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We consider a long resistive straight strip carrying a constant current and calculate the potential and
electric field everywhere in space and the density of surface charges along the strip. We compare
these calculations with experimental results. ©2003 American Association of Physics Teachers.
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I. THE PROBLEM

Recently there has been renewed interest in the ele
field outside stationary resistive conductors carrying a c
stant current.1–7 We consider a case that has not been trea
in the literature, namely, a constant current flowing u
formly over the surface of a stationary and resistive strai
strip. Our goal is to calculate the potentialf and electric
field E everywhere in space and the surface charge distr
tion s along the strip that creates this electric field.

We consider a strip in they50 plane localized in the
region 2a,x,a and 2,,z,,, such that,@a.0. The
medium around the strip is taken to be air or vacuum. T
constant currentI flows uniformly along the positivez direc-
tion with a surface current density given byK5I ẑ/2a ~see
Fig. 1!. By Ohm’s law this uniform current distribution i
related to a spatially constant electric field on the surface
the strip. In the steady state this electric field can be rela
to the potential byE52¹f. This relation means that alon
the strip the potential is a linear function ofz and indepen-
dent of x. The problem can then be solved by finding t
solution of Laplace’s equation¹2f50 in empty space and
applying the boundary conditions.

II. THE SOLUTION

Due to the symmetry of the problem, it is convenient
use elliptic-cylindrical coordinates~h, w, z).8 These variables
can take the following values: 0<h<`, 0<w<2p, and
2`<z<`. The relation between Cartesian (x, y, z) and
elliptic-cylindrical coordinates is given by

x5a coshh cosw, ~1a!

y5a sinhh sinw, ~1b!

z5z, ~1c!

wherea is the constant semi-thickness of the strip. The
verse relations are given by

h5tanh21Ax22y22a21V

2x2 , ~2a!

w5tan21Aa22x21y21V

2x2 , ~2b!
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z5z, ~2c!

whereV5A(x21y21a2)224a2x2.
Laplace’s equation in this coordinate system is given b

¹2f5
1

a2~cosh2 h2cos2 w! S ]2f

]h2 1
]2f

]w2D1
]2f

]z2 50.

~3!

A solution of Eq.~3! can be obtained by using separation
variables in the formf(h,w,z)5H(h)F(w)Z(z):

H92~a21a3a2 cosh2 h!H50, ~4a!

F91~a21a3a2 cos2 w!F50, ~4b!

Z91a3Z50, ~4c!

wherea2 anda3 are constants.
For a long strip being considered here, it is possible

neglect boundary effects nearz56,. It has already been
proved that in this case the potential must be a linear fu
tion of z, not only over the strip, but also over all space9

This condition means thata350. There are then two pos
sible solutions forF~w!. If a250, then F5C11C2w; if
a2Þ0, thenF5C3 sinAa2w1C4 cosAa2w, whereC1 to C4

are constants. Along the strip we havey50, and x2<a2,
which means that V5a22x2, h50, and w
5tan21A(a22x2)/x2. Because the potential does not depe
on x along the strip, this independence means that the po
tial will not depend onw as well. Thus a nontrivial solution
for F can only exist ifa250, C250, andF5constant for
all w. The solution forH with a25a350 will be then a
linear function ofh. The general solution of the problem
then given by

f5~A1h2A2!~A3z2A4!

5FA1 tanh21Ax22y22a21V

2x2 2A2G~A3z2A4!. ~5!

The electric fieldE52¹f takes the following form:
938g/ajp/ © 2003 American Association of Physics Teachers
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E52A1S uxuAx22y22a21V

x&V
x̂

1
uxuy&

VAx22y22a21V
ŷD ~A3z2A4!

2A3S A1 tanh21Ax22y22a21V

2x2 2A2D ẑ. ~6!

To find the surface charge density, we utilized the appro
mation close to the strip (uxu,a and uyu!a):

E'2A1F xuyu
~a22x2!3/2 x̂1

y

uyuAa22x2
ŷG ~A3z2A4!

2A3FA1 tanh21
uyu

Aa22x2
2A2G ẑ. ~7!

The surface charge densitys(x, z) can be obtained by the
standard procedure utilizing Gauss’s lawtSE"da5Q/«0 ,
where «0 is the vacuum permittivity,da is a surface area
element pointing outward normal to the surface in ea
point, andQ is the total charge inside the closed surfaceS.
The surface charge density is then obtained by conside
the limit in which uyu→0 in Eq. ~7! and a small cylindrical
volume with its length much smaller then its diameter, yie
ing: s5e0@E(y.0)"ŷ2E(y,0)"(2 ŷ)#. If we use Eq.~7!,
the surface charge density is found to be given by

s52
2e0A1~A3z2A4!

Aa22x2
. ~8!

III. DISCUSSION

In the planey50 the current in the strip creates a ma
netic field B that points along the positive~negative! y di-
rection forx.0 (x,0). This magnetic field will act on the
conduction electrons moving with drift velocityvd with a
force given byqvd3B ~see Fig. 2!. This force will cause a
redistribution of charges along thex direction, with negative
charges concentrating along the center of the strip and p

Fig. 1. A constant currentI flows along thez direction of a long straight
strip of length 2, and width 2a located aty50, with a surface current
density given byK5I ẑ/2a.

Fig. 2. Magnetic forceF5qvd3B directed along the center of the stri
acting on a conduction electron moving with drifting velocityvd . This force
is due to the magnetic fieldB generated by the electric currentI flowing
along the positivez direction.
939 Am. J. Phys., Vol. 71, No. 9, September 2003
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tive charges at the extremitiesx56a. In the steady state this
redistribution of charges will create an electric field along t
x direction,Ex , that will balance the magnetic force, name
uqExu5uqvdBu.

We have disregarded this Hall electric field because i
usually much smaller than the electric field giving rise to t
current.10 To estimate the orders of magnitude involved, it
easier to consider the currentI flowing uniformly in a long
cylinder of length 2, and radiusa along the positivez direc-
tion coinciding with the axis of this cylinder. This curren
generates a cylindrical magnetic field given by~at a distance
r ,a from the axis! B5m0Ir ŵ/2pa2, where m0 is the
vacuum permeability andŵ is the unit polar vector. The
magnetic force acting on an electron of chargeq52e mov-
ing with drift velocity vd52uvduẑ relative to the lattice of
the wire is given byqvd3B52um0evdIr /2pa2u r̂ , wherer̂
is the unit radial vector. This inward radial force will lead
an accumulation of negative charges in the interior of
wire, which creates a radial electric fieldEr pointing inward.
In the steady state the electric and magnetic radial forces
balance one another, qEr5qvd3B, yielding Er

52um0vdIr /2pa2u r̂ . This electric field increases linearly in
side the wire. Its maximum value close tor 5a is given by
uEr

maxu5um0vdI/2pau. The longitudinal electric field giving
rise to the current can be obtained by Ohm’s law,V5RI,
whereV is the electromotive force along the wire of resi
tanceR. For a wire of length 2, acted on by a longitudina
electric fielduE,u pointing along thez direction, this voltage
is given by V52,uE,u, such thatuE,u5RI/2,. The ratio
between the maximal radial electric field and the longitudi
one is given byuEr

max/E,u5um0vd,/paR5m0vdga/2u, whereg
is the conductivity of the wire and is related to its resistan
by R52,/gpa2. We use the notationg instead of the more
standard notations for the conductivity in order to avoid
confusion with the surface charge density, which is rep
sented bys.

To find the order of magnitude, we consider a copper w
(g55.73107 V m andvd'431023 m s21) of 1 mm diam-
eter (a5531024 m). With these values in Eq.~8!, we ob-
tain uEr

max/E,u'731025, justifying our neglect of the radia
component of the electric field. Conceptually this neglect
the radial component can be explained by the fact that
Hall electric field is small because it is due to the sm
magnetic field produced by the conducting strip, rather th
a large applied magnetic field.

We now analyze some particular cases. We first cons
two limits by comparinga with the distance of the observa
tion point r 5Ax21y2. If a2@r 2, we haveV'a21y22x2

12x2y2/a2 andh'uyu/a, such that

f'S A1

uyu
a

2A2D ~A3z2A4!. ~9!

As expected, this result coincides with Eq.~4! of Ref. 11
with y050, because only the casea2@r 2 was considered
there.

On the other hand, ifa2!r 2, we have V'r 21a2

22a2x2/r 2 andh' ln r/a, such that

f'S A1 ln
r

a
2A2D ~A3z2A4!. ~10!
939J. A. Hernandes and A. K. T. Assis
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This result coincides with Eq.~8! of Ref. 10 with A2 /A1

5 ln(2,/a), where, is the typical length of the wire or strip
being considered, with,@a. @Note that in Ref. 10 the length
of the wire alongz goes from2,/2 to ,/2, while here it
goes from2, to , ~see Fig. 1!.# This coincidence is reason
able because Eq.~8! of Ref. 10 corresponds to the potenti
outside a long straight cylindrical wire carrying a consta
current. At a point far from the axis of the strip, both resu
coincide as they must.

Equation ~6! indicates that there is an electric field n
only along the resistive strip carrying a constant current,
also in the space surrounding it. Jefimenko has peform
some experiments that show the existence of this exte
electric field. The geometry of his first experiment,12 repro-
duced in plate 6 of Ref. 13, is equivalent to what has b
considered here: a two-dimensional conducting strip m
on a glass plate using a transparent conducting ink. To c
pare our calculations with his experimental results, we n
the values ofA2 /A1 and A4 /A3 . We takeA2 /A153.6 and
A4 /A350. The conditionA4 /A350 corresponds to the sym
metrical case considered by Jefimenko in which the elec
field is parallel to the conductor just outside of it atz50
~zero density of surface charges atz50).

We first consider the plane orthogonal to the strip,x50. In
this case the potential reduces to

f5S A1 tanh21A y2

y21a22A2D ~A3z2A4!. ~11!

The lines of the electric field orthogonal to the equipotenti
can be obtained by the procedure in Ref. 14. These lines
represented by a functionc such that¹c•¹f50. Equation
~11!, together with the value off obtained above, yield the
value ofc given by

c5A1A3z222A1A4z1
A1A3

2
y2

2A1A3uyuAy21a2 cosh21Ay21a2

a2

2
A1A3

2
a2S cosh21Ay21a2

a2 D 2

2
A2A3

4 S uyuAy21a21a2 ln
uyu1Ay21a2

a D . ~12!

A plot of Eqs.~11! and ~12! is given in Fig. 3.
We now consider the plane of the strip,y50. The poten-

tial reduces to

f~ uxu<a,0,z!52A2~A3z2A4!, ~13!

f~ uxu>a,0,z!5S A1 tanh21Ax22a2

x2 2A2D ~A3z2A4!

5S A1 cosh21
uxu
a

2A2D ~A3z2A4!. ~14!

When there is no current in the strip, the potential alon
is a constant for allz. From Eq.~13! this condition implies
thatA350. This value ofA3 in Eqs.~5!, ~6!, and~8! reduces
these equations to the known electrostatic solution of a s
charged to a constant potential.15
940 Am. J. Phys., Vol. 71, No. 9, September 2003
t

t
d
al

n
e
-

d

ic

s
re

it

ip

By a similar procedure, the lines of electric field for th
planey50 are given by

c~ uxu<a,0,z!5A2A3ax, ~15!

c~ uxu>a,0,z!5A1A3z222A1A4z1
A1A3

2
x2

2A1A3uxuAx22a2 cosh21
uxu
a

1
A1A3

2
a2S cosh21

uxu
a D

2
A2A3

4 S uxuAx22a2

2a2 ln
uxu1Ax22a2

a D . ~16!

A plot of Eqs. ~13!–~16! is presented in Fig. 4. Figure
presents the theoretical electric field lines and equipoten
lines overlaid on the experimental results of Ref. 12, wh
the lines of the electric field in the plane of the strip a
mapped by spreading grass seeds above and around the
dimensional conducting strip painted on glass plates. T
seeds are polarized in the presence of an electric field
align themselves with it. The lines of electric field are th
observed in analogy with iron fillings generating the lines
magnetic field. In Fig. 5 the electric field lines from Fig.
are overlaid on the experimental results of Jefimenko, Fig
of Ref. 12 or plate 6 of Ref. 13. It should be mentioned th
the grass seeds are dielectric bodies and themselves ch
the electric fields in their vicinity, so the experimental fie
maps cannot be exact; nevertheless, the correspond
found here is reasonable.

The equipotential lines also were measured in Ref.
where a rectangular hollow chamber with electrodes~alumi-

Fig. 3. Equipotential lines~dashed! and electric field lines~continuous! in
thex50 plane. The bold horizontal lines represent the intersection with
plane of the strip. We use the valuesA2 /A153.6 andA4 /A350.
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~graphite paper strips! carrying uniform current was used
Eighty volts were applied to the electrodes and the equ
tential lines were mapped utilizing a radioactive alpha sou
to ionize the air at the points where the field was to be m
sured. The alpha source acquired the same potential a
field at those points and the potential was measured with
electronic electrometer connected to the alpha source. In
6 the experimental result of Ref. 16 is superimposed on
equipotential lines calculated utilizing Eqs.~15! and ~16!
with A2 /A153.0 andA4 /A350. The agreement is not a

Fig. 4. Equipotential lines~dashed! and electric field lines~continuous! in
the y50 plane. The bold horizontal lines represent the boundaries of
strip atx/a51 andx/a521. We assumeA2 /A153.6 andA4 /A350.
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good as in Fig. 5 for two reasons: One reason is that
calculations are for a two-dimensional geometry, while t
experiment in Ref. 16 was performed in a three-dimensio
rectangular chamber. The second reason is that in the g
seed experiment12 the ratio of the length to the thickness o
the conductor was 7, but in the second experiment16 this ratio

e

Fig. 6. Equipotential lines in they50 plane overlaid on Fig. 3~a! of Ref. 16.
We useA2 /A153.0 andA4 /A350.
6
Fig. 5. Electric field lines of Fig. 4 overlaid on plate
of Ref. 13.
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was only 2.3, which means that boundary effects nearz5,
andz52, are more important. These boundary effects w
not considered in our calculations.

One of the main aspects of this work is that we succee
in finding a theoretical model yielding reasonable resu
which were compared with two different experiments
ready published in the literature. As discussed above, th
experiments mapped the electric field lines and the equ
tential lines inside and outside the regions of steady curr
in conductors. The geometry considered here had never
dealt with in this problem before. In order to obtain th
result it was necessary to use elliptic-cylindrical coordina
(h, w, z). The general solution for the potential in terms
these variables is reasonably simple, namely,f5(A1h
2A2)(A3z2A4). When expressed in terms of the usual C
tesian coordinates (x, y, z) the solution takes the compli
cated form of Eq.~5!. We could not obtain this solution
working only with cartesian coordinates. In this problem t
pure cylindrical coordinates are not so practical as well. T
situation described here shows an important example of
usefulness of the elliptic-cylindrical coordinates in deali
with reasonably simple problems of physics.
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