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We calculate the surface charges, potentials and fields in a long
cylindrical coaxial cable with inner and outer conductors of finite
conductivities and finite areas. It is shown that there is an electric field
outside the return conductor.
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1. Coaxial Cable

The possible existence of a second order motional electric field arising
from steady conduction currents and its implications to the theory of
relativity has been discussed recently by a number of authors: [1-7]. This field
is of the second order in v4/c, v, being the drifting velocity of the conduction
electrons, and is supposed to exist outside the wire. However, most of these
authors do not consider the first order coulombian electric field (proportional
to the current or to the drifting velocity) which should arise outside resistive
wires carrying a steady current. As this first order electric field is relevant to
the interpretation of some experiments, we decided to consider it here in a
particular geometry. We discussed the second order electric field in [8],
[Section 6. 6] [9] and [Section 5. 4] [10].

Before discussing the first order electric field we want to call attention to
Ivezic’s work: [11], [12], [13] and [14]. Although discussing the second order
electric field, he was aware of the coulombian electric field. According to him
the second order field might be due to a relativistic contraction of the average
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distance between moving electrons as ¢ z
. . . A
compared with their average distance
when there is no current. He could then
explain several experiments based on this
approach. In this connection it would be
relevant to analyse Selleri’'s recent
proposal of a new set of spacetime
transformations between inertial systems
in order to see if this new approach might t
give theoretical support to Ivezic's ideas |
when there is curvature in the wires (and :
then centripetal acceleration of the |
electrons) and explain the same set of I
experiments, [15] and [16]. Selleri’s L
transformations  don’t  present the
discontinuity between accelerated and L
inertial reference frames which exists in
Einstein’s theory of relativity.

In the study of dc and low frequency
ac circuits, the following subjects are seldom analysed in electromagnetic
textbooks: electric fields outside the conductors, surface charges on the wires
and energy flow from the sources to the conductors where energy is
dissipated. There are two main reasons for this: (I) The scalar electric potential
is the solution of Laplace’s equation with frequently complicated boundary
conditions; and (II) the solution of elementary circuits, based on Ohm’s law, is
obtained by the application of Kirchhoff’s rules. As these rules utilize only the
values of current and potential inside the conductors, the discussion of the
subjects listed above is unnecessary. However, some authors have treated
these topics in the past few years: [17,18] and references therein. The case of a
long coaxial cable has been treated by Sherwood, [18], Marcus, [19],
Sommerfeld, [20, pp. 125-130] (German original from 1948), Griffiths, [21, pp.
336-337] and a few others. All of these works considered a grounded return
conductor either with an infinite area or with an infinite conductivity. Our
main contribution in this work is to generalize these assumptions considering
a return conductor with finite area, finite conductivity and with a variable
electric potential along its length. We calculate at all points in space the scalar
and vector potentials, the electric and magnetic fields and analyse the energy
flow by means of Poynting vector. We also calculate the surface electric
charges.

The geometry of the problem is that of Fig. 1. A constant current I flows
uniformly in the z direction along the inner conductor (radius 2 and
conductivity g7), returning uniformly along the outer conductor (internal and

/2

/2

Figure 1. Geometry of the problem.

external radii b and ¢, respectively, and conductivity g3). The conductors have
uniform circular cross sections and a length 1 >> ¢ >b > a centered on z = 0.
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The medium outside the conductors is considered to be air or vacuum with
£=¢g, =885x 1072 C*N'm™ The potentials at the right extremities (z = 1/2)
of the inner and outer conductors are maintained by a battery at the constant
values ¢4 and ¢p, respectively. The potentials at the left extremities (z = —1/2)
of the outer and inner conductors are maintained by another battery at the
constant values ¢c and ¢, respectively. Instead of two batteries, the solution
presented here can also be applied to the situation of one battery at one
extremity and a resistor at the other extremity.

In the previous works quoted above the authors considered only a
particular case: a grounded outer conductor (¢c = ¢; = 0) with an infinite
area (Sommerfeld, ¢ — o) or with an infinite conductivity (Griffiths, g5 — o).

We are interested in calculating the potentials and fields in a point
7 =(p, ¢ z) such that 1>>p and 1>> |z]|, so that we can neglect border
effects (p, ¢ and z are the cylindrical coordinates). All solutions presented here
were obtained in this approximation. With this approximation and geometry
we then have the potential as a linear function of z, [22]. In order to have
uniform currents flowing in the z direction along the inner and outer
conductors, with a potential satisfying the given values at the extremities, we
have:

¢A_¢DZ+¢A+¢D, (1)
Y4 2

p(b<p<c @z)= ¢B;¢Cz+¢c;r¢3 2)

where, by Ohm’s law (R; and R3 being the resistances of the inner and outer

p(p<a, ¢z)=

conductors, respectively):
i

$i—¢a= Ril=—7, ®3)
ﬂ'glﬂ
/1
o= RI=— & 4
¢B ¢C 3 3(C2 —bz) ( )

In the four regions (p <a,a < p <b, b < p <cand c < p) the potential ¢
satisfies Laplace’s equation V2¢ = 0. The solutions of this equation for p < a
and for ¢ < p in cylindrical coordinates satisfying the boundary conditions
above, Egs. (1) and (2), and imposing the value ¢ (p =1, ¢, z) = 0 to complete
the boundary conditions, yield:

¢(a£p$b,(p,z)={¢A ~¢p+Pc—05 , Patdp—dc —¢3Tn(b/p)
1 2 In(b/a)
+|:¢B —¢c , 9c +¢B:|
/ 2

®)
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_[¢s—0c _, 9c+¢;5]In(¢/p)
A< p.9:2) _[ T } n(¢/c) ©)
The electric field E=-V¢ is given by
E(p<a,¢,2)=%2, @)
7 | @a—Pp+Pc—P5 |, Pat+dp—0c—0¢p 1 p
E(a<p<b,(p,z)—[ ; z+ 5 }ln(b/u) ) 8
4 $c=95  Pp—Pa+Ps—¢c In(b/p) 5 s
14 0 In(b/a)
E(b<p<c,¢,z)=@2, )
= |9 —0c_ Oct+dp 1 p
E(C<p,¢),z)—|: , z+ 2 Ln(//c)p 10
005 In(1/p) o
¢ In(t/c)

Egs. (5) and (8) had been obtained by Jefimenko, [pages 509-511] [23], who
also discussed the flow of energy in this system.
The surface charges densities o along the inner conductor (p = a, ¢, (z))

and along the inner and outer surfaces of the return conductor (p = b, g, ()
and p = ¢, 0, (z)) can be obtained easily utilizing Gauss’s law:

fE-da L (1)
S g,

where da is the surface element pointing normally outwards the closed
surface S, Q is the net charge inside S. This yields o,(z) = & Exp(p — 4, 2),
op(z) = = &E2p(p = b, 2) and 04(2) = & Egp(p —> ¢, z), where the subscripts 2p
and 4p mean the radial component of E in the regions a < p<band c < p,
respectively. This means that:

& 1 |:¢A_¢D+¢C_¢BZ+¢A+¢D_¢C_¢B:|, (12)

% In(b)a) / 2
oulz)=-70.(2), (13)
g, 1 Pg—@c | Pc+op
o.(z)= ¢ I (1]0) [ J z+ 5 } (14)

Jefimenko obtained only Eqgs. (12) and (13), but not (14). This last one was
calculated here for the first time.
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An alternative way of obtaining ¢ and E is to begin with the surface
charges as given by Egs. (12) to (14). We then calculate the electric potential ¢

(and E = -V¢) through

(15)

L3

o,1

da7
| .

Here the sum goes over the three surfaces. We checked our results with this
procedure.
We can calculate the vector potential utilizing

_”.[ |r_r| (16)

where p, = 4% 107 kg m C2and dV’is a volume element. With the
approximation above we obtain:

2 2
- wl| p In(c/a)—b*In(b/a) |,
A(p<a,op, , 17
(p=apz)= 271{211 c? - b2 N 17)
2 2
- u,1| c*In(c/p)-b*In(b/p) 11|,
A(aSpr,{D,Z):gI: CZ_bZ —E z, (18)
2
y pol | c*In(e/p)  c2—p* |
Alb<p<c,p,2)= - , 19
(b<p<e,0,2) 27[{ s Zcz_bz)z (19)
Alc<p,9,2)=0. (20)

The magnetic field can be obtained either through the magnetic circuital
law §]§ -d¢=p,I, or through B=VxA. Both approaches yield the same

result, namely:

B(p<a,p,z)= D, 21
(p<a,9,2) ¥ (21)
B(uSpr,(p,z)=ﬂo—1(p, (22)
2z p
fol ?=p® ¢

Blb<p<c,pz)=t2-"—E Y 23
(b<p<cpz) 27 c2-b* p )
B(c<p,0,2)=0. (24)

This completes the solution of this problem.
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2. The Symmetrical Case

We now consider two equal batteries symmetrically located on both
ends, such that ¢; = -¢4 = ¢; and ¢p = — ¢c = ¢3. In this case the potential is
simply proportional to z without any additive constant. We can then write it
as ¢ (p, @, z) = R(p)z, where R(p) in terms of the currents and conductivities is
given by
1

R(pSa)=—ﬂg1a2 ’ (25)
_ I 1 |In(b/p) In(p/a)
R(as,)sb)_—;ln(b/a)[ paye: —gg(cz_bz)}, (26)
I
R(bSpSC)—m, (27)
R(e<p)=2 In(t/p) 1 (28)

oz In(//c) g3(c2 —bz) '

A plot of ¢(p) = R(p)z versus pis given in Figure 2. In order to obtain this
plot we utilized the following data: a = 0. 0010 m, b = 0.0040 m, ¢ = 0.0047 m,
1=50A, g =57x10°m™? 07, ¢, =2x10° m™ @ and | = 1 m. There are
two curves, one for z = 0.003 m and another for z = 0.006 m. We see that the
potential is constant for 0 < p<a, increases between a and b, is constant

between b and c, decreasing for p>c. As E = -V¢, the z component of E is
given by E, = —R(p), so that its behaviour is the same as that of ¢(p)/z with an

overall change of sign. The point where ¢(p) = R(p) = 0is p = & where
§12%1In(a)+ g3(c? = b?)In(b)

s=ex g1a2+g3(c2—b2)

(29)
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Sommerfeld or Griffiths’s solutions are recovered taking g3(c* - b%) — e,

such that £ > b, o(z) > 0, E(p>b)—0 and ¢(p =b)— 0 for any z. The
opposite solution when the current flows in an inner conductor of infinite
conductivity, returning in an outer conductor of finite area and finite
conductivity is also easily obtained from above, yielding £ — a, E (p < a) — 0
and ¢(p <a) — 0 for any z.

In Figure 3 we plotted the equipotentials with the same data as above, in
SI units. The values of the surface charges at z = 0.001 m obtained from Egs.

(12) to (14) are: 0, = —6.54174x 1072 Cm™2, o, = 261670 x 10"} Cm™ and

0, = 449027 x 107> Cm™. As the surface charges vary linearly with z, it is
easy to find their values at any other distances from the center of the cable.

3. Discussion

The distribution of charges given by Egs. (12) to (14) shows that the
facing surfaces p = a and p = b work as a set of capacitors. That is, the charge
at the position p =g, z, in a length dz, dq,(z) = 27 a dz 0,(z), is equal and
opposite to the charge at the position p =1, z, in the same length dz: dg,
(z) = 27 dzoy(z) = —dg,(z). The field outside the coaxial cable depends then
only on the surface charges at the external wall of the return conductor, o (z):

Hc<p,p,z)= LO'C (z)lnﬁ . (30)
€, p

The flux of energy from Poynting vector S = E x B/ M, is also represented

in Figure 3. That is, the lines of Poynting flux lie in the equipotential surfaces,
as had been pointed out by [17] and [18]. The classical view is that the energy
comes from the batteries (not represented in Figure 1). In Figure 3 it would
come from the top of the graph moving downwards towards decreasing
values of z, along the equipotential lines. It would then enter the conductors
and move radially in them. In the inner conductor it would dissipate as heat
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while moving radially from p = a to p = 0, while in the outer conductor it also
moves radially from p = b to p = ¢, being completely dissipated as heat along
this trajectory. The only region where the lines of Poyting flux do not follow
the equipotential surfaces is for p > c. In this region there is no magnetic field.
Although we have obtained an electric field and equipotential lines here, the
Poynting vector goes to zero.

Beyond the generalizations of the previous works, the main nontrivial
conclusion of this analysis are Egs. (10), (20) and (24). They show that
although there is no vector potential nor magnetic field outside a coaxial
cable, the electric field won’t be zero when there is a finite resistivity in the
outer conductor. As the previous works quoted above considered only the
case of a return conductor with zero resistivity, this aspect did not appear.
The existence of the tangential component E, of E outside the coaxial cable
might be guessed from Maxwell’s equations. That is, as there is a resisitivity in
the outer conductor of finite area and finite g, there must be an electric field at
b<p<c balancing Ohm’s resistance in a dc current. As the tangential
component of the electric field is continuous in any boundary, this means that
E, must also exist outside the external conductor. Although this may seem
trivial, it is almost never mentioned for the case of a coaxial cable. More
important than this is that we have shown that there will also exist a radial

component of E , Ep given by Eq. (10). Although it is inversely proportional to
p, it will have a reasonable value close to the cable and in principle might be
measured in the laboratory. To our knowledge the first to mention this
external electrical field outside a resistive coaxial cable was Russell in his
important paper of 1983, [24]. Our work presents a clear analytical calculation
of this field, which Russell could only estimate. Our paper might be
considered the quantitative implementation of his insights.
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