if one assumes these to be established, those too are determined, 

and since this view confirmed itself for me through multiple experiments, I will discuss them in 

what follows, and test them partly with familiar experiments, partly with experiments carried out 

expressly for this purpose. The law, according to which the reduction of magneto-electric 

phenomena to electromagnetic phenomena occurs, is as follows: 

 

 “If a metallic conductor moves in the vicinity of a galvanic current or a magnet, a 

galvanic current will be induced in it, whose direction is such that it would have elicited 

motion in the wire at rest, which would be directly opposite to that given to it, assuming 

that the wire were movable only in the direction of the movement or opposite to it.” 

 

For confirmation of this law, insofar as it concerns the induction of a current in a conductor 

which is put into motion, Lenz now introduces the following three experiments by Faraday, by 

himself, and by Nobili. 

 

 “a) When, of two straight-line conductors parallel to one another, one has a galvanic 

current running through it, and if the other conductor is brought closer to it in a parallel 

direction, during the movement, an opposite current will be induced in the conductor 

which is moved from that in the unmoved conductor; however, if it is moved away, the 

induced current is in the same direction as the arousing one.” (Faraday.) 

 “b) When, of two vertical circular conductors of approximately the same diameter, 

which stand with their planes perpendicular to each other, the one, standing fixed, has a 

galvanic current flowing through it, and if then the other, which is rotatable around the 

common vertical diameter as its axis, is suddenly brought out of the perpendicular into 

a position lying parallel, then a current is generated in it, which is opposite to the 

current in the other conductor. I carried out this last experiment,” says Lenz, “with two 

circular conductors, each consisting of 20 windings of covered copper wire; one was 

connected to a 2-square-foot large zinc-copper couple, the other to a sensitive Nobili 

multiplier.” 

 “c) If a bounded conductor, standing perpendicular on an unbounded conductor which 

has a galvanic current flowing through it, moves along this unbounded conductor and in 

the direction of its current, then a current is generated in it, which is directed toward the 

bounded conductor; however, if the bounded conductor moves against the direction of 

the current in the unbounded conductor, the direction of the current induced in it by 

means of distribution is toward the unbounded current. (Nobili, Poggendorff's Annalen 

1833, no. 3, page 407).” 
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By means of the above law, first stated by Lenz, the induced currents are determined, to begin with, 

only according to their direction: Lenz did not give a quantitative determination for the intensity of 

the induced currents. This, however, was provided by Neumann in a still unpublished Treatise, of 

which an excerpt has just appeared in Poggendorff's Annalen 1846, Vol. LXVII, page 31. The 

quantitative determinations thereby obtained, however, require a test by experiment, for which the 

necessary measurements are still lacking. 

Henry reported original experiments on the induction of currents in a stationary conductor 

by breaking the circuit of a nearby voltaic battery (Poggendorff's Annalen 1842, supplementary 

volume, page 282), putting the induced wire at varying distances and in varying positions. He also 

re-used the induced current itself, in order to induce a current in a third conductor, and so forth. 

After these experiments, he directed these induced currents in parallel wires alternately in opposite 

directions; the first, however, being the same direction as the voltaic battery's current which was 

lost due to the breaking of the circuit. 

In this Section, it will now be shown, first, how the phenomena of voltaic induction can also 

be observed with the electrodynamometer, then some determinations of measure for the second of 

Faraday's fundamental experiments will be reported. 

In representing the phenomena of voltaic induction, two different things must be essentially 

distinguished, namely, first, the apparatus for inducing currents, and second, because the induced 

current is not immediately perceptible, an apparatus for observing a perceptible effect of the 

induced current. In the second Faraday fundamental experiment, for example, the two zigzag-

shaped bent copper wires, of which one is attached to a galvanic circuit, along with the device by 

which both wires are suddenly brought closer to each other or farther distant from each other, 

constitutes the first apparatus, which is for inducing the current; the galvanometer, on the other 

hand, which is connected with the other wire, constitutes the second apparatus, for observing a 

visible effect of the induced current. Thus the two essential pieces of apparatus for the experiment 

are distinguished and separated from each other. 

Now, however, an essential simplification of the experiment can be achieved by means of 

the electrodynamometer, where it is possible to use the same apparatus which serves to induce the 

current, for observing a visible effect of the current as well. That is, the bifilar coil of the 

electrodynamometer is made to oscillate, and this motion is used for induction; then the decrease of 

the arc of the oscillations of this bifilar coil is observed, which, as will be shown forthwith, is the 

result of the electrodynamic reciprocal action of the inducing and induced currents. The lawfulness 

of the induction meditative oscillations, as well as of the decrease of the arc of the oscillations, 

observed as the visible effect of the induced current, permits us to carry out precise determinations 

of measure for these phenomena of induction. 

Namely, if one connects the wire of the one coil of the dynamometer, while the bifilar coil 

is swinging, with a voltaic current, then, in order to induce a current in the other coil, one need only 

join the two wire ends to one another. This induced current, which in itself is of course 

imperceptible in the second coil, now immediately exerts in the dynamometer itself a perceptible 

electrodynamic force on the current of the first coil, and thereby changes the oscillation of the 

bifilar coil. Thus, if one observes this change, one can come to know the electrodynamic force 

which causes it, and in turn, from the electrodynamic force, to know the induced current, to which 

it is proportional, without it being necessary to conduct the induced current through the multiplier 

of a galvanometer. The dynamometer itself thus serves for inducing the current as well as for 

observing a visible and measurable effect of the induced current. 

If the bifilar coil is stationary, no current will be induced; consequently the electrodynamic 

force = 0, and the bifilar coil will then not be moved by the fixed coil. However, if the bifilar coil is 

swinging, there are two cases to distinguish: i.e., either the fixed coil is connected to the voltaic 
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battery and the bifilar coil is a closed circuit in itself; in that case a current is induced in the 

swinging bifilar coil: or the swinging bifilar coil itself is connected by its two suspension wires to 

the voltaic battery, and the fixed coil is a closed circuit in itself; in that case, a current is induced in 

the fixed coil. In both cases, an electrodynamic force is yielded which changes the oscillation of the 

bifilar coil in the same way. 

The observation of these changes in oscillation, as a result of an induced current, and of the 

electrodynamic reciprocal action between the induced and inducing wire coils, which is dependent 

on that induced current, according to Ampère's law, must be carried out, however, in an altogether 

different way from the observations with the dynamometer described in the preceding Section. 

Observations of the decrease of the arc of the oscillations must replace the previous observations of 

position on the dynamometer. The necessity of this altered method of observation is easily shown, 

as follows. 

The electrodynamic reciprocal action of the two coils, which is to be observed with the 

electrodynamometer, consists, according to Ampère's law, of a rotational moment, which acts on 

the swinging bifilar coil and corresponds to an altered rest position of this coil. However, this rest 

position of the bifilar coil can not be directly observed when the coil is swinging, but can only be 

determined from several observations, which diverge from one another as to period of oscillation, 

that is, only under the precondition, that in the interim, the external forces acting on the coil, have 

remained constant, or have changed continuously and proportionally over time. Therefore, if the 

electrodynamic influence which occurs on the swinging coil as a result of the induced current, 

reverses itself from oscillation to oscillation, then the rest position of the coil, as determined from a 

system of observations during the oscillation, will be unchanged despite the presence of the 

electrodynamic influence. Observation shows, in fact, that the latter occurs, that the electrodynamic 

influence, if it actually exists as a result of an induced current, would thus have to reverse itself 

from oscillation to oscillation, and cannot be investigated by means of mere observations of 

position on the dynamometer. 

Now, if such an electrodynamic influence on the swinging coil now actually occurs, which 

reverses itself from oscillation to oscillation: then it will certainly not be discernible by means of 

determining the rest position of the coil; it must, however, be recognizable in the arcs of oscillation 

of the coil; namely, the size of the arcs of oscillation must change from oscillation to oscillation, 

either always increasing, or always decreasing. 

In actuality, empirical results show that, while the calculated rest position of the swinging 

coil always remains the same, the arc of oscillation always decreases, and it emerges from the 

succeeding experiments, that this decrease actually originates from electrodynamic influences and 

not from extraneous external causes, if the ordinary influence of the resistance of the air is taken 

into account. 

Therefore, in order to observe this second class of phenomena with the 

electrodynamometer, it will be necessary for precise measurement of the decrease of the arcs of 

oscillation, to make oscillation experiments with the bifilar coil of the dynamometer, while for 

purposes of the Ampère electrodynamic phenomena, we could confine ourselves to deflection 

experiments or observations of position. 

For our purposes, it is of primary importance to indicate that the observations of oscillation 

can be carried out on the dynamometer by the same method, and with just as great precision, as on 

a magnetometer. First, I wish to present a prefatory series of oscillation experiments which I made 

with the dynamometer, in which no electrodynamic influence occurred, given that no galvanic 

current whatever was conducted through the instrument and the wire ends even remained 

unconnected. 
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The method of setting up these experiments is the same method presented by Gauss in the 

“Resultaten aus den Beobachtungen des magnetischen Vereins in Jahre 1837,” page 58 ff.,22 and 

thus it is not necessary to fully cite the original protocols; it will suffice to cite the extract which is 

derived from these protocols, just as in other locations. 

The Meyerstein dynamometer, depicted in Figs. 2, 3, and 4, served for the following 

observations, where the swinging coil was suspended at the center of the fixed coil, and the 

telescope was placed about 6 meters from the instrument. The distance of the mirror from the scale 

was 6,018.6 scale units, and  

1 scale unit = 17.135 6". 

The observations were made in alternation by different observers, namely, by Dr. Stähelin from 

Basel, by my assistant Mr. Dietzel, and by me. Each made a set of observations according to the 

formulation given in loc. cit., page 61,
23

 which comprises six instances of going past a designated 

scale point lying close to the midpoint of the arc of oscillation and seven elongation points. In the 

following table, each horizontal line gives the results of such a set of observations, namely, the 

numerical ordering of the oscillation, the corresponding time, the corresponding rest position in 

scale units, the corresponding arc of oscillation in scale units, and the logarithm of the latter. 

 

                                                 
22

  [N. H. W.] Gauss, Werke, Vol. V, page 374. 
23

  [N. H. W.] Gauss, Werke, Vol. V, page 376. 
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Observations for determining the period of oscillation and the decrease of the arcs of oscillation 

of the bifilar coil of the dynamometer in open circuits. 

Oscillation No. Time Position Arcs of 

Oscillation 

Log. 

0. 5
h
 16' 28.53'' 457.10 650.80 2.813 448 

14. 20' 10.20'' 457.38 601.43 2.779 185 

25. 23' 4.39'' 457.15 564.90 2.751 972 

52. 30' 12.50'' 457.19 485.28 2.685 992 

82. 38' 8.02'' 457.29 409.62 2.612 381 

109. 45' 16.16'' 457.15 353.08 2.547 873 

134. 51' 52.08'' 457.65 306.70 2.486 714 

163. 59' 31.80'' 457.41 261.08 2.416 774 

189. 6
h
 6' 23.90'' 457.56 226.33 2.354 742 

212. 12' 28.22'' 457.69 198.68 2.298 154 

232. 17' 45.45'' 457.63 178.26 2.251 054 

254. 23' 33.89'' 457.78 157.98 2.198 602 

284. 31' 29.30'' 457.73 134.17 2.127 655 

309. 38' 5.53'' 456.55 116.30 2.065 580 

328. 43' 6.90'' 458.02 105.25 2.022 222 

369. 53' 56.24'' 457.81 83.68 1.922 622 

387. 58' 41.96'' 457.90 75.45 1.877 659 

 

If the difference between the first and last time is divided by the number of oscillations, one obtains 

a rather precise determination of the period of oscillation of the swinging coil, because the 

correction by reduction to infinitely small arcs contributes only a little in the case of such small arcs 

of oscillation as occurred here. This approximated period of oscillation is  

= 15.848 65". 

If this approximated period of oscillation is used to reduce all the times in the table, by deducting 

the product of the oscillation number times the period of oscillation, from the first time, then the 

values contained in the third column of the following table are obtained: 
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Oscillation No. Time Reduced time Variation from the 

mean 

0. 5
h
 16' 28.52'' 5

h
 16' 28.53'' + 0.13'' 

14. 20' 10.20'' 28.32'' - 0.08'' 

25. 23' 12.50'' 28.17'' - 0.23'' 

52. 30' 12.50'' 28.37'' - 0.03'' 

82. 38' 8.02'' 28.43'' + 0.03'' 

109. 45' 16.16'' 28.66'' + 0.26'' 

134. 51' 52.08'' 28.36'' - 0.04'' 

163. 59' 31.80'' 28.47'' + 0.07'' 

189. 6h 6' 23.90'' 28.50'' + 0.10'' 

212. 12' 28.22'' 28.31'' - 0.09'' 

232. 17' 45.45'' 28.56'' + 0.16'' 

254. 23' 33.89'' 28.33'' - 0.07'' 

284. 31' 29.30'' 28.28'' - 0.12'' 

309. 38' 5.53'' 28.30'' - 0.10'' 

328. 43' 6.90'' 28.54'' + 0.14'' 

369. 53' 56.24'' 28.07'' - 0.33'' 

387. 58' 41.96'' 28.53'' + 0.13'' 

 

From the agreement of these reduced values, whose variation from the mean values always remains 

less than 1/3 second, it is obvious, that the determination of the period of oscillation of the 

dynamometer's bifilar coil is capable of the same rigor and precision as in the case of the 

magnetometer, in which connection it is to be taken into consideration, that that variation appears 

to be magnified by the constant variation which is known to always occur between two observers. 

The determinations of the rest position of the swinging coil from the elongation observations in the 

third column of the first table show great agreement, as proven by the following overview of their 

deviations from the mean values, expressed according to their arcs: 

 

- 6.3'' + 3.1 + 4.5 

- 1.5'' - 1.0 - 15.8 

- 5.5'' + 1.5 + 9.4 

- 4.8'' + 3.8 + 5.8 

- 3.1'' + 2.7 + 7.4 

- 5.5'' + 5.3  

 

One could not wish for greater agreement of all observations of position, particularly when one 

takes into consideration, that the telescope stand was placed on the wooden floor of the room, 

where, it is evident, the orientation of the telescope could easily be somewhat altered by footsteps 

on the floor. 

Lastly, it remains for us to consider the decrease in the arcs of oscillation. The individual 

sets of observations succeed each other, in part, in such a short time, that the decrease in the arcs of 

oscillation in the interim is not large enough to give a precise determination of the ratio between 

two successive arcs of oscillation. Hence the logarithms of this ratio may be determined, by, instead 

of dividing the difference of each two immediately successive logarithm of the arcs of oscillation, 

dividing the difference between the first and fifth, the second and sixth, and so forth, by the number 

of oscillations in between. One then obtains from the above 17 sets of observation, instead of 16 
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values, only 13 values, but more precise values of the logarithmic decrement, namely, the 

following. Before each value the oscillation number is noted, to whose mean it appertains. 

 

Oscillation No. Logarithmic decrement Variation from the mean 

41. 0.002 452 + 0.000 038 

61 .
2

1
 0.002 435 + 0.000 021 

79 .
2

1
 0.002 433 + 0.000 019 

107 .
2

1
 0.002 425 + 0.000 011 

135 .
2

1
 0.002 408 - 0.000 006 

160 .
2

1
 0.002 424 + 0.000 010 

183. 0.002 405 - 0.000 009 

208 .
2

1
 0.002 397 - 0.000 017 

236 .
2

1
 0.002 390 - 0.000 024 

260 .
2

1
 0.002 398 - 0.000 016 

280. 0.002 384 - 0.000 030 

311 .
2

1
 0.002 400 - 0.000 014 

335 .
2

1
 0.002 427 + 0.000 013 

Mean = 0.002 414. 

 

Thus there results a mean decrease in the arcs of oscillation, according to which the size of the arc, 

after 124.7 swings, or after 32 minutes 56 1/3 seconds, declines by half. The agreement of the 

partial values proves, that even these small decreases in the arcs of oscillation can be rigorously 

measured. 

On the same day, immediately before the series of observations just described, another 

similar series of observations was made under altogether the same external conditions, merely with 

the difference, that the two ends of the fixed coil were connected with a battery of three small 

Grove’s elements, exactly as in Section 4, and that the free ends of the suspension wires of the 

bifilar coil were linked to each other. More precise information about the current conducted 

through the fixed coil, was provided by observation of the deflection which this coil itself produced 

on the mirror magnetometer (described in Section 3), which was placed 583.5 mm north of the coil. 

This observed deflection of the mirror magnetometer is noted in the last column of the following 

table. The value of the scale unit of this magnetometer depends on the horizontal distance of the 

mirror from the scale, which was = 1,301 scale units. The observer and the methods of observation 

were the same. The following table gives the extract of this series of observations exactly as the 

preceding table gives the other. 
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Observations for determining the period of oscillation and the decrease of the arcs of oscillation of 

the bifilar coil of the dynamometer when a current from three Grove’s elements is passing through 

the fixed coil, while the conducting wire of the bifilar coil was closed. 

Oscillation 

No. 

Time Position Arcs of 

oscillation 

Log. Deflection of 

mirror 

magnetometer 

0. 3
h
 29' 44.88'' 464.05 764.10 2.883 150 108.50 

9. 32' 7.03'' 474.44 679.15 2.831 966  

18. 34' 29.58'' 464.23 604.05 2.781 073  

35. 38' 50.17'' 464.07 484.15 2.684 980 108.60 

47. 42' 9.10'' 464.20 414.60 2.617 629  

57. 44' 47.66'' 464.25 365.50 2.562 887  

74. 49' 16.79'' 464.22 292.27 2.465 784  

85. 52' 10.80'' 464.30 253.30 2.403 635  

103. 56' 56.11'' 464.40 200.80 2.302 764  

118. 4h 0' 53.43'' 464.25 165.56 2.218 955 108.95 

130. 4' 3.26'' 464.37 141.37 2.150 357  

143. 7' 28.90'' 465.23 119.33 2.076 750  

157. 11' 11.11'' 464.96 100.49 2.002 123 109.20 

179. 16' 59.23'' 465.20 75.59 1.878 464  

196. 21' 28.65'' 464.88 60.58 1.782 329 190.40 

210. 25' 10.23'' 464.96 50.08 1.699 664  

 

For this series of observations, which is otherwise very similar to the preceding one, I 

confine myself to considering the decrease in the arcs of oscillation. The logarithm of the ratio of 

two successive arcs of oscillation, or the logarithmic decrement, is to be determined here by 

dividing the difference between the first and fourth, the second and fifth, and so forth, logarithm by 

the number of the oscillations in between. From the 16 sets of observation above, this yields 13 

values of the logarithmic decrement, as contained in the following table, with the addition of the 

number of oscillations to whose mean each appertains. 

 

Oscillation No. Logarithmic decrement Variation from the mean 

17 .
2

1
 0.005 662 + 0.000 042 

28. 0.005 640 + 0.000 020 

37 .
2

1
 0.005 595 - 0.000 025 

54 .
2

1
 0.005 620 0.000 000 

66. 0.005 631 + 0.000 011 

80. 0.005 655 + 0.000 035 

96. 0.005 610 - 0.000 010 

107 .
2

1
 0.005 628 + 0.000 008 

123. 0.005 650 + 0.000 030 

137 .
2

1
 0.005 560 - 0.009 060 
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154 .
2

1
 0.005 549 - 0.000 071 

169 .
2

1
 0.005 555 - 0.000 065 

183 .
2

1
 0.005 707 + 0.000 087 

Mean = 0.005 620. 

 

Thus there results a mean decrease in the arcs of oscillation, according to which the size of the arc, 

after 53,564 swings, or after 14 minutes 8.187 seconds, declines by half. Here too the agreement of 

the partial values attests to the rigor of the measurement, and it is not remarkable that at the end, 

where the arcs of oscillation had become very small, the differences appear somewhat larger. 

The difference which occurs between this latter determination of the logarithmic decrement 

and the previous one, is based, not on different external conditions influencing the swinging coil, 

for these remain completely the same, but on the inducing influence of the fixed coil on the 

swinging coil, which constitutes the sole difference between the first and second series of 

experiments. Both series of experiments were repeated on several days, and not only yielded almost 

exactly the same difference in values of the logarithmic decrement, but also yielded nearly equal 

absolute values for both decrements, whereby no doubt remains, that an induction of galvanic 

currents actually takes place in the closed bifilar coil by means of the galvanic current in the fixed 

coil: in fact, an induction whose strength was such that the effect of the induced current which is 

visible in the decrease of the arcs of oscillation, is susceptible of precise measurement. 

 

11. 

 

After this demonstration of the practical usefulness of the electrodynamometer for 

displaying the phenomena of voltaic induction, secondly, we proceed to derive some lawful 

determinations for these phenomena from the observations of the oscillations and of the decrease of 

the arcs of oscillation of the bifilar coil. 

First, it has already been noted, that the changing magnitude of the arcs of oscillation as a 

result of the induced currents, given an unchanged mean position of the bifilar coil, proves that the 

direction of the induced current changes with the direction of motion of the swinging bifilar coil, 

and that consequently opposite currents are induced by means of opposite motions, as is also the 

case in magnetic induction. 

Second, the decrease in the arcs of oscillation proves, that as parallel elements of the 

inducing wire approach, a current opposite to that inducing wire is induced; as parallel elements 

withdraw, a current in the same direction as that in the inducing wire is induced. If the opposing 

relation of the current directions of the inducing and induced currents existed, there would have to 

result a continuous increase in the arcs of oscillation. This determination as well is analogous to the 

one empirically established for magnetic induction. 

Third, the geometric law of the decrease in the arcs of oscillation due to the induced current, 

proves that the intensity of the induced current is proportional to the velocity of the inducing 

motion; for the geometric law of the decrease of arcs of oscillation proves that the force which 

produces this decrease, i.e. the intensity of the induced currents, always remains proportional to the 

magnitude of the arcs of oscillation: it is known, however, that the magnitude of the arcs of 

oscillation of an isochronous swinging body is always proportional to the velocity it reaches in the 

corresponding moments of its period of oscillation. 

Fourth, as for the lawful determination of the absolute strength of the voltaic induction, we 

wish lastly to derive the following principle from observations on the dynamometer. 
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The voltaic induction is equal to the magnetic induction in the oscillating closed circuit 

bifilar coil, when the former is elicited by a galvanic current conducted through the 

fixed coil, the latter elicited by magnets which are located in a position with respect to 

the bifilar coil such that when a current goes through the bifilar coil, the electrodynamic 

rotational moment of that current is equal to the electromagnetic rotational moment of 

these magnets. 

 

By means of this principle, as can easily be seen, the determination of voltaic induction with the 

help of known electromagnetic and electrodynamic forces is reduced to the laws of magnetic 

induction, which have already been investigated more precisely by other means. At the moment, 

admittedly, in order to prove this principle, I can only give a few measurements carried out with the 

dynamometer, which were made under circumstances in which no precise determinations down to 

small fractions were possible; however, these measurements may be regarded as sufficient for the 

present, because, if the foregoing principle were incorrect, there would be no basis for that 

approximate agreement which undoubtedly arose from the observations. For a more refined test of 

the foregoing principle, all the involved measurements would have to be carried out with greater 

precision. However, in order to set up all the conditions fully appropriately for attaining this 

uniform precision, it would be necessary to prepare special instruments simply for this purpose, 

which up to now it has not been possible for me to do. 

Here I will briefly assemble the results of the observations, without going into the details of 

the observations themselves, which generally conformed to those of the preceding observations. 

 

 
 

The first series of observations concerned measurement of magnetic induction. This is 

exactly the series for which conditions could be shaped least favorably, and which accordingly set 

narrower limits to the precision of the entire determination of measure, which under somewhat 

more favorable conditions could have easily been significantly extended. That is, the bifilar coil of 

the dynamometer described in Section 1 and depicted in Figs. 2, 3 and 4, was made a closed circuit 
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and put into oscillation, while outside the casing which protected the swinging bifilar coil from 

the air, several small magnets NS, N'S' (Figure 4) were fixed in the position in which they induced 

the strongest magneto-electric currents in the swinging bifilar coil. Namely, all of these small 

magnets together lay perpendicular to the magnetic meridian passing through the axis of the bifilar 

coil, i.e., symmetrically north and south of the bifilar coil, and their corresponding poles were 

thereby turned toward the same side, as the diagram shows, in which N and N' denote the north 

poles, S and S' the south poles. Then the oscillations of the bifilar coil, as earlier, were observed, 

starting from the moment when they could be measured by means of the scale, until they became 

too small for precise determination of the decrease of the arcs of oscillation. These observations 

were calculated in the same way as above, and yielded the logarithmic decrement for the decrease 

of the arcs of oscillation  

= 0.002 638. 

The same series of experiments was once again repeated, with the sole difference, that the bifilar 

coil was unclosed, and there resulted for the logarithmic decrement of the decrease of the arcs of 

oscillation the following somewhat smaller value:  

= 0.002 541. 

The slight difference between these two values,  

= 0.000 097, 

is the effect of the magneto-electric currents, which were induced in the swinging, closed-up bifilar 

coil by means of the fixed magnets. The greatest care was taken to determine this small difference 

with the utmost possible precision, and the experiment leaves nothing more to be desired in that 

respect; nevertheless, it is in the nature of the smallness of the difference, that, as the repetitions of 

the experiments showed, it must be considered as 6 to 8 percent uncertain. 

The second series of experiments concerned the electromagnetic rotational moment. The 

small magnets remained undisturbed in their place, while a weak current was conducted from a 

constant voltaic battery; this battery's current passed as well through a galvanometer, by means of 

which its intensity was measured. Now the rest position of the bifilar coil was observed, alternately, 

when the voltaic battery was closed and when it was open. From a series of repetitions, after the 

reduction of the results to the same current intensity (which had varied only very little), there 

resulted, with great agreement, the difference  

= 19.1 scale units. 

This difference is a measure of the electromagnetic rotational moment, which the magnetic rods 

mentioned above exerted on the current in the bifilar coil. 

The third series of experiments concerned the electrodynamic rotational moment. The small 

magnets were distanced, and the two wire ends of the fixed coil of the dynamometer were 

connected to a strong voltaic battery, while the same weak current of a constant voltaic battery was 

conducted through the bifilar coil, as in the previous series. The intensity of both currents was 

measured by means of a galvanometer.
24

 Now, as in the previous series of experiments, the rest 

position of the bifilar coil was observed, alternately when the voltaic battery was closed and when 

it was open. From a series of repetitions, after the reduction of the results to the same current 

intensity, there resulted, with great agreement, the difference  

= 101.9 scale units. 

This difference is a measure of the electrodynamic rotational moment, which the strong current in 

the fixed coil exerts on the weak current in the bifilar coil. 

Lastly, the fourth series of experiments concerned voltaic induction. The bifilar coil was 

closed up and put into motion, while the current of the same voltaic battery was conducted through 

                                                 
24

  [N. A.] Both currents originated from the same constant battery, and their differing intensity in the two coils was 

effected by means of a division of the current. 
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the fixed coil of the dynamometer, as in the previous series of experiments. Then the oscillations 

of the bifilar coil were observed just as in the first series of experiments, and from this the 

logarithmic decrement of the decrease in the arcs of oscillation was calculated. After reduction to 

that current intensity in the fixed coil, on which the value of the electrodynamic rotational moment 

found by means of the preceding series of experiments is based, this decrement resulted  

= 0.005 423. 

The same series of experiments was once again repeated with the sole difference, that the bifilar 

coil was open, and the following smaller value resulted for the logarithmic decrement of the 

decrease in the arcs of oscillation:
25

  

= 0.002 796. 

The difference between these two values,  

= 0.002 627, 

is the effect of the voltaic induction, which took place in the closed and oscillating bifilar coil, by 

means of the current in the fixed coil. 

Since, therefore, the electrodynamic force of our current in the fixed coil, after the third 

series of experiments, was not equal to the electromagnetic force of our magnets in the second 

series of experiments, but were in the ratio of  

101.9 : 19.1, 

the forces of the two induced currents, induced under altogether the same conditions in the bifilar 

coil, should also not be equal, but should likewise be in the ratio of  

101.9 : 19.1. 

If, however, the intensities of the currents induced in the swinging bifilar coil stand in the given 

ratio, then, from the reciprocal action of these currents with those galvanic and magnetic forces 

producing them, and therefore proportional to them, will have to emerge an attenuation of the 

oscillations of the bifilar coil, whose logarithmic decrements are in the ratio of the squares of 101.9 

: 19.1, i.e., like 

28.5 : 1. 

Instead of that, from the observations of the decrease of the arcs of oscillation, we have found in 

both cases the ratio of the portions of the logarithmic decrement stemming from the induced current 

according to the fourth and first series of experiments to be  

0.002 627 : 0.000 097 = 27.1 : 1, 

a ratio differing from the calculated one by about 5 percent; the small logarithmic decrements 

proceeding from the magneto-electric currents in the observed cases, as already mentioned above26 

on page 63,27 can no longer be relied upon. 

 

12. 

 

An induced current of equal strength to the inducing current. 

 

The constancy of the logarithmic decrement of the swinging bifilar coil under the influence 

of a constant current in the fixed coil, and of the currents thereby induced in the swinging bifilar 

coil, already resulted
28

 on page 61
29

 in the law for induction, that the intensity of the induced 

                                                 
25

  [N. A.] This value would be still smaller, if at the same time, the current in the fixed coil were interrupted, because 

this current, even given an open bifilar coil, still induced currents in the brass mounting of the coil during the 

oscillation, exactly as was the case in the first series of experiments with the magnets, which, however, worked far 

more weakly. 
26

  [N. E.] Regarding the 6-8% uncertainty. 
27

  [N. E.] Page 105 of Weber’s Werke, Vol. 3. 
28

  [N. E.] Third law at the beginning of Section 11. 
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current is proportional at any moment to the velocity of the swinging coil at that moment. If 

hereby this law is now placed beyond doubt, then it follows that, in the case of a given constant 

inducing current, one could arbitrarily strengthen the current induced by it, if one increased that 

velocity, and that there would have to be a velocity, at which the intensity of the induced current 

would be just as strong as that of the inducing current. It may not be uninteresting to give a more 

precise determination of this velocity. This determination can easily be obtained, if one (1) 

calculates from the measured arcs of oscillation of our coil and from its arcs of oscillation, likewise 

measured according to known laws, the velocity which the coil possesses in the center of its 

oscillation; (2) if one calculates, from the likewise measured values of the logarithmic decrement 

caused by the voltaic induction, the deflection of the coil, which would be produced by the force 

which retards the velocity of the swinging bifilar coil at the moment when it finds itself in the 

center of its oscillation, if it continues uniformly in the same direction; and (3) lastly, if a current is 

put through the bifilar coil, and the intensity of this current is varied until the electrodynamic 

deflection of the coil as a result of the reciprocal action of this current and of the constant current in 

the fixed coil is equal to that deflection in (2), and if the ratio of the intensities is then determined. 

– It is then clear that, when the velocity of the swinging coil is increased according to the ratio of 

these intensities, the induced current will be equal in strength to the inducing current at the moment 

when the coil finds itself in the center of its arc of oscillation. In this way it turned out that the 

bifilar coil of the dynamometer described in Section 1 would have to be turned around its 

perpendicular axis of rotation  

31 times 

in one second, in order for the current induced by the arbitrarily strong or weak current of the fixed 

coil of this instrument to have the intensity of the original current at the moment when both coils 

were perpendicular to one another. At this velocity of the coil's rotation, the greatest linear velocity 

of the current elements would amount to 6.5 meters or about 20 feet in one second, since, according 

to page 7,
30

 the radius of the bifilar coil was 33.4 millimeters. 

 

13. 

 

Determination of the duration of momentary currents with the dynamometer, along with 

application to physiological experiments. 

 

In order to portray and to measure the reciprocal action of two conducting wires with the 

help of the dynamometer, no strong currents are required, as the data presented prove; on the 

contrary, weak currents suffice, which, if other devices are used, are barely perceptible, such as, for 

example, the induced currents produced by the oscillations of the bifilar coil, according to Section 

10, which were barely visible without an optical device. This circumstance is of practical 

importance, because these experiments thereby received a far greater expansion, and the way was 

paved for the most manifold applications of the dynamometer, especially to galvanometric 

determinations as well. A compass or a magnetometer is called a galvanometer when it is equipped 

with a multiplier, because it serves to measure the intensity of the galvanic currents which are led 

through the multiplier wire. The measurement of the intensity of galvanic currents is hereby based, 

not on purely galvanic, but on electromagnetic effects. By the same right a Volta-meter, too, 

deserves the name of a galvanometer, because it likewise serves to measure the intensity of 

galvanic currents which are conducted through the Volta-meter; it is merely that the latter is an 

electrochemical galvanometer, the former an electromagnetic one. Now, the electrodynamometer is 

                                                                                                                                                                 
29

  [N. E.] Page 103 of Weber’s Werke, Vol. 3. 
30

  [N. E.] Page 36 of Weber’s Werke, Vol. 3. 



 66 

also a galvanometer, because it serves to measure the intensity of galvanic currents which are 

conducted through it; it is, however, a purely galvanic or electrodynamic one, because it is the 

reciprocal action of the galvanic currents itself which is used therein for measuring the current 

intensity, and hence it merits even preferentially the name galvanometer. 

Nevertheless, it does not seem possible to ascribe any great practical importance to the 

electrodynamometer, if it is no longer a matter of testing the fundamental electrodynamic laws, but 

merely of galvanometric determinations, because the multifarious apparatus of the Volta-meters 

and of the electromagnetic galvanometers for measuring the intensity of galvanic currents already 

performs such good and convenient service, that no reason presents itself to replace this already 

utilized instrument with a new one. As long as it is simply a matter of objectives which have 

already been attained with the latter instruments, or can be attained with them, a new instrument 

like the dynamometer can, in fact, have no great practical importance attached to it. However, 

things are different in those cases, where the existing devices are inadequate, as, for example, when 

it is a matter of determining the current intensity at particular moments. 

That is, the sine or the tangent of the deflection of the magnetic needle in the sine or 

tangent-galvanometer only gives a correct measure of the current intensity in the multiplier at a 

definite moment, if the current in the multiplier acting on the needle is constant; if, on the contrary, 

its intensity is variable, then the intensity of the current for a particular moment cannot be derived 

at all from the deflection of the magnetic needle, or only by means of calculating with the help of a 

given law designed for those variations. Of course, we may then let the current act on the needle for 

only a moment, but the deflection of the needle elicited by this momentary influence, even if it is 

large enough for precise observation and permits refined measurement, in no way suffices per se 

for the determination of the current intensity at that moment; on the contrary, knowledge of another 

element is required, namely, knowledge of the duration of that momentary influence, which cannot 

be achieved with the instrument. Only when one knows the amount of electricity which the 

momentary current puts through, and the time in which this electricity has gone through a cross-

section, can the intensity be determined by dividing the former by the latter. However, from the 

deflection of the needle elicited by that momentary influence, only a determination of that amount 

of electricity can be derived; the time remains undetermined. 

Now, the dynamometer serves in such cases essentially to supplement the electromagnetic 

galvanometer, for both instruments give us two intrinsically different, mutually independent 

determinations, from which the two unknown elements, on which the current intensity depends, can 

be derived. The difference of the determinations obtained with the two instruments already 

manifests itself, when one conducts continuous constant currents of differing intensity through a 

circuit, in which the usual galvanometer, and also the dynamometer, is included, and the angle of 

deflection is observed, at which for each of these currents, equilibrium exists on these instruments. 

These angles of deflection increase on both instruments with the intensity, but according to 

different laws; for the tangents of the angles of deflection of the dynamometer are, as was proven in 

Section 2, proportional to the squares of the tangents of the angle of deflection of the 

magnetometer. 

That difference in the determinations provided by the two instruments shows itself even 

more remarkably, if a constant current, as just described, is put through both instruments, and the 

corresponding deflections of both are observed, and then, without changing the current intensity, 

simply the direction of the current in all the conducting wires of the two instruments is reversed 

with the help of a commutator; it is known, that after this reversal of the direction of the current 

direction in the multiplier, the multiplier's magnetic needle is deflected just as far as before the 

reversal, but to the opposite side. In the dynamometer this does not take place, but rather, the 

deflection occurring before the reversal of the current remains unchanged even after the reversal of 

the current, so that, provided that the reversal of the current has actually been momentary, without 



 67 

interruption, no influence at all on the dynamometer is to be perceived from this reversal. The 

dynamometer in this case acts as an electromagnetic galvanometer would act, if, at the moment 

when the current in the multiplier were reversed, the poles of the needle were also switched, 

assuming that the needle, like the bifilar coil of the dynamometer, possessed a definite directional 

force independent of the state of its poles. This sameness of the effects of positive and negative 

currents in the dynamometer in this easily executed experiment, ought to arouse all the more 

attention, the more one is accustomed to see opposite currents correspond to opposite effects. 

This experimentally proven difference in the determinations provided by the two 

instruments can now easily be more precisely defined. The direct effect of the current passing 

through the conducting wires of both instruments is a rotational moment, which strives to put the 

compass or bifilar coil on which it acts, into a rotational motion. This rotational moment is 

proportional in the magnetic galvanometer to the intensity i of the current acting on the needle, and 

to the magnetic moment m of the needle, which is acted upon, and is thus represented by the 

formula  

mia ⋅ , 

in which, if we confine ourselves to small angles of deflection, a is to be considered as a constant to 

be determined once and for all for each instrument. The effect of this rotational moment in the time 

element dt is then expressed by the product 

dtami ⋅  

and is equal to the product of the rotational velocity, in which the rotatable body is thereby put, 

with the moment of inertia of this body. 

In the dynamometer, on the contrary, the rotational moment is proportional to the intensity i 

of the current in the fixed coil, which acts on the bifilar coil, and also to the intensity i of the 

current in the bifilar coil itself, which is acted upon, and is thus represented by the formula 
2ib ⋅ , 

where b, if we confine ourselves to small angles of displacement, denotes a constant to be 

determined once and for all for each dynamometer. The effect of this rotational moment in the time 

element dt is thus expressed by the product 

dtbi ⋅2 , 

and is likewise equal to the product of the rotational velocity produced with the moment of inertia 

of the rotatable body. 

Now, if this current persists uniformly during the short time from t = 0 to ϑ=t , and if the 

inertial moment of the needle and of the bifilar coil are denoted with p and q, then the angular 

velocity which is thereby produced is 

for the needle ϑ
ϑ

i
p

am
midt

p

a
⋅=⋅= ∫

0

 

for the bifilar coil ϑ
ϑ
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b
dti

q

b
⋅=⋅= ∫ . 

If both instruments were previously at rest, then they are put into oscillation by the transmission of 

this angular velocity, and if s and ς  denote the periods of oscillation of the two instruments, then, 

according to well-known laws of oscillation, if no attenuation takes place, and if the time interval 

ϑ , in which the needle and the bifilar coil receive that angular velocity, is so small, that the 

disturbance itself during this small time interval, as with a shock, does not need to be taken into 

consideration, then the rotational velocity for any moment at the end of time t is expressed by 

( )ϑππ
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e
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ς
π

ς
επ

−⋅ tcos , 
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where e and ε  denote the elongation lengths, which can be determined for both instruments by 

observation. If now the first moment after the cessation of the current is substituted for t, that is, 

ϑ=t , then the velocities originally transmitted by the current to the two instruments are obtained: 

s

e
i

p

am π
ϑ =⋅ ,  

ς
επ

ϑ =⋅ 2i
q

b
,  

or one has two equations for determining the current intensity i and the duration of the current ϑ , 

by means of which they can be calculated from the measured deflections of both instruments e and 

ε , namely: 

e
ams

p
i ⋅=

π
ϑ ,   ε

ς
π

ϑ ⋅=
b

q
i2 , 

where amsp /π  and ςπ bq /  denote constants to be determined once and for all. The sought-for 

current intensity i results from this: 
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and the sought-for duration of this current: 

ε
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ϑ
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Since the periods of oscillation of the two instruments s and ς  can be directly determined, 

it is merely necessary for the complete determination of the constants of both instruments, to put 

through both instruments a constant standard current, whose intensity = 1, and to observe the 

tangents of the angles of deflection e' and 'ε , for which equilibrium then exists. The tangents of the 

angles of deflection are then, according to well-known laws, to be equated with the ratios of the 

deflecting rotational moments for the current intensity = 1, namely 

am  and  b, 

to the directional forces of the compass and the bifilar coil, namely 

2

2

s

pπ
 and 

2

2

ς
π q

, 

thus: 
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If these values are substituted in the above equations, one obtains 

'e

es
i ⋅=

π
ϑ , 

'

2

ε
ε

π
ς

ϑ ⋅=i , 

and consequently 

e

e

s
i

ε
ε

ς
⋅⋅=

'

'
 

ε
ε

ςπ
ϑ

2

2

2

'

'1 e

e

s
⋅⋅⋅= , 

in which by means of a one-time observation of the deflections e' and 'ε  as well as the period of 

oscillation of the compass and the bifilar coil s and ς , the constant coefficients s/ς , '/' εe , ς/2s  

and 2'/' eε  are determined for ever. Thus it follows from this, that that the observations 

simultaneously made on both instruments of the deflections e and ε  supplement each other, by 

jointly providing complete data for determining the intensity and the duration of a momentary 

current, while each one, considered individually, acquaints us with neither the one nor the other. 
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The cases where this complete determination of momentary currents, attainable by means 

of simultaneous use of both instruments, finds useful applications, are not far to seek; they present 

themselves in a manifold way. Momentary currents, for example, are frequently used for 

physiological experiments, in order to investigate the influence of galvanism on the nervous system; 

for it turns out that a continued action of the galvanic current very quickly deadens the nerves 

through which it goes, particularly when it is a sensory nerve, so that no extended series of rapidly 

successive experiments can be carried out in this manner, which becomes possible, if the current is 

always allowed to go through the nerve only for a moment. These highly interesting observations, 

however, can lead to no definite results, without a knowledge of the currents which elicit those 

effects, especially of their intensity and their duration. A thorough investigation of the 

physiological effects of galvanic currents on the nervous system hence requires the complete 

determination of these two elements, which, however, can only be achieved according to the just-

developed method of simultaneous observations of the galvanometer and dynamometer. In any 

case, it is an interesting task for the physiology of nerves, to establish the time limits for how long a 

current must act on the nerves, in order to elicit a definite effect, and how this necessary time 

interval varies with the strength of the current. I venture to hope that the electrodynamometer will 

be used for the purpose presented, especially since in the local Physiological Institute, some 

experimental tests have already been made with good results, which will be communicated on 

another occasion. At present, I will confine myself above all to applications which can be made in 

the realm of physics itself, specifically, above all in the field of pure electrical theory. 

 

14. 

 

Repetition of Ampère's fundamental experiment with static electricity, and measurement of the 

duration of the electrical spark during discharge of a Leyden battery. 

 

Ampère's fundamental experiment regarding the reciprocal action of two conducting wires 

at a distance had up to now been carried out with a single form of galvanic currents, namely, 

currents which originated from a voltaic battery. If one now finds oneself justifiably moved to the 

conjecture, that all galvanic currents, from whatever source they might originate, are subject to the 

same laws, and that therefore Ampère's law regarding the reciprocal action of two conducting wires 

would be confirmed for all kinds of galvanic or electrical currents, this confirmation itself is in no 

way superfluous. Thus far, it already seems important that according to the experiments 

communicated in the preceding Sections, the Ampère reciprocal action has been proven as well for 

magneto-electric currents and by means of currents induced by means of voltaic induction. 

However, it seems still more important to repeat Ampère's fundamental experiment with static 

electricity, as it occurs in the discharge of a Leyden jar or battery by means of the applied discharge 

wire, since there are such considerable differences between this current of static electricity and all 

other galvanic currents, that only empirical experimentation can show, whether Ampère's 

fundamental experiment can hold good, or not. In particular, so long as empirical experimentation 

had not decided this question, one could easily conjecture, that either the extremely short duration 

of a current of static electricity, or, given a longer duration, the discontinuity of the current might be 

inherently obstructive to the reciprocal action of two long conducting wires, like those of the two 

coils of the dynamometer, because it would be possible that the current in one wire had already 

stopped again while it was just beginning in the other. Experimentation with the 

electrodynamometer has proven, however, that the fundamental Ampère experiment also succeeds 

with static electricity, of which I will now give a more precise account here. 

It is known, that the repetition of Oersted's fundamental experiment with the static 

electricity collected in a Leyden jar is made most reliably, when one end of a wet string is fastened 
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to the discharging rod, the other end to the conducting wire which forms the multiplier of the 

galvanometer, and the wire's other end is in a conducting connection with the outer coating of the 

Leyden jar. If the Leyden jar is then discharged with the discharging rod while the wet string hangs 

on it, a deflection of the magnetic needle is observed in that direction which can be predetermined 

by means of the electromagnetic laws. The use of a wet string is, however, not absolutely necessary 

to this fundamental experiment, but seems to be advantageous only when one wants to directly 

connect the wire ends of the multiplier of a sensitive galvanometer with the positive and negative 

conductor of an electrical machine. It is also not necessary to insulate the wires better than for other 

galvanic circuits. In the first case the use of a wet string was advantageous, because without it, the 

intensity of the discharge entails the danger of a confluence of the divided electricities which are 

collected in the battery, by other paths than through all the windings of the conducting wires. This 

danger is prevented by means of inserting a wet string, which diminishes the intensity of the 

discharge and nevertheless permits very large masses of electricity to unite with each other in a 

very short time through the conducting wire. 

Now, while the main point of performing Oersted's fundamental experiment with static 

electricity is simply to conduct very large masses of electricity through the multiplier, whereas the 

time in which the electricity goes through the wire, comes less into consideration, the successful 

execution of Ampère's fundamental experiment essentially rests instead on leading large masses of 

electricity in the shortest possible time through the conducting wire, for which, therefore, the 

collection of electricity in batteries and the discharge of the batteries by means of a wet string 

seems especially suited. The effect of equal masses of electricity is always the same in the first 

experiment, the amount of time of flow may be smaller or larger, as long as it does not become so 

large that it requires a considerable portion of the period of oscillation; with the latter experiment, 

however, in conformity with the preceding Section, the effect is to be inversely proportional to the 

transit time. Accordingly, it seems that the use of the Leyden jar along with a wet string must be 

considered as especially favorable, if not necessary, for our experiment, and hence I have in fact 

used both in my first experiments. 

Thus I joined together for this purpose two wire ends of the two coils of the dynamometer, 

and led one of the two other wire ends to the outer lining of a Leyden jar, the other to a wet string 

which was fastened onto the insulated discharging rod. The battery was charged, and lastly, the 

discharging rod was brought toward the metal knob which was connected with the interior lining of 

the battery. At the moment when the discharge of the battery through the wet string and through the 

dynamometer coils took place, the dynamometer, which had previously been at rest, was put into an 

oscillation, which often comprised an arc of several hundred scale units, of which several examples 

are to be presented forthwith. The observer standing at the telescope could easily determine the 

magnitude of the first elongation and the side toward which it occurred. 

If thereupon the experiment was repeated, by re-charging the Leyden jar or battery in the 

same manner, but with the difference, that the wire which was previously connected to the outer 

lining, was fastened to the end of the wet string of the discharging rod, and the other wire end was 

instead disconnected from the string and connected to the outer lining of the battery, then the effect 

was the same, not only with respect to the magnitude, but also with respect to its direction, so that, 

as with ordinary currents, no difference whatever took place in the effect of the positive and 

negative currents. And this direction of the deflection of the dynamometer as a result of the current 

of static electricity passing through, turned out to be like that which was already predetermined by 

means of Ampère's law. It is hereby proven, that the fundamental Ampère experiment can also be 

made with a current of static electricity. 

It was also of further interest, however, to test whether the use of the wet string was 

necessary or dispensable for the success of this experiment, as well as whether there might exist 

any cases at all, where the current of static electricity would yield Oersted's fundamental 
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experiment, but not Ampère's, or whether with respect to static electricity, both kinds of effects 

are always associated. For this purpose, more extensive series of experiments are required, than I 

have undertaken up to now; yet a few preliminary experiments may meanwhile be relevant. 

The earlier experiments were repeated, both utilizing the wet string and excluding it, and 

also in association with the electromagnetic experiments, by inserting the multiplier of a magnetic 

galvanometer into the same circuit which included the two coils of the dynamometer. The latter 

effect then served as a criterion and a metric, whether and how much electricity went through the 

wire circuit when the Leyden jar was discharged. When the wet string was excluded, in order to 

replace by other means the large resistance which it provided, a fine German silver [Argentan] wire 

of 0.3-millimeter diameter was wound around two glass columns 3.75 meters distant from each 

other, in such a way that the individual 7.5-meter-long windings were approximately 40 millimeters 

from each other, whereby they were completely insulated from one another. The German silver 

wire formed 32 such windings, and the end of this wire was now led freely through the air to the 

charged battery. In the following table I assemble the results of two series of experiments for 

comparison, namely, one in which the current went through the wet string, the other in which the 

wet string was excluded from the circuit. The electric battery consisted of 4 jars each of about 2 

square feet coated surface, which were charged moderately strongly and so uniformly in all 

experiments as could be discerned on the quadrant electrometer. The string was made of hemp, 320 

millimeters long, 4 millimeters thick, and was dipped in water before each experiment. 
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1. Discharge using the wet string: 

No. Elongation of galvanometer Elongation of  dynamometer 

 = e = ε  

1. 51.75 206.99 

2. 56.26 214.94 

3. 61.36 236.98 

4. 52.68 216.63 

5. 55.31 223.88 

2. Discharge using the wire circuit, without string: 

6. 7.06 0.85 

7. 7.04 0.85 

 

The observations on the galvanometer show that, if when using the string, all the electricity 

went through the circuit, without the string only 7 to 8 parts of it went through, according to which, 

under the presupposition, that the discharge without the string resulted faster, or at least not slower, 

than with the string, an effect would be expected of at least 50 parts of the previous amount of 

electrodynamic effect. This did not occur, however, but instead, as the comparison of the 

observations presented in the third column under ε  shows, the effect was almost six times smaller. 

Although this latter effect was so small, it was nevertheless clearly perceptible. 

The influence which the water exerted when the electricity was conducted through it, 

seemed to be susceptible of more precise investigation when the wet string was replaced with a 

glass tube filled with water. Hence a 1,200-millimeter-long, 13-millimeter wide empty glass tube 

was bent into a U shape and filled with water, inserted between the discharging rod and the rest of 

the circuit, and the earlier experiments repeated, yielding the following results, with the same 

charge in the battery as earlier, which prove that water contained in a glass tube could not replace a 

wet string in this case. 

 

Discharge with a glass tube filled with water: 

No. Elongation of galvanometer Elongation of dynamometer 

 = e ε=  

1. 4.68 3.23 

2. 4.50 1.57 

 

In vain were all precautionary measures which were taken in this experiment and in the 

preceding one with the exclusion of the wet string, in order to compel the electricity to take its path 

through the water in the tube, and thence through the German silver wire, in order to diminish the 

intensity of the charge by means of the resistance of these bodies, and to make all the electricity 

take its path through the instrument's conducting wires; only a slight portion of the electricity 

seemed to actually adopt the latter path. If, on the contrary, the glass tube was exchanged for a 

string of glass threads, this string, when it was externally moistened, performed comparable service 

to the wet string. The discharge through such a 500-millimeter-long string dampened with ammonia 

gave the following elongations on the galvanometer and dynamometer respectively: 

100.55   70.35. 

The electricity coming out of a Leyden jar seems to especially spread on the surface of the 

body, and therefore a moist conductor seems to have more effect, when it externally covers the 

surface of this body, than when it is enclosed. 
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Lastly, the results of a series of experiments performed with the wet string may be 

relevant, in which a battery of 8 jars just like the ones used earlier, and a hemp string of 7 

millimeters thickness and 2,000 millimeters length was inserted; this length, however, was 

gradually shortened to 125 millimeters. 

 

Length of string Elongation of 

galvanometer = e 

Elongation of 

dynamometer ε=  ε

2e
 

2 000 mm 79.9 65.6 97.3 

1 000 mm 76.6 153.0 38.3 

500 mm 82.3 293.8 23.0 

250 mm 87.3 682.0 11.2 

125 mm 93.2 out of scale  

250 mm 82.9 609.1 11.3 

500 mm 95.6 422.8 21.6 

1 000 mm 95.8 210.1 21.6 

2 000 mm 101.5 98.0 105.0 

 

It may be further noted, that, when the string was dipped into dilute sulphuric acid, a discharge of 

the battery gave a deflection of 83 scale units on the galvanometer, while the deflection on the 

dynamometer itself was too large, when the string length was 2,000 millimeters, to be measured on 

the scale. 

It is easily seen, that a broad field of interesting experiments stands open here, which I have 

not further pursued, because of the need to subject the amount of electricity in the battery used for 

the experiments to a direct precise measurement, according to the model given by Ries in his 

electrical experiments, for which I do not currently have at my disposal the appropriate equipment, 

and therefore I am postponing this work to a more favorable time. 

Meanwhile, however, the last series of experiments performed already shows, apart from 

the strength of the effects, such a degree of regularity, that it becomes probable that, in discharging 

the Leyden battery by means of a wet string, all the electricity in fact goes through the conducting 

wire and forms a current in it which might be comparable in continuity to the current of a galvanic 

battery.
31

 Were this the case, one could make an important application of the preceding 

observations, by applying to them the rules developed in Section 13, in order to determine the 

duration of the current which may be considered as equal to the duration of the discharge spark, 

according to an absolute time metric. It is well known that Wheatstone effected the determination 

of the duration of the discharge spark in a completely different manner, and it would be interesting 

to compare with each other the results found in such different ways. In order to reduce to an 

absolute time metric the relative time metric which we have already included for the above 

experiments themselves in the column headed ε/2e , it requires, according to page 68,
32

 simply an 

experiment with a constant current passing through both instruments, which I have carried out for 

this purpose, and have found that the values for ε/2e  in the table above are to be divided by  

1,188, 

                                                 
31

  [N. A.] Electrodynamic experiments can be arranged with two dynamometers in such a way that the electricity is 

conducted successively in one, simultaneously in the other, through the fixed and suspended coils. By comparing the 

results for both instruments, when a battery is discharged through them, it would be possible to investigate more 

precisely the continuity or discontinuity of the current. 
32

  [N. E.] Page 114 of Weber’s Werke, Vol. 3. 
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in order to obtain the duration of the current in seconds. The following table is calculated 

accordingly: 

 

Length of string Duration of spark 

Millimeters Seconds 

2 000 0.081 9 

1 000 0.032 2 

500 0.019 3 

250 0.009 4 

250 0.009 5 

500 0.018 2 

1 000 0.036 8 

2 000 0.088 3 

 

or in mean values: 

 

Length of string Duration of spark 

Millimeters Seconds 

2 000 0.085 1 

1 000 0.034 5 

500 0.018 7 

250 0.009 5 

 

It follows that the duration of the spark is almost proportional to the length of the string, as the 

following overview of the thus calculated values and their difference from the observed values 

proves: 

 

Length of string Calculated duration of spark Difference from observed 

value 

Millimeters Seconds Seconds 

2 000 0.081 6 - 0.003 5 

1 000 0.040 8 + 0.006 3 

500 0.020 4 + 0.001 7 

250 0.010 2 + 0.000 7 

 

If one compares the results found by Wheatstone, according to which the duration of the spark by 

discharges merely through a metallic conductor, is negligibly small in relation to the duration found 

here, then this stands in complete accord with the proportionality found here between the duration 

of the spark and the length of the wet discharge string. In any case, the fact that the motion of the 

electricity in water occurs so slowly, that the time it requires for the short path of 2 meters amounts 

to roughly 1/12 seconds, merits particular attention. Apart from the objection derived from the 

discontinuity of the currents of static electricity (which was already discussed above, and which 

may be largely diminished or entirely eliminated by means of the influence of the water), it could, 

of course, be objected against the application of the rule by which these time determinations were 

made, that the current is most intense in the first moments, and will gradually decline, while the 

above rule can only be applied with precision, when the current always possesses the same intensity 

during its short duration. If, however, one empirically finds, in this case as well, not the true 

duration, but that duration which would correspond to a mean current strength, the value of the 
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determination may lose little on this account, because it will generally be of more interest to 

know the latter duration, than the former. It is also noteworthy that for the same reasons, a similar 

difference was occasioned in Wheatstone’s determination of the duration of the spark, because the 

spark was extended in a line which as a result of that decrease gradually dispersed without sharp 

delimitation. 

 

15. 

 

Two investigations in the field of pure electrical theory are still to be presented here, for 

which the use of the dynamometer opens a new path; however, I will not go more precisely into 

these investigations for the present, because the necessary experiments are still lacking, in order to 

demonstrate conjointly the method and the results obtained by it. These two investigations concern: 

1) the determination of the velocity of the propagation of currents, for which up to now 

merely a few experiments by Wheatstone are in hand, which, however, according to 

Wheatstone's own statement, have still not led to any certain results; 

2) the determination of the electromotive force of a galvanic circuit, independent of the 

polarization of its plates. 

The first application requires that the bifilar coil is separated from the fixed coil by means of 

long conducting wires, and in this long circuit a current is produced, whose direction changes as 

fast as Wheatstone's mirror is rotated. The use of the dynamometer, by comparison with 

Wheatstone's method, provides the advantage of using galvanic currents instead of common 

electricity, and the circuit is never interrupted, which was necessary for Wheatstone for producing 

the spark. The latter application is based on the measurement of momentary currents according to 

Section 13. 

 

16. 

 

Application of the dynamometer to measurement of the intensity of sound vibrations. 

 

It still remains, to describe an application of the dynamometer to researches in another 

domain of physics, which seems to have a special interest associated with it, because it casts a 

bright light on a specific aspect of what can be done with this instrument. We possess 

extraordinarily refined galvanoscopes, with which we are in a position to discover and investigate 

even the weakest currents found in Nature. We need merely recall the fine work of Melloni, in 

order to place the greatest weight for science in general upon the use of these refined instruments 

and the traces of electrical motions which we find by means of them. Despite this refinement in the 

instruments, however, in many cases success has not been achieved in demonstrating electrical 

currents everywhere we surmise that they exist, perhaps because those instruments, despite their 

refinement, were not suited to the purpose. This reason deserves all the more consideration, in that 

one sort of current can be demonstrated and exactly described, to which even the finest instruments 

are insensitive, in the nature of the case. This occurs, when we are dealing with an alternating 

current, which in very short sequential time intervals constantly changes its direction. The 

alternating opposite actions of the current on the most sensitive magnetic needle must cancel each 

other, if the magnetism of the needle always remains the same. The phenomena observed by 

Poggendorff (Annalen 1838, Vol. LXV, page 355 ff.), in which this does not seem to occur, 

originate from a changeability in the needle's magnetism, and, given a very accelerated change in 

current, would disappear again. Such currents, whose direction changes very rapidly, can thus exist 

to a great extent in Nature, without us having an inkling of their existence, because we possess no 

way to discover them. And it is not at all improbable, that such currents exist, for the movement of 
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electricity in them would differentiate itself from the movement of electricity in the usual 

currents, only by the fact that the former consists of an oscillation, while in the latter, the motion of 

the electricity is progressive. Since the progressive motion of electricity occurs so abundantly in 

Nature, it is not obvious why, given such great mobility occasional conditions should not also 

occur, which favor a vibrating movement. If, e.g., light undulations exert an effect on the electrical 

fluids, and have the power to disturb their equilibrium, it would certainly be expected that these 

effects of light undulations would be structured in time with the same periodicity as the light 

undulations themselves, so that the result would consist of an electrical vibration, which, however, 

we are unable to discover with our instruments. Now, the undulations of light occur so rapidly, that, 

if the vibrations they elicit follow an equally rapid alternation, we could scarcely hope to observe 

their effects with any instrument. Slower vibrations also occur in Nature, however, e.g. acoustical 

ones, and hence the question arises, whether there are not electrical motions in Nature whose origin 

is due to them, and if there are such motions, in what way we could discover and investigate them. 

I want to give at least one example here of such electrical vibrations, elicited by sound 

vibrations, and provide the actual proof of how such electrical vibrations can be observed and 

investigated with the help of the dynamometer, and how the measurable effects of these electrical 

vibrations can in turn be used to elucidate the sound vibrations from which they originate, and 

thereby to open a new path for many acoustical investigations, for which we still altogether lack 

suitable means of measuring the intensity of sound vibrations. 

In fact, the peculiarity of the dynamometer, which most characterizes it and distinguishes it 

from all other galvanometers, consists in the fact, that it is indifferent to the direction of the current 

acting upon it, while other galvanometers undergo opposite effects, given opposite directions of the 

currents. Attention was already called to this in Section 13 above. We can express this succinctly 

by saying that the dynamometer with respect to constant currents gives a measure for the square of 

the current intensity, while other galvanometers provide a measure for the current intensity itself. 

From this characteristic property of the dynamometer, it is now obvious, that the rapidly 

successive actions of the opposed currents do not, as in an electromagnetic galvanometer, cancel 

each other, but rather must be additive; and that in virtue of its nature the dynamometer 

consequently finds its true purpose in bringing to light such otherwise unobservable currents. 

Now, the sound vibrations are mostly, of course, contained in such narrow, almost 

microscopic boundaries, that we can scarcely hope to use them to elicit electrical vibrations whose 

boundaries have the breadth necessary to register an effect upon the dynamometer. If, however, we 

calculate the absolute velocities, with which the resonating bodies move in the middle of their 

vibrations, it turns out that these velocities, considering the short duration of the vibrations, are not 

entirely inappreciable, despite the small oscillation curves, but often amount to a foot or more in 

one second. Building upon this, I have carried out an experiment so that it seemed the first to be 

capable of producing results. I prepared a sounding-rod of steel (aaa, Figure 13) and let it harden,  
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magnetized it, and fastened its nodal lines at the end-points b, b, b', b' between screw-heads as 

axes of rotation, as I have described in Poggendorff's Annalen 1833, Vol. XXVIII, page 4,33 and 

divided it into three sections simultaneously vibrating toward opposite sides. Hence the two end 

sections made their vibrations simultaneously in the same direction, alternately upward and 

downward. The free magnetism, which is disseminated in these rods, can be thought of as 

disseminated on the surface of the rod, according to Gauss's ideal distribution, which represents the 

actual distribution in all outward effects; and, specifically in the case of strong magnetization, the 

free north magnetism must be thought of as almost entirely on the surface of one vibrating end-

section, the free south magnetism almost entirely on the surface of the other vibrating end-section, 

and indeed the closer to the end, the greater the concentration, i.e., exactly the most [magnetism] 

where the sound vibrations are the greatest. I wound these two vibrating end-sections with strong 

inductors ccc and c'c'c' made of fine copper wire, which, however, never touched the rod, so that its 

vibrations would not be inhibited. In addition, there was a gap in the windings on the sides of the 

inductors turned toward each other, through which the ends of the rod were inserted into the 

inductors. The windings of the inductors were parallel to each other and lay in a plane 

perpendicular to the sound vibrations of the sounding-rod. The two inductors were connected to 

each other with two of their wire ends dddd, so that they formed spirals wound in opposite 

directions. Their two wire ends ee and e'e' were connected with two wire ends of the fixed and 

moveable coils of the dynamometer, whose other two wire ends were connected to each other. The 

dynamometer was completely at rest. After everything had been prepared in this way, the sounding-

rod was made to vibrate strongly by means of a sharp rap at its midpoint with a soft clapper. There 

appeared at once a deflection of the bifilar coil of 20 to 30 scale units, and thereupon, when the 

maxima and minima of the vibration curve of the bifilar coil, which was vibrating from then on, 

were recorded, it was seen, that the state of rest calculated from this, around which the vibration 

occurred, was altered, but that it quickly returned again to its original state as the sound vibrations 

decreased in strength. I would note that I elongated the bifilar coil by several hundred scale units, 

letting the sounding-rod vibrate only so long, as the elongation was increasing, while on the other 

hand I deadened the sounding-rod, while the bifilar coil swung back again, and struck the 

sounding-rod again as soon as the bifilar coil began to move in the original direction, and so forth. 

It hardly need be mentioned, that if more precise determinations of the intensity of sound 

vibrations are really to be obtained according to the method presented, the sounding-rod cannot be 

put into vibration by means of a clapper stroke, because the intensity of the vibrations elicited in 

this way decrease very quickly and almost entirely disappear; but they must be maintained in a state 

of constant vibration for a longer time by means of a continually adjusted intervention. 

It can safely be presumed, that the electrical vibrations which are actually demonstrated, 

take place under the conditions in which we made our observations; hence it was only a question of 

testing the method by which such vibrations are made observable. After this method has been 

found to be proven, however, one can further build upon it, and it is certain that using this method 

will lead to the discovery of electrical vibrations under previously unthought-of conditions. To 

illustrate the manifoldness of these phenomena, the following experiment may be cited here. If a 

strong galvanic current is introduced close to a vibrating string, which forms a component of a wire 

circuit running back into itself, then as a result of that vibration, alternating positive and negative 

currents are induced in the circuit, whose intensity can be measured with the dynamometer, 

similarly to the way it is induced by the vibrating magnetized rod. 

 

17. 

 

                                                 
33

  [N. H. W.] Wilhelm Weber's Werke, Vol. I, page 367. 
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On various constructions of the dynamometer. 

 

There are essentially three different constructions which can be given to the dynamometer, 

all of which are suited to exact measurements, and provide special advantages under differing 

conditions. In addition to the first construction, which has been applied up to now, a second 

presents itself almost automatically to begin with, since it is already frequently used, with regard to 

its most essential components, for observing the effects of the Earth's magnetism on a conductor. 

Specifically, for this purpose, a conductor wound in circles, together with the battery from which 

the current issued, was hung up on a thread or wire, like a magnet, and the rotational moment 

which the Earth exerts on this kind of closed circuit, was observed in the same way as on a 

suspended magnetic needle. In fact, this apparatus provides a rotatable conductor, whose 

oscillations and deviations can be observed with as great a refinement as those of our bifilar coil, 

and it is only necessary to surround the suspended battery with a fixed multiplier, through which a 

current likewise moves, in order to complete the dynamometer. Now, add to this the fact that the 

discovery of constant batteries by Daniell and Grove has paved the way for more refined 

applications of such an instrument, which was previously blocked by the variability of the currents. 

For this a small Grove’s element is particularly suited, which, considering its small dimensions and 

low weight, provides a fairly strong and constant current. If mirror, telescope, and scale are added, 

the most refined observations can be carried out with this instrument. Figure 14 depicts such an 

instrument, as used by me for this purpose. A is the wire wound around in a ring, whose ends are 

connected by means of brass couplings ab and a'b' to the platinum and zinc poles of a small 

Grove’s element B from the instrument-maker Kleinert in Berlin. This element rests on a wooden 

stand, whose upper part is equipped with a torsion ring C, to which the suspension filaments are 

fastened at D. 

 

 
 

However suitable this construction of the dynamometer may be for a few special purposes, 

nonetheless it is far from able to replace the first construction, because it lacks two properties which 

the dynamometer with the bifilar coil possesses, and which are based on the fact that the current 

going through the bifilar coil can be further conducted, both through the fixed coil serving as 

multiplier, and through any other conductor as well. The first property consists in the fact that this 
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dynamometer can be used together with a galvanometer, by means of which an independent 

measurement of the intensity of the current in the bifilar coil can be obtained, which is not the case 

with the other instrument, because there the current from the suspended battery can not be drawn 

off through the multiplier of a galvanometer. However, the simultaneous observations on the 

galvanometer and dynamometer permit us to reduce the electrodynamic effects to the same current 

intensity, as repeatedly occurred in the previous undertakings. The lack of this property is not 

completely overcome by the use of constant batteries, because the current intensity even in such 

batteries is still always subject to considerable variations, which can in no way be disregarded in 

the course of more precise determinations. 

The second property consists in the fact that, by letting the currents to be investigated with 

the dynamometer pass through both coils, the fixed coil as well as the rotatable one, one can 

determine the square of the current intensity, which is independent of the direction of the current. 

On this was based the peculiar characteristic of the instrument, which made it possible, in 

association with the electromagnetic galvanometer, to provide the elements necessary for 

knowledge of momentary currents. See Section 13 above. The other instrument whose rotatable coil 

formed a suspended, self-contained battery, also lacked this property; for here the different currents 

to be investigated can simply be brought through the conducting wire of the fixed coil, while the 

current in the rotatable coil remains unchanged, whereupon the effect of the current intensity, as 

with an electromagnetic galvanometer, is proportional to the current intensity itself, and 

consequently the instrument is capable of simply serving the role of an electromagnetic 

galvanometer, but not of supplementing it. 

I now proceed to the third construction of the dynamometer, which, in that it shares the 

most essential properties of the first, is suited to give to electrodynamic measurements a still greater 

expansion, especially in cases where the first fails us because of the necessary fineness of the 

suspension wires through which the current is conducted. 

This third construction is based on the same principle, which I have developed in the 

Commentat. Soc. Reg. Sc. Gottingensis recentiores, Vol. VIII,
34

 for the purpose of describing a 

perfectly rotatable, friction-free balance scale, namely, on the principle of compensation between 

gravity and elasticity. There I hung the horizontal balance beam on two elastic vertical springs. 

These springs bent, of course, when the balance beam was turned, and thus, the more the beam was 

turned, the more they sought by means of their elastic force to inhibit the rotation; but if the 

rotation of the balance beam took place around an axis, which lay lower than its center of gravity, 

then, when the balance beam was rotated, the more the balance beam was rotated, the more the 

force of gravity sought to accelerate the rotation, and it turned out that, in this construction, the 

inhibiting influence of elasticity and the accelerating influence of gravity balanced each other, and 

consequently the beam remained firmly in balance not merely in a horizontal position, but also in 

an inclined position, and, without becoming hampered by friction, was able to switch from one of 

these positions to the other at the slightest impulsion. 

I now used this kind of compensated balance beam for the dynamometer, and thereby 

replaced the rotatable coil, by making the same use of the two suspension springs to feed in and 

draw off the current, as I make of the two suspension wires. These springs are especially preferable 

to those fine wires, when it is a question of high-intensity currents, which should not be conducted 

through fine wires. It is sufficient to put the current through the strongest and shortest possible 

circuit; then the balance beam, through which this current is to pass, consists of a moderately long 

bar, held up by one of those two springs, to which bar, however, a mirror for more refined 

observation is attached. Finally, the fixed coil is replaced for the same reason with another 

moderately long fixed bar, by means of which the galvanic current is likewise conducted, and 

                                                 
34

  [N. H. W.] Wilhelm Weber's Werke, Vol. I, page 497. 
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which then acts on that rotatable bar, and deflects it, like a balance scale. The sensitivity of this 

instrument primarily depends on the two bars (the fixed one and the rotatable one) being placed 

parallel to each other at a slight distance apart. I have designed this instrument above all to give a 

greater range to electrodynamic experiments with static electricity, by rendering dispensable the 

special conditions which were necessary to achieve a truly reliable discharge in a Leyden jar 

through the many windings of the two coils of the first dynamometer. As yet, this latter instrument 

has not been perfected to the degree necessary for such a series of experiments. 

Before I conclude this Section on the construction of the dynamometer, I wish to add 

another remark about its transformation into a magnetic galvanometer. I have already mentioned, 

that the wholly self-contained, suspended battery used for the second construction described above, 

was used earlier in electromagnetic experiments, specifically in order to observe the influence of 

Earth magnetism on a current conductor. With this self-contained suspended battery, if one were 

able to fully rely on the constancy of its current, all experiments on, and measurements of, Earth 

magnetism could be carried out exactly as with the magnetometer, and to that extent it would 

warrant the name of a galvanic magnetometer. Our first dynamometer, on the other hand, could be 

used as a magnetic galvanometer, which offers great advantages, even in comparison with a 

magnetometer equipped with a multiplier, if it is a question of absolute, not merely relative, 

determination of current intensity. The current conductor is in a fixed position with respect to the 

magnetometer equipped with a multiplier, and the magnet is rotatable; however, there is no 

essential influence on the effect, when one reverses this relationship and fixes the magnet, while the 

conductor is rotatable. The coil of our dynamometer, suspended by two wires, can now serve as the 

rotatable conductor, and the Earth itself can be used as the fixed magnet (which substitutes here for 

the fixed coil). However, if the Earth is now to actually perform this role, the bifilar coil must be 

oriented in a different way, namely, instead of being oriented like a declination magnetometer, as it 

was earlier, so that its axis is parallel to the magnetic meridian, it must be oriented, like the 

intensity magnetometer, so that its axis is perpendicular to the magnetic meridian. It can then be 

called a magnetic bifilar galvanometer. This simple instrument then presents great advantages for 

the absolute determination of current intensity, precisely because the position and distance apart of 

the individual components of the conducting wire compared with the individual components of the 

magnets no longer need be taken into account, because of the great distance at which the Earth 

magnetism acts, and hence, what is required for the purpose of this absolute determination of 

current intensity, in addition to the knowledge of the Earth magnetism, the deflection, the period of 

oscillation, and the inertial moment, in terms of absolute measure, is only the knowledge of one 

single element, namely, knowledge of the area surrounded by the wire, as I have already discussed 

in the “Resultaten aus den Beobachtungen des Magnetischen Vereins im Jahre 1840,” page 93,35 

where I have communicated several such determinations of intensity according to absolute 

measure, which were made with this instrument. 

Hitherto, the investigation primarily had the purpose of leading to experimental paths to 

determinations of measure for electrodynamic forces, and to expressing those forces according to 

the absolute measure, reduced to measure of space, time, and mass. This was the motivation for the 

construction given to the instruments, which, as in the case of Gauss's magnetometer, lays claim to 

a more solid arrangement and a greater scope than is called for by other physical apparatus, in 

which the scale of measurement is directly mounted on the instrument to be observed. Given the 

appropriate construction, it was possible to carry out larger individual series of experiments with 

precision; this construction, however, is not so easily altered again and adjusted to different kinds 

of purposes. In this connection I must acknowledge, as an especially favorable circumstance, that 

the spaciousness of the Leipzig Physics Institute was on the whole advantageous for this 
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  [N. H. W.] Wilhelm Weber's Werke, Vol. III, page 15. 
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construction; nevertheless, as mentioned several times, I had to confine myself for the present to 

preliminary experimental tests, because not all the constructions could be adequately manufactured 

in the same way. In consideration of these external constraints, present elsewhere still more than 

here, and because many experimenters are less accustomed to make observations with such 

instruments, I commissioned the local instrument-maker Mr. Leyser to complete smaller portable 

instruments for easier and more convenient manual use, without catoptric equipment, in the usual 

simple manner with pointer and subdivided circular scale, which suffice for conducting most 

experiments and for ordinary measurements. I call these smaller instruments to the attention of 

those who wish to engage in similar experiments, under conditions which do not permit the use of 

the instruments described. 

 

On the Connection between Electrostatic and Electrodynamic Phenomena with Application to 

Electrodynamic Measurements. 

 

18. 

 

Since the fundamental law of electrodynamics put forward by Ampère is found to be fully 

confirmed by precise measurements, the foundations of electrodynamics could perhaps be 

considered as definitively established. This would be the case, if all further research consisted of 

nothing but developing the applications and results which can be based on that law. For, granted 

that we could inquire into the connection, which exists between the fundamental laws of 

electrodynamics and electrostatics, yet, however interesting it may be, and however important for a 

more precise acquaintance with the nature of bodies, to have investigated this connection, nothing 

further would have been yielded for the explanation of electrodynamic phenomena, if these 

phenomena have really found their complete explanation in Ampère's law. In short, essential 

progress for electrodynamics itself would not be achieved by reducing its fundamentals to the 

fundamentals of electrostatics, however important and interesting such a reduction might be in 

other respects. 

This view of the conclusions which the fundamentals of electrodynamics has reached 

through Ampère's basic law and its confirmation, essentially presupposes, however, that all 

electrodynamic phenomena are actually explained by that law. If this were not the case, if there 

existed any class of electrodynamic phenomena, which it does not explain, then that law would 

have to be considered merely as a provisional law, to be replaced in future by a truly universally 

valid, definitive law applicable to all electrodynamic phenomena. And in that case it could well 

occur, that this definitive law would be arrived at, by first seeking to reduce Ampère's law to a 

more general one, encompassing electrostatics. Namely, it would be possible that, under different 

conditions, the law of the remaining electrodynamic phenomena, which could not be directly traced 

to Ampère's law, would emerge out of the same sources from which both the electrostatic law and 

Ampère's law were derived, and that the foundation of electrodynamics in its greatest generality, 

would then be represented, not in isolation per se, but solely as dependent on the most general law 

of electricity, subsuming the foundation of electrostatics. 

Now, in fact, there does exist such a class of electrodynamic phenomena, which, as we 

assume throughout this Treatise, depend on the reciprocal actions which electrical charges exert on 

each other at a distance, and which are not included in Ampère's law and cannot be explained by it, 

namely, the phenomena of Volta-induction discovered by Faraday, i.e., the generation of a current 

in a conducting wire through the influence of a current to which it is brought near; or the 

generation of a current in a conducting wire, when the intensity of the current in another nearby 

conducting wire increases or decreases. 
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Ampère's law leaves nothing to be desired, when it deals with the reciprocal actions of 

conducting wires, whose currents posses a constant intensity, and which are fixed in their positions 

with respect to one another; as soon as changes in the intensity of the current take place, however, 

or the conducting wires are moved with respect to one another, Ampère's law gives no complete 

and sufficient account; namely, in that case, it merely makes known the actions which take place on 

the ponderable wire element, but not the actions which take place on the imponderable electricity 

contained therein. Therefore, from this it follows, that this law holds only as a particular law, and 

can be only provisionally taken as a fundamental law; it still requires a definitive law with truly 

general validity, applicable to all electrodynamic phenomena, to replace it. 

We are now in a position, to also predetermine in part the phenomena of Volta-induction; 

however, this determination is based, not on Ampère's law, but on the law of magnetic induction, 

which can be directly derived from experience, and which up to now has had no intrinsic 

connection with Ampère's law. And that predetermination of Volta-induction is in fact able to 

proceed, not through a strict deduction, but according to a mere analogy. Since such an analogy can 

indeed give an excellent guideline for scientific investigations, but as such must be deemed 

insufficient for a theoretical explanation of phenomena, it follows that the phenomena of Volta-

induction are still altogether lacking theoretical explanation, and in particular have not received 

such explanation from Ampère's law. In addition, that predetermination of the phenomena of Volta-

induction merely extends to those cases, where the inductive operation of a current, by analogy 

with its electrodynamic operation, can be replaced by the operation of a magnet. This, however, 

presupposes closed currents whose form is invariable. We can, however, claim, with the same 

justification as Ampère did for his law with respect to the reciprocal action of constant current 

elements, that the law of Volta-induction holds true for all cases, in that it gives a general 

determination for the reciprocal action of any two smallest elements, out of which all measurable 

effects are composed and can be calculated. 

Thus, if we take up the connection between the electrostatic and electrodynamic 

phenomena, we need not simply be led by its general scientific interest to delve into the existing 

relations between the various branches of physics, but over and above this, we can set ourselves a 

more closely defined goal, which has to do with the measurement of Volta-induction by means of a 

more general law of pure electrical theory. These measurements of Volta-induction then belong to 

the electrodynamic measurements which form the main topic of this Treatise, and which, when they 

are complete, must also include the phenomena of Volta-induction. It is self-evident, however, that 

establishing such measurements is most profoundly connected with establishing the laws, to which 

the phenomena in question are subject, so that the one can not be separated from the other. 

 

19. 

 

In order to obtain for this investigation the most reliable possible guideline based on 

experience, the foundation will be three special facts, which are in part based indirectly on 

observation, in part contained directly in Ampère's law, which is confirmed by all measurements. 

The first fact is, that two current elements lying in a straight line which coincides with their 

direction, repel or attract each other, according to whether the electricity flows through them in the 

same or opposite way. 

The second fact is, that two parallel current elements, which form right angles with a line 

connecting them, attract or repel each other, according to whether the electricity flows through 

them in the same or opposite way. 

The third fact is, that a current element, which lies together with a wire element in a straight 

line coinciding with the directions of both elements, induces a like- or opposite-directed current in 

the wire element, according to whether the intensity of its own current decreases or increases. 
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These three facts are, of course, not directly given through experience, because the effect 

of one element on another can not be directly observed; yet they are so closely connected with 

directly observed facts, that they have almost the same validity as the latter. The first two facts 

were already comprehended under Ampère's law; the third was added by Faraday's discovery. 

The three adduced facts are considered as electrical, viz., we consider the indicated forces 

as actions of electrical masses on each other. The electrical law of this reciprocal action is still 

unknown, however; for, even if the first two facts are comprehended under Ampère's law, 

nevertheless, even apart from the third fact, which is not comprehended by it, Ampère's law is 

itself, in the strict sense, no electrical law, because it identifies no electrical force, which an 

electrical mass exerts on the other. Ampère's law merely provides a way to identify a force acting 

on the ponderable mass of the conductor. Ampère did not deal with the electrical forces which the 

electrical fluids flowing through the conductor exert on one another, though he repeatedly 

expressed the hope that it would be possible to explain the reciprocal effect of the ponderable 

conductors identified by his law, in terms of the reciprocal actions of the electric fluids contained in 

them. 

If we now direct our attention to the electrical fluids in the two current elements themselves, 

we have in them like amounts of positive and negative electricity, which, in each element, are in 

motion in an opposing fashion. This simultaneous opposite motion of positive and negative 

electricity, as we are accustomed to assume it in all parts of a linear conducting wire, admittedly 

can not exist in reality, yet can be viewed for our purposes as an ideal motion, which, in the cases 

we are considering, where it is simply a matter of actions at a distance, represents the actually 

occurring motions in relation to all the actions to be taken into account, and thereby has the 

advantage, of subjecting itself better to calculation. The actually occurring lateral motion through 

which the particles encountering each other in the conducting wire (which latter forms no 

mathematical line) avoid each other, must be considered as without influence on the actions at a 

distance, hence it seems permissible for our purpose, to adhere to the foregoing simple view of the 

matter (see Section 31). 

We have, then, in the two current elements we are considering, four reciprocal actions of 

electrical masses to consider, two repulsive, between the two positive and between the two negative 

masses in the current element, and two attractive, between the positive mass in the first and the 

negative mass in the second, and between the negative mass in the first and the positive mass in the 

second. 

Every two repulsive forces would have to be equal to these two attractive forces, if the 

recognized laws of electrostatics had an unconditional application to our case, because the like, 

repulsive masses are equal to the unlike, attractive masses, and act on one another at the same 

distance. Whether those recognized electrostatic laws, however, find an unconditional application 

to our case, can not be decided a priori, because these laws chiefly refer only to such electrical 

masses, which are situated in equilibrium and at rest with respect to one another, while our 

electrical masses are in motion with respect to one another. Consequently, only experience can 

decide, whether that electrostatic law permits such an enlarged application to our case as well. 

The two first facts adduced above refer, of course, chiefly to forces, which act on the 

ponderable current carriers; we can, however, consider these forces as the resultants of those 

forces, which act on the electrical masses contained in the ponderable carrier. Strictly speaking, 

that way of considering these forces is, to be sure, only permissible, when these electrical masses 

are bound to their common ponderable carrier in such a way, that they cannot be put in motion 

without it, and because this is not the case in the galvanic circuit, but on the contrary, the electrical 

masses are also in motion when their carrier is at rest, Ampère, as is stated in the introduction on 



 84 

page 3,
36

 particularly called attention to this circumstance, with the consideration that the force 

acting on the ponderable carrier could thereby be essentially modified. Although, however, the 

electrical masses are susceptible of being displaced in the direction of the conducting wire, they are 

in no way freely moveable in this direction; otherwise they would have to persist in the motion 

once it were transmitted to them in this direction, without a new external impetus (that is, without 

ongoing electromotive force), which is not the case. For no galvanic current persists of itself, even 

with a persistent closure of the circuit. Rather, its intensity at any moment corresponds only to the 

existing electromotive force, as determined by Ohm's law; thus it stops by itself, as soon as this 

force disappears. From this it follows, that not simply those forces, which act on the electrical 

masses in such directions (perpendicular to the conducting wire) that the masses can only be moved 

in tandem with the ponderable carrier, have to be transmitted to the latter, but that this very fact 

also holds true even of such forces, which act in the direction of the conducting wire and which 

move the electrical masses in the carrier, only with the difference, that the latter transmission 

requires an interval of time, although a very short one, which is not the case for the former. The 

direct action of the forces parallel to the conducting wire consists, to be sure, simply of a motion of 

the electrical masses in this direction; the effect of this motion is, however, a resistance in the 

ponderable carrier, by means of which, in an immeasurably short time, it is neutralized once more. 

Through this resistance, during the time interval in which this motion is neutralized, all forces, 

which had previously induced this motion, are indirectly transmitted to the ponderable bodies 

which exercise the resistance. Finally, since we are dealing with the effects of forces, which have 

the capacity to communicate a measurable velocity to the ponderable carrier itself, then on the 

other hand, those effects of forces, which only momentarily disturb the imponderable masses a 

little, can be disregarded with the same justification with which we disregard the mass of the 

electricity compared with the mass of its ponderable carrier. From this, however, it follows, that the 

force acting on the current carrier acts, as stated above, as the resultant of all forces acting on the 

electrical masses contained in the current carrier. 

This presupposes, as shown by the first two facts stated above, that the resultant of those 

four reciprocal actions of the electrical masses contained in the two current elements under 

consideration, which, according to the electrostatic laws, ought to be zero, departs more from zero, 

the greater the velocity, with which the electrical masses flow through both current elements, that 

is, the greater the current intensities. 

From this it follows, therefore, that the electrostatic laws have no unconditional application 

to electrical masses which are in motion with respect to one another, but on the contrary, they 

merely provide for the forces, which these masses reciprocally exert upon each other, a limiting 

value, to which the true value of these forces approximates more closely, the slighter the reciprocal 

motions of the masses, and from which, on the contrary, the true value is more divergent, the 

greater the reciprocal motions. To the values, which the electrostatic laws give for the force exerted 

by two electrical masses upon one another, must thus be added a complement dependent upon their 

reciprocal motion, if this force is to be correctly determined, not simply for the case of mutual rest 

and equilibrium, but universally, including any arbitrary motion of the two masses with respect to 

one another. This complement, which would confer upon the electrostatic laws a more general 

applicability than they presently possess, will now be sought. 

The first fact stated above further shows, not simply that the sum of the repulsive forces of 

like electrical masses in the current elements under consideration diverges from the sum of the 

attractive forces of unlike masses, but also shows, when the first sum is greater and when it is 

smaller than the latter, and all determinations resulting therefrom can be unified in the simple 

statement, 
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that the electrical masses, which have an opposite motion, act upon one another more 

weakly, than those which have a like motion. 

 

For, 1) if the direction of the current is the same in the two elements, then repulsion occurs, 

consequently the attractive force of the unlike masses must be weaker than the repulsive forces of 

the like masses. In this case, however, it is the unlike masses, which are in opposite motion. If, 

however, 2) the direction of the current in the two elements is opposite, then attraction occurs; 

consequently the repulsive forces of the like masses must be weaker than the attractive forces of the 

unlike masses. In this case, however, it is the like masses, which are put into opposite motion. In 

both cases it is thus the masses in opposite motion, which act more weakly upon one another, 

confirming the statement above. 

The first fact, to which the statement above was referred, further permits the following, 

more precise, determination to be added, 

 

that two electrical masses (repulsive or attractive, according to whether they are like or 

unlike) act more weakly upon one another, the greater the square of their relative 

velocity. 

 

The relative velocity of two electrical masses can, if r denotes the distance between the two masses, 

be expressed as dr/dt, and is positive or negative, according to whether the two masses are 

withdrawing from or approaching one another; since, however, this difference between approach 

and withdrawal, or, in short, the difference of the sign for dr/dt, has no influence upon the 

magnitude of the force, it was necessary in the just-stated rule to introduce, instead of the relative 

velocity itself, its square. 

If we denote by e and e' the positive electrical masses in both elements, and by u and u' their 

absolute velocities, which have a positive or negative value according to the direction of the 

current, then -e and -e' will be the negative masses, and -u and -u' their absolute velocities. In the 

cases subsumed by the first fact, where all electrical masses are in motion in one and the same 

straight line, the relative velocities, however, result from the absolute by means of simple 

subtraction, namely, for the like masses: 

e+  and 'e+  the relative velocity 'uu
dt

dr
−= , 

e−  and 'e−  the relative velocity 'uu
dt

dr
+−= ; 

for the unlike masses: 

e+  and 'e−  the relative velocity 'uu
dt

dr
+= , 

e−  and 'e+  the relative velocity 'uu
dt

dr
−−= . 

From this results, according to the foregoing principle of the reciprocal action of like (two positive, 

as well as two negative) masses, a diminution dependent upon
37
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in comparison with the case considered in electrostatics, of rest and equilibrium; for the 

reciprocal action of unlike masses, on the contrary, a decrease dependent upon 

( )2

2

2

'uu
dt

dr
+=  

The simplest form, which the law of this decrease can have, is that in which the value of the force 

for the case of rest and equilibrium is multiplied by the factor 









−

2

2
21
dt

dr
a  

whereby the following expression would therefore serve for the complete determination of the 

force: 


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ee
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in which e and e' have positive or negative values, according to whether the electrical masses which 

they denote are part of the positive or negative fluids. 2a  is a constant. 

For our case, when we try to make use of this simplest form, there result the following four 

reciprocal actions between the electrical masses in the two current elements: 

  1. between e+  and 'e+  the force ( )( )22

2
'1

'
uua

r

ee
−−+ , 

  2. between e−  and 'e−  the force ( )( )22

2
'1

'
uua

r

ee
−−+ , 

3. between e+  and 'e−  the force ( )( )22

2
'1

'
uua

r

ee
+−− , 

4. between e−  and 'e+  the force ( )( )22

2
'1

'
uua

r

ee
+−− . 

The sum of the first two forces, that is, the sum of the repulsions of like masses, is thus 

( )( )22

2
'1

'
2 uua
r

ee
−−+= ; 

the sum of the two latter forces, that is, the sum of the attractions of unlike forces, is 

( )( )22

2
'1

'
2 uua
r

ee
+−−= . 

These two sums are thus, apart from their signs (distinguishing repulsion and attraction), 

distinguished according to their magnitude. Their algebraic sum, which yields the resultants of all 

four reciprocal actions, and consequently the force, which is transmitted from the electrical masses 

to the current carrier itself, and on which Ampère's law is based, is accordingly 

'
'

8 2

2
uua

r

ee
⋅+= , 

i.e., it follows that this force, in complete agreement with Ampère's law, is directly proportional to 

the current intensity in both current elements, and inversely proportional to the square of the 

distance between the two current elements. 

We further observe, that the foregoing expression is positive, and consequently denotes a 

repulsion of the current-elements, if u and u' both have either a positive or negative value, i.e, if the 

electricity flows through both current elements in the same way; and that if only one of the two is 

positive, the other negative, the foregoing expression becomes negative, which denotes an 

attraction of current-elements, if the electricity is flowing through them oppositely. All these 

results precisely correspond to the first fact stated above. 
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If we now proceed to the second fact stated above, it is clear that the supplement to the 

electrostatic law just provided will no longer suffice here, because for all cases included under this 

second fact, it yields the value of the relative velocity of the electrical masses 

0=
dt

dr
. 

That is to say, if we follow two electrical particles in their paths, the result is that their relative 

distance decreases up to the moment in question, and from then on increases again, and therefore, 

at the moment in question itself, neither increase nor decrease in the distance takes place; 

consequently, for all these cases, the electrostatic law itself, would be brought into application in 

order to determine the four reciprocal actions of the electric masses in both current elements, 

without applying a supplement to the law, according to which the two current elements ought to 

have no effect at all upon one another, which is not the case. 

It is easily proven, however, that for this second class of cases, where the value of the 

relative velocity dr/dt disappears, the value of the relative acceleration 22 / dtrd  stands out all the 

more significantly, while for the first class, where the latter value 22 / dtrd  disappears, the first 

dr/dt stood out all the more significantly. 

Thus we assume, that the magnitude of the reciprocal action of electrical masses in motion, 

as determined by the electrostatic law, requires a supplement, which depends, however, not simply 

on the square of the relative velocity of both masses 22 / dtdr= , but also on their relative 

acceleration 22 / dtrd= ; the simplest form, which the general law of reciprocal action of two 

electrical masses can have, is that in which the value of the force for the case of rest and 

equilibrium is multiplied by the factor 
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and in which, therefore, the following expression would serve for the complete determination of the 

force: 
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in which e and e' have positive and negative values, accordingly as the electrical masses which they 

denote, are part of the positive or negative electrical fluid. 2a  is the same constant as before; b is 

another magnitude independent of velocity and acceleration, whose value and sign remain to be 

more closely determined. 

If, as before, e and e' now denote the positive electrical masses in both current elements, u 

and u' their absolute velocities, -e and -e', the negative masses, and -u and -u' their absolute 

velocities, and R denotes the distance between the current elements, r the distance of the two 

positive electrical masses, then for the first moment r = R, but because the electrical masses are in 

motion, r soon changes, while R remains unchanged, and after the time-interval t has occurred, the 

following equation is yielded for determining the value of r, calculated from that moment on: 

( ) 2222 ' tuuRr −+= , 

consequently, because R, u and u' are constant, 

( ) tdtuurdr
2

'−=  

and 

( ) 2222 ' dtuudrrrd −=+ , 

which yields the values of the relative velocity and relative acceleration at the end of time-interval 

t, namely: 
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If we apply these general determinations to the considered moment, for which t = 0, we will obtain 

the values for the relative velocity and acceleration of both positive masses to be introduced into 

our expression: 

0=
dt

dr
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consequently, for the first of the four reciprocal actions we obtain: 
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It is self-evident, that the remaining reciprocal actions can be derived from this first one, through 

substitution of the corresponding masses and velocities; then we obtain 
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The sum of the first two forces, that is, the sum of the repulsions of like masses, is thus  
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The sum of the last two forces, that is, the sum of the attraction of unlike masses, is, however, 
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These two sums are, therefore, apart from their signs (distinguishing repulsion and attraction), 

distinguished by their magnitude. Their algebraic sum, which yields the resultant of all four forces, 

consequently the force which is transmitted from the electrical masses to the current carrier itself, 

and on which Ampère's law is based, is accordingly 

'
'

8
2

uu
r
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r

ee
⋅⋅−= , 

i.e., this force accordingly emerges in complete agreement with Ampère's law, directly proportional 

to the current intensity in both current elements, and inversely proportional to the square of the 

distance between the two current elements. 

We further observe, that if b is positive, the above expression would be negative, and 

consequently would denote an attraction of current elements, if u and u' both have either a positive 

or a negative value, i.e., if electricity flows through both current elements in the same way; if, 

however, only one of the two is positive, the other negative, then the above expression will be 

positive, which denotes a repulsion of the current elements, if the electricity flows through them in 

an opposite way. All these results precisely correspond to the second fact stated above. 
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If, finally, we return to Ampère's formula itself, which includes both facts as special 

cases, according to which the repulsion of two current elements is the following: 

''coscos
2

3
cos

'
2

dsds
r

ii







 − ϑϑε , 

wherein the letters have the significance given on page 36,
38

 then, for the cases included under the 

first fact, 

º0=ε  or º180= , 

 

according to whether ϑ  and 'ϑ  both  

= 0º or = 180º, 

or only one of the two  

= 0º, the other = 180º. 

Consequently, the sought-for value for the force in the cases included under the first fact is, 

according to Ampère's law 

'
'

2

1
2
dsds

r

ii
⋅= m . 

For the cases included under the second fact, 

º0=ε  or 180º, 

according to whether ϑ  and 'ϑ  both  

= 90º or = 270º, 

or only one of the two  

= 90º, the other = 270º. 

Consequently, the sought-for value for the force in the cases included under the second fact is, 

according to Ampère's law 

'
'

2
dsds

r

ii
±= . 

According to Ampère's fundamental law, we also obtain (apart from signs) a value for the latter 

case double that of the first. 

This also results from our own determinations, if we make 

r

b
a

2

12 =  

whereby the value and the sign of b are more closely determined, namely: 
22rab = . 

If we substitute this value of b in our general expression for the reciprocal action of two electrical 

masses, the resulting repulsive force is 
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The third fact stated above is ultimately based, not, like the two previous ones, on forces, 

which merely act on the current carrier, but rather on forces which act on the electrical masses 

themselves and move them in their carrier, seeking to separate unlike masses; that is, on 

electromotive forces, which are exerted by electrical masses in motion in a galvanic conductor on 

electricity at rest. These forces, however, are not only not determined by the electrostatic law, but 

also not determined by Ampère's electrodynamic law, because the latter relates merely to the forces 

transmitted to the current carrier, and the former, were it to be applicable, would yield the value of 
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the electromotive force = 0. Thus these forces form an essentially new class, with which 

Faraday's discovery has first acquainted us. 

If we consider once more simply the electrical masses in the current element as well as in 

the element without current, we again have in each one, equal masses of positive and negative 

electricity; specifically, at any time in the current element these two masses are in motion with 

equally great velocity in opposed directions, and these velocities increase or decrease 

simultaneously by equal amounts; in the element without current, on the other hand, both masses 

are still at rest and in equilibrium. Further, among these four masses, four reciprocal actions are 

now to be distinguished, namely, two repulsive and two attractive, the former between the like 

masses, the latter between the unlike. 

Now, from the fact, that a current is produced in the element, in which previously there was 

no current, we must conclude, that another force, than the one acting on the negative mass, must be 

acting on the positive electrical mass in this element, in the direction of the latter, because the 

negative mass can only receive that opposite motion through such a difference in the forces acting 

upon it, of which motion the current which manifests itself essentially consists. We thus express the 

fact initially in this way, 

 

that the sum of the two forces, which are exerted by the positive and negative electrical 

masses in the current element on the positive mass at rest in the element without 

current, in the direction of the latter, is different from the sum of those two forces, 

which those masses exert in the cited current element on the negative mass at rest in the 

element without current, in the direction of the latter; that, however, the difference of 

the two sums, that is, the electromotive force itself, is dependent on the change in 

velocity of the two electrical masses in the given current element, and increase or 

decrease and disappear with this change. 

 

Thus we are led by this third fact, as well, to add to the electrical forces determined by the 

electrostatic law, a supplement contingent upon their motion, and the question is merely, whether 

this justifies exactly the same supplement, as that which was established on the basis of the first 

two facts. This third fact therefore yields a criterion for testing the results already obtained, and is 

especially suited to their rejection or their firmer substantiation. 

If we now denote, as above, e and e' the positive electrical masses in both wire elements, u 

and 0 their absolute velocities, and R the distance between the wire elements, r the distance 

between the two positive electrical masses: then for the first moment of time, r = R, but because 

mass e distances itself from, or approaches, the mass at rest e' with variable velocity u, r soon 

changes, while R remains unchanged, and we have for the determination of the value of r, after 

time-interval t has occurred, and calculated from that moment forward, 

∫±=
t

udtRr
0

, 

where the upper sign is in effect, if mass e lies on the positive side of mass e', and consequently is 

still further distanced from it with a positive velocity; conversely, if mass e lies on the negative side 

of mass e', and consequently approaches it with a positive velocity, the lower sign is in effect. 

By means of differentiation, we obtain: 

udtdr ±=  

dudtrd ±=2 . 

According to this, the values of relative velocity and relative acceleration of both masses at the end 

of time-interval t are thus: 
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in which u and du are functions of t. If we now apply these general determinations to the 

considered moment under consideration, and denote the values which u and du assume if t = 0, as 

0u and 0du , then, according to the general law of reciprocal action of two electrical masses, to 

which the two first facts led, we obtain as the first of four reciprocal actions: 
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It also becomes clear, that the remaining reciprocal actions can be derived from this first one, 

through substitution of the corresponding masses, velocities, and accelerations; we then obtain: 

2. between e−  and 'e+  the force 






 −−
dt

du
raua

r

ee 022

0

2

2
21

'
m , 

3. between e+  and 'e−  the force 






 ±−−
dt

du
raua

r

ee 022

0

2

2
21

'
, 

4. between e−  and 'e−  the force 






 −+
dt

du
raua

r

ee 022

0

2

2
21

'
m . 

The sum of the two first forces, that is, the sum of the forces acting on the positive mass +e' in the 

element without current, is therefore 

dt

du
a

r

ee 02'
4±= . 

The sum of the two latter forces, that is, the sum of the forces acting on the negative mass -e' in the 

element without current, is, however, 
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a

r

ee 02'
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These two sums are differentiated by their opposing signs (distinguishing repulsion and attraction). 

Their difference yields the electromotive force, which seeks to separate the positive and negative 

masses in the element without current, 

dt
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a

r

ee 02'
8±= , 

i.e., the electromotive force is directly proportional to the self-initiated change in the velocity of the 

current at the moment under consideration, and inversely proportional to the distance of the current 

element from the element without current. 

Further, as for the double signs in our expression for the electromotive force, they can be 

eliminated, if we base them on the distance r and thus impute to it positive and negative values, 

calculating r from the locus of the mass at rest e' as the initial point, and specifically as a positive 

magnitude, when the mass e calculated from this initial point lies on the positive side (toward 

which the positive velocities are directed), and as a negative magnitude, when the mass e lies on the 

negative side from this initial point. If, for example, in Figure 15, A denotes the locus of the mass at 

rest e', BAC the given line of direction, and the side on which C lies is established as the positive 

side, then r is positive, if mass e is at point C, negative, when mass e is at point B. 
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If, therefore, two like current elements are located at B and C, through which electricity is 

flowing in the same way, and the intensity of its current increases or decreases by the same amount, 

then these two current elements will exert opposite electrical forces on the electrical masses at rest 

at A, such that that mass, which is repulsed from C, is attracted by B, and vice versa; the force 

which seeks to separate the positive and negative masses at A, is thus doubled by means of the 

combined operation of the two current elements at B and C. 

Finally, if r is positive, if, e.g., the current element is located at C, and if, further, u and du 

both have either negative or positive values, i.e., if the absolute current velocity at C increases, 

regardless of its direction, then the foregoing expression has a positive or negative value, according 

to whether u has a positive or negative value, i.e., therefore, under increasing current intensity, an 

electromotive force acts from C repulsively or attractively on the positive electrical mass at A, 

according to whether the current at C itself is directed forwards or backwards, and thus excites at A 

a current opposite to the one present at C, fully corresponding to the determinations contained in 

the third fact stated above. 

From this it follows, that this third fact confirms the result derived from the first two, in that 

the same complement of the electrostatic law into a general law, which served to explain the first 

two facts, also suffices to explain the third. 

 

20. 

 

In the foregoing Section, following the guideline of experience, we have sought to add to 

the electrostatic formulation for the repulsive or attractive force, with which two like or unlike 

electrical masses act upon one another at a distance, in such a way, that the formulation is 

applicable, not simply when both masses are at rest with respect to one another, but also when they 

are in motion with respect to one another. We have tested and confirmed this expansion on 

particular facts, and in the following Section, will present this test with greater generality. 

Assuming the correctness of the results which we achieved, a case would arise here, in 

which the force, with which two masses act upon one another, would depend, not simply upon the 

magnitude of the masses and their distance from one another, but also on their relative velocity and 

relative acceleration. The calculation of these forces will thus in many cases come up against 

greater mathematical difficulties, than the calculation of such forces which simply depend upon the 

magnitude of the masses and their distances. It should also be expected, if this dependency of the 

electrical forces, not simply on the magnitude of the electrical masses and their distances, but also 

on their relative velocities and accelerations, were firmly established, that this very dependency, 

even if to a lesser extent, would exist in other forces, according to more exact investigation. 

Thereby a completely new element would be introduced into the dependency of forces on 

given physical relationships, and the domain of forces, whose determination would require taking 

this new element into account, would form a specific class, requiring a special investigation. 

As, however, it must also appear highly desirable, for the purpose of simplifying and 

facilitating our investigations, that the domain of those forces which depend simply on the 

magnitude of the masses and their distances, be extended as widely as possible, then, only 
experience can decide whether other forces, which are also dependent on the mutual velocities and 

accelerations of the masses, must be assumed to be present, or not. This question cannot be decided 
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a priori, because formally, the assumption of such forces contains neither a contradiction, nor 

anything unclear or indeterminate. 

The law of the dependence of forces upon given physical relationships is called the 

fundamental law of physics, and, in accordance with the goals of physics, it is not supposed to 

provide an explanation of the forces based on their true causes, but only a clearly demonstrated and 

useful general method for quantitative determination of forces, according to the fundamental 

metrics established in physics for space and time. Hence, from the standpoint of physics, one can 

not take offense at the fact that a force is made into a function of a relationship dependent on time, 

any more than one can take offense at the fact that it is made into a function of distance, because a 

relationship dependent on time is just as measurable a magnitude as a distance; therefore, in virtue 

of their nature, both are suited to more rigorous quantitative determination, even if it is not 

appropriate to seek in them the inherent reason for a force. 

At most, accordingly, against the introduction of a time-dependent relationship in the 

general expression for a force, the analogy with another fundamental law of physics, e.g. with the 

law of gravitation, may be asserted, where this time-dependent relationship does not occur. Yet 

such an analogy can only be viewed as binding, when it offers ways and means to achieve the goal; 

where the analogy with known cases does not suffice, in the nature of the case new paths must be 

sought. 

If, therefore, the introduction of such time-dependent relationships in the general expression 

for a force cannot be rejected in general, then all the less so, if those relationships are an essential 

part of the complete determination of the existing condition of masses acting upon one another, 

since in any case the force, which two masses exert upon one another, since it does not always 

remain the same, must be thought of subject to the condition existing at the time. Complete 

determination of the present condition of two masses, however, essentially involves, in addition to 

the determination of their relative position by means of their mutual distance r, the determination of 

their relative movement by means of their relative velocity dr/dt. For, according to the principle of 

inertia, one has no choice but to calculate the velocity of a body essentially in its present condition, 

because the reason for the inertia lies, according to that principle, in the body itself, and 

consequently the persistence in different motion must correspond to different internal conditions of 

the body, which, themselves inaccessible to our observation, can only be distinguished by means of 

their effects emerging over time. 

 

21. 

 

Transformation of Ampère's law. 

 

What was proven in the foregoing Sections for a few special facts, is now to be proven more 

generally and more precisely for all facts contained under Ampère's law. Ampère's law determines 

the total effect which one current element exerts on the other, depending on the distance of the two 

elements from each other, on their two current intensities, and on the three angles which the 

directions of the current elements make with each other and with the straight lines connecting them. 

Now, if it is to be possible to reduce this total effect, thus determined, to elementary electrical 

forces, then first Ampère's formula must be able to be broken down into several parts, which 

correspond to the effects of each pair of electrical masses in both current elements, in particular to 

the effect of the positive mass of the one element on the positive mass of the other, of the negative 

mass of the one element on the negative mass of the other, of the positive mass of the former on the 

negative of the latter, and finally of the negative mass of the former on the positive of the latter. 

Secondly, each of these parts, as elementary electrical force, must be wholly dependent on such 

magnitudes, which exclusively appertain to the nature and the mutual relations of the two electrical 
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masses, to which the part refers, and be completely determined thereby, independently of other 

conditions. Thirdly and finally, all these elementary electrical forces would have to be susceptible 

of being brought under a general law. It is, however, not necessary, to make any sort of hypothesis 

in advance about this general law; rather, Ampère's law, under such a transformation, would have 

to lead directly to the statement of this general law and decide on the admissibility or 

inadmissibility of such a hypothesis posed in advance. At the outset, the following question is to be 

answered: 

 

whether Ampère's formula permits a transformation, such that the current intensities 

contained therein, i and i', and the angles ε , ϑ , and 'ϑ , which the two current elements 

form with each other and with the straight line connecting the two elements, vanish 

from the formula, and instead of these, only such new magnitudes are introduced, 

which fully and exclusively refer to the electrical masses themselves and their mutual 

relations. 

 

This transformation is now actually to be carried out here, and then it will be examined whether the 

expression for the electrodynamic force, transformed in this way, permits the requisite 

decomposition into four parts, corresponding to four partial effects, of which the total effect would 

be composed. 

Ampère's formula for the repulsive force of two current elements is as follows: 

''coscos
2

3
cos

'
2

dsds
r

ii
⋅






 −− ϑϑε , 

in which the letters have the signification given in Section 8, page 36.
39

 

 

 
 

In Figure 16, AB is a segment of the one conducting wire of length = 1, and the quantity of the 

uniformly distributed positive electricity in it is denoted by e, so that eds is the mass of positive 

electricity which the current element contains, whose length = ds. 

With the constant velocity u, which all positive electrical components possess in the 

conducting wire AB when a constant current passes through, in one second the one farthest forward 

traverses the path BD, the one farthest back the path AC, and the electrical mass e, which at the 

beginning of the second was uniformly distributed in the segment AB = 1, is located at the end of 

the second in segment CD = 1. Hence, during one second, all the electricity which, at the end of the 

second, is contained on the other side from B in the segment of the conducting wire BD = u, has 

passed through the cross-section of the conducting wire at B. This electricity, in conformity with 

the definition of current intensity given at the beginning of Section 2 (according to which it is 

proportional to the amount of electricity passing through a cross-section of the circuit in one 

second), can now be set = i/a, where a denotes a constant. There then results 

1:: ue
a

i
= , 

consequently i = aeu. The value of a is different from that in Section 19. 

                                                 
39

  [N. E.] Page 70 of Weber’s Werke, Vol. 3. 
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It likewise results that, if u' denotes the current velocity of the electricity in another 

conducting wire, 

i' = ae'u'. 

If one substitutes these values in Ampère's formula, the formula will be 








 −
⋅

− 'coscos
2

3
cos'

'' 2

2
ϑϑεuua

r

dseeds
, 

where, therefore, the first factor 2/'' rdseeds ⋅  denotes the product of two electrical masses acting 

on one another in the two current elements, divided by the square of their distance. 

Further, Ampère has already shown on page 207 of his Treatise, that it would be the case 

that 

ds

dr
=ϑcos ,  

'
'cos

ds

dr
−=ϑ  

and 

''
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ds

dr

dsds

rd
r −−=ε  

If one substitutes these values, the Ampère formula takes the following form: 
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Let the element ds of the conducting wire ABS be located at B in Figure 17; the initial point 

of the conducting wire would be put at A, consequently AB = s. Let the element ds' of the 

conducting wire A'B'S' lie at B, A' be the initial point of this wire, A'B' = s' and BB' = r. The last 

magnitude r, if the conducting wires ABS and A'B'S' are given, is a function of s and s', and the 

following expressions obtain for dr and rd 2 : 
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If s and s' now denote the lengths of the conducting wires from their initial points to the current 

elements themselves which are under consideration, then s and s' have constant values for two 

given current elements. However, s and s' can also signify the length of the conducting wires from 

their initial points to the electrical masses just now existing in the current elements under 
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consideration, but flowing through them further. In this last signification, s and s' are variable 

with the time t, and then one has 
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ds

ds
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Here, in ds/dt, the velocity element of the electrical mass is divided by the time element in which it 

will pass through, i.e., the velocity of the electrical mass, and therefore ds/dt = u, when the positive 

mass is considered first. Likewise, then ds'/dt = u'. If these values are substituted, then 
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From the latter equation, and from the one derived from the first 
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the following values obtain for 
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from which it follows: 
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If these values are substituted, then Ampère's formula takes the following form: 
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In this transformation of Ampère's formula, there are first introduced merely the positive 

electrical masses, which move in their trajectories with the velocities u and u'. It is clear that one 

can also introduce the negative electrical masses instead of the positive ones. It then results, if this 

occurs for both current elements alike, that both of the masses introduced are therefore again of the 

same kind, but their velocities, in accordance with the determinations given for galvanic currents on 

page 85,
40

 both maintain the opposite values, namely - u and - u', in turn in the same expression. 

Then if 1r , ς  and 'ς  denote for the negative masses the same thing that r, s, and s' denote for the 

positive, Ampère's formula would be obtained at first in the following form: 
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For the moment under consideration, where those positive masses (to which r, s, and s' refer) and 

these negative masses (to which 
1r , ς , and 'ς  refer) go through the same current elements, 

however, 
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  [N. E.] Page 139 of Weber’s Werke, Vol. 3. 
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1rr = ,  ς=s ,  '' ς=s . 

Further, it is also the case that 
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because all these values are simply dependent upon the position of the current elements through 

which those positive and these negative masses flow, but independent of the motion of the masses 

in these current elements. Finally, 
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which yields 
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Likewise one finds 
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By substitution of these values, the latter expression changes into the former. 

It is a different case when a positive and a negative mass are introduced, viz., with unlike 

kinds of masses. If one keeps the positive mass in the first current element, the negative in the 

second, and denotes their distance with 2r , then Ampère's formula is obtained in the following 

form: 
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On the other hand, if one keeps the negative mass in the first current element, the positive in the 

second, and denotes their distance with 3r , then Ampère's formula is obtained in the following 

form: 
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Here too, if it is now the case that rrr == 32 , then 
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however, it results that 
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consequently 22

3
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2 // dtdrdtdr =  is different from 22 / dtdr . Likewise, one finds 
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where one introduces masses of a different kind, one obtains the same expression for Ampère's 

formula, namely: 
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Now, since both expressions, the earlier one, which was obtained by introducing masses of 

the same kind, as well as the later one, obtained by introducing masses of a different kind, represent 

the force with which two current elements act upon each other, are both identical with Ampère's 

formula, yet a third will be derived from them for the same force, likewise identical with Ampère's 

formula, if one takes their half-sums, that is, 
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This last expression, equivalent to Ampère's formula, is the sought-for transformation. For 

thereby the magnitudes i, i', ε , ϑ  and 'ϑ  are eliminated, and only such magnitudes introduced in 

their place which have to do with, partly the same, partly the different kind of electrical masses 

themselves and their mutual relations. 

This transformed expression for Ampère's formula can now be represented as a sum of four 

parts, which can be considered as the elementary electrical forces, namely, in the following way: 
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Each of these four partial effects reduces itself, for the case of rest, where 

0//// 321 ==== dtdrdtdrdtdrdtdr  and likewise 0////
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222 ==== dtrddtrddtrddtrd , 

to the same values, as are defined for this case by the fundamental law of electrostatics; for these 

four forces are expressed in that case by the product of the masses acting upon each other, divided 

by the square of their distances. Accordingly as each product has a positive or negative value, the 

force acts to repel or attract. 

If, as in electrostatics, the electrical masses are denoted simply by e and e', and these masses 

themselves are given positive or negative values, according to whether they belong to the positive 

or negative fluid, then all those partial effects can be brought under the general law, in which the 

repulsive force of those masses is represented by 
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Therefore, from this analysis of Ampère's law, which is a more precise expression of a very 

extensive class of facts, there follows the same fundamental electrical law, which in the preceding 
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Sections was established merely by introducing particular facts, and this was demonstrated 

without hypothesis. 

 

22. 

 

Theory of two constant current elements. 

 

Having attained the fundamental electrical law expressed in the previous Section, we can 

place it at the head of the theory of electricity, and from it synthetically derive a system of 

consequences, which is the ultimate purpose of such a law. 

The consequences which can be derived from it for static electricity, are found in Poisson's 

classic Treatise in the Mémoires de l'academie des sciences de l'institut de France, for the year 

1812. For the foregoing fundamental law is, for the case of statics, identical with that law which 

Poisson, in the cited location, placed at the head of electrostatics. 

For moving electricity, first the uniform motion of the electricity of galvanic currents in 

conductors at rest is to be considered, to which Ampère's law relates. Now, since the above 

fundamental electrical law was developed analytically from Ampère's law, Ampère's law must in 

turn follow synthetically from this fundamental law. This derivation is actually to be given here. 

In two current elements α  and 'α , which, with the straight line connecting them, lie in 

planes which make the angle ω  with one another, four electrical masses are given, namely, one 

positive and one equally large negative in each current element. 

For element α , eα+  would denote the positive mass, which moves with constant velocity 

u+  in the direction of element α , which forms the angle ϑ  with the straight line r directed from 

the first element to the second; for the same element, eα−  would denote the negative mass, which 

moves in the same direction with the constant velocity u− , viz., backwards. 

The letters with primes ''eα± , 'u±  and 'ϑ  denote the same thing for the other element 'α , 

as the letters without primes denote for the first element α . 

Among these four masses, the following four effects are to be considered: 

from eα+  to ''eα+ , 

from eα−  to ''eα− , 

from eα+  to ''eα− , 

from eα−  to ''eα+ . 

The four distances of these masses acting upon each other at a distance are equal at the moment 

under consideration, when all these masses are located in the two given elements α  and 'α , to the 

given distance of these two elements r. These four distances, because they do not always remain 

equal, on account of the differing motions of the masses, are denoted by 1r , 2r , 3r , 4r , and 

therefore, at the moment under consideration 

rrrrr ==== 4321 . 

The application of the fundamental law given at the end of the previous Section then 

directly yields the values for these four partial effects, in succession, 
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These four forces are transferred from the electrical masses ''eα+  and ''eα− , on which 

they directly act, according to Section 19, page 84,
41

 to the ponderable mass of the element 'α , and 

combine therein into a resultant, which is equal to the algebraic sum of those forces. This sum is, 

with respect to the already mentioned equality of the distances, 
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If the mass eα+  now progresses in its path in the time element dt with velocity u+  by the 

element of displacement udt+ , which path forms the angle ϑ  with the straight line 1r , while the 

mass ''eα+  progresses in its path in the same time element dt with the velocity 'u+  by the element 

of displacement dtu'+ , which path forms the angle 'ϑ  with the extended straight line 1r , and if 

these small displacements are projected onto the direction 1r , then 

'cos'cos111 ϑϑ ⋅+⋅−=+ dtuudtrdrr , 

in which 1dr  denotes the change of length of the straight line connecting the two positive masses 

during the time element dt. From this follows 

'cos'cos1 ϑϑ uu
dt

dr
+−= . 

Likewise there results for the two negative masses eα−  and ''eα− : 

'cos'cos2 ϑϑ uu
dt

dr
−+= ; 

further, for the positive eα+  and for the negative ''eα− : 

'cos'cos3 ϑϑ uu
dt

dr
−−= ; 

finally for the negative eα−  and for the positive ''eα+ : 

'cos'cos4 ϑϑ uu
dt

dr
++= . 

Hence, 

'coscos'8
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1 ϑϑuu
dt
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
−−+ . 

Now, since, further, the velocities u and u' are constant, when the changes in the angles ϑ  

and 'ϑ  (which themselves of course have the same value at the moment under consideration for all 

four pairs of masses, but which values change with time and become unequal) during the time 

element dt, are denoted 

for the first pair of masses, 1ϑd  and 1'ϑd  

for the second pair of masses, 
2ϑd  and 

2'ϑd  

for the third pair of masses, 3ϑd  and 3'ϑd  

for the fourth pair of masses, 4ϑd  and 4'ϑd , 

there results through differentiation of the first differential coefficients: 

dt

d
u

dt

d
u

dt

rd 11

2

1

2 '
'sin'sin
ϑ

ϑ
ϑ

ϑ ⋅−⋅+= , 

                                                 
41

  [N. E.] Page 137 of Weber’s Werke, Vol. 3. 
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dt

d
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Hence 

.
''''

'sin'

sin

4321

4321

2

4
2

2

3

2

2

2

2

2

1

2








 −+−−








 +−−+=







−−+

dt

d

dt

d

dt

d

dt

d
u

dt

d

dt

d

dt

d

dt

d
u

dt

d

dt

rd

dt

rd

dt

rd

ϑϑϑϑ
ϑ

ϑϑϑϑ
ϑ

 

 

  
 

Now, let AB in Figure 18 represent the line r. Let the mass eα+  be located at A and move in the 

direction AC with the velocity u+  in the time element dt through AD = + udt. The angle which the 

current direction AC forms with AB, is ϑ=BAC . As a result of the motion of A to D, the angle 

BAC becomes BDC, and 

ϑϑ sin
r

udt
ABDBACBDC +=+= . 

The line AB in Figure 19, which again represents r, is extended to B'. The mass ''eα+  is located at 

B and moves in the direction BE with velocity 'u+  in the time element dt through BF = + u'dt. The 

angle which the current direction BE forms with BB', is '' ϑ=BEB . As a result of the motion of B 

to F, the angle B'BE becomes F'FE, and 

'sin
'

''' ϑϑ
r

dtu
FEFBAFAFBBEB +=+== , 

accordingly is 

'sin
'

'' ϑϑ
r

dtu
FEF −= . 

Finally, if, through the center of a sphere, lines are drawn parallel to the direction AB and to 

the two current directions AC and BE in Figs. 18 and 19, which cut the sphere's surface at R, U, and 

U' in Figure 20, and R is connected with U and U' by the arcs of great circles, then the plane of the 

arc ϑ=UR  is parallel to the plane BAC in Figure 18, and the plane of the arc '' ϑ=RU  is parallel 

to the plane B'BE in Figure 19, and the angle formed by the two planes at R is the angle denoted ω . 
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Let arc UR be extended to S, U'R to S', and make 

'sinϑ
r

udt
RS += ,  'sin

'
' ϑ

r

dtu
RS −= . 

Then US is the arc of the angle BDC in Figure 18, and U'S' is the arc of the angle F'FE in Figure 

19. The element of the surface of the sphere, in which R, S, and S' lie, can also be considered as an 

element of the plane touching the surface of the sphere at R, and the arc elements RS and RS' as 

straight lines in this plane. If the parallelogram RSR'S' is completed in this plane, then a line drawn 

through the center of the sphere parallel to the straight line connecting both masses at the end of the 

time element dt, goes through the point R'. From this it follows that the direction of this straight line 

is changed by the simultaneous motion of both masses exactly as it would change, if the one mass 

were at rest and its motion, taken as being opposite, were attributed to the other mass. Both 

motions, transferred to a point in this way, can then be combined according to the law of 

parallelograms, and the cited result is obtained. 

Finally, if R' is connected with U and U' by means of the great circle arcs, then 

11' ϑϑϑ dURdUR +=+=  

11 '''''' ϑϑϑ dRUdRU +=+= . 

It follows that: 

ωϑ cos' '1 RSRSURURd +=−=  

ωϑ cos''  '''1 RSRSRURUd +=−= . 

Now, since ϑsin
r

udt
RS += , 'sin

'
' ϑ

r

dtu
RS −= , it follows that: 

ωϑϑϑ cos'sin
'

sin1
r

dtu

r

udt
d −+=  

ωϑϑϑ cossin 'sin
'

'1
r

udt

r

dtu
d +−= . 

Accordingly, 

ωϑϑ
ϑ

cos'sin'sin1 uu
dt

d
r −+=  

ωϑϑ
ϑ

cossin 'sin'
'1 uu

dt

d
r +−= . 

In the same way, there results for the two negative masses eα−  and ''eα− : 

ωϑϑ
ϑ

cos'sin'sin2 uu
dt

d
r +−=  
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ωϑϑ
ϑ

cossin 'sin'
'2 uu

dt

d
r −+= , 

further, for the positive mass eα+  and for the negative ''eα− : 

ωϑϑ
ϑ

cos'sin'sin3 uu
dt

d
r ++=  

ωϑϑ
ϑ

cossin 'sin'
'3 uu

dt

d
r ++= , 

finally, for the negative mass eα−  and for the positive ''eα+ : 

ωϑϑ
ϑ

cos'sin'sin4 uu
dt

d
r −−=  

ωϑϑ
ϑ

cossin 'sin'
'4 uu

dt

d
r −−= . 

If these values are now substituted, the following equation is obtained:
42

 

                                                 
42

  [N. A.] This equation can also be derived from the equations of motion of the four electrical masses. Let a plane be 

laid parallel with 'α  through the element α . Let O be that point in this plane, at which direction α  is cut by direction 

'α , which is projected on this plane. Let O be the origin of the coordinates, direction α  as the x axis, and the z axis be 

perpendicular to the above-mentioned plane. Further, imagine that both masses always move forward uniformly in the 

same directions, and choose that moment as the initial point of time t, for which the coordinates of the mass later 

considered in 'α  are 

x' = 0, y' = 0, z' = c. 

If ε  then denotes the angle which the directions α  and 'α  form with each other, x, y, z the coordinates of the mass 

later considered in α , and u and u' the velocities of both masses, then the equations of motion are 

for the one mass: for the other mass: 

utbx +=  εcos'' ⋅= tux  

y = 0 εsin'' ⋅= tuy  

z = 0 z' = c 

where b and c are given constants. Accordingly, 

( ) btuuxx −⋅−=− εcos''  

εsin'' ⋅=− tuyy  

czz =−'  

and, since ( ) ( ) 222

1 )'('' zzyyxxr −+−+−=2
, 

( )[ ] 222222

1 sin'cos' ctubtuur ++−⋅−= εε . 

If this equation is differentiated with respect to 1r  and t, one obtains: 

( )[ ]( ) εεε 22

1

1 sin'cos'cos'
1

⋅+−−⋅−⋅= tuuubtuu
rdt

dr
, 

and, through repeated differentiation, 

εcos'2'
22

2

2

1

2

1

2

1 uuuu
dt

dr

dt

rd
r −+=+ . 

Now, for the moment where the two masses have reached α  and 'α , if ϑ  denotes the angle which the direction from 

α  to 'α  forms with the first coordinate axis, 

ϑcos' 1rxx =− . 

If lines are drawn parallel with the three coordinates, further with the direction from α  to 'α , and finally with the 

direction 'α  itself, through the center of a sphere, whose surface is cut into 

X, Y, Z, R and P, 

then RY is the arc of the angle, which the line from α  to 'α  forms with the second coordinate axis, and hence for the 

moment, where the two masses reach α  and 'α , 

RYryy cos' 1−− . 
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 are substituted in the above 

expression for the resultant of four partial effects, then one obtains the following values for it: 
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If one substitutes here, according to page 94,
43

 

iaeu = ,  ''' iuae = , 

then, according to this derivation from the established fundamental electrical law, there results for 

the repulsive force of two current elements the same value as according to Ampère's law, namely: 
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 −− 'coscos
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2

ϑϑωϑϑ
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or, when ε  denotes the angle which the two elements α  and 'α  themselves make, and where then 

'coscoscos'sinsincos ϑϑωϑϑε += , 

                                                                                                                                                                 
Now, however, in the spherical triangles PRX and PRY, because the radius P (which is parallel to the direction 'α ) lies 

in the same greatest circle with the radii X and Y (which are parallel to the plane of the coordinate axes x and y), 

XYPRPXRYPYRX sincossincossincos =+ , 

and further, 

º90=XY , ε=PX , ϑ=RX , 'ϑ=PR , 

where 'ϑ  denotes the angle which the line from α  to 'α  forms with the direction of 'α  itself. If these values are 

substituted, there results 

ε
εϑϑ

sin

coscos'cos
cos

−
=RY , 

hence 

ε
εϑϑ

sin

coscos'cos
' 1

−
⋅=− ryy . 

If t in the above equations now denotes for x' - x and y' - y those values, which correspond to the moments at which the 

two masses reach α  and 'α , then the above values of x' - x and y' - y are to be set equal to the ones just found, or 

( ) ϑε coscos' 1rbtuu =−−  

ε
εϑϑ

ε
sin

coscos 'cos
sin' 1

−
⋅=⋅ rtu . 

If these values are substituted in the expression for 
dt

dr1 , the result is: 

ϑϑ cos 'cos'1 uu
dt

dr
−+= . 

If from this is subtracted the square of the value found for 
2

2

1

2

1

2

1
dt

dr

dt

rd
r + , then it remains the case that 

( )'coscoscos'2 'sin'sin
2222

2

1

2

1 ϑϑεϑϑ −−+= uuuu
dt

rd
r  

or, if the angle ω  is introduced, in accordance with the equation 'coscoscos'sinsincos ϑϑωϑϑε += , 

ωϑϑϑϑ cos'sinsin'2 'sin'sin
2222

2

1

2

1 uuuu
dt

rd
r −+= . 

The corresponding differential coefficients of the other pairs of masses are found in the same way, which then together 

give the above equation. 
43

  [N. E.] Page 152 of Weber’s Werke, Vol. 3. 
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






 −− 'coscos
2

3
cos'

'
2

ϑϑε
αα

ii
r
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The actions at a distance of uniform electrical currents in conducting wires at rest are hereby fully 

determined. The derivations of the established fundamental law carried out up to now are all 

empirically confirmed. 

 

Theory of Volta-induction. 

 

23. 

 

It still remains to develop, from the established fundamental electrical law, the effects of 

variable electrical currents in moving conductors, which development comprises the theory of 

voltaic induction. 

Voltaic induction differentiates itself from Ampère's electrodynamics in that it has to do 

with the generation of currents, which is wholly excluded from the latter. 

The following is empirically known about voltaic induction. We know, first, that it can be 

elicited in two essentially different ways: namely, currents can be induced by means of constant 

currents and by means of variable ones. Induction occurs by means of constant currents, either 

when a conducting wire, through which the constant current is passing, approaches the conducting 

wire in which a current is to be induced, or is moved away from it, or when, vice versa, the latter 

approaches the former or is moved away from it. It seems to be a matter of indifference for the 

effect, whether only the one, or only the other wire, or both alike are moved, provided that their 

relative motion is the same. If the two wires are parallel to each other, then a current of opposite 

direction will be induced by bringing them closer, a current of like direction will be induced by 

drawing them apart. Induction occurs by means of variable currents, even when the conducting 

wire, through which the variable current passes, remains undisturbed with respect to the wire in 

which a current is to be induced. If the two wires are parallel to each other, increasing current 

intensity induces a current of opposite direction, decreasing intensity a current of like direction. 

We empirically know, secondly, that the induction caused by a constant current in a 

conducting wire moving toward it is the same as the induction caused by a magnet in the same 

conducting wire, if the electrodynamic force of repulsion or attraction, which that current would 

exert on this conducting wire when a determined current passed through the latter, is equal to the 

electromagnetic force, which the magnet would exert on the same wire under the same conditions. 

See Section 11, page 61.
44

 

These empirical findings can serve to test the correctness of the laws of voltaic induction 

which are to be established. 

Moreover, it should be noted, that the theory of voltaic induction is a theory of 

electromotive forces, by means of which the induced currents themselves are still not completely 

determined. In order to completely determine the induced currents themselves, also according to 

their intensity, as well as the electrodynamic forces of repulsion and attraction and secondary 

inductions which they themselves further elicit, it requires, besides the determination of the 

electromotive force to be drawn from the theory of voltaic induction, a statement of the resistance 

of the entire circuit to which the induced conducting wire belongs, as is obvious from the 

dependency defined by Ohm's law of the current intensity on the electromotive force and the total 

resistance of the circuit. 

                                                 
44

  [N. E.] Page 103 of Weber’s Werke, Vol. 3. 
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The complete development of the effects of non-uniform electrical currents in moving 

conductors comprises, finally, not merely the theory of voltaic induction, that is to say, it not 

merely accounts for the generation, strengthening, and weakening of currents in the ponderable 

conductors, but it also encompasses all electrodynamic forces of repulsion and attraction, which are 

effects of the above-cited currents, and which move the ponderable currents themselves. 

In the following Sections, we intend first to begin with a prefatory consideration of 

particular cases, and then to follow with the general development of the effects of electrical 

currents which are not uniform, as they take place in galvanic currents of variable intensity, while 

the ponderable conductors are in motion. 

 

24. 

 

Law of exciting a current in a conductor, which approaches a constant current element at rest, or 

is distanced from it. 

 

The simplest case of voltaic induction to which the established fundamental law can be 

applied, is the one in which, of the two elements, only one, namely, the inducing one, already 

contains a current, specifically, a current of constant intensity, and the distance between the two 

elements is altered simply by means of the motion of the other element, namely, the induced one. 

If α  now denotes the length of the inducing element, 'α  the length of the induced element, 

then four electrical masses are to be differentiated in these two elements, namely: 

eα+ , eα− , ''eα+ , ''eα− . 

The first of these masses, eα+ , moves with constant velocity u+  in the direction of the element at 

rest α , which forms the angle ϑ  with the straight line drawn from α  to 'α ; the second, eα− , 

moves in the same direction with velocity u− , viz., backwards; the third, ''eα+ , which indeed 

rests in the element 'α , is carried forward by it with velocity 'u+  in that direction which forms the 

angle 'ϑ  with the extended straight line drawn from α  to 'α ; and with the same straight line, lies 

in a plane, which, with the plane containing element α  and that straight line, forms the angle ω ; 

the fourth, finally, ''eα− , which likewise rests in element 'α , is carried forward by this element 

with the same velocity 'u+  in the same direction as the third mass. The distances of the first two 

masses from the second two are all equal at the moment in question to distance r, at which the 

elements α  and 'α  are found at that moment; since, however, they do not remain equal, they are 

denoted,
45

 as on page 99,
46

 1r , 2r , 3r , 4r . 

The application of the fundamental law then yields, as on page 99,47 the following four 

partial effects among these four masses: 
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These four partial effects can now first be combined into two forces, of which one is the action of 

the two masses of the inducing elements eα+  and eα−  on the positive mass ''eα+  of the induced 

element, the other the action of the same masses on the negative mass ''eα−  of the induced 

element. The former force is the sum of the first and fourth, the latter is the sum of the second and 

third. The former force is thus, with regard to the equality of 1r , 2r , 3r  and 4r  with r at the moment 

in question, 
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the latter force is 
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Now, insofar as the motions elicited by these forces in both electrical masses, ''eα+  and ''eα− , in 

their ponderable carrier 'α  are cancelled almost instantaneously by the resistance of the carrier, 

and thereby all the forces acting on those masses are immediately transferred to this carrier, the 

sums of the above two forces, as on page 100,48 gives the force which moves the carrier 'α  itself, 
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Before the transference to their carriers of those forces which originally acted on the electrical 

masses, the electrical forces themselves are, however, somewhat displaced in their carriers, and 

when this displacement is different for the positive mass ''eα+  and the negative mass ''eα− , the 

two thus being thereby separated from each other, then a galvanic current is produced in carrier 'α , 

and the force which effects this separation, is called the electromotive force. It is clear, that this 

electromotive force depends upon the difference of the above two forces, i.e., on 
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According to the determinations given in Section 22 for two constant current elements at rest in 

relation to the motion of their electrical masses, the value obtained there for that former sum was 

equal to the force determined by Ampère's law, 








 −−= 'coscos
2

3
cos'

'
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ϑϑε
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ii
r

; 

there the value of this latter difference would then, however, be  

= 0. 

According to the determinations given in this Section for a constant current element at rest 

and for a moving wire element without current with respect to their electrical masses, the value of 

that former sum, however,  

= 0, 

and the value of this latter difference 






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as is to be proven in what follows. 

It is merely necessary for this purpose, in the differential coefficients determined on page 

100,49 to put 'u+  instead of 'u−  for the velocity of the negative mass; one then obtains: 
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On the other hand: 
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Further, one obtains: 
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In contrast is 
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Further, according to page 102 f.,
50

 if one also attributes the velocity 'u+  to the negative mass of 

the induced element ''eα− , it follows that 
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  [N. E.] Page 162 f. of Weber’s Werke, Vol. 3. 



 109 

ωϑϑ
ϑϑ

cossin'sin'
'' 42 uu

dt

d
r

dt

d
r −−== , 

from which it results that: 
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however, on the other hand, 
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From this it follows that: 
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Substituting these values, it is obtained the sum of both forces, which act at the positive and 

negative masses of the induced element, 

= 0, 

in contrast, their difference is 








 −⋅−= 'coscos
2

1
cos'sinsin''

'
2

ϑϑωϑϑ
αα

uaeaeu
r

, 

or, since, according to page 104,
51

 'coscoscos'sinsincos ϑϑωϑϑε +=  and according to page 

94,
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 aeu = i, 
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which was to be proven. 

Now, the force hereby determined seeks to separate from each other the positive and 

negative electricities in the induced element 'α  in the direction of the straight line r. In reality, 

however, this separation can only ensue in the direction of 'α , because in a linear conductor, a 

galvanic current can only take place in the direction of the conductor. Hence, if one takes the 

components of the above force in the direction of element 'α  and perpendicular to it, then only the 

first part comes under consideration as electromotive force, and, if ϕ  denotes the angle which the 

element 'α  makes with the extended straight line r, this term is 
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Ordinarily, by electromotive force is understood the accelerating force which the given 

absolute force exerts on the electrical mass 'e  contained in the unit of length of the induced 

conducting wire, which is obtained by division of the above value by e'. Finally, the electromotive 

force of a constant current element at rest on a moving wire element would hence be maintained as 
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Now, accordingly as this expression has a positive or negative value, the inducing current is 

positive or negative, where by positive currents is understood one whose positive electricity moves 

in that direction of element 'α  which forms the angle ϕ  with the extended straight line r. 

If, for example, the elements α  and 'α  are parallel to each other, and the direction in which 

the latter moves with velocity 'u+  is in the plane of both elements and perpendicular to them, then, 

when 'α  distances itself from α  by means of its motion, 

ϕϑ = ,  ϑϑ sin'cos = ,   0cos =ε , 

hence the electromotive force 

'cossin
'

2

3 2

2
aui

r
⋅+= ϑϑ

αα
. 

This value is always positive, when º180<ϑ , and this positive value here denotes an induced 

current of the same direction as the inducing, in accord with what empirical experience has yielded 

for this case. 

Under the same conditions, with the mere difference that the element 'α  approaches the 

element α  by means of its motion, 

ϕϑ = ,  ϑϑ sin'cos −= ,  0cos =ε , 

hence the electromotive force 

'cossin
'

2

3 2

2
aui

r
⋅−= ϑϑ

αα
. 

The negative value of this force denotes an induced current of opposite direction from the inducing 

one, likewise in accord with what empirical experience has yielded for this case. 

 

25. 

 

Comparison with the empirical propositions in Section 11. 

 

The experiments communicated in Sections 10 and 11 relate to the case of voltaic induction 

considered in the previous Section. For quantitative determination of voltaic induction in this case, 

the proposition has been set forth and empirically tested there, 

 

that the induction by a constant current at rest in a conducting wire in motion toward it 

is the same, as the induction in the same conducting wire by a magnet, if the 

electrodynamic force, which that constant current would exert on that conducting wire 

with a current flowing through it, were equal to the electromagnetic force, which the 

magnet would exert on the wire through which the same current were flowing. 

 

In order to empirically establish this proposition, the following experiments were made: 

1. the electrodynamic force was measured, which a closed circuit A did exert on another 

closed circuit B; 

2. the closed circuit A was replaced with a magnet C, and the electromagnetic force which C 

did exert on B was measured; 

3. the closed conductor B, without current, was put into a specific motion, and the current 

was measured, which was then produced by current A in the moving conductor by means of voltaic 

induction; 

4. given the same motion of the closed conductor B, the current produced by means of 

magnetic induction by the magnet C, which had been substituted for the current A was measured. 

In conformity with these four experiments, the following four laws are now to be listed for 

comparison: 
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1. the law of the electrodynamic action of a closed circuit on a current element; 

2. the law of the electromagnetic action of a magnet on a current element; 

3. the law of voltaic induction by a closed circuit in an element of a moving conductor; 

4. the law of magnetic induction by a magnet in an element of a moving conductor. 

 

1. The law of the electrodynamic action of a closed circuit on a current element. 

 

This law is developed on page 48 in Section 3 of the footnote,
53

 for the case where the 

closed circuit delimits a plane and acts at a distance. Instead of returning to this special law, here I 

shall return to the more general one which Ampère has given on page 214 of his Treatise, and 

which is presented on page 36 of this Treatise.
54

 According to this law, the electrodynamic force 

acting on the current element 'α  is decomposed along three right-angled coordinate axes, whose 

origin lies in the center of element 'α , into the components X, Y, Z, which are defined as follows: 
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ii
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( )µλα coscos'
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in which ∫
−
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zdyydz
A , ∫

−
=

3r

xdzzdx
B , ∫

−
=

3r

ydxxdy
C , 'α  denotes the length of the current 

element which is acted upon, λ , µ , ν  the angle which 'α  forms with the three coordinate axes, 

and i and i' the intensities of the closed current and of the current element. 

 

2. The law of the electrodynamic action of a magnet on a current element. 

 

According to the fundamental law of electromagnetism, the electromagnetic force which a 

mass of north or south magnetic fluid µ±  exerts on a current element of length 'α  and of current 

intensity i' at distance r, when ϕ  denotes the angle which 'α  forms with r, is represented by 

2

sin

2

''

r

i ϕµα
⋅±  

in which 
2

1
'i  replaces 'χ  according to page 48,

55
 and this force seeks to move the current 

element in a direction perpendicular to 'α  and r. Thus from this derive the magnitude and direction 

of both forces, which the two masses of north and south magnetic fluid contained in a small magnet 

exert on the current element. These two forces can be combined according to the law of 

parallelograms, and from this results the magnitude of the resultant, when
56

 'm  denotes the 

magnetic moment and ψ  denotes the angle which the magnetic axis makes with the straight line r, 

and ε  the angle which direction 'α  makes with the direction D lying in the plane of the magnetic 

                                                 
53

  [N. E.] Page 86 of Weber’s Werke, Vol. 3. 
54

  [N. E.] Page 70 of Weber’s Werke, Vol. 3. 
55

  [N. E.] Page 86 of Weber’s Werke, Vol. 3. 
56

  [N. E.] In the original it appears m instead of 'm . 



 112 

axis and of line r, and the sine of this angle with line r is to ψsin  as 1 : the square root of 

ψ2cos31:1 + , and finally, if for the sake of brevity, ψ2

3
cos31

1
+

r
 is denoted by d , 

εα sin''
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'
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i
=  . 

The direction of this resultant is perpendicular to the directions 'α  and D. If, now, one denotes by  

a, b, c 

the cosines of the angles which the resultant, thus determined, forms with three right-angled 

coordinate axes, whose origin lies in the center of element 'α , and decomposes the resultant 

according to the direction of the latter, then the following three components are obtained: 
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and for a, b, c the following equations are obtained, when the angles which the direction of element 

'α  forms with the coordinate axes are denoted  

λ , µ , ν , 

and the cosines of the angles which the direction D forms with the same coordinate axes are 

denoted 
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a
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namely: 
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These equations, by elimination of b and c, yield the value of a as 
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and in the same way, the following values of b and c: 
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If these expressions are substituted into those for the three components of the electromagnetic 

force, the following values are obtained for the latter: 

( )νµα coscos''
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'
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i
−⋅−  
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( )λνα coscos''
2

'
cam

i
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( )µλα coscos''
2

'
abm

i
−⋅− . 

For a large magnet, which is composed of many small ones, the three components X', Y', Z' of the 

electromagnetic force it exerts on the current element 'α  are hereafter determined as follows: 

( )νµα cos'cos''
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( )λνα cos'cos''
2

'
' CA

i
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( )µλα cos'cos''
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in which ( )'' maSA = , ( )'' mbSB = , ( )'' mcSC = .57 

 

3. The law of voltaic induction by a closed circuit in an element of a moving conductor. 

 

The elementary law of induction developed in the previous Section, which holds for any 

inducing element α , yields the following value for the electromotive force with which one such 

element α  seeks to separate from each other the positive and negative electrical masses in the 

induced element 'α  in the direction of the straight line r: 

''coscos
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



 −− ϑϑε
αα

, 

in which 'u+  denotes the velocity with which the induced element 'α  is moved, and ε  and 'ϑ  the 

angles which the direction of this motion forms with the direction in which the positive electricity 

flows in the inducing current element α , and with the extended straight line r. ϑ  denotes, as in the 

theory of two constant current elements in Section 22, the angle which the direction in which the 

positive electricity flows in the first element α , forms with the straight line r. 

If this value for the electromotive force is compared with the value found on page 104
58

 for 

the electrodynamic force in the theory of two constant current elements, in accordance with 

Ampère's law, then the following simple relation results between the two, namely, that the former 

force is obtained from the latter by multiplication with the constant factor au'/i', provided that the 

direction, in which the positive electricity flows in element 'α , in the latter force, were the same as 

the direction in which the induced element 'α  itself moves, in the former force, that is 

λβ = , µγ = , νδ = , 

when the angle formed by both directions with three right-angled coordinate axes are respectively 

denoted 

λ , µ , ν  and β , γ , δ  

for then the values of ε  and 'ϑ  are equal in both expressions. 

From this it is now obvious, under the presupposition made, that the values stated under (1) 

for the electrodynamic force X, Y, Z also need only to be multiplied by the constant factor au'/i', in 

order to obtain the components X , Y , Z  of the electromotive force which a closed circuit exerts 

on the induced element 'α . From this it follows that 

                                                 
57

  [N. E.] That is, ( )∫= '' maA , ( )∫= '' mbB  and ( )∫= '' mcC . 

58
  [N. E.] Page 164 of Weber’s Werke, Vol. 3. 
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in which A, B, C have the same signification as under (1). 

 

4. The law of magnetic induction by a magnet in an element of a moving conductor. 

 

From the elementary electromagnetic force, determined according to the basic law of 

electromagnetism, which a mass of north or south magnetic fluid, µ± , exerts on a current element 

of length 'α  and of current intensity 'i  at distance r, when ϕ  denotes the angle which the direction 

of flow of the positive electricity in 'α  forms with the straight line r, namely, from the active force 

cited under (2), normal to the plane parallel with r and 'α  

2
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ai ϕµ
⋅± , 

we obtain, by multiplication with the constant ku'/i', according to the basic law of magneto-

induction, the elementary electromotive force with which that magnetic mass seeks to divide the 

positive and negative electricity in the induced element 'α , in a direction normal to the plane 

parallel with r and 'α , when the induced element 'α  is moving here with the velocity u in the same 

direction that the positive electricity flows there in element 'α . Therefore this electromotive force 

is 

2
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2

''

r

uk ϕµα
⋅±= . 

Here k denotes a constant factor independent of u', whose value, however, has thus far not been 

more closely determined by any measurement. 

If one denotes the angles, which in the one case the direction in which the positive 

electricity in element 'α  is moved, in the other case the direction in which the induced element 'α  

itself is moved, form with three right-angled coordinate axes, as respectively 

λ , µ , ν  and β , γ , δ , 

then under the just-presupposed identity of the directions specified, 

λβ = , µγ = , νδ = . 

Here too, it is obvious that, under the presupposed identity of the two directions mentioned, 

the values of X', Y', Z' stated under (2) need only be multiplied by the constant factor ku'/i' in order 

to obtain the components 'X , 'Y , 'Z  of the electromotive force, which a whole magnet exerts on 

the induced element 'α . From this it follows that 

( )δγα cos'cos''
2

'
' BC

ku
X −⋅−= , 

( )βδα cos'cos''
2

'
' CA

ku
Y −⋅−= , 

( )γβα cos'cos''
2

'
' AB

ku
Z −⋅−= , 

in which A', B', C' have the same signification as under (2). 



 115 

The relations will now be examined between the laws set forth here and the empirical 

proposition mentioned in the beginning. Now, from the foregoing laws there results, when the 

electrodynamic forces stand to the electromagnetic forces in the ratio 1 : n, viz., when 

n
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or, if for X, Y, Z, and X', Y', Z', their values found above are substituted, when 
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the following relationship of the electromotive force obtained by means of voltaic induction and by 

means of magnetic induction: 
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This, finally, yields the following result: 
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which is in agreement with the empirical proposition mentioned at the beginning, because the ratio 

a : k is constant. That empirical proposition, however, shows us still more than the comparison of 

the above laws, in that it makes this constant ratio equal to unity, by means of which the constant 

factor in the fundamental law of magnetic induction, k, a factor still undetermined by any 

measurement as yet, becomes equal to the constant factor a in the fundamental electrical law. 

Specifically, that would also have to take place, if there existed no magnetic fluid in the magnet, 

but, in accord with Ampère, all the effects of the magnets were produced by electrical currents in 

them. 

 

26. 

 

Comparison with the theorems established by Fechner and Neumann. 

 

Fechner has been the first to attempt, by developing their intrinsic connection, an 

explanation of the Faraday phenomena of induction in terms of the Ampère electrodynamic 

phenomena, which Lenz previously put into relation with one another merely by means of an 

empirical rule; Fechner has published the explanation in Poggendorff's Annalen, 1845, Vol. LXIV, 

page 337. In so doing, Fechner has confined himself to that form of voltaic induction, with which 

the foregoing Section dealt, namely, to that by a constant current at rest in a conducting wire 

moving toward it. For this form of voltaic induction, Fechner has actually succeeded in discovering 

its intrinsic connection with Ampère's electrodynamic phenomena, and in basing an explanation of 

it on a somewhat more generalized form of Ampère's law which holds for the latter phenomena. – 

That intrinsic connection consists essentially in the fact that, with regard to that induction, apart 
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from the current first elicited by the induction, one is dealing, just as in the Ampère phenomena, 

with reciprocal actions of electrical currents, hence the explanation of both kinds of phenomena 

would have to rest on the laws of these reciprocal actions. The electricity in the induced conducting 

wire, Fechner says specifically, would also begin to flow, as soon as this conducting wire were 

moved, specifically because it participates in the motion of its carrier. The electrical currents in 

such induced conducting wires are only differentiated from the galvanic currents in the inducing 

wires in that equal masses of positive and negative electricity move simultaneously with the same 

velocity in opposite directions in the latter, in the same directions in the former. – The 

generalization which Fechner has given to Ampère's law, consists first in the fact that the force 

which, according to Ampère, acts on the ponderable carrier, would originally act with the same 

strength and in the same direction on the electrical masses located in the carrier, and would first be 

communicated from them to the carrier; secondly, in the fact that Ampère's law does not merely 

hold for the total action of a galvanic current on another, but also for the two partial actions, which 

the first current would exert on the positive and negative electricity of the second. 

This explanation accords with the theory of this induction developed in the previous 

Section; for one finds there the justification of the right to generalize Ampère's law, on which that 

explanation is founded. This can be proven, if one considers in particular the two forces acting on 

the positive or negative electricity, as stated on page 99,59 where one finds that Ampère's law holds 

not merely for all four forces, but also for any two of them. 

Moreover, Fechner himself has already remarked that the standpoint from which he has 

interpreted the connection of Faraday's induction phenomena with the Ampère electrodynamic 

phenomena is not so general that it could be extended over all of Faraday's induction phenomena. 

As soon as the induced wire is at rest, the induction phenomena cannot be grasped from this 

standpoint, because then the motion of electricity in the induced wire is out of the question. On this 

point, Fechner says, loc. cit., page 341: “In the induction experiments, instead of moving the 

(neutral) wire a'b' away from the (excited) wire at rest, one could do the opposite, and the induction 

would always still occur. This must be accepted as an empirical datum, for proving that what 

matters here is simply the relation of the motions, and that it is permissible to substitute the 

converse for motion of the excited wire and rest in the neutral wire, in order to be able to apply the 

principle in the stated form.” 

Neumann has based his investigation on the empirical rule by which Lenz linked the 

Faraday induction phenomena to the Ampère electrodynamic phenomena, and has found a 

supplement to it in the proposition, that the strength of the induction is proportional to the velocity 

of the motion of the induced wire, when the induction was elicited by a motion of the latter. These 

two empirical rules complement each other in such a way, that Neumann has been able to derive 

from them the general laws of induced currents, since the laws immediately following from them 

for the case in which the induction is elicited by a motion of the induced conductor, are of the kind 

that can immediately find application in wider domains without undergoing modification, and can 

be extended to all forms of induction. These general laws of induced currents admit of virtually no 

doubt, with respect to their intrinsic connection or also to the empirical rules implied in them, and 

for that reason it is interesting to compare the results of the theory developed above with these laws 

which Neumann derived in completely different ways. 

Since Neumann's Treatise, submitted to the königliche Akademie der Wissenschaften in 

Berlin, has not yet been printed, I can only refer to the excerpt just now appearing in Poggendorff's 

Annalen, in this year's first issue, from which I take the following passage: 

“§ 1. From Lenz's theorem that the action which the inducing current or magnet exerts on 

the induced conductor, always produces, when the induction is elicited by a motion of the latter, an 
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inhibiting influence on this motion, conjointly with the theorem that the strength of the 

momentary induction is proportional to the velocity of this motion, is derived the general law of 

linear induction: 

vCdsEds ε−= . 

Here ds signifies an element of the inducing wire, and Eds the electromotive force induced in the 

element ds; v is the velocity, with which ds is moved, C is the action of the inductor on ds, resolved 

according to the direction in which ds is moved, this element being thought of as having the unit of 

current flowing through it. The magnitude ε , independent of the nature of the induced conductor, 

can be treated as a constant in the case of linear induction, but is a function of time, such that it 

very quickly decreases, when its argument has an appreciable value, and be treated as such in the 

case of surface induction and of induction in bodies.” 

From the theory developed above, has resulted the following expression, at the end of 

Section 24, for the electromotor force induced in element 'α , in which u' denotes the velocity with 

which 'α  is moved: 

ϕϑϑε
αα

cos''coscos
2

3
cos

'
2

aui
r

⋅






 −− . 

This expression was the value, resolved in the direction of element 'α , of the total 

separating force exerted by the inductor α  in the direction of the connecting straight line r, from 

which, by elimination of the factor ϕcos , the total force is once more obtained. In Section 25 (3), 

this total force is compared with the electrodynamic force, determined by Ampère's law, which the 

inductor α  would exert on element 'α , when 'α  were parallel to the direction in which the 

element 'α  were moved for purposes of induction, and through which a current flowed in this 

direction, whose intensity were = 'i . Namely, one obtains that total electromotive force exerted in 

the direction of the connecting straight line r by multiplying this electrodynamic force by the factor 

au'/i'. The above expression itself is obtained by multiplying the same force, resolved in the 

direction of the induced element 'α , by the factor au'/i'. If, therefore, this electrodynamic force, 

resolved in the direction of the induced element 'α , is denoted 

Di ⋅''α , 

then the above expression is to be made 

'' αDau−= . 

Here, u' and 'α  are to be written v and ds, in accordance with Neumann's notation; hence the theory 

developed above, yields the equation, in this notation: 

avDdsEds −= , 

in which a denotes a constant factor independent of the nature of the induced conductor, like ε  in 

Neumann's equation, because here it is a matter of linear induction. Both equations are thus in 

agreement with each other up to the factors C and D. These factors also have in common their 

ability, multiplied by ds, to express the electrodynamic force, resolved in a definite direction, which 

the inductor would exert on an element ds, thought of as located in the place through which the 

induced unit of current flows. Yet the two factors are differentiated from one another 1. by the 

direction, which the element ds, thought of as at the point of induction, would be given, and 2. 

through the direction in which the electrodynamic force exerted on this element is to be resolved. 

Specifically, these two directions are exchanged in Neumann's law. 

Neumann's law would, as can be seen from this, contradict ours, if one wanted to apply it to 

an individual current element as inductor, because factors C and D would then have entirely 

different values. It is obvious, however, that Neumann's law, in accordance with its derivation, 

holds first of all not for that individual inducing current element, but only for a closed circuit or for 

a magnet as inductor, specifically because Lenz's theorem, from which it is derived, can, being 

experimentally based, hold merely for closed circuits and magnets. That apparent contradiction 



 118 

now automatically dissolves, as soon as the application of Neumann's law is confined to closed 

circuits, interchangeable with magnets, as inductors, in which case the identity of factors C and D 

can then be proven in the following way. 

According to Ampère, the three components X, Y, Z of that force which a closed circuit of 

intensity i, for which the position of the elements is defined by the coordinates x, y, z, exerts on any 

other current element ds' of current intensity i', whose direction makes the angles λ , µ , ν  with the 

coordinate axes, when the origin of the coordinates lies in the center of the element ds', are 
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From this the values for the factors C and D can now be derived for closed circuits as inductors. 

For, first, factor C in Neumann's law is obtained, if 1X , 1Y , 1Z  denote the values taken on 

by X, Y, Z when we make i' = 1 and λ , µ , ν  are the angles which the induced element forms with 

the coordinate axes. Namely, if α , β , γ  are the angles which the direction in which the induced 

element is moved, forms with the three coordinate axes, then 

γβα coscoscos' 111 ZYXCds ++= . 

This expression is simplified, if a coordinate system is chosen in which the direction of the x axis 

coincides with the direction in which the induced element is moved. Namely, then 

1cos =α , 0cos =β , 0cos =γ , 

hence 
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Secondly, factor D is obtained, if the values assumed by X, Y, Z are denoted 'X , 'Y , 'Z , 

when we make i' = 1, and 'αλ = , 'βµ = , 'γν = , where 'α , 'β , 'γ  are the angles which the 

direction in which the induced element is moved, forms with the three coordinate axes (which 

would thus be identical with α , β , γ , if the same coordinate system were chosen). Namely, if, 

according to the present coordinate system, 'λ , 'µ , 'ν  are the angles which the induced element 

forms with the three coordinate axes (which would thus be identical with λ , µ , ν , if the present 

coordinate system were identical with the former one), then: 

'cos''cos''cos'' νµλ ZYXDds ++= . 

This expression is simplified, if one chooses a different coordinate system, as earlier, namely, one 

in which the direction of the x-axis coincides with the direction of the induced element itself, 

because then 

1'cos =λ , 0'cos =µ , 0'cos =ν  

hence: 
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Now the two coordinate systems, namely, that in which the x-axis is parallel to the direction 

in which the induced element is moved, and that in which the x-axis is parallel to the direction of the 

induced element itself, can have in common the y-axis, if it is normal to both directions, that of the 

induced element and its motion. Assuming this, it will be the case that 
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0cos =µ , 0'cos =β , 'coscos γν = , 

and since, moreover, it can be proven that 

∫
−

3r

xdzzdx
 

would have an equal value according to both coordinate systems, then  

C = D, 

which was to be proven. That zdx - xdz would have the same value for all right-angled coordinate 

systems in which, as in the two above, the origin coincides with the y-axis, is evident from the fact 

that ( )xdzzdx −
2

1
 represents the area projected on a plane normal to the common axis y, which is 

formed by the common coordinate-origin, and by the current element in question. The straight line 

r, which connects the current element in question with the induced element, has a value altogether 

independent of the coordinate system chosen. From this it results that the value of the quotient 

( ) 3/ rxdzzdx −  for the two coordinate systems employed above is always the same, hence also is 

[equal] the value of the integral extended over the entire closed circuit ∫
−

3r

xdzzdx
. 

It follows from this that Neumann's law for the domain of phenomena to which, in virtue of 

its derivation, it refers, namely, where all inductors are either magnets or closed circuits, concurs 

with the law derived from the theory developed above, but that the application of Neumann's law 

outside that domain to non-closed circuits as inductors is not permitted. 

 

27. 

 

Law of excitation of a current in a conductor at rest, when a constant current element approaches 

or withdraws from it.  

 

The law of voltaic induction for this case, where the induced conductor is at rest, and the 

inducing current element is in motion, can be derived just as it was for the first case, from the 

established fundamental electrical law. It is, however, not necessary to give this derivation, because 

a simple consideration shows that, for the second case, it would have to lead back to the same law 

as for the first. 

Namely, the fundamental electrical law, from which all laws of voltaic induction are to be 

derived, makes the action of one electrical mass on another dependent merely upon their relative 

distance, velocity, and acceleration. These, however, remain unchanged by a common motion 

attributed to both masses; hence, the action of one electrical mass on another is also not changed by 

such a common motion. Consequently, such a common motion can be attributed to all electrical 

masses without changing their actions, hence also without changing the induction dependent upon 

them. Therefore, if one has an inducing current element α , which is in motion with the absolute 

velocity u' in any direction, while the induced element 'α  is at absolute rest, then, without 

changing the induction, one can attribute to both elements, along with the electrical masses 

contained in them, a common motion of velocity u' in that direction which is diametrically opposite 

to the direction in which current element α  actually is in motion. By adding this common motion, 

the inducing element α  is brought to rest, while now the induced element 'α  moves with the same 

velocity, but in the opposite direction, as the current element is actually moving. Therefore, from 

the established fundamental law, the same induction must result for the same relative motion of 

both elements, independently of whether, during this relative motion, one or the other or neither of 
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the two elements is at absolute rest. As is well known, empirical experience accords with this 

result. 

 

28. 

 

Law of excitation of a current in a conductor by changing the current intensity in an adjacent 

conductor. 

 

If α  and 'α  denote the lengths of the inducing and induced elements, then in two elements 

four electrical masses can be further distinguished: 

eα+ , eα− , ''eα+ , ''eα− . 

The first of these masses eα+  would move with the variable velocity u in the direction of the 

element at rest α , which makes the angle ϑ  with the straight line drawn from α  to 'α , and du 

would denote the change in u during time-element dt; the second, eα− , would move, in 

accordance with the determinations relating to a galvanic current, in the same direction with 

velocity u− , viz. backwards, and du−  would denote the change in this velocity during time-

element dt; the third, ''eα+ , would move with constant velocity +u' in the direction of the element 

at rest 'α , which makes the angle 'ϑ  with the straight line drawn and elongated from α  to 'α ; the 

fourth, ''eα− , would, finally, move, again according to the determinations relating to a galvanic 

current, in the same direction with velocity 'u− , viz., backwards. The distances of the first two 

masses from the second two are themselves all the same at the moment in question as distance r 

between the two elements α  and 'α ; since, however, they do not remain equal, they are to be 

denoted 1r , 2r , 3r , 4r . 

For the sum of the forces which are acting on the positive and negative electricity in element 

'α , i.e., for the force, which moves element 'α  itself, one obtains the same expression as in Section 

24, namely: 
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However, for the difference of those forces, on which the induction depends, 
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Further, the same values hold here for the first differential coefficients as were found in Section 22, 

namely: 

'cos'cos21 ϑϑ uu
dt

dr

dt

dr
+−=−= , 

'cos'cos43 ϑϑ uu
dt

dr

dt

dr
−−=−= . 

Hence 

'coscos'8
2

2

4

2

2

3

2

2

2

2

2

1 ϑϑuu
dt

dr

dt

dr

dt

dr

dt

dr
−=








−−+ , 

0
2

2

4

2

2

3

2

2

2

2

2

1 =







−+−
dt

dr

dt

dr

dt

dr

dt

dr
. 

Since the velocity u is now variable, however, there result values for the second differential 

coefficients other than those in Section 22, where it was constant, namely: 
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Therefore, there results for 
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the same value as in Section 22, namely, when one substitutes the values of dtd /1ϑ , dtd /'1ϑ , and 

so forth, developed there on page 102,60 
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On the other hand, 
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Since, however, according to page 102,
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If these values are substituted, one obtains the sum of the forces acting on the positive and 

negative electricity in element 'α , as [in] Section 22 
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viz., the force acting on element 'α  is, when the current intensity is variable, determined just as it is 

when the current is constant, and Ampère's law is applicable to variable currents as well. 

The difference between those two forces acting on the positive and negative electricity in 

element 'α , on which the induction depends, results, on the other hand, as 
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or, since according to page 94,
62

 aeu = i, hence u is variable, and diduae =⋅ , 
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 The force determined in this way tries to separate the positive and negative electricities in 

the induced element 'α  in the direction of the straight line r. But in this direction the separation can 

not succeed, it can only happen in the direction of the induced element 'α  itself, which forms the 

angle 'ϑ  with the extended straight line r. Decomposing then this total force, which tries to 

separate both electricities in 'α , along this direction, that is, multiplying the difference above with 

'cosϑ , we obtain the force which produces the real separation, 

dt

di
ae

r
⋅⋅⋅−= 'coscos'

'

2

1
ϑϑ

αα
. 

If this value is divided by e', there results the electromotor force, in the ordinary sense, exerted by 

the inducing element α  on the induced element 'α  (see Section 24, page 109):
63

 

dt

di

r

a
⋅⋅⋅−= 'coscos

'

2
ϑϑ

αα
. 

The induction during the time element dt, viz., the product of this time element with the acting 

electromotive force, is therefore 

di
r

a
⋅⋅⋅−= 'coscos

'

2
ϑϑ

αα
, 

hence the induction for any period of time, in which the intensity of the inducing current increases 

to i, while r, ϑ  and 'ϑ  remain unchanged, 

'coscos
'

2
ϑϑ

αα
i

r

a
⋅−= . 

The positive value of this expression denotes an induced current in element 'α  in the direction of 

'α , which makes the angle 'ϑ  with the extended straight line r; the negative value denotes an 

induced current of opposite direction. 

If both elements α  and 'α  are parallel to each other, and 'ϑϑ = , the above expression has 

a negative value for increasing current intensity, or for a positive value of i, viz. when the current 

intensity increases in α , a current in the opposite direction from the inducing current is excited in 

'α . The reverse takes place when the current intensity decreases. Both results agree with known 

facts. The proportionality of the induction to the change in intensity i of the inducing current also 

corresponds to empirical experience, to the degree that estimates suffice without precise 

measurement. 

 

29. 

 

Comparison of induction effects of constant currents on a moving conductor with those of variable 

currents on conductors at rest. 

 

In the previous Section, the laws of voltaic induction have been derived from the 

fundamental electrical law, in agreement with empirical experience, not only for the case where the 

voltaic induction is elicited by constant currents in moving conductors, but also for the case, where 

it is elicited by variable currents in conductors at rest. The laws of induction for these two cases are 

very different, and on that account it is very interesting, that nevertheless they yield very simple 

relationships between the effects of both inductions. 
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One such simple relationship between the induction effect of constant currents on a 

moving conductor and the induction effect of variable currents on a conductor at rest, results from 

the laws already developed in Sections 24 and 28 for individual inducing and induced elements, 

when the motion of the induced element occurs, in the first case, in the direction of the straight line 

r. For if one calculates under this assumption the total induction effect, which a current element of 

constant intensity i elicits, while the induced element is withdrawn from a given position infinitely 

far in the direction of the straight line r, or, from an infinite distance, approaches that position, then 

one finds that this total induction effect is equal to that which the inducing element would elicit, if 

its current intensity were to decrease or increase by i, in the induced element, if it continued in the 

given position. Therefore this yields the rule, for this special case, to begin with, that, by means of 

the appearance or disappearance of a current in the proximity of a conductor, the same current 

would be induced in this conductor, as if that current would have uniformly persisted, but were 

either transferred from a great distance into that proximity to the conductor, or, conversely, 

transferred from that proximity to a great distance. 

For the cited special case, this theorem easily results, as follows. The expression found at 

the end of Section 24 for the electromotor force is to be multiplied by the time element dt, in order 

to obtain the induction effect corresponding to this time element dt, or corresponding to the element 

of displacement dtu'  traversed during this time element. The value of the integral of this product 

between definite time or displacement limits then yields the total induction effect corresponding to 

the time interval or to the displacement traversed in that time interval 

∫ ⋅






 −−= dtu
r

ai 'cos'coscos
2

3
cos

'
2

ϕϑϑε
αα

. 

In our case, where the motion occurs in the straight line r, now 

drdtu =' , and 1'cos =ϑ . 

According to Section 24, 'coscoscos'sinsincos ϑϑωϑϑε += , therefore here: 

ϑε coscos = . 

Since, finally, the angles ϑ  and ϕ  have constant values during the motion in the direction of 

straight line r of the element 'α  constantly parallel to itself, that induction effect is 

∫⋅⋅+=
2

coscos'
2 r

drai
ϕϑαα . 

The value of this integral between the limits r = r to ∞=r , viz. the induction effect, while the 

induced element is infinitely distant from a given position, is 

ϕϑ
αα

coscos
'

2 r

ai
+= ; 

between the limits ∞=r  to r = r, viz. the induction effect, while the induced element, from an 

infinite distance, reaches a given position, is, on the contrary, 

ϕϑ
αα

coscos
'

2 r

ai
−= . 

If it is taken into consideration that ϕ  denotes here, in accordance with Section 24, the same angle 

which is 'ϑ  in Section 28, namely, the angle which the induced element 'α  makes with the 

prolonged straight line r, then it is seen that the induction effect is equal to that which, according to 

the law given in Section 28, is obtained when the induced element 'α  persists in the given position, 

and the current intensity i in the inducing element α  vanishes or arises. 

The relation found for both induction effects can be expressed more generally, not, of 

course, for individual elements, but for closed currents and conductors. The case may first of all be 

considered, where all elements of the induced closed conductor have the same, parallel, motion. 

The induction effect of current element α  on the induced element 'α  is, as before, 
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∫ ⋅






 −−= dtu
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ai 'cos'coscos
2

3
cos

'
2

ϕϑϑε
αα

. 

If β  and 'β  now denote the angle, which the two elements α  and 'α  make with the plane 

produced by the straight line r by the motion of the element 'α , and further, if γ  and 'γ  denote the 

angle, which the projections of α  and 'α  make in the plane with the direction of the motion, then 

( )γϑβϑ −= 'coscoscos , 

( )''cos'coscos γϑβϕ −= , 

γβε coscoscos = . 

The projection of the displacement element u'dt on the straight line r yields the value of dr for the 

time-element dt, 

'cos' ϑ⋅= dtudr   or  drdtu ⋅= 'sec' ϑ . 

If these values are substituted, the induction effect of α  on 'α  becomes 

( ) ( )∫ ⋅−






 −−−=
2

''cos'cos
2

3
'seccos'coscos'

r

dr
ai γϑγϑϑγββαα , 

or, when ( )γϑ −'cos  and ( )''cos γϑ −  are developed, 

∫ ⋅+= dR
ai

'coscos'
2

ββαα , 

in which, for the sake of brevity, the following expression is denoted by dR: 

( ) ( )( )
2

2 'cos'sin'sin3'sin'cos3'tan'sincos2'coscos
r

dr
⋅+++−− ϑϑγγϑγγϑγγγγ . 

If it is taken into consideration, that in the like and parallel motion of all elements, each of them is 

displaced parallel with itself, hence the angles β , 'β , γ , 'γ  are constant, and if one makes 

r

b
='sinϑ , 

r

br 22

'cos
−

=ϑ , 
22

'tan
br

b

−
=ϑ , 

in which b denotes the perpendicular from α  to the path of induced element 'α , then the 

integration can be carried out, and the following expression is obtained as an indefinite integral: 

( ) 'cot'sin'coscos
'

2
coscos

'

2
ϑγγββ

αα
ϕϑ

αα
−−−

r

ai

r

ai
. 

The sought-for induction effect is the definite integral or the difference between the two values, 

which the expression receives, when the two limiting values for r, ϑ , ϕ , and 'ϑ  are substituted in 

it. 

If the same expression as that for elements α  and 'α  is formed for all combinations of 

inducing and induced elements, which are contained in the closed circuit and conductor, and if the 

summation of all of them is denoted 

( ) 'cot'sin'coscos
'

2
coscos

'

2
ϑγγββ

αα
ϕϑ

αα
−−−

r

ai

r

ai
SS , 

then the induction effect of the closed circuit on the closed conductor is equal to the difference 

between the two values, which this summation receives, when the values for r, ϑ , ϕ  and 'ϑ , 

corresponding to those at the beginning and end of the induction, are substituted in it. 

Now, the above summation consists of two terms, and it will be proven, that the latter term 

is null for all values of r and 'ϑ . Then the induction effect of a closed circuit on a closed conductor 

reduces itself to the difference between the two values, which the first term of the above summation 

assumes, when the values for r, ϑ , ϕ , corresponding to the beginning and end of the induction are 

substituted in it. 
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That the latter term of the above summation is, namely, 

( ) 0'cot'sin'coscos
'

2
=−− ϑγγββ

αα
r

ai
S  

can easily be proven, if one analyzes the inducing and induced elements according to the law that, 

for determining the interaction of two elements, for any one of them, three others can be put in, 

which form the three edges of a parallelepiped, whose diagonal is taken up by the given elements. 

On this theorem, see Section 31 below. 

Accordingly, if the elements α  and 'α  are each decomposed into three elements, of which 

the first would be parallel to the direction of the motion, the second perpendicular to r, in the plane 

produced by r when 'α  is in motion, the third perpendicular to the two others, and if they are 

denoted 

,1α  2α , 3α ,  and  1'α , 2'α , 3'α , 

then [ ] ( ) 'cot'sin'coscos/' ϑγγββαα −⋅r  becomes a summation of 9 terms. For the two terms 

proportional to 13 'αα  and to 23 'αα , the factor is 0cos =β ; for the two terms proportional to 31 'αα  

and to 32 'αα , the factor is 0'cos =β ; for the term proportional to 33 'αα  the two factors are 

0'coscos == ββ ; finally, for the 6th and 7
th

 terms, which are proportional to 11 'αα  and to 12 'αα , 

the factor is ( ) 0'sin =−γγ . Hence there remain only two more terms, namely, those proportional to 

21 'αα  and to 12 'αα , for which 1cos =β , 1'cos =β , ( ) 'cos'sin ϑγγ m=− ; these two terms are thus: 

'cot'cos
'

2

21 ϑϑ
αα
r

ai
⋅+   and  'cot'cos

'

2

12 ϑϑ
αα
r

ai
⋅± , 

and for the sake of brevity, may be denoted A and B. If one now proceeds in like manner with each 

two elements of the closed circuit and conductor, then one finds that, among the remaining terms 

formed in just this way, two terms exist, by which A and B are cancelled, and which are to be 

denoted A' and B'. If this holds true in general, then it follows that 

( ) 0'cot'sin'coscos
'

2
=−− ϑγγββ

αα
r

ai
S , 

which was to be proven. 

Now, the element A', by which A was cancelled, is found in the following way. Through the 

center of the inducing element α  as apex, let two cones be put, whose common axis would be 

parallel to the direction of motion, i.e., to 1α . Let these two cones delimit the induced element 'α . 

It is evident, that at least a second element 'α  of the closed circuit would still have to be delimited. 

And specifically, a current, which goes into 'α  from the outer cone to the inner, must go into 'α  

conversely from the inner to the outer. The value of 'ϑ  is the same for both elements. If one now 

decomposes the second element 'α  in just the same way as the first 'α , and denotes as 2'α  that 

lateral element which, perpendicular to the r' connecting 'α  with α , lies in the plane produced by 

r' by the motion of 'α , then the term proportional to 21 'αα  will be the term A', by means of which 

A is cancelled. However, 

'cot'cos
'

'

2
' 21 ϑϑ

αα
⋅⋅=

r

ai
A m , 

and 22 ':' αα  are in the ratio of their distances from the common apex of the two cones, i.e., the ratio 

': rr , hence 

rr

22 '

'

' αα
= . 

If these values are substituted, then 
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'cot'cos
'

2
' 21 ϑϑ

αα
⋅=

r

ai
A m , 

and is, irrespective of the sign, equal to the value of A. From the opposite direction in which, as 

stated above, the elements 'α  and 'α , or 2'α  and 2'α , have the same current flowing through 

them, it can be easily recognized, that if in A, ( ) 'cos'sin ϑγγ m=− , and in A', ( ) 'cos'sin ϑγγ ±=− , 

that therefore the values of A and A' always have opposite signs; hence the two cancel each other 

out. 

It can occur, that in addition to 'α  and 'α , yet a third element of the conductor is defined 

by the same cones; then, however, there must necessarily exist, if the conductor is closed, yet a 

fourth as well, and the same is true of the third and fourth as of the first and second, and so forth. 

In a similar way, B', which cancels B, is found, when the center of the induced element 'α  

is made the apex of two cones, whose common axis is parallel to the direction of the motion, and 

which delimit the inducing elementα . The same cones then delimit, from the closed inductor, yet a 

second element, from whose decomposition B' results, as A' did previously from the 

decomposition/analysis of element 'α . 

From the mutual cancellation of all terms denoted A, A', B, B', and so forth, it now follows 

that for closed currents and conductors, the equation is valid: 

( ) 0'cot'sin'coscos
'

2
=−− ϑγγββ

αα
r

ai
S . 

Now, from this it follows, first, when a closed conductor with all its parts is moved identically and 

parallel always in the same direction, the induction effect is 
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r

ai

r
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SS −= , 

in which the values of r, ϑ , ϕ  are denoted 0r , 0ϑ , 0ϕ  for the beginning of the induction, and 1r , 

1ϑ , 1ϕ  for the end. If one makes ∞=1r , viz. the closed conductor, from a given position, is 

removed infinitely far distant from the inducing current, then the total induction effect elicited 

thereby is 

00

0

coscos
'

2
ϕϑ

αα
r

ai
S= , 

the same, which results, according to the preceding Section, for the same inducing current 

conductor and for the same induced conductor, when they persist in their initial mutual positions 

and the current i vanishes in the former. 

Secondly, when a closed conductor with all its parts is only slightly displaced identically 

and parallel in any definite direction, and then displaced again in a somewhat changed direction, 

and so forth, and when the values of r, ϑ , ϕ  are denoted 0r , 0ϑ , 0ϕ  at the start of the induction, at 

the end of the first or beginning of the second displacement are denoted 1r , 1ϑ , 1ϕ , at the end of the 

second or beginning of the third displacement 
2r , 

2ϑ , 
2ϕ , and so forth, it follows that the total 

induction effect is 

.forthsoand
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If nr , nϑ , nϕ  denote the values of r, ϑ , ϕ  at the end of all these motions effected successively 

in different directions, then, because all terms with the exception of the first and last cancel each 

other out, the indicated value of the total induction effect reduces itself to 

nn

nr

ai

r

ai
ϕϑ

αα
ϕϑ

αα
coscos

'

2
coscos

'

2
00

0

SS − , 

from which one sees, when ∞=nr , that the induction effect is the same, when a closed conductor is 

removed, from a given position with respect to a closed current, infinitely far from the inducing 

current through an arbitrarily curved trajectory, but in such a way that all parts always remain 

parallel to each other, as if the same thing would occur through a straight trajectory, or as if the 

closed conductor would persist in its original position and the current i in the inducing conductor 

would vanish, namely 

00

0

coscos
'

2
ϕϑ

αα
r

ai
S= . 

If, thirdly and finally, the closed conductor moves with complete arbitrariness, then the 

motion of any one of its elements at any moment can be resolved into a rotation around its center, 

and into a parallel displacement of the whole element. The induction effect of the rotation of an 

element around its center is = 0, because r remains unchanged thereby, hence dr = 0. The 

displacement of each element can be decomposed into three displacements in the directions of three 

coordinate axes. For the parallel displacement of all elements of the closed conductor in any of 

these directions, then, 

( ) 0'cos'sin'coscos
'

=− ϑγγββ
αα
r

S , 

from which it can easily be seen that even in arbitrary motion of the closed conductor, it follows 

that the induction effect 

nn
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ai
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2
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'

2
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in which 0r , 0ϑ , 0ϕ  and nr , nϑ , nϕ  denote the values of r, ϑ , ϕ  at the beginning and end of the 

induction. 

The relationship discussed here between the induction effect of a closed constant current on 

a closed conductor in motion, and between the induction effect of a closed variable current on a 

closed conductor at rest, has already been presented with greater generality by Neumann, loc. cit. 

Namely, Neumann bases on the empirical foundation cited in Section 26, the conclusion that the 

total induction effect corresponding to the transference of the induced conductor from one position 

to another, is independent of the intermediate positions, which it passes through, and merely 

depends upon the difference in the potential values of the inductor at the start and end of the 

trajectory. After Neumann has stated this theorem for the induction effect of constant currents on 

moving conductors, he continues on page 39, loc. cit.: “From the independence of the induced 

electromotor force from the motion per se, it is inferred, that any cause, which elicits a change in 

the value of the potential of a closed current with respect to a closed conductor, induces a current, 

whose electromotor force is expressed by means of the change which the potential has undergone.” 

With the help of this theorem, Neumann has reduced the determination of the second kind of 

voltaic induction, namely, that of a variable current on a conductor at rest, to that of the first kind, 

namely, of a constant current on a conductor in motion. The above-mentioned relationship between 

both induction effects follows self-evidently. The final basis of all these relationships can now be 

directly proven according to the above, in the fundamental electrical law, according to which every 

two electrical masses act on each other at a distance. 
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30. 

 

General Law of Volta-induction. 

 

After considering the two main cases of voltaic induction, namely, where either the current 

is constant, but the conductor is in motion, or where the current is variable, but the conductor is 

unmoved, the general law of determination of the effects of arbitrarily moving currents through 

which a current passes according to the laws of galvanism can easily be developed. 

α  and 'α  denote once again the lengths of two elements, of which the first, α , is assumed 

to be at rest. In accordance with Section 27, this assumption does not restrict the generality of the 

treatment, because each motion of element α  can be carried over to 'α , by attributing to it the 

opposite direction in 'α . In these two elements, as earlier, the following four electrical masses are 

distinguished: 

eα+ , eα− , ''eα+ , ''eα− . 

The first of these masses, eα+ , would move with velocity +u in the direction of the element at rest 

α , which makes the angle ϑ  with the straight line drawn from α  to 'α . This velocity would 

change during time-element dt by +du. The second mass eα− , in conformity with the 

determinations given for a galvanic current, would move in the same direction, with velocity u− , 

viz., backwards, and this velocity would change during time-element dt by du− . The third mass 

''eα+  would move with velocity +u' in the direction of element 'α , which makes the angle 'ϑ  

with the straight line drawn and extended from α  to 'α . This velocity changes in time-element dt 

by +du'. However, this electrical mass also shares the motion of element 'α  itself, which occurs 

with velocity v in a direction which makes the angle η  with the straight line drawn and extended 

from α  to 'α , and is contained in a plane laid through this straight line, which forms the angle ℵ  

with the plane laid through the same straight line parallel to elementα . Velocity v would change 

during the time-element dt by dv. The fourth mass ''eα−  would move, in conformity with the 

determinations for a galvanic current, in the same direction as element 'α  with velocity -u', which 

changes in time-element dt by -du'; additionally, however, it would share with the preceding mass 

the velocity v of element 'α  itself in the already signified direction. The distances of the two 

former masses from the two latter ones are all, at the moment in question, equal to the distance r of 

the two elements themselves; however, since they do not remain equal, they are to be denoted 1r , 

2r , 3r , 4r . If two planes are laid through the straight line drawn from α  to 'α , the one parallel to 

α , the other with 'α , then ω  denotes the angle formed by these two planes.  

For the sum of the forces which act on the positive and negative electricity in element 'α , 

that is, for the force, which moves element 'α  itself, one then obtains the same expression as in 

Section 24, namely: 
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for the difference of those forces, however, on which induction depends, 
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Further, when, along with the motion of the electrical masses in their conductors, one also takes 

into calculation the motion they share with their conductors, the first differential coefficients are 

found in the way presented in Section 22, by adding to the values found there the velocity of 

element 'α , resolved in the direction of straight line r. One then obtains: 
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The second differential coefficient is obtained as in Section 22, when, in addition, the variability of 

velocities u, u', v is considered, namely: 
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For the determination of the differential coefficients dtd /1ϑ , dtd /'1ϑ , dtd /1η , and so forth, one 

now proceeds as on page 100 ff.
64

 or as in the footnote on page 102.
65

 Namely, the resulting 

changes in the direction of straight line 1r  
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in the plane of angle ϑϑ sin
1

⋅+=
r

udt
 

in the plane of angle 'sin
'

'
1

ϑϑ ⋅−=
r

dtu
 

 

in the plane of angle ηη sin
1

⋅−=
r

vdt
. 

If one now draws lines parallel to line r, and with the directionalities of velocities u, u' and v, 

through the center of a sphere, which cut the surface (Figure 21) at R, U, U', and V, and connects R 

with U, U' and V through the greatest arcs, then the plane containing the arc ϑ=UR , forms the 

angle designated ω , with the plane of the arc '' ϑ=RU , and forms the angle designated ℵ  with the 

plane of the arc η=VR . 

 

 
 

Let the arc UR be extended to S, U'R to S', and VR to T, and let 

ϑsin
1r

udt
RS += , 'sin

'
'

1

ϑ
r

dtu
RS −= , ηsin

1r

vdt
RT −= . 

The element of the sphere's surface in which R, S, S' and T lie, can now, as on page 102,
66

 be 

considered as an element of the plane touching the sphere at R, and the arc elements RS, RS' and RT 

as straight lines in this plane. If the parallelogram RSR'S' is completed in this plane, the diagonal 

RR' is drawn, and the second parallelogram RR'R''T is completed, then a line drawn through the 

center parallel to straight line 1r , which connects the two positive masses eα+  and ''eα+  at the 

end of time element dt, goes through point R''. 

Finally, if R'' is connected with U, U' and V by the greatest arc, then 

11'' ϑϑϑ dURdUR +=+=  

11 ''''''' ϑϑϑ dRUdRU +=+=  

1''' ηηη dVRdVR +=+= . 

From this follows that 

ℵ++=−= coscos'''1 RTRSRSURURd ωϑ  

( )ℵ+++=−= ωωϑ coscos'''''1 RTRSRSRURUd  

( )ℵ++ℵ+=−= ωη cos'cos''1 RSRSRTVRVRd . 

If the values presented above of RS, RS' and RT are substituted, then one obtains: 
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In the same way, the result for the two negative masses eα−  and ''eα−  is: 
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Now, since for the moment under consideration, 1r  = 2r  = 3r  = 4r  = r, from this one obtains 
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finally: 
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If one substitutes these values into the aggregates of the second differential coefficients given 

above, then one obtains 
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These values, finally, yield the sum of the forces which act on the positive and negative electricity 

in element 'α , 








 −⋅⋅− 'coscos
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cos'sinsin''
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ϑϑωϑϑ
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uaeaeu
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, 

viz., the electrodynamic force acting on the ponderable element 'α  is determined for moving 

conductors and variable current intensities, as well as for conductors at rest and constant current 

intensities, and Ampère's law finds general application with regard to these forces for given 

positions of the current elements and given current intensities. The application of this law only 

requires that the current intensities for each individual moment be given, with inclusion of the 

portion added as a result of induction. 

The difference of the forces acting on the positive and negative electricity in element 'α  

results in the same way, 
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or, since, in accordance with page 94,67 iaeu = , and, because u is variable, diduae =⋅ , 
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Now, the force determined in this way seeks to separate the positive and negative electricity in the 

induced element 'α  in the direction of straight line r. The separation cannot succeed in this 

direction, but only in the direction of the induced element 'α  itself, which makes the angle 'ϑ  with 

the extended straight line r. If, therefore, one resolves that entire force in this direction, viz., if one 

multiplies the above value by 'cosϑ , then one obtains the force which actually brings about the 

separation, 

dt
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If this value is divided by e', then the result is the electromotor force, in the usual sense (see 

Section 24, page 109),68 exerted by the inducing element α on the induced element 'α  

dt
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a

r
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r
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 −ℵ−= . 

If the change in the current intensity is made 

0=
dt

di
, 

then once more we find the same law which was found in Section 24 for the induction of a constant 

current element on the moving element of a conductor, and then the electromotor force is 
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'coscoscos
2

1
cossinsin

'
2

ϑηϑηϑ
αα

avi
r

⋅



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

 −ℵ−= , 

in which the same angles, which were denoted 'ϑ , ω , ϕ  in Section 24, are named η , ℵ  and 'ϑ , 

and the velocity, which was called u', is denoted v. 

On the other hand, if, in the general value, one makes 

0=v , 

one obtains the same law which was found in Section 28 for the induction of a variable current 

element on the element of a conductor at rest, and then the electromotor force is 

dt

di
a

r
⋅−= 'coscos

'

2

1
ϑϑ

αα
. 

The electromotor force of a variable current element on the moving element of a conductor is 

therefore the sum of the electromotor forces which would take place, 1) if the element of the 

conductor were not in motion at the moment under consideration, 2) when the element of the 

conductor were indeed in motion, but the current intensity of the inducing element at the moment 

under consideration were unchanged. 

The general law of determining the effects of arbitrarily moving conductors with a current 

flowing through them according to the galvanic laws, is herewith completely given, if it may be 

assumed, that all electrical motions in linear conductors comprised under the name galvanic 

currents, actually conform precisely to the determinations given on page 83 and page 85.
69

 

However, even if it is not to be doubted that all galvanic currents come close to those 

determinations, small deviations can nevertheless rightly be expected, given the great dissimilarity 

in the sources of galvanism. These deviations and their influence on the electrodynamic 

determination of measure will be further discussed here. 

According to the determinations given on page 83 and page 85,
70

 each current element 

should contain the same amount of positive and negative electricity, and both should flow through 

the element with the same velocity, but in opposite directions. If a constant current were to consist 

of nothing but such elements, whose respective positions remained unchanged, then they would 

mutually exert no electromotor force whatever on each other. See Section 24, page 107.
71

 The 

electromotor forces, which would overcome the resistance of the individual elements, and would 

thereby, according to page 84,
72

 bring about the continuation of the current in all elements 

simultaneously, would then have to exist independently of the current elements, and would be 

distributed on all current elements in proportion to their resistance, if the current is to uniformly 

continue to exist in all elements. 

Depending on the nature of the sources of galvanism generating the original electromotor 

forces, which are independent of the interaction of the current elements themselves, that equal 

relation between the forces and the resistance to be overcome by them in all elements of the 

conductor will sometimes occur, sometimes not. Serving an example of the first case, is a 

homogeneous, circularly shaped conductor, in which a galvanic current is induced by the motion of 

a magnet in the normal passing through the center of the circle to the plane of the circle. In this case 

an electromotor force acting uniformly on all the elements of the circle would be obtained by 

means of magneto-induction, and, since the resistance is likewise the same for all elements, the 

conditions are hereby fulfilled for the uniform presence of the current in all segments. Given the 

nature of things, however, such a case seldom occurs; as a rule, no equal relation between the 

original electromotor forces and the resistance in all the elements will occur, and the inequalities 
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must then be equalized by means of the interaction of the elements. Now, if such an interaction 

of the elements of a constant current, an interaction consisting of electromotor forces, is not to be 

excluded, then the definition of galvanic currents must be broadened. 

By a galvanic current, as opposed to other electrical motions not comprised under this 

name, should be understood a motion of the electricity in a closed conductor, such that the same 

amounts of positive and negative electricity flow through all its cross-sections simultaneously in 

the opposite directions. This equality of the positive and negative electricity flowing through does 

not necessarily presuppose the equality of the moving positive and negative masses, which was 

previously assumed, but rather, it can exist even when the latter are of unequal magnitudes, if the 

larger mass flows slower, the smaller one faster. In a galvanic current of the latter kind, new 

electromotor forces arise from the interaction of the elements, by means of which forces the 

unequal relationship of the original electromotor forces can be equalized. For as soon as the 

positive amount of electricity in an element is not equal to the negative, viz., as soon as the element, 

because of an excess of one electricity, is charged with free electricity, this free electricity itself, in 

accordance with the laws of the excitation of electricity by means of separation, becomes a source 

of electromotor forces for all other elements, which, through intensifying that charge, can be 

increased such that, added to the original electromotor forces, they become proportional to the 

resistance in all elements, for which, in the galvanic circuits with which we are familiar, a very low 

degree of electrical charge suffices. 

The investigation of how this charge in the individual elements in a closed galvanic circuit 

arises spontaneously in virtue of the initial inequality of the current in the different parts of the 

circuit, and increases until the given condition of a current uniform in all parts of the circuit is 

satisfied, leads to the internal mechanics of the galvanic circuit and is outside the scope of this 

Treatise, because there the action of electrical masses on adjacent masses must be taken into 

calculation, while here, merely the actions exerted at a distance need be considered. Independently 

of the investigation of the generation of these charges, and the resulting laws of their strength and 

distribution, here we will only discuss the influence which they have, when they are present, on the 

electrodynamic determinations of measure. The discussion of this influence is important in this 

connection, because the presence of such charges is to be viewed as a rule having only infrequent 

exceptions. Even if this influence is so slight that, even without taking it into consideration, the 

calculation accords with empirical experience in most cases, nevertheless, it can be useful to know 

what this influence consists of and how it can become appreciable. 

Under the conditions stated on page 128,73 think of the positive mass eα+  in the element α  

as increased by emα , where m denotes a small fraction, while the velocity +u of this mass, 

however, is thought of as decreasing by the small magnitude +mu; likewise think of the positive 

mass e'α+  as increased by ''enα , its velocity +u' as decreased by nu'. The forces acting on both 

electrical masses in element 'α  are to be determined, which come about through these changes. 

The two forces which the positive mass eα+  in element α  exerted on the positive and 

negative masses ''eα+  and ''eα−  in element 'α , were 
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in which, in accordance with page 129,
74

 we are to make 
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and, in accordance with page 129 and page 131:
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The Difference between the above two forces, on which the electromotor force depends, can 

be made 

2

''
2

r

ee αα ⋅
= , 

because the remaining terms are very small in comparison with this first one. Now, if ( )em+1  is 

substituted for e and multiplied by '/'cos eϑ , and the original value multiplied by '/'cos eϑ  is 

subtracted, one obtains, in accordance with page 109 and page 133,
76

 the electromotor force which 

arises from the charging of element α  with free electricity and which acts on element 'α  

'cos
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2
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ϑ
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e
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Charging element 'α  itself, which is acted upon, does not change the electromotor force; for if, in 

the above difference, ( ) '1 en+  is substituted for e' and multiplied by ( ) '1/'cos en+ϑ , and the original 

value multiplied by '/'cos eϑ  is subtracted, there is no remainder. 

The sum of the above two forces, on which the electrodynamic force acting on the 

ponderable carrier depends, is obtained by substitution of the values arrived at 
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From this is obtained 1) the portion arising from the increase in the mass eα+ , of the force with 

which the elements α  and 'α  repel each other, when ( )em+1  is substituted for e, and the original 

value is subtracted, 
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2) the portion of the force arising from the decrease in velocity +u, when ( )um−1  is substituted for 

u, and the original value is subtracted, 
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3) the portion of the force arising from the increase in the mass ''eα+ , when ( ) '1 en+  is substituted 

for e', and the original value is subtracted, 
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4) the portion of the force arising from the decrease in the velocity +u', when ( ) '1 un−  is substituted 

for u', and the original value is subtracted, 
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If all these portions which arise are conjoined, one obtains the influence which the charging of 

elements α  and 'α  with free positive electricity (if m and n have positive values) or negative 

electricity (if m and n have negative values) has on the electrodynamic repulsive force which α  

and 'α  exert; to be precise, it is the resulting increase in this repulsive force, when one makes 

χ=aev , ''' iuae =  and ''' diduae = , 
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This influence, therefore, wholly vanishes, when the action on a constant current element at 

rest is considered, for which v = 0 and di' = 0. Further, this influence also vanishes in a constant 

current element in motion 'α , when the element α  acting upon it possesses no free electricity, 

because in that case m = 0 and di' = 0. Finally, if free electricity is present in elementα , there exists 

that influence in a force which is equal to that force which would be exerted on current element 'α  

by another current element in the place of α , when the masses contained in it, emα
2

1
+  and 

eα
2

1
−  were to flow with velocities v−  and v+  in the direction in which current element 'α  is 

moved with velocity +v. The necessity of this influence can also be examined from Fechner’s 

viewpoint in Section 16, page 116.77 For the case where a change occurs in current intensity i' in 

current element 'α , which is acted upon, there is added to the above, finally, an influence 

proportional to this change di', and with the sum of the free electricity present in both elements α  

and 'α , which determines the last term in the formula. 
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  [N. E.] Page 179 of Weber’s Werke, Vol. 3. 
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31. 

 

 In the method for determining galvanic current given in Section 19, on which the law 

describing two electrical masses acting on one another at a distance is based, instead of the actual 

current, in which the velocity of the flowing electricity probably fluctuates in its passage from one 

ponderable particle to the other in a steady alternation, an ideal current of uniform velocity is 

assumed. This substitution was necessary to simplify the treatment, and it seems permissible 

because it is simply a question of an action at a distance. It now remains to prove this initial 

assumption about the electrical law.  

 Let there be two electrical masses, e and e', which at the end of time t are found at a 

distance r from one another. Let their relative velocity up to this instant be a constant = γ . The 

repulsive force of the two masses in the last moment of the given time period t, would thus be, 

according to the fundamental electrical law: 
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In the following element of time, ε , an acceleration  

α=
2

2

dt

rd
 

occurs, whereby the repulsive force for the duration of the time period will be 
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We now multiply the increase in force, which has occurred from the previous moment to the 

present one, by the time element ε  itself. We thus obtain, as the amount by which the repulsive 

action has grown by this acceleration over the path dr, in which the masses e and e' have distanced 

themselves in the time ε,     

αε⋅⋅=
r

eea '

8

2

 . 

The relative velocity of the two masses, which before the time element ε  was = γ  is then, after 

this time element, 

αεγ += . 

Let this now remain unchanged, then the repulsive force of the two masses, when they have arrived 

at the distance ρ ,  
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whereby, when αε   is very small in comparison to γ , it becomes 
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Multiplying this expression by the time  

αεγ
ρ
+
d

, 

in which both masses have distanced themselves from one another by the line element ρd , and 

integrating between the limits r=ρ  to 1r=ρ , we get the repulsive action of the two masses over 

the distance rr −1 , as  



 138 









−








−−

+
=

1

2
2

2 11

816
1

'

rr

aaee
αγεγ

αεγ
. 

Finally at the instant when the two masses are at the distance 1r , a deceleration 

α−=
2

2

dt

rd
 

occurs, which just as the earlier acceleration lasted only during the time element ε , so now the 

relative velocity of the two masses again returns to its original value 

γ= , 

and in the path traveled in the time element ε  there takes place a decrease in the repulsive action 

αε⋅⋅−=
1

2 '

8 r

eea
. 

One then gets as the sum of the repulsive action over the entire path rr −1 , including the time 

elements ε , in which both the acceleration and deceleration took place,  
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or, when αε  is very small in comparison to γ ,  
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The time for which this sum applies is, however 

αεγ +
−

=
rr1 . 

If one divides the sum by this time, the average repulsive force during this time is obtained: 









−= 2

2

1 16
1

'
γ

a

rr

ee
, 

that is, the same value as would occur if the path rr −1  had been traversed at the original velocity 

γ . It thus follows that if the relative velocity of two electrical masses, arriving successively at two 

different distances of separation is the same, their average repulsive force over the time interval is 

the same as the average repulsive force which they would have achieved, if they had traveled with 

the initial relative velocity from the first distance to the latter.  

 This theorem may now be applied to the proof of the above assumption. For, when a 

particle of electricity moves in a galvanic current from one ponderable molecule to another, it will 

arrive in places both before and behind the molecule, where its velocity is the same as that of 

another electrical particle moving in another current. The average repulsive force of both particles 

for the duration of the passage of the first particle out of the first position into the next, is then the 

same, as it would have been if both particles had moved through the space with their initial relative 

velocities, that is, as if no change had taken place in the velocity of the electricity flowing from one 

molecule of the ponderable conductor to the other.  

 Besides the change in velocity of the electrical particles as they move from one molecule of 

the ponderable conductor to the next, we must also consider the changes of direction by which 

approaching particles avoid one other. One easily sees that within the measurable distances of the 

current element under consideration, no significant variation in the distances would occur, and 

accordingly only periodic variations in the relative velocity produced by these changes of direction 

would remain, which variations have already been included in the foregoing.  
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 It stands to reason, that in place of a current in which the velocity and direction of the 

flowing electricity are subjected to a periodic change, a uniform current can rightfully be 

substituted, as is done in Section 19.  

 It is also permitted, that, in place of a straight current element, a bent one be substituted, so 

long as the beginning and end points remain unaltered, and no perceptible difference from the 

straight line joining them is allowed. Finally, as happens in Article 29, in place of one element, 

three elements may be considered, which behave in respect to the one like the edges of a 

parallelepiped to its diagonal.  

 

32. 

 

The discovered fundamental electrical law can be expressed in different ways, which will be 

illustrated by a few examples. 

1) Because distance r is always a positive magnitude, it can be written as 2ρ . This yields
78
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2) By reduced relative velocity of the masses e and e' should be understood that relative 

velocity, which those masses, reaching at the end of time t the distance r, the relative velocity 

dtdr / , and the relative acceleration 22 / dtrd , would possess, if the last-named were constant, at 

the moment ( )ϑ−t , at which both, according to this premise, would meet at one point. If v denotes 

this reduced relative velocity, then according to the well-known law of uniform acceleration: 
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By elimination ofϑ , these two equations yield: 
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formula is obtained: 
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  [N. E.] The last equation should be understood as ( )222 22 ρρρ ddrd += . 
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  [N. E.] These equations should be understood as 2ρ=r , 
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which can be verbally expressed in the following way: The decrease, caused by the motion, in the 

force with which two electrical masses would act upon each other, if they were not in motion, is 

proportional to the square of their reduced relative velocity. 
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 is the absolute force with which the mass e acts on and 

repels the mass e', and conversely, e' acts on and repels e, then there follows from this the 

accelerative force for mass e80 
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for mass e', 
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The following relative acceleration results for both masses: 
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If to this is added that relative acceleration which results for the same masses, partly from the 

persistence of their motion in their present trajectories, partly from the influence of other bodies, 

which would be conjointly denoted as f, then the following equation is obtained for the total 

relative acceleration, i.e., for 22 / dtrd : 
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With the help of this equation, the differential coefficient 22 / dtrd  can be determined and its value 

put into the formula 







+−

2

22

2

22

2 816
1

'

dt

rd
r

a

dt

dra

r

ee
, which then becomes the following expression, 

representing the force with which two electrical masses act upon each other, independent of their 

relative acceleration:
81

 

                                                 
80

  [N. E.] What Weber calls here the accelerative force for mass e (beschleunigende Kraft für die Masse e) is the 

acceleration of the particle with charge e relative to an inertial system of reference when we suppose a system of units 

for which the inertial mass of this particle is equal to e. In his sixth major Memoir published in 1871, which has already 

been translated to English (W. Weber, Philosophical Magazine, Vol. 42, pp. 1-20 and 119-149 (1872), “Electrodynamic 

measurements – Sixth Memoir, relating specially to the principle of the conservation of energy”), Weber generalizes 

this result considering the inertial masses of the particles with charges e and 'e  as given by, respectively, ε  and 'ε . In 

this case he was considering a system of units for which the unit of mass is one milligram; see especially pages 2 and 3 

of this English translation of 1872. In this case the acceleration of the particle with charge e would be given by, 
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81
  [N. E.] In the paper of 1871 quoted above, this expression takes the following more generalized form (see pages 3, 4 

and 147 of W. Weber, Philosophical Magazine, Vol. 43, pp. 1-20 and 119-149 (1872), “Electrodynamic measurements 

– Sixth Memoir, relating specially to the principle of the conservation of energy”): 



 141 

( )








+−⋅

+−
rf

a

dt

dra

ree
a

r

ee

816
1

'
8

' 2

2

22

2
2

. 

Accordingly, this force depends on the magnitude of the masses, on their distance, on their relative 

velocity, and, finally, on that relative acceleration f, which it reaches partly as a result of the 

persistence of its already existing motion, partly as a result of the forces acting on it from other 

bodies. 

It seems to follow from this, that the direct interaction of two electrical masses would not 

exclusively depend on these masses themselves and their relations to one another, but would also 

depend on the presence of third bodies. Now, it is well known that Berzelius has already supposed 

the possibility of the dependency of the direct interaction of two bodies on the presence of a third, 

and has given the name catalytic to the forces resulting from this. If we avail ourselves of this 

name, then it can be said hereafter that the electrical phenomena also originate in part from 

catalytic forces. 

This demonstration of catalytic forces for electricity is, however, no strict inference from 

the discovered fundamental electrical law. That would be the case only if one necessarily had to 

associate this fundamental law with the idea that only such forces would thereby be determined 

which electrical masses directly exerted upon one another at a distance. It is, however, possible to 

conceive that the forces included under the discovered fundamental law are also the kind of forces 

which two electrical masses indirectly exert upon one another, and which hence must depend, first 

of all upon the transmitting medium, and further upon all bodies, which act on this medium. It can 

easily occur, that such indirectly exerted forces, when the transmitting medium evades our 

observation, appear as catalytic forces, although they are not. In order to speak of catalytic forces 

in such cases, the concept of catalytic force would have to be fundamentally modified. That is, by 

catalytic force one would have to understand the kind of indirectly exerted force, which can be 

determined by a general rule, by means of a positive knowledge of the bodies to whose influence 

the transmitting medium is subjected, without knowledge, however, of this medium itself. The 

discovered fundamental electrical law yields a general rule for determination of catalytic forces in 

this sense. 

Another still undecided question is, however, whether the knowledge of the transmitting 

medium, even if it is not necessary for the determination of forces, would nevertheless be useful. 

That is, the general rule for determination of forces could perhaps be expressed still more simply, 

when the transmitting medium were taken into consideration, than was otherwise possible in the 

fundamental electrical law presented here. However, investigation of the transmitting medium, 

which perhaps would elucidate many other things as well, is itself necessary in order to decide this 

question. 

The idea of the existence of such a transmitting medium is already found in the idea of the 

all-pervasive neutral electrical fluid, and even if this neutral fluid, apart from conductors, has up to 
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. In this equation e  and 'e  are the charges of the particles with inertial masses 

ε  and 'ε , and Weber replaced a/4  by c. This constant c had already been measured by Weber and Kohlrausch in 

1854-5, who found it as smm /10439450
6× . That is, it is essentially 2  times light velocity in vacuum. It should not 

be confused with the present day constant c, which is equal to the light velocity in vacuum. There is an English 

translation of a paper by Weber and Kohlrausch describing this fundamental measurement which they were the first to 

perform: W. Weber and R. Kohlrausch, “On the amount of electricity which flows through the cross-section of the 

circuit in galvanic currents,” In: F. Bevilacqua and E. A. Gianetto, editors, Volta and the History of Electricity, pp. 287-

297 (Università degli Studi di Pavia and Editore Ulrico Hoepli, Milano, 2003). 
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now almost entirely evaded the physicists' observations, nevertheless there is now hope that we 

can succeed in gaining more direct elucidation of this all-pervasive fluid in several new ways. 

Perhaps in other bodies, apart from conductors, no currents appear, but only vibrations, which can 

be observed more precisely for the first time with the methods discussed in Section 16. Further, I 

need only recall Faraday's latest discovery of the influence of electrical currents on light 

vibrations, which make it not improbable, that the all-pervasive neutral electrical medium is itself 

that all-pervasive ether, which creates and propagates light vibrations, or that at least the two are so 

intimately interconnected, that observations of light vibrations may be able to explain the behavior 

of the neutral electrical medium. 

Ampère has already called attention to the possibility of an indirect action of electrical 

masses on each other, as cited in the introduction on page 3,
82

 “namely, according to which, the 

electrodynamic phenomena” would be ascribed “to the motions communicated to the ether by 

electrical currents.” Ampère himself, however, pronounced the examination of this possibility an 

extraordinarily difficult investigation, which he would have no time to undertake. 

If, in addition, new empirical data, such as, for example, those which will perhaps emerge 

from further pursuit of the experiments to be carried out in accordance with Section 16 on electrical 

vibrations, and from Faraday's discovery, should appear to be particularly appropriate for gradually 

eliminating the difficulties not overcome by Ampère, then the fundamental electrical law in the 

form given here, independent of the transmitting medium, may afford a not insignificant basis for 

expressing this law in other forms, dependent upon the transmitting medium. 

 

                                                 
82

  [N. E.] Page 30 of Weber’s Werke, Vol. 3. 



Errata of the paper by W. Weber, “Determinations of electrodynamic mea-
sure: concerning a universal law of electrical action”, English translation by
S. P. Johnson, edited by L. Hecht and A. K. T. Assis, available through the
magazine 21st Century Science and Technology, 146 pages in PDF, posted in
March, 2007: http://21sci-tech.com/translation.html and https://www.

ifi.unicamp.br/~assis

- Page 3, line 23 should read:
motions imparted to the ether by the electrical currents, could lead to the

same formula.”

- Page 19, lines 28 and 29 should read:
72.589
36.786,

- Page 27, line 17 should read:

400 510.04 561.90

- Page 27, line 25 should read:

79.45 298.81

- Page 27, line 40 should read:

westerly 192.02 192.17 297.99 297.81

- Page 28, line 17 should read:

300 433.35 265.02

- Page 28, line 18 should read:

easterly 190.23 190.08 296.98 297.30

- Page 30, line 13 should read:

485.70 329.30

- Page 35, line 21 should read:

R v v′

0.5 m 0o10′12′′ 0o4′44′′

- Page 36, line 13 should read:
is an expression for the magnitude of the reciprocal action of both elements;

the direction of this action for both

- Page 39, line 1 should read:

http://21sci-tech.com/translation.html
https://www.ifi.unicamp.br/~assis
https://www.ifi.unicamp.br/~assis


1

r5
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k cosω +
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k2 cos2 ω +
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k3 cos3 ω +
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.

- Page 42, line 11 should have α2 instead of a2, namely:

A

(

1−
α2

5000
+

γ2

22000

)

· αγ ,

- Page 46, line 9 should read (original German expressions: nordmagnetische

Masse +µ and südmagnetische Masse −µ):
If, in a steel rod, the north magnetic mass +µ and the south magnetic mass

−µ are divided at C by line α, which

- Page 46, lines 12 and 13 should read:
α, in which the mass +µ is thought of as concentrated, and C its midpoint,

and δ designates the angle which Cn′ forms with the direction CD or DC of
the force given above, then α sin δ is the distance of the points of action of

- Page 46, line 18 should read:
force given above.

- Page 46, line 20 should read:
From the electromagnetic law, the effect of a closed current on the north

magnetic mass +µ of the

- Page 47, there should exist the following expression between lines 7 and 8:

cosACσ′ = sinACs′ = ACs′

- Page 48, line 12 should read:
magnetic rod at A, whose magnetic moment is

- Page 51, the equation on line 36 should read:

29314000 · 21327000
1

3
π2 · 55.82 · 44.43

· π2i2 = 180000

- Page 54, line 7 of the 5th paragraph should read:
of the induction mediated oscillations, as well as of the decrease of the arc

of the oscillations,

- Page 58, line 4 of the first Table should read:

25. 23’ 4.39” 28.17” - 0.23”

- Page 60, line 4 of the first table should read:

9. 32’ 7.03” 464.44 679.15 2.831 966



- Page 60, line 9 of the first table should read:

74. 49’ 16.79” 464.22 292.27 2.465 784 109.10

- Page 63, the last line should read:
closed up and put into oscillation, while the current of the same voltaic

battery was conducted through

- Page 65, line 7 should read:
calculates from the measured arcs of oscillation of our coil and from its

periods of oscillation, likewise

- Page 69, the title of Section 14 should read:
14. Repetition of Ampre’s fundamental experiment with common electricity,

and measurement of the duration of the electrical spark during discharge of a
Leyden battery.

- Page 69, line 10 of Section 14 should read:
However, it seems still more important to repeat Ampre’s fundamental ex-

periment with common

- Page 69, line 12 of Section 14 should read:
wire, since there are such considerable differences between this current of

common electricity and all

- Page 69, line 16 of Section 14 should read:
of a current of common electricity, or, given a longer duration, the disconti-

nuity of the current might be

- Page 69, lines 21 and 22 of Section 14 should read:
with common electricity, of which I will now give a more precise account here.

It is known, that the repetition of Oersted’s fundamental experiment with
the common

- Page 70, line 1 of the 2nd paragraph should read:
Now, while the main point of performing Oersted’s fundamental experiment

with common

- Page 70, line 8 of the 4th paragraph should read:
of common electricity passing through, turned out to be like that which was

already predetermined by

- Page 70, line 10 of the 4th paragraph should read:
made with a current of common electricity.

- Page 70, line 3 of the 5th paragraph should read:
any cases at all, where the current of common electricity would yield Oer-

sted’s fundamental

- Page 71, line 1 should read:
experiment, but not Ampre’s, or whether with respect to common electricity,

both kinds of effects



- Page 72, line 4 below the second table should read:
intensity of the discharge by means of the resistance of these bodies, and to

make all the electricity

- Page 73, line 9 of the table should read:

1 000 mm 95.8 210.1 43.7

- Page 74, line 7 below the third table should read:
discontinuity of the currents of common electricity (which was already dis-

cussed above, and which

- Page 80, line 4 should read:

greater range to electrodynamic experiments with common electricity, by
rendering dispensable the

- Page 84, lines 17 and 18 should read:
ponderable carrier, by means of which, in an immeasurably short time, it is

canceled once more. Through this resistance, during the time interval in which
this motion is canceled, all forces,

- Page 98, line 24 should read:

to the same values, as are given for this case by the fundamental law of
electrostatics; for these

- Page 101, the first line of the fourth equation should read:

(
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dt2
+
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dt2
−
d2r3

dt2
−
d2r4

dt2

)

= +u sinϑ

(

dϑ1

dt
−
dϑ2

dt
−
dϑ3

dt
+
dϑ4

dt

)

- Page 103, the last line of the footnote should read:

y′ − y = r1 cosRY .

- Page 105, line 2 upwards from the bottom should read:
dependency given by Ohm’s law of the current intensity on the electromotive

force and the total

- Page 106, line 5 should read:
effects of the above-cited currents, and which move the ponderable conduc-

tors themselves.

- Page 106, footnote 45 should read:
[N. E.] See beginning of Section 22.

- Page 107, line 17 should read:
masses, the electrical masses themselves are, however, somewhat displaced

in their carriers, and

- Page 109, line 26 should read:
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· ae′u′ cosϕ .

- Page 109, the last equation should read:

= −
αα′

r2
i

(

cos ε−
3

2
cosϑ cosϑ′

)

· au′ cosϕ .

- Page 111, line 24 should read:
element in a direction perpendicular to α′ and r. It follows from this the

magnitude and direction

- Page 112, lines 1 and 2 should read:
axis and of line r, and the sine of this angle with line r is to sinψ as 1 :

√

1 + 3 cos2 ψ, and finally, if for the sake of brevity, 1

r
3

√

1 + 3 cos2 ψ is denoted
by d̄,

- Page 116, line 26 should read:
(neutral) wire a′b′ away from the (excited) wire ab at rest, one could do the

opposite, and the induction

- Page 117, line 30 should read:
Here, u′ and α′ are to be written v and ds, in accordance with Neumann’s

notation; hence the theory

- Page 117, line 32 should read:

Eds = −avDds ,

- Page 125, line 15 should read:
cosβ = cosβ′ = 0; finally, for the 6th and 7th terms, which are proportional

to α1α
′

1
and to α2α

′

2
,

- Page 125, line 18 should read:

±
ai

2
·
α1α

′

2

r
cosϑ′ cotϑ′ and ±

ai

2
·
α2α

′

1

r
cosϑ′ cotϑ′ ,

- Page 136, line 26 should read:
−

1

2
mαe were to flow with velocities −v and +v in the direction in which

current element α′

- Page 139, line 6 should read:
straight line joining them is allowed. Finally, as happens in Section 29, in

place of one element,

- Page 139, line 14 should read:

r = ρ2 ,
dr2

dt2
= 4ρ2

dρ2

dt2
,

d2r

dt2
= 2ρ

d2ρ

dt2
+ 2

dρ2

dt2
.




