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We discuss the controversy about the demonstration of the law of the lever as given by Archimedes.
One aspect of the discussion concentrates on the meaning of the postulates which he utilized. We
analyze what consequences would arise if nature behaved in such a way that the lever followed a
generalized power law. In particular, we consider the cases of a torque independent of the distances
of the bodies to the fulcrum, proportional to these distances, and quadratic in the distances. © 2009
American Association of Physics Teachers.
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I. INTRODUCTION

Archimedes �287–212 BCE� demonstrated the law of the
lever in propositions 6 and 7 of his work On the Equilibrium
of Planes, or Centres of Gravity of Planes:1 These proposi-
tions are

Proposition 6: Commensurable magnitudes are in
equilibrium at distances reciprocally proportional
to the weights.

Proposition 7: However, even if the magnitudes are
incommensurable, they will be in equilibrium at
distances reciprocally proportional to the
magnitudes.

Heath combined these two propositions in his paraphrase of
Archimedes’s work:2 “Propositions 6, 7. Two magnitudes,
whether commensurable �Prop. 6� or incommensurable
�Prop. 7�, balance at distances reciprocally proportional to
the magnitudes.”

Suppose we have weights WA and WB on two sides of a
lever supported by their centers of gravity located at dis-
tances dA and dB from the fulcrum F. According to the law of
the lever, equilibrium will prevail if

WA

WB
=

dB

dA
. �1�

In Fig. 1 we present a lever in equilibrium �that is, at rest
relative to the ground, although free to rotate around the
fulcrum F�, with bodies A and B on opposite sides of the
fulcrum. We will assume weightless beams and weightless
strings connecting the bodies to the lever.

Archimedes also demonstrated how to locate the center of
gravity of a triangle:3

Proposition 13: In any triangle the center of gravity
lies on the straight line joining any vertex to the
middle point of the base.

Proposition 14: In any triangle the center of gravity
is the point in which the straight lines of the tri-
angle joining the vertices to the middle points of

the sides meet.
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The straight line connecting each vertex to the middle point
of the opposite side of a triangle is called the median. The
three medians meet at a single point which is the center of
gravity, G, of the triangle. This point is also called the bary-
center or centroid of the triangle and is represented in Fig. 2.
The center of gravity is always inside the triangle and has an
important property. The distance from the vertex to the cen-
ter of gravity is always twice the distance from the center of
gravity to the midpoint of the opposite side. In Fig. 2 the
midpoint of the side B1C1 is represented by the point A2.
This property means that A1G=2GA2 or GA2=A1A2 /3.
Analogous relations are obtained for the other medians.

Another property of the center of gravity of any body is
that it is a single point. Suppose that the body can rotate
around an axis. If the body is released from rest, it will
remain in equilibrium whenever this axis passes through the
center of gravity of the body. Suppose, for instance, that the
triangle is released from rest in a horizontal plane in such a
way that it can rotate around a horizontal axis passing
through it. It is found that it will remain in equilibrium for all
axes that pass through its center of gravity G.

To demonstrate these results Archimedes utilized seven
postulates:4

�1� We postulate that equal weights at equal distances are in
equilibrium, and that equal weights at unequal distances
are not in equilibrium, but incline towards the weight
which is at the greater distance.

�2� That if, when weights at certain distances are in equilib-
rium, something be added to one of the weights, they are
not in equilibrium, but incline towards that weight to
which something has been added.

�3� Similarly that, if anything be taken away from one of the
weights, they are not in equilibrium, but incline towards
that weight from which nothing has been taken away.

�4� When equal and similar figures are made to coincide,
their centers of gravity likewise coincide.

�5� In figures which are unequal, but similar, the centers of
gravity will be similarly situated. We say that points are
similarly situated in relation to similar figures if straight
lines drawn from these points to the equal angles make
equal angles with the homologous sides.

�6� If magnitudes at certain distances be in equilibrium,
other �magnitudes� equal to them will also be in equilib-
rium at the same distances.

�7� In any figure whose perimeter is concave in the same

direction the center of gravity must be within the figure.
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Although the concept of the center of gravity appears in
postulate 4, it is not defined in any extant work of
Archimedes. Heath, Duhem, Stein, Dijksterhuis, Assis, and
many others have studied how Archimedes implicitly utilized
this concept to calculate the center of gravity of many figures
�such as a triangle and a parabola�.5–10 They also studied
earlier authors such as Heron �first century CE�, Eutocius
�450–540 CE�, and Pappus �fourth century CE� who had ac-
cess to other works of Archimedes no longer extant. From
these studies it seems that Archimedes understood the center
of gravity to be a point such that if the body were suspended
from that point, released from rest and free to rotate in all
directions around that point, the body would remain at rest
and would preserve its original position no matter what the
initial orientation of the body relative to the ground.

Archimedes’s demonstration of the law of the lever was
criticized by Ernst Mach.11 He quoted only the first two pos-
tulates and concluded �italics in original�:

…the assumption that the equilibrium-disturbing
effect of a weight P at the distance L from the axis
of rotation is measured by the product P ·L �the
so-called statical moment�, is more or less covertly
or tacitly introduced by Archimedes and all his
successors.

First, it is obvious that if the arrangement is abso-
lutely symmetrical in every respect, equilibrium
obtains on the assumption of any form of depen-
dence whatever the disturbing factor on L, or gen-
erally, on the assumption P · f�L�; and that conse-
quently the particular form of dependence PL
cannot possibly be inferred from the equilibrium.
The fallacy of the deduction must accordingly be
sought in the transformation to which the arrange-
ment is subjected. Archimedes makes the action of
two equal weights to be the same under all circum-
stances as that of the combined weights acting at
the middle point of their line of junction.

Stein and Dijksterhuis objected to Mach’s criticism.8–12 In
particular, they pointed out that in his demonstration of the
law of the lever Archimedes utilized not only the first two
postulates, as mentioned by Mach, but also his sixth postu-
late. Stein and Dijksterhuis understood Archimedes to inter-
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Fig. 1. Lever in equilibrium relative to the ground.
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Fig. 2. Center of gravity of a triangle.
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pret “magnitudes equal to other magnitudes” as “magnitudes
of the same weight” and “magnitudes at the same distances”
as “magnitudes the centers of gravity of which lie at the
same distances from the fulcrum.” This interpretation con-
ferred a reasonable meaning to the sixth postulate and re-
moved Mach’s objections to Archimedes’s demonstration of
the law of the lever.13

We illustrate this interpretation of the sixth postulate with
two examples. Suppose that N bodies of weights W1, W2, . . .,
WN are suspended by their centers of gravity at the distances
d1, d2, . . ., dN from the fulcrum of a lever in equilibrium. In
the first example we replace body 2 by another body M
suspended by its center of gravity at the same distance d2
from the fulcrum. According to this interpretation of the
sixth postulate, equilibrium will remain provided WM =W2.
As a less trivial example we consider the same N bodies, but
in a situation for which W1=W2�W and that these two bod-
ies are suspended at distances d1 and d2 from the same side
of the fulcrum. Archimedes demonstrated in the fourth
proposition that “if two equal magnitudes have not the same
center of gravity, the center of gravity of the magnitude com-
posed of the two magnitudes will be the middle point of the
straight line joining the centers of gravity of the
magnitudes.”14 We now replace bodies 1 and 2 by a single
body M of weight WM =2W. According to this interpretation
of the sixth postulate, equilibrium will not be disturbed if it
is suspended at the joint center of gravity of bodies 1 and 2;
that is, at a distance �d1+d2� /2 from the same side of the
fulcrum. In other words, Stein and Dijksterhuis mean that we
may always replace two weights by their total weight acting
at their center of gravity without disturbing the equilibrium
of a lever.8,12

We agree with Stein and Dijksterhuis’s point of view. But
their interpretation of postulate 6 requires a serious emenda-
tion of the Greek text of this postulate, because it contains
nothing about centers of gravity. To illustrate the crucial role
played by postulate 6 in Archimedes’s demonstration of the
law of the lever, we consider what would be the conse-
quences if nature behaved in such a way that the law of the
lever were quadratic in the distances of the bodies or inde-
pendent of these distances.

II. A GENERALIZED LAW OF THE LEVER

Suppose a horizontal beam acts as a lever that can rotate
around a horizontal axis orthogonal to the beam of the lever
passing through its fulcrum. We consider N bodies on one
side of the fulcrum and M bodies on the other side. A generic
body i has weight Wi, with its center of gravity being sus-
pended by the beam of the lever at a distance di from the
fulcrum. We define a generic “alpha” torque � exerted by
these bodies as �N��i=1

N Wi�di�� and �M ��i=N+1
M Wi�di��. The

exponent � characterizes the behavior of the lever as a func-
tion of the distance to the fulcrum. In real life �=1. In this
work we wish to compare this normal condition with hypo-
thetical situations for which ��1. To this end we postulate
the following behavior for the lever released at rest horizon-
tally, being free to rotate around the fulcrum:

If �N = �M,
the lever remains in equilibrium.
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If �N � �M,

the set of N bodies inclines toward the ground.

If �N � �M,

the set of M bodies inclines toward the ground.

�2�

Our proposal is not original. Mach had already suggested
a generic torque proportional to the weight of the bodies and
to a function f�L� of their distances to the fulcrum.11

Czwalina considered a quadratic law of the lever in his
analysis of Archimedes’s work.15 The main point of our pa-
per is to explore what would happen to the logical structure
of the proof of the law of the lever and of the center of
gravity of a triangle if the torque followed a power law. The
goal is to separate the parts of the proof that are logically
independent of one another.

We now consider simple symmetrical situations of equi-
librium. In Fig. 3�a� two equal weights W are suspended at
points B and D from a lever which can rotate around a ful-
crum located at C. If BC=CD, the lever will remain in equi-
librium for all values of �. The lever will also remain in
equilibrium for any value of � when the two weights are
suspended at C, as in Fig. 3�b�. That is, in this case we can
replace the two equal weights at B and D by a single body of
twice the weight at the midpoint C without disturbing the
equilibrium of the lever for any value of �. The center of
gravity of the two equal weights WB and WD can be consid-
ered their midpoint. As we have seen, Archimedes proved
this fact in proposition 4.

Now let us see how Archimedes demonstrated the law of
the lever considering the simplest case of Fig. 4. The propo-
sitions must follow from the postulates. However, in his
demonstration of the propositions Archimedes did not explic-
itly mention any of his postulates. But by following his rea-
soning we can understand how he utilized these postulates
implicitly. Consider three equal weights suspended at points
A, B, and D. The lever is free to rotate around the middle
point B. If AB=BD, the lever will remain in equilibrium �see
Fig. 4�a��. As we have seen, the center of gravity of the two
equal weights WB and WD is in the middle point of the

B
C

D DB
C

(a) (b)

Fig. 3. A lever supporting two equal weights can rotate about C. �a� It
remains in equilibrium for any value of � when the weights are suspended at
B and D with BC=CD, or �b� when they are suspended at C.

DEAB CDA C DAC BB

(a) (b) (c)

Fig. 4. A lever supporting three equal weights can rotate about B. �a� The
lever remains in equilibrium if AB=BD. �b� For �=1 it remains in equilib-
rium with two equal weights joined at C such that BC=0.5AB. �c� For �
=2 it remains in equilibrium with two equal weights joined at E such that

�
BE= � 2 /2�AB�0.707AB.
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straight line connecting their centers of gravity. And C is the
midpoint of the segment BD. By postulate 6 we will not
disturb the equilibrium of the lever by replacing bodies B
and D by a single body of twice the weight acting at C. We
then arrive at the situation of Fig. 4�b�. This configuration is
a special case of the law of the lever because WA /WC

=BC /AB=1 /2, or BC= 1
2AB in agreement with Eq. �1�. In

essence, what allows Archimedes to conclude that the situa-
tion shown in Fig. 4�b� will remain in equilibrium beginning
from the symmetrical equilibrium of Fig. 4�a� is postulate 6.

Let us assume ��1 and the postulates given by Eq. �2�. In
this case the situation of Fig. 4�a� continues to be an equi-
librium configuration, but the situation in Fig. 4�b� is no
longer in equilibrium. If ��1, the weights at C will incline
toward the ground. In contrast, if ��1, the weight A will
incline toward the ground. The new equilibrium situation
according to Eq. �2� and the definition of the torque is the
configuration with the equal weights WB and WD acting to-
gether at another point E such that WA /WE= �BE /AB��, that

is, BE= �1 /2�1/�AB. If �=2, BE= ��2 /2�AB�0.707AB as
shown in Fig. 4�c�. If �=0, the solution diverges; if �

=1 /2, we have BE= 1
4AB.

We can go from the configuration of Fig. 3�a� to that of
Fig. 3�b� without disturbing the equilibrium of this lever for
all values of �. In contrast, we can go from the configuration
of Fig. 4�a� to that of Fig. 4�b� without disturbing the equi-
librium of this lever only if �=1. If �=2, we can maintain
the equilibrium of the lever of Fig. 4�a� only by combining
the equal weights WB and WD at another point E given by
BE=�2AB /2�0.707AB �see Fig. 4�c��. This last situation
shows that Archimedes’s postulate 6, as interpreted by Stein
and Dijksterhuis, would not be valid if �=2.8,12 This conclu-
sion lends support to their interpretation of this postulate and
to the fact that this postulate was essential to allowing
Archimedes to demonstrate the law of the lever.

Czwalina discussed Archimedes’s proposition 6 and
claimed that his demonstration is based on a fallacy.15 His
criticism is founded on the fact that the first five propositions
of Archimedes would remain valid even for a quadratic law
of the lever, which is not the case for proposition 6. He
concluded that proposition 6 is not a logical consequence of
the previous propositions. However, Czwalina, like Mach be-
fore him, did not notice the relevance of the sixth postulate
for the demonstration of proposition 6. According to Stein
and Dijksterhuis, proposition 6 is a logical consequence of
the first five propositions, combined with postulate 6.8,16 Ac-
cepting this postulate with the previous interpretation re-
moves any supposed fault in Archimedes’s proof of the law
of the lever.

Mach still has a point for if we emend postulate 6 as
proposed by Stein and Dijksterhuis, the formal structure of
the proof may be rescued.8,12 But postulate 6 then implicitly
contains the linear law of the lever. However, as Archimedes
explicitly assumed postulate 6 as an axiom, this assumption
removes any circularity in his proof.

The sixth postulate is utilized by Archimedes not only to
arrive at the law of the lever, but also to calculate the center
of gravity of a triangle, and thus it is a powerful postulate
from which novel results can be demonstrated. We discuss

this subject in the next section.
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III. EQUILIBRIUM OF A TRIANGLE

We consider the generic horizontal triangle ABC of Fig. 5
with height H and base BC. This triangle can rotate freely
around the axis DE which is fixed relative to the ground and
is parallel to BC. We want to find the distance R between this
axis and the side BC that will let this triangle be in equilib-
rium for a given value of �, with 0�R�H. We call r the
distance between this axis and a strip of the triangle with
length b and thickness dr on one side of the axis, and r� the
analogous distance of a strip b�dr� on the other side.

From the angles � and � shown in Fig. 5 we have

tan � =
b + x

H − R − r
=

b� + x�

H − R + r�
, �3�

tan � =
x

H − R − r
=

x�

H − R + r�
. �4�

According to the assumption in Eq. �2� and the previous
definition of the torque, equilibrium will occur when 	r�dW
integrated over one side of the axis is equal to 	r��dW� in-
tegrated over the other side, where dW and dW� are the
weight of the strips bdr and b�dr�, respectively. For a homo-
geneous triangle we have dW /W=da /A, where da=bdr is
the area of the strip corresponding to the weight dW, W is the
total weight of the triangle, and A is its total area. The equi-
librium condition implies



r=0

H−R

r�bdr = 

r�=0

R

r��b�dr�. �5�

We utilize Eqs. �3� and �4� and obtain

b = �tan � − tan ���H − R − r� , �6�

b� = �tan � − tan ���H − R + r�� . �7�

We define the constant k such that H−R�kR, or R=H / �1
+k�. Because we wish to have 0�R�H, we must have 0
�k��. Equating the torques of both sides of the fulcrum
yields



0

kR

r��kR − r�dr = 

0

R

r���kR + r��dr�. �8�

That is,

� kR�kR��+1

� + 1
−

�kR��+2

� + 2
� = � kR�R��+1

� + 1
+

R�+2

� + 2
� . �9�

H

R
x’

D
x b

b’ r’

r E

CB

A

ψ
θ

Fig. 5. A horizontal triangle ABC that can rotate around the axis DE.
This last expression yields the following equation for k,
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k�+2 − �� + 2�k − �� + 1� = 0. �10�

If �=1, Eq. �10� reduces to k3−3k−2=0. There are three
roots, k1=2, k2=−1, and k3=−1. Only the first solution is
physically reasonable, implying R=H /3. This solution is the
usual one of an axis passing through the center of gravity of
the triangle; that is, passing through the intersection of the
medians. To demonstrate this result Archimedes also implic-
itly utilized postulate 6. For a discussion see Refs. 17 and 18.
Archimedes divided the whole triangle into four smaller and
congruent triangles. He then combined two of these triangles
into a single body with twice the weight of one of these
small triangles and acting at their combined center of gravity.
According to the sixth postulate the triangle would remain in
equilibrium after this replacement. His demonstration is then
correctly made, although the sixth postulate was utilized only
implicitly by Archimedes.

For �=2, Eq. �10� reduces to k4−4k−3=0 which has roots
k1�−0.693, k2�−0.546−1.459i, k3�−0.546+1.459i, and
k4�1.784. Only the fourth solution is compatible with the
condition 0�R�H. We are then led to R�H /2.784
�0.359H. This solution means that this axis parallel to the
side BC will not pass through the intersection of the medi-
ans, but will be closer to the vertex A.

If �=0, Eq. �10� reduces to k2−2k−1=0 which has roots
k=1+�2�2.414 and k=1−�2�−0.414. Only the first root
is compatible with the condition 0�R�H, and hence R
�H /3.414�0.293H. This solution means that this axis par-
allel to the side BC will not pass through the intersection of
the medians and will be closer to the base BC. The axis is the
straight line parallel to the base which divides the triangle
ABC into two figures of equal area and equal weight, namely,
the smaller triangle at the top and the trapezoid at the bot-
tom.

In Fig. 6 we show the location of the axes parallel to BC
such that the horizontal triangle is in equilibrium after being
released from rest. If �=1, this axis is DE which passes
through the intersection of the medians, that is, R=H /3
�0.333H. If �=2, an axis passing through the intersection
of the medians will not let the triangle be in equilibrium, and
the vertex A will incline toward the ground. In this case the
triangle will remain in equilibrium for an axis D�E� parallel
to BC located at a the distance R�0.359H. This equilibrium
axis for �=2 is closer to the vertex A than the equilibrium

D’’ E’’

CB

A

D’ E’

D EG

Fig. 6. The horizontal triangle ABC has G as the intersection of the medians.
If �=1, the equilibrium axis parallel to BC is DE, passing through G. If
�=2, the equilibrium axis is D�E� closer to the vertex A; if �=0, the equi-
librium axis is D�E� closer to BC.
axis for �=1. If �=0, the triangle will remain in equilibrium
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for an axis D�E� parallel to BC located at the distance R
�0.293H. This axis divides the triangle into two regions of
equal areas.

Similar results will be obtained for axes parallel to the
sides AB and AC. In particular, the three equilibrium axes
parallel to the three sides of a triangle will meet at the usual
center of gravity G of the triangle only if �=1. If �=2 or
�=0, the three axes will not meet at a single point and none
of them will pass through G.

This conclusion shows again that postulate 6 is essential to
demonstrate the usual results related to the center of gravity
of bodies of extended spatial extent.
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PARALLEL RECURSIVE MACHINING

When I make my first set of slave “hands’’ at one-fourth scale, I am going to make ten sets. I
make ten sets of “hands,’’ and I wire them to my original levers so they each do exactly the same
thing at the same time in parallel. Now, when I am making my new devices one-quarter again as
small, I let each one manufacture ten copies, so that I would have a hundred “hands’’ at the 1/16th
size.

Where am I going to put the million lathes that I am going to have? Why, there is nothing to
it; the volume is much less than that of even one full-scale lathe. For instance, if I made a billion
little lathes, each 1/4000 of the scale of a regular lathe, there are plenty of materials and space
available because in the billion little ones there is less than 2 percent of the materials in one big
lathe.

It doesn’t cost anything for materials, you see. So I want to build a billion tiny factories,
models of each other, which are manufacturing simultaneously, drilling holes, stamping parts, and
so on.

Richard P. Feynman, “There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics,” Engineering
& Science, February 1960. Presented at the annual meeting of the American Physical Society, 29 December 1959. Full
transcript available at �www.zyvex.com/nanotech/feynman.html�.
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