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Summary. — The classical configuration space of a system of identical
particles is examined. Due to the identification of points which are
related by permutations of particle indices, it is essentially different,
globally, from the Cartesian product of the one-particle spaces. This
fact is explicitly taken into account in a quantization of the theory.
As a consequence, no symmetry constraints on the wave functions and
the observables need to be postulated. The two possibilities, corresponding
to symmetric and antisymmetric wave functions, appear in a natural
way in the formalism. But this is only the case in which the particles move
in three- or higher-dimensional space. In one and two dimensions a
continuum of possible intermediate cases connects the boson and fermion
cases. The effect of particle spin in the present formalism is discussed.

1. - Introduction,

In the quantum description of a system of identical particles, the indistin-
guishability of the particles has consequences which deeply affect the physieal
nature of the system. Usually, the indistinguishability is expressed in the theory
by imposing symmetry constraints on the state functions and on the observables.
Thus, the state functions can be either symmetric or antisymmetric with respect
to the interchange of two particle co-ordinates, and all the observables must be
invariant under such an operation. The physical consequences of this postulate
seem to be in good agreement with the experimental facts. However, the
theoretical justification of the postulate, as found, for example, in standard
textbooks (), often seems unclear, and several authors have attempted a

(*) A. MEessiaH: Quantum Mechanics, Chap. XIV (Amsterdam, 1962).
(3) L. I. ScHIFF: Quantum Mechanics, Chap. 10 (New York, N.Y., 1968).
(®) E. MERzZBACHER: Quantum Mechanics, Chap. 18 (New York, N.Y., 1961).
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more careful analysis (+¢). It seems to us, however, that no completely satis-
factory discussion on the consequences of indistinguishability, in the context
of nonrelativistic quantum mechanies, has emerged so far.

The problems start with the introduction of particle indices. This step
brings elements of nonobservable character into the theory and tends, there-
fore, to make the discussion more obscure. Thus, the meaning of the particles
being identical is often explained by saying that the physical situation is un-
changed if the particles are interchanged. This is expressed by the equation

I'P(p(xly ) xN))|2 = |p(x1, -0ry xx)|2,

where p is any permutation of the N particle co-ordinates. The above state-
ment has correctly been criticized (*) by pointing out that the word «inter-
change » here has no physical meaning. The two quantities in the equation
have no separate meaning, and the equation, therefore, at most reflects the
redundancy in the notation, i.e. that the same particle configuration can be
described in different ways. In the present work we want to present a for-
mulation, which seems to be conceptually more simple, in which this redun-
dancy in notation is eliminated in a very natural way.

First we discuss, in sect. 2, the classical description of a system of identical
particles, starting with the consequences of indistinguishability in classical
statistical mechanics. We go on and study in detail the classical configuration
space. Our point is that the configuration space of a N-particle system is
not the Cartesian product of the single particle spaces, but rather an identi-
fication space which has, in fact, a different global topological structure, al-
though it is locally isometric to the product space.

The quantum description is discussed in sect. 3. It is introduced in terms
of quadratically integrable functions defined on the classical configuration
space of the system. Since the indistinguishability of the particles is taken
into account in the definition of the configuration space, no additional restrie-
tion, corresponding to the symmetrization postulate, is put on the state functions.

' The quantization is studied in detail for a two-particle system in one-,
two- and three- or higher-dimensional Euclidean space, with an emphasis
on the physical effect of the global curvature of the configuration space. It
is shown how a translation ean be made to the traditional description in terms
of complex wave functions on Euclidean space. The restriction on wave func-
tions, to be either symmetric or antisymmetric, then appears in a natural way
from the formalism, without having to be introduced as an additional cun-
straint. This is, however, only the case provided space is at least three-dimen-

() A. M. L. Messiag and O. W. GREENBERG: Phys. Rev., 136, B 248 (1964).
(®)) M. D. GIRARDEAU: Phys. Rev., 139, B 500 (1965).
(®) R. MirMAN: Nuovo Cimento, 18 B, 110 (1973).
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sional. In one and two dimensions it is shown that also intermediate cases
between boson and fermion systems are possible.

In sect. 4 we discuss how to modify the formalism in order to take particle
spin into account, and which further restriction is implied by the spin-statistics
relation. Finally, we give in sect. 5 a brief outline of how our discussion on the
two-particle case can be generalized to a system of N particles.

2. — Identical particles in classical mechanics.

As a preparation for the next section, on quantization, we will discuss, in
this section, how the classical deseription of a many-particle system is affected
by the indistinguishability of the particles. We want to argue that the proper
classical description of a system of identical particles must be the basis for its
quantization.

2'1. Gibbs’ paradox. — The «principle of indistinguishability of identical
particles », together with its effects, is usually considered to be one of the
characteristics of quantum mechanics as opposed to classical mechanics. However,
the principle is older than quantum mechanies. It was recognized by GIBBS
and it is, in fact, the root of his entropy paradox in classical statistical me-
chanics (7). In order to correctly calculate the zero-entropy change in a process
of mixing of two identical fluids or gases (at the same temperature ete.), GIBBS
postulated that states differing only by permutations of identical particles should
not be counted as distinct. LANDE has argued that this postulate is not only
sufficient, but also necessary to explain the zero-entropy change (?).

‘We would like to illustrate this point by a simple example, and refer to the
literature for more general treatments (-1°). Consider a system of N particles
of mass m confined to the volume V and with a total energy E. Its entropy 8 is

(1) S(N, E, V) =k In (w/w,),

where k is Boltzmann’s constant, w is the available volume in phase space
and w, is an (arbitrary) scale factor.

By now we ignore the identical-particle effects. As far as the interactions
between the particles do not limit the phase space volume, this is a product
w=uv of the co-ordinate space volume v = V¥ and the momentum space

() J. W. GiBBs: Elementary Principles in Statistical Mechanics, Chap. XV (New
York, N.Y., 1960).

(®) A. LANDE: New Foundations of Quantum Mechanics (Cambridge, 1965), p. 68.
(®*) D. HESTENES: Amer. Journ. Phys., 38, 840 (1970).

(1) T. H. BoYER: Amer. Journ. Phys., 38, 849 (1970).
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volume u, which is the « area » of the surface of a sphere of radius v2mkE in a
3N-dimensional space,

(2) U= Aw(sz)(SN—l)/z .
The constant 4, is determined by the recursion relations
(3) A"+2= (2n/”)Aﬂ1 -A1=2, -Ag= 27!,

so that, when 7 is large, we have approximately

nj2

4) InA,~ /2)Inz— YIni~ (nf2)(—1In(n/2) +Inz+1).
Thus we find
(5) S(N, E, V) = k1n (wjw,) ~ Nk1n (CV(E/N)Y)

with C as a constant independent of N, B and V.
However, this formula is wrong because it implies an entropy increase of

(6) S(2N,2E,2V)—28(N, B, V) ~ 2Nkn 2

when two such systems are allowed to mix. The way of correcting it is to note
that, if all particles are identical, each microstate of the N-particle system is
counted N! times in the above calculation of the phase-space volume. The
correct volume is, therefore, w'= w/(N!), giving the entropy

(7) SN, B, V)=Fkln (w'|w,) ~ NkIn (C'(V/N)(E/N)})
and, thereby,

(8) 8'(2N, 2E,2V)—28'(N, E, V) ~ 0.

The above discussion concerns the macroscopic description of a system of
identical particles, but it should be kept in mind when turning to the micro-
scopic description.

2'2. The configuration space of a system of identical particles. — In what
follows we denote by X the co-ordinate space of a one-particle system, and we
assume N identical particles to be moving in this space. The possible con-
figurations of the N-particle system are usually described as the points in X%,
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which is the Cartesian product of the one-particle spaces. However, since the
particles are identical, no physical distinction can be made between points
in X¥ that differ only in the ordering of the particle co-ordinates. Thus, the
two points in X¥

x = (%;,..., xy) (%€ X for i=1,..., N),

9

x'=px)= (%145 o0 X)) 5

where p is a permutation of the particle indices, both describe the same physical
configuration of the system. Therefore the true configuration space of the
N-particle system is not the Cartesian product X7, but the space obtained by
identifying points in X~ representing the same physical configuration. The
Physical significance of such an identification of points is illustrated by Gibbs’
paradox, as discussed above. We denote the identification space by X¥/8y,
since it is obtained from X¥ by «dividing out » the action of the symmetric
group Sy. Since Sy is a discrete, indeed finite, transformation group in X¥,
the space X¥/8y is locally isomorphic to X¥, except at its singular points. The
difference between the spaces lies in their global properties, more precisely
in the singularity structure of X¥/§8,. Whereas X¥ has only regular points
when X is regular, those points which correspond to a coincidence of the posi-
tions of two or more particles are singular points in X¥/8,.

The fact that the configuration space of the N -particle system is X¥/8,,
and not X% has usually been overlooked, either unconsciously or deliberately.
As far as the microscopic description of a clagsical many-particle system is
concerned, the reason is easy to understand. The dynamics of a classical system
involves only the local properties of the configuration space, so that the choice
between X¥/8y and X¥ is largely a matter of convenience. To be more precise,
the time evolution of the classical N-particle system is a continuous curve
in X¥/Sy iwith time ¢ as a parameter. The one curve in X¥[8y corresponds
to N'! curves in X¥. But if X is many-dimensional, the N ! curves in X¥ will
not normally cross, thus one is free to pick one single continuous curve in X* at
random and call it the time evolution of the system. Iftwo or more curves in
X¥ cross at a given time, that is if two or more point particles collide, then it
might still be possible to define a unique curve through the collision point by
requiring continuous derivatives. Thus, one is normally able to lift the iden-
tification of points in X¥ by following the continuous time evolution. What
makes this lifting possible is that Sy is a discrete transformation group, while
the time evolution is continuous.

The quantum case is quite different, as the global properties of the con-
figuration space then become essential. We discuss this point in the next section,
assuming X to be Euclidean, and show there that the usual symmetry con-
straints on wave functions defined on X¥ can be derived as consequences of
the topological difference between X¥/8y and X~
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Now we want to study in more detail the configuration space X%|8y for
various one-particle spaces X. Assuming X to be the n-dimensional Euclidean
space &,, we can introduce the centre-of-mass (c.m.) co-ordinate

N
(10) X=N1>x,€6,,
i=1
where x,..., xye&, are the co-ordinates of the N particles. The c.m. co-

ordinate is invariant under Sy and, obviously, the N-particle space is a Car-
tesian product,

(11) EY |8y = EpXr(n, N),

of the ¢.m. space &, and some «relative » space r(n, N) representing the nN — n
degrees of freedom of the relative motion of the particles. The space r(n, N)
is obtained from the Euclidean space &,y_, by identifying points connected
through an element from Sy.

Let us limit our discussion to the case of a two-particle system, N = 2.
The relative space r(n, 2) is the result of an identification of the points x = 2, — x,
and —x = x,— x, in &,. The identification space has one singular point
x = 0, corresponding to a coincidence of position of the two particles. When
its singular point is included, r(n, 2) is simply connected. If we instead ex-
clude the singular point 0, we are left with a Cartesian product,

(12) r(n, 2)— {0} = {0, oo} X Po,s

of the positive real line (0, co), giving the length |x| of a vector x in &, and
the (n — 1)-dimensional (real) projective space #,_, for the direction + xf|x|
of x. &P, is a point, &, is a circle which is infinitely connected, whereas P
for n>3 is doubly connected.

Since (3, 2) without its singular point is doubly connected, one might be
led to suspect a relation between the topology of the configuration space and
the familiar symmetry or antisymmetry conditions on wave functions. We
take up this point in the next section. Note here the essential difference among
the one-, two- and three- or higher-dimensional Euclidean spaces. We will
look more closely at these three cases.

The very simplest case is when the two particles move on a line, that is
N =2 and X = &,: In some respect this is a special case as compared to a
higher-dimensional space, since one-dimensional particles cannot interchange
positions without passing through each other. The configuration space is
obtained by identifying pairwise the points (@, 2,) and (2, ;) in & = &,.
Thus, it is the half-plane with, say, @, >,, as illustrated in fig. 1. The identi-
fication is singular along the line x, = a,.
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Consider the free-particle motion. A coincidence of position of the two
particles is described as a reflection from the « wall » of the half-plane. Ap-
parently, the momentum is not a constant of motion. However, this is a matter

v/
/ X={X),X;)
vz iy, )

Fig. 1. — #}/8, is the configuration space of two identical particles on a line,
illustrated here by the nonshaded half-plane. We also illustrate how a tangent vector
v = (v, v;) at some point x = (r,, x,) is parallelly transported along a curve reflecting
from the boundary z, =uz,.

of definition, since we can choose to define parallel transport of a tangent vector
v along a curve in the half-plane by the rule that the vector component normal
to the edge x, = x, is inverted every time the curve reflects from the edge.
Thus, the parallel transport of a tangent vector around a closed curve may give
a vector different from the original one, if the curve is reflected from the edge.
This kind of definition may seem artificial here, but becomes much less
artificial when we go to the higher-dimensional one-particle spaces.
The configuration space of two particles moving in &, is

(13) &8, = &, x7(2, 2).

The relative space r(2, 2) is the plane &, with points x and — «x identified. This
space is seen, from fig. 2, to be a circular cone of half-angle 30°. A cone is globally
curved, although it is locally flat everywhere except at the singular vertex.
This somewhat peculiar property manifestitselfin the parallel transport of tan-
gent vectors. To see how a tangent vector v is parallelly displaced along curves
on the cone, we may map back into the plane. The mapping is isometric (by
definition), and parallel transport on the cone becomes the familiary parallel
transport in the plane. See fig. 3. Note that a tangent vector v at the point
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— x e &, is identified with the vector — v at x. Therefore the parallel trans-
port around a closed curve on the cone £(2, 2) changes v into (— 1)™ v, m being
the number of revolutions of the curve around the vertex.

-

Fig. 2. — The relative space 7(2, 2) of two two-dimensional identical particles is the
plane with pairs of opposite points x and — x identified. The identification may be
effected by cutting the plane along a line ! from the origin 0 and then folding it into
a circular cone of half-angle 30°. A circle ¢ in the plane centred at 0 then revolves
twice around the cone.

The above argument for n = 2, illustrated in fig. 3, is seen to be more
general. Thus, for X =¢&,, n=1, 2, 3, ..., there are two classes of equivalent
closed curves with respect to the parallel transport of a tangent vector » in
the relative space r(n,2). One class does not change v, while the other class
changes v into — ». A closed curve of the first class connects a point (x,, x,) € £2
continuously with itself, while a closed curve of the second class connects
(%,, x,) continuoysly with (x,, x,), in &2.

Yy
v
0 x,
e
c, — 'Y
/v

Fig. 3. — The parallel transport of a tangent vector v around two™ different closed
ourves C; and C, on the cone of fig. 2. When the cone is mapped isometrically into
the plane, 0; becomes a closed curve in the plane and, therefore, leaves v invariant.
0, is a curve from the point x in the plane to —x. The vecjor v at —=« is, however,
the same vector as —v at x, through the identification. Hence the parallel transport
around O changes v into —wv.
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The physically most interesting case is of course X — &,. To illustrate
7(3, 2) we note that &,, the projective plane, is the surface of a 3-dimensional
sphere with diametrically opposite points identified. Equivalently, &, is the
northern hemisphere with opposite points on the equator identified, fig. 4.

Fig. 4. - #,, the projective plane, pictured as the northern hemisphere with opposite
cquator points identified. It is doubly connected. €, 0, and O; are closed curves.
0, can be continuously deformed into a point, U, cannot be so deformed, but €2 can.
07 is the closed curve C, passed twice. O, may be one intermediate stage in the continuous
deformation of O} into a point.

In 7(3, 2) = <0, oo} X P,, a tangent vector v is changed into — v by the parallel
transport around a closed curve which is a closed curve in 2, connecting op-
posite points on the sphere. Such a curve encircles the singular point x =0
once. Notice that a closed curve encircling the singularity twice can always
be continnously contracted to a point without having to pass through the sin-
gular point. This is in contrast to the two-dimensional case, where curves
revolving a different number of times around the vertex of the cone cannot
be deformed into each other without passing through that point. In other
words, the relative space minus its singular point is doubly connected in the
three-dimensional case, but is infinitely connected in the two-dimensional case.

The Euclidean case is rather exceptional in that the centre-of-mass co-
ordinate splits off in a trivial way. Let us consider two particles moving on
a circle C as a final example of the difference between the spaces X¥ and X¥ /8x.
If the particles are not identical, the two-particle space is the torus 02, If the
particles are identical, the two-particle space is instead a Mébius band! To
see this, we introduce the centre-of-mass angle ¢ and the relative angle ®,
fig. 5. The rectangle in the (¢, p)-plane defined by 0<d<n and 0<p<2n
includes all possible configurations. And all the points in the rectangle re-
present different configurations, except for the left and right edges where 0, @)
and (m, 27 — @) both represent the same configuration. Because of this iden-
tification, the rectangle becomes a Mgbius band, as can be seen from fig. b.
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Fig. 5. — Two identical particles on a circle . By inspection, one sees that the rectangle
[0, %] X [0, 27] in the (¢, g)-plane covers all possible configuration, and that the boundary
points (0, ) and (7, 22—¢) both represent the same configuration. Hence the rect-
angle is twisted into a Mobius band. The Mébius band has one edge, p =0 or ¢ = 27,
representing the coincidence of the two particles.

3. — Quantization,

In the previous section we have studied the character of the configuration
space of a system of identical particles. Now we want to examine the quantum
description of the system as based upon this understanding of the classical case.

Let us first stress the fact that we have no need for a symmetrization pos-
tulate in this formulation, since the redundancy in notation does no longer exist.
Conceptually this would seem desirable. We automatically avoid spurious
problems connected with the unphysical elements of the theory. To take an
example, it has been argued (%) that it is unreasonable to impose a particular
symmetry on the wave function of two electrons, say, that are separated by a
large distance (why should electrons in different galaxies be correlated in this
way?). Such a problem does not appear in our formulation, as we have no
symmetrization postulate. Furthermore, the configuration space of the two
identical particles is locally isometric to that of two nonidentical particles,
except at the singularity. And the difference in global topology of the two
spaces does not show up, unless we study a situation where the particles may
physically interchange positions in the course of time evolution. This means
that, for two particles being located far apart, it is of no importance to the
physical situation whether they are identical or not.

On the other hand, there is no obvious way to quantize a theory with a
curved configuration space, which even has singularities. We will show here
what seems to be the simplest way, trying not to impose unnecessary restric-
tions on the theory. We follow the Schrédinger quantization scheme and as-
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sume that the state of the system is given by a quadratically integrable func-
tion defined on the configuration space. The problem is then to define the free-
particle Hamiltonian, by taking properly care of the physical effects of the sin-
gular points. An interaction between the particles is to be described in the
usual way, by adding a potential to the free Hamiltonian. To exhibit the
special nature of three-dimensional, physical space in this context, we want
to examine the three cases of two identical particles moving in either one, two
or three dimensions. We consider here only Euclidean one-particle spaces.

3'1. Two identical particles moving on a line. — In one dimension, the nature
of the singularity is somewhat different from what is the case in two or three
dimensions. The two-particle configuration space is the flat half-plane, fig. 1,
and its singularity is just a boundary. It is, therefore, natural to agsume a free-
particle Hamiltonian of the usual form and to describe the effect of the sin-
gularity by some boundary condition. In terms of a c.m. co-ordinate
® = (2, + @,)/2 and of a relative co-ordinate z = |#, — @,| >0, the Hamiltonian is

fiz (o2 02 % o A 02
= 1= (Gt )~ e
where m is the particle mass.

Usually, when a particle is constrained to move within a limited volume,
one requires all wave functions to vanish on the boundary of the volume.
Clearly this is a too strong requirement in the present context. If the wave
functions all vanish for z =0, the interpretation must be that the particles
form a fermion system. The wave functions of a boson system, on the other
hand, are characterized by vanishing normal derivatives at the boundary
2=0. These two special cases can, however, be considered as reflecting the
more general requirement of local conservation of probability on the boundary
of the configuration space. Local probability congervation implies that the
normal component of the probability current must vanish, at any given boundary
point, that is

%
(15) y* (=, 0) 915 (z, 0)—'%’2— (@, 0) p(x, 0) =0

f

for any # and any wave function y(x, 2). This constraint on the wave functions
is sufficient to ensure global conservation of probability and, hence, to make the
Hamiltonian of eq. (14) Hermitian. Physically, it means that the system is
totally reflected against the boundary of the configuration space.

The general solution of eq. (15) is the boundary condition

0
(16) - = @, 0) = ny(a, 0)
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with # as a real parameter. As a consequence of the superposition principle, n
must be independent of the wave funection ¥, thus it is a characteristic prop-
erty of the system. From translational symmetry it also follows that 5 cannot
depend on #. The value of n describes the many-body nature of the system.
A boson system has 5 =0, while 77'=0 corresponds to a fermion system.
There seems to exist, however, a continuous range of possible intermediate
values of 5, corresponding to particles that are neither bosons nor fermions.
Note that there is a superselection rule separating systems with different
values of 7.
The eigenfunctions of the Hamiltonian (14) may be defined as

(x7) Pur(®, 2) = exp[inx] (cos kz + -;GZ sin kz)

with k> 0. A real wave function describes the relative motion and it is a stand-
ing wave because of reflection against the boundary z = 0. The parameter 7
has a physical significance through a time shift of the reflected wave. A «sta-
tionary phase » argument (*?) gives, for the time shift of a wave packet peaked
at the relative momentum #,

mn
1 =
s) " Rk + )
The time shift vanishes if and only if =0 or n~1=0.
In addition to the eigenfunctions (17) there exists another one if 71 <<0,

(19) »(, 2) = exp [imglln—, exp[ye],

describing a bound state of the two-particle system. There is only one bound
state like this for a given 5. As the eigenfunction shows, the effect of the
boundary condition here corresponds to a zero-range attractive force between
the particles.

3°2. The two- and three-dimensional cases. — When we go beyond the one-
dimensional case, the configuration space is no longer flat, even if all the sin-
gular points are simply excluded. The presence of singularities is revealed
through a global curvature, which has been studied in sect. 2 in terms of the
parallel transport of tangent vectors around cloged curves. In a similar way,
in order to discuss the significance of the singularities for the quantum descrip-
tion, we introduce the concept of parallel displacement of state vectors.

(1) C. ECEART: Rev. Mod. Phys., 20, 399 (1948).
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First, we introduce for each point x in the configuration space a corre-
sponding one-dimensional complex Hilbert space. k.. (In modern mathematical
terminology h, is a «fiber».) And we assume the state of the system to be
described by a continuum of vectors W(x) €h, (a «cross-section of the fiber
bundle »). That is, ¥ is assumed to be a single-valued function over the con-
figuration space, whose function value W(x) at the point x is a vector in h,.
If a normed basis vector y, is introduced in each space h_, then the complex-
valued wave function p(x) is just the co-ordinate of the vector W¥(x) relative
to that basis:

(20) ¥(x) = p(x) %, .

Thus, the funetion y(x) will depend on the set of basis vectors, or gauge {x.},
and a change in this set causes a gauge transformation of the second kind:

(21) p(x) — p'(x) = exp [ip(x)] p(x).

The concept of parallel displacement of vectors from h, is needed in order
to define a gauge-invariant differentiation of the functions p(x). Let us denote
by P(x’, x): h,— h,. the linear operator which transports parallelly the vectors
of h, into k., along some continuous curve joining x to x’. Parallel displacement
in general may depend upon the curve from x to x’, but we assume that the
infinitesimal parallel displacement P(x 4- dx, x) from x to x - dx is uniquely
defined. P(«', x) is assumed to be always a unitary operator. Finally, we as-
sume that it is possible, at least locally, to choose the gauge {y,} in such a way
that the rule of infinitesimal parallel displacement is of the form

(22) P(x + dx, x) 1, = (1 + 1d2* b (%)) Yuyan -

In this gauge, the gauge-invariant diﬁerentiationioperator becomes

0 .
(23) Dk = @‘—1bk(x) .

The functions b, are determined partly by the dynamics of the system
and partly by the choice of gauge {x,}. They must be real so as to make
P(x 4 dx, x) unitary. The gauge-independent quantity

. abl abk
(24) sz='L[Dk’Dl]=5;,}_éEia
measuring the noncommutativity of the components of the gauge-invariant
differentiation, corresponds to the curvature tensor in the case of parallel
transport of tangent vectors. The form (23) of the differentiation operator is



14 J. M. LEINAAS and J. MYRHEIM

even more well known from the similar formulation, introduced by WEYL (12),
of the quantum theory of a charged particle in a magnetic field. What corre-
sponds there to the antisymmetric tensor f,,(x) is the force field, whose vector
potential corresponds to b.(x).

In the present case, we do not want the « vector potential » b,(x) to describe
a force field. Therefore we assume that f,,(x) = 0 for all x, except for the sin-
gular points of the configuration space where f,, is undefined. As a consequence,
a vector W e h, will be unchanged by parallel transport around any closed
curve which does not encircle the singularity. However, if the vector W is
parallelly transported m times around the singularity, it will be transformed
into P7¥, where P,_ is a linear, unitary operator acting in h_. Since this Hilbert
space is one-dimensional, P, is just a phase factor

(25) P, =exp[i],
where £ is real. Because
(26) P, = P(«', x) P, P(x', x)~' = exp [i£],

the parameter & must be independent of the point x, thus its value is charac-
teristic of the given two-particle system.

The field by(x) has a dynamical effect through the gauge-invariant dif-
ferentiation operator D,. However, in the case we are considering, b, can be
transformed into zero by choosing the basis vectors y, in a particular way. Let
the basis vector ), at some arbitrary point x be given, and define the basis
vectors at all other points by parallel displacements of this A When f,,
vanishes, this procedure defines a gauge where b, vanishes. On the other hand,
when exp [i£] #1, the complex wave function y(x) will be multivalued in this
gauge, since all the basis vectors Axy €Xp [ 98] x,, exp [+ i2£]y,, ete. at «
will be generated by parallel transport of X. around different closed curves.
In this way the dynamical effect of the singularities of the two-particle space
may be transferred from the differentiation operator, and therefore from the
Hamiltonian, to the multivalue character of the wave function y(x).

We will elaborate the two-dimensional case in some more detail to illustrate
the two different approaches. We neglect the c.m. co-ordinates. In the relative
Space we use polar co-ordinates r and ¢, with ¢ € [0, 27). The free-particle
Hamiltonian is given by

hf 02 19 4 Q2
@7) H=——(a 41o, a),

m\er: " 7 or 7% g

(**) H. WEYL: Zeits. Phys., 56, 330 (1929).
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when the wave functions satisfy the condition

(28) w(r, ¢ + 2m) = exp [i] y(r, @) .

The parameter £ tells the many-body nature of the system. For a boson system
we have & =0, and for a fermion system & = z. There is, however, no obvious
reagon to restrict the allowed values of & to these two. And, therefore, as for
particles moving in one dimension, a continuum of intermediate cases connects

fermion and boson cases.
In the other approach we define the single-valued wave functions

29) v, =exp|—i= o] v ),

and the corresponding transformed Hamiltonian is

'~ oxp | —i £ & 1__ Ao 19  4(0 L&Y
(30) H_exp[ 12n¢]Hexp[@2nq)]—— (8r2+rar+r2(8<p+z2n))'

m
To see the physical effect of the parameter £ more directly, we may let the
particles interact through a harmeonic-oscillator potential

(31) Vir) = } mw?r:.
The eigenfunctions of the Hamiltonian H'-+ V may be chosen as
(32) y'(r, p) = exp [ilg] B(r), =0, +1, +2,..,

then the radial function R(r) is determined by the equation

2,12
(33) (dz+1d 4(l+£)2 1mwrz+7%f_7)R:0.

& T rdr e\ 2m) 4 A

This is, apart from the values of I 4- £/2x, the ordinary radial equation of the
harmonic oscillator in two dimensions. If the eigenfunctions are to be quad-
ratically integrable and nonsingular at the origin, the allowed energies are
found to be

1
(34) E=2ﬁw(n+ll+%,+§),  n=0,1,2,...

The value of £ is seen to influence the energy spectrum of the system. In fig. 6
the spectrum is-shown for three different values of &, the boson case E=0,
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the fermion case £ =z and an intermediate case &= %m. As one can see,
the intermediate values of & give a continuous connection between the boson
and the fermion spectrum. :

r
r )
81 4 —
7 A
N 3
~a 6
6 3 -
5 7
3 F
$ S~z .
T~
4 - 2 >
3 e
N i
~a 2
2r 1 -
[ 1 7
0
- = 2n -
§=0 =3 =n

Fig. 6. — The energy spectrum of a two-particle system, in two dimensions, with a
harmonic-oseillator interaction, is shown here for three particular values of the para-
meter £ The value &=0 corresponds to the boson case and &=an to the fermion
case. The degeneracy of each energy level is given in the figure. Note the continuous
transition from the boson to the fermion spectrum.

Now we will turn to the three-dimensional, physical case. As pointed out
in sect. 2, a closed curve encircling the singularity twice in this case can be
continuously contracted to g point without passing through the singularity.
This implies for the operator P, the additional condition

(35) Pi=1,

80 that P, = 1 and only the two values & =0 or & = are posgible. The
basis set {y,} defined by parallel displacement, and therefore also the wave
function y(x), will be single valued when £ = 0 and double valued when & = qn.

The final step necessary to arrive at the traditional formalism with complex
wave functions defined on &2 is a straightforward exercise. Take an arbitrary
point x € &3/8, together with a basis vector X.€h,. Two points (x,, x,) and
(%5, 21) in &? correspond to x, but let us locate the basis vector X, arbitrarily
at (xy, x,). Since a curve in &, defines a unique curve in &4/8, along which
parallel displacement is well defined, we can immediately parallelly transport
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the basis vector ), from (x,, x,) along different curves to all other points of
&;. We gee then that the basis vector P,y,, which is located at the same
point x € &3/8,, becomes located at the point (x,, x,) € &7, which is quite dis-
tinet from (x,, x,). Thus, the local basis vectors defined by parallel displace-
ments become uniquely defined in &7 as opposed to &3/S,. Consequently, the
complex wave functions on & will always be single valued.

The complex, single-valued wave functions on &; defined in this manner
will satisfy the symmetry condition

(36) P(xs, %)) = exp [i€] (21, x2) = £ p(xy, %) .

If & =0, the particles are bosons, if § =z, they are fermions. Within the
formulation we have given above, these two possibilities are singled out in a
natural way and not as the consequence of any symmetrization postulate.
This is the case, however, only when the particles move in three (or more) di-
mensions. As shown by the discussion, in one or two dimensions one could
magine systems intermediate between boson and fermion systems.

4. — Identical particles with spin,

Three-dimensional particles, like electrons, are known to possess so-called
internal degrees of freedom, like intrinsic spin, and this calls for generalizations
of the formalism discussed so far. We will show one way of including spin
which implies only minor modifications to the formalism. Our point of view
is that the position variables alone determine the configuration space. There-
fore the configuration space of N identical particles moving in &; is &7/S,
regardless of the spin of the particles. The spin observables are supposed to
act ag operators in the local Hilbert space A,, which we will, therefore, call spinor
space, associated with each point x € &;/8,. The generalization involved is
that h,, in general, will no longer be one-dimensional.

Consider first a single particle with spin. Besides the position x e &5, also
the spin S, which is a three-component object, is observable. Strictly speaking,
a given component of the spin S corresponds to a given direction in the three-
dimensional tangent space at the point x€ &,;. But &; is a flat space where
the concept of direction has an absolute meaning, and so, when we talk about
the spin S, it is unnecessary to specify the point x to which S belongs.

Observable in the N-particle case are N pairs x,, S of position and spin.
Here the index ¢=1,..., N, used to couple position and spin of the same
particle, has no other significance. The N spin operators S, ..., S® all act
in the same Hilbert space h,. Because they are independent observables, h,
must have the strueture of a tensor product of N identical single-particle spinor

2 = Il Nuovo Cimenlo B.
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spaces:

(37) h,=kOQ D ® ... ® A

with §® acting only in A®. If each particle has spin s, each 2® has dimension
2s + 1 and h, has dimension r = (2s 4+ 1)¥.

A state of this system is given by a spinor field ¥, which has a unique value
W¥(x)eh, for each x€&y[8,. The corresponding wave function has r com-
ponents y,(x), ..., ¢,(x) that are the co-ordinates of the spinor W¥(x) relative

to some basis x,,,..., X, in k,. That is,
(38) ¥(x) = 3 ¢u(®) Xy -
k=1

A natural way to define such a basis for each point in 6% /8, is again to define
a bagis at one arbitrary point and to ;paralle]ly transport that basis to every
other point. The erucial question is whether this procedure is unique, or whether
parallel transport along different curves can give different results, or, equiva-
lently, whether the parallel transport around a closed curve may differ from
the identity transformation I in spinor space.

To discuss this point, we again specialize to the case N = 2. Consider the
spinor space h, at some given point x = (%1, x5) €673/8,. It is a tensor product
h,= 1" @ k? of two single-particle spinor spaces AP and h® associated with
x, and x,, in that order. And it has two mutually commuting spin operators,
S operating in AV, S operating in A,

Let P: h,—bk, be a linear operator defined by the parallel transport of
spinors around a closed curve starting and ending at x. As we have seen, there
are two classes of such closed curves. A closed curve either connects x; con-
tinuously with x, and x, with x;, or else it connects x, with x, and x, with 2.
Because the spin operators S and S® are associated with the positions x, and
x,, respectively, the first class of curves must give

(39) PSSV p-1= S, PS@P-1= 8o,
and the second class must give
(40) PSSO P-1= 8§ PS®P-1— §w

The spinor space h, is irreducible under the action of the two spin operators
S® and 8. Therefore, by Schur’s lemma (**), P is uniquely determined, ex-

(%) H. BOERNER: Representations of Groups (Amsterdam, 1963).
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cept for an overall phase factor, by either of the two relations above. In the
first case,

(41) P =P =expli§)I
and, in the second case,

(42) P=P,=exp[i] T,
when T denotes the transposition operator in h = k0 ® h®, that is

(43) T¥ QN =2Q¥.

Since parallel transport in spinor space can at most introduce arbitrary
phase factors, the presence of spin does not essentially change our discussion
on the spin-zero case in subsect. 3'2. Thus, with zero « magnetic » field we
must have, like before,

P =1 and £ =0,

(44)
Po=+4+T and &=0 or x.

As in the spinless case, there are exactly two possible types of wave functions,
corresponding to the two allowed values of &,.
To be more specific, we may introduce a basis of parallel vectors

(45) Xm.m, = xm, ® Xm, !

where each y,, is an eigenvector of the z-component 8, of the spin S. By the
parallel transport around a closed curve of the second class, this basis is changed
into another basis

(46) Pz Xm,m, = exp [zEQ] xm,ml = :{: Xm,m, *

We are, therefore, in the dilemma of having to choose between two alternative
definitions of the wave functions. We may define

z “y)mlml(x) xmlml 4

(47) W) ={ " , _
z "Pm,m,(x) P, y —— z 1/",,.l,,.,(x) exp [1§,] y A—
my,me my,My

and the relation between these two co-ordinatizations of the spinor W(x) is seen
to be such that

(48) Ve (%) = €XD [ ¥, . (%) = £ v, (%)
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In the same natural way as in subsect. 3°2, we can proceed to define wave
functions on the Euclidean space &;: Repeat simply the same construction,
pick one point x = (x,, x,) € &3/8,, locate the basis Jx,, , of &, arbitrarily at
(%,, ;) € £2 and parallelly transport it to every other point of £3. The alterna-
tive basis P, ¥, ., of b, will then be located at (., x)) € &3, far from (x,, x,).
Thus the basis of each local spinor space in &} is unique, and the wave func-
tion yp defined on &; becomes single valued. We get

[ wmlm.(xl? xi)’= wmlm.(x) ’
(49)

wmlm.(xﬁ’ xl) = wyln,m.(x) ’
and eq. (48) is the well-known symmetry condition
(50) V’mlm,(xu x;) = exp [i&,] Vuma (X2 1) = T 9, . (%5, x) .

This shows that & = 0 corresponds to the boson case with totally symmetric
wave functions, and &, =a to the fermion case with totally antisymmetric
functions. We stress again the fact that these two possibilities emerge in a
natural way from the formalism, without any reference to a symmetrization
postulate.

The formalism seems to give no restriction on which of the two values
of &, is allowed for a given two-particle system. However, the spin-statistics
theorem relates the sign in eq. (50) to the one-particle spin s through the equation

(51) exp [i6y] = (—1)*.

Note that the merit of the spin-statistics theorem here is to reduce the number
of possibilities from two to one.

A different formulation of the spin-statistics theorem might be illuminating.
A two-particle spinor of total spin 8 has a symmetry of (— 1)*7** under the
interchange of the two spin variables only. Therefore, what the spin-statistics
theorem tells us is that the symmetry of the wave function under the inter-
change of space co-ordinates alone is (— 1), irrespective of the one-particle
spin s. Hence the 8 = 0, scalar part of the two-particle :spinor is always
symmetric in the space co-ordinates, whereas the § = 1, vector part is always
antisymmetric.

The last observation might suggest a geometrical basis for the spin-statistics
theorem. Within our formalism the two-particle form of this theorem, expressed
by eq. (51), is equivalent to the statement that the 8 = 0 component of the
wave function behaves like a zero-rank tensor field. That is, it is unchanged
by parallel transport around any closed curve. And, as a consequence, the
§ =1 component behaves exactly like a tangent vector in relative space. The
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geometry of the «fiber bundle » of spinor spaces thus corresponds in a natural
way to the geometry of the configuration space and to its associated tensor
algebra.

5. — Generalization to N particles.

We have pointed out in this work that the configuration space of an identical-
particle system is, in some respects, essentially different from the Cartesian
product of the one-particle spaces. And we have shown by examples how a
quantization can be carried out, taking this difference explicitly into account.
For the sake of convenience, we have mainly restricted our discussion to the
two-particle system. As a conclusion, let us try to sketch in general terms
how to quantize a system of N identical particles moving in the n-dimensional
Euclidean space &,.

It is not quite evident how to define wave functions or specify the action
of the Hamiltonian at the singular points of the configuration space &5 /8.
Moreover, it might be argued that the set of all singular points has zero volume
and, therefore, does not contribute to volume integrals defining expectation
values. For these reasons we exclude the singular points and restrict our atten-
tion to the space consisting of all the regular points of &, /8,

Again with each regular point x € &7 /8, we associate a local Hilbert space
h,. For simplicity let h, be one-dimensional, and let ¥, be a basis vector of h,.
The parallel displacement of these basis vectors is to be defined, like in eq. (22),
through a field b, that might be the vector potential of a magnetic field, but
might also represent some more general force field. The quantities b, are the
components of a covariant vector field b relative to some set of local co-ordi-
nates #*. We discuss here the simplest case in which the force field f;;, a8
defined in eq. (24), vanishes identically, which means that the parallel trans-
port is path independent in simply connected regions.

Consider the continuous closed curves starting and ending at x €& /8,,
and define the product C,C, of two curves O, and O, as the curve followed
when traversing first 0, and afterwards C,. An equivalence class of curves
that can be continuously deformed into each other is called a homotopy class.
The set of all homotopy classes is seen to form a group, which is characteristic
of the space, since the groups belonging to different points are isomorphie.
This group is called the first homotopy group, or fundamental group (), of
the space &%/S, minus its singular points.

The condition of no force field implies that the parallel transport of vectors
from h_ around closed curves gives a linear, unitary representation in h, of the
fundamental group. When h, is one-dimensional, each group element C must

(1 P. J. Hirox: An Introduction to Homotopy Theory (Cambridge, 1953).
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be represented by a phase factor:
(52) C —exp [i£(C)] .

Observe that the phase factor exp [i£(0)] is also independent of the point x,
by an argument similar to that of eq. (26).

The vector potential b can always be transformed into zero, that is, one may
always choose parallel basis vectors in the local Hilbert spaces, if one is only
willing to pay the price of a nonunique basis %, in k. and, therefore, many-
valued wave functions y(x). In the case we are discussing, different parallel
displacements of a basis vector yx, eh, will produce the basis vectors
exp [15(0)] x,€h,, hence representation (52) of the fundamental group
determines the many-value nature of the wave functions. To find all pos-
sibilities, first identify the fundamental group and then list all one-dimen-
sional, unitary representations.

As expected, the fundamental group is found to be related to the symmetric
group Sy. A regular point x € £7/8, is given by N different particle positions
%g,..., 2y€&,, and obviously a closed continuous curve ¢ in 6718, from x
back to x, defines a permutation p of the positions x,, .y Xy. This corre-
spondence ¢ —p is a homomorphism and, sometimes, an isomorphism from
the fundamental group onto Sy.

We have seen that, for N = 2, n =2, the fundamental group is the cyclic
group of infinite order, that is, the addition group of the integers, Z, which is
much larger than 8,. It has a continuum of different representations by phase
factors. However, generalizing the result for N = 2, n = 3, we conclude that,
for n>3, the fundamental group is just the symmetric group Sy. For N>2,
Sy has exactly two one-dimensional representations, the trivial or completely
symmetric representation p —1 and the completely antisymmetric represen-
tation p —signum (p) = 4 1. Thus, when n>3 and N> 2, there are exactly two
possible kinds of wave functions. These correspond to boson or fermion systems,
respectively, as is seen when we proceed to define wave functions on the Eucli-
dean space &7, generalizing the method of subsect. 3'2. The wave functions
on &, will be single-valued and either completely symmetric or completely
antisymmetric.

Let us make a final remark concerning our assumption that f,, = 0 identi-
cally, which excludes the possibility of a nonzero magnetic field. First note
that, because of the relation between &7/8, and €7, any tensor field on Y18y
can be looked upon as a uniquely defined tensor field on &3 , whereas, the other
way round, a tensor field on &7 in general defines N! tensor fields on EXI8,.

Now let us assume, more generally, that the tensor field fx on &Y/8, may
be nonzero, but is still nonsingular as a field on &y, this time including all
those points that are singular points of &7|8,. Then f,, can be derived from
a nonsingular vector potential b, on &*. Moreover, b, can be chosen as to be-
come single-valued on &7/8,. If necessary, simply replace b,'c by the average
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of the N'! vector potentials it defines on £7/8, . Therefore, given a vector poten-
tial b, on &7/8, with a nonvanishing, nonsingular f,,,, we make the same analysis
as before, but, instead of b,, we consider b =b,— bk, whose corresponding field
f“ = 0. In this case, b must appear in the Ha,mlltoman in the usual way, whereas
the wave functions still are either symmetric or antisymmetric.

This short remark should indicate that magnetic fields can easily be incor-
porated into the theory, with no modifications to our conclusions as to the
symmetry properties of the many-body wave functions.

In this section we have not discussed intrinsic spin or other internal degrees
of freedom. They bring no essential complication, because a one-dimensional
representation of the fundamental group is still the only arbitrary element of
the theory. The discussion of this point would be a rather obvious generalization
of sect. 4, and we do not go into more details.

® RIASSUNTO ()

Si esamina lo spazio delle configurazioni classico di un sistema di particelle identiche.
A causa dell'identificazione di punti che sono correlati da permutazioni degli indiei
delle particelle, questo spazio & in modo globale sostanzialmente diverso dal prodotto
cartesiano degli spazi ad una particella. Si prende in considerazione questo fatto espli-
citamente in una quantizzazione della teoria. Di conseguenza, non & necessario postulare
aleuna costrizione di simmetria per le funzioni d’onda e gli osservabili. Le due possi-
bilitd corrispondenti a funzioni d’onda simmetriche ¢ antisimmetriche compaiono nel
formalismo in modo naturale. Ma questo avviene solo quando le particelle si muovono
in uno spazio a 3 o piu dimensioni. In una o due dimensioni, un continuo di possibili
casi intermedi collega i casi bosonici e fermionici. Si discute I'effetto dello spin delle
particelle nel presente formalismo.

(*) Traduzione a cura della Redazione.

K Teopnn ToXIECTBEHHBIX YACTHI,.

Pesrome (*). — Hccieayerca knaccuueckoe KORDUTYPAIMOHHOE MPOCTPAHCTBO CHCTEMET
TOXIECTBECHHBIX YaCTHL. BenencrBre MAeHTADHKALMM TOYEK, KOTOPHIE CBA3aHBI U3-3a
NEPECTAHOBOK HHAEKCOB YACTHII, PACCMATPHBAEMOE MPOCTPAHCTBO B LEJIOM CYIIECTBEH-
HO OTJIMYAETCs OT AEKapTOBA MPOM3BEHCHHS OAHOYACTHYHBIX IPOCTPAHCTB, ITOT dakr
YYHTHIBAETCsl B ABHOM BHAE IIPH KBAaHTOBaHUHM Teopuu. Kak cieacTBue 3TOro HeoGxo-
AUMO NOCTYIHPOBATE OTCYTCTBHE OTPaHUYCHHI CHMMETPHH HA BOJNHOBBIE (DYHKIHH M
HabmomaeMbie Benuynnbl, B paccmatpuBaeMoM dopmanuizMe ecTeCTBEHHBIM 0Opaszom
TOSABJIAIOTCS IBE BO3MOXKHOCTH, COOTBETCTBYIOIIME CHMMETPHYHON M AHTHCHMMETPHY-
HOM BOJTHOBBEIM (QyHKLMAM. YKa3aHHas CHTYalHsi BO3HMKAET TOJIBKO B Cilyvae, KOTrIa
YaCTHUBI IBHXYTCA B IPOCTPAHCTBE TpexX Wik Oonbliero uucia usMepenuit. B cnyvae
OIHOTO ¥ JABYX U3MEPEHMI KOHTHHYYM BO3MOXHBIX IIPOMEXYTOYHBIX COCTOSAHMI BKITFO-
vyaeT 6030HHbLH M hepMuoOHHBIH ciyyan. OGcyxpaercs 3ddexT CuuHa YaCTHIL B PEJIO-
JK€HHOM (dopmManusme.

(*) Iepesedeno pedaxyueii.
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