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ABSTRACT. We consider a resistive solenoid around a type-I super-
conductor which is free to turn around its axis. When a variable current
flows through the solenoid, a current is induced in the superconduc-
tor. The free electrons of the superconductor begin to rotate in one
direction, while the positive lattice of the superconductor rotates in
the opposite direction. Moreover, there will be no net angular momen-
tum given to the superconducting material as a whole (composed of
the positive lattice plus the free electrons), as this net or total angular
momentum will be always zero. The same conclusion takes place by
replacing the superconductor with a resistive material.

Key Words: Superconductivity, Weber’s electrodynamics, induced cur-
rent.
PACS: 41.20.-q (applied classical electromagnetism), 74.20.-z (theories
and models of superconducting state).



112 A. K. T. Assis, M. Tajmar

1 Weber’s Force

In this work we utilize Weber’s electrodynamics to study the rotation of
a type-I superconductor due to electromagnetic induction. This paper
continues our study of superconductivity utilizing Weber’s electrody-
namics.1

We will consider here the translational motion of the conduction elec-
trons of the superconductor induced by an external variable current in a
surrounding solenoid and the opposite translational motion of the pos-
itive lattice of the superconductor also induced by the same external
source of variable current. The effect discussed here is different from the
mechanical effect acting on a long cylindrical bar of iron accompanying
the act of magnetization predicted by O. W. Richardson in 1908 and
investigated experimentally by Einstein, de Haas, Stewart and others.2

Richardson’s effect happens through the orientation of the magnetic mo-
ment of iron’s atoms due to the application of an external magnetic field,
while the effect discussed here is related to the macroscopic translational
motion of the conduction electrons through the positive lattice of the su-
perconductor material.

Consider an inertial frame of reference S with origin O and a point
particle 1 electrified with charge q1 located at point P1. Let ~r1 = x1x̂ +
y1ŷ + z1ẑ be its position vector relative to the origin O of S, while ~r2 =
x2x̂+y2ŷ+z2ẑ is the position vector of another point particle 2 electrified
with charge q2 and located at point P2. The velocities and accelerations
of these charges in S are given by, respectively: ~v1 = d~r1/dt, ~v2 = d~r2/dt,
~a1 = d~v1/dt = d2~r1/dt2 and ~a2 = d~v2/dt = d2~r2/dt2.

The position vector pointing from q2 to q1 will be defined by ~r12 ≡
~r1−~r2. We also define in this reference frame the relative velocity vector
~v12 and the relative acceleration vector ~a12 by the following expressions:
~v12 ≡ ~v1 − ~v2 and ~a12 ≡ ~a1 − ~a2. The charges are separated by a
distance r12 ≡

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. The unit vector

r̂12 pointing from 2 to 1 can be written as r̂12 ≡ (~r1 − ~r2)/r.

In the International System of Units and in vector notation Weber’s
force ~F21 exerted by particle 2 on particle 1 located at point P1 is given
by:3

1[1] and [2].
2[3], [4], [5], [6, p. 244], [7] and [8].
3[9], [10], [11], [12], [13], [14], [15] and [16].
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Here ~F12 is the force exerted by q1 on q2 located at point P2. More-
over, ṙ12 ≡ dr12/dt is the relative radial velocity between them, while
r̈12 ≡ dṙ12/dt = d2r12/dt2 is the relative radial acceleration between the
charges. In vector notation these magnitudes can be written as:

ṙ12 =
dr12

dt
= r̂12 · ~v12 , (2)

and

r̈12 =
dṙ12

dt
=

d2r12

dt2
=

~v12 · ~v12 − (r̂12 · ~v12)2 + ~r12 · ~a12

r12
. (3)

The constant c ≡ 1/
√

µoεo = 2.998× 108 m/s in equation (1) is the
ratio of electromagnetic and electrostatic units of charge. Its experimen-
tal value was first determined by W. Weber and R. Kohlrausch. Its value
is the same as light velocity in vacuum. In the expression c ≡ 1/

√
µoεo

the magnitude µo = 4π × 10−7 H/m is called the permeability of free
space, while εo = 8.85 × 10−12 F/m is the permittivity of vacuum. We
are using here an Eulerian description of the electric matter that will be
put in motion.

In this work we will be dealing with neutral materials, so that the elec-
trostatic or coulombian component of equation (1), q1q2r̂12/(4πεor

2
12),

will not need to be considered in the calculations. The acquired ve-
locities of the test particles considered here will be much smaller than
light velocity, so that v1 � c and v2 � c, where v1 ≡ |~v1| and v2 ≡ |~v2|.
Therefore, the velocity components of Weber’s force (1) will be neglected
in the following calculations. The only remaining term of Weber’s force
which will need to be considered here is the last component depending
on the accelerations ~a1 and ~a2, namely:

~F21 =
q1q2

4πεo

r̂12

r2
12

~r12 · ~a12

c2
=

µoq1q2

4π

r̂12

r12
(r̂12 · ~a12) . (4)
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2 Rotation of a Superconductor Due to Electromag-
netic Induction

We first consider a resistive cylindrical shell of radius R2 and infinite
length with its axis along the z axis. It is around a superconducting
cylindrical shell of radius R1 < R2 coaxial with the resistive shell. We
suppose the internal cylinder to be composed of a single monoatomic
layer of superconducting material.

The cylindrical shells 1 and 2 are assumed to be electrically neutral,
being composed of positive lattices with surface charge densities σ2+ > 0
and σ1+ > 0, respectively, together with free electrons having surface
charge densities σ2− = −σ2+ and σ1− = −σ1+. The positive lattice
of the superconductor with surface charge density σ1+ will be identified
with the macroscopic superconducting sample. Therefore, the rotation of
the lattice means a rotation of the macroscopic sample being considered
here.

We assume that the positive cylindrical shells and the conduction
electrons are initially at rest relative to the inertial frame of reference S.
We also assume that the positive lattice of the resistive shell will always
remain at rest, with zero angular velocity: ~ω2+ = ~0. In the time interval
from t = 0 to the final value t = tf a given external applied current
begins to flow azimuthally in the outer resistive cylinder, so that all its
electrons move with a given angular velocity ~ω2−(t) = ω2−(t)ẑ, reaching
a final angular velocity ~ω2−(tf ) = ω2−f ẑ. Our goal is to calculate the
induced angular velocities of the positive lattice of the superconductor,
~ω1+(t) = ω1+(t)ẑ, and the induced angular velocity of its free electrons,
~ω1−(t) = ω1−(t)ẑ.

We first consider a generic charged cylindrical shell of radius R2 and
surface charge density σ2 rotating with angular velocity ω2(t) around the
z axis. We calculate Weber’s force exerted by this shell acting on a test
charge q1 located at a distance R1 from the axis of the shell, figure 1.

We utilize cylindrical coordinates (ρ, ϕ, z). Consider an element of
source charge dq2 of the cylindrical shell having a surface charge density
σ2 and area da2. In cylindrical coordinates da2 = R2dϕ2dz2, where ϕ
is the azimuthal angle. Therefore, dq2 = σ2da2 = σ2R2dϕ2dz2. When
the cylindrical shell is rotating with angular velocity ω2(t) = dϕ2(t)/dt
around the z axis, the position vector, velocity and acceleration of this
element of charge relative to the inertial frame of reference S are given
by, respectively: ~r2 = R2ρ̂2 + z2ẑ, ~v2 = R2ω2ϕ̂2 and ~a2 = −R2ω

2
2 ρ̂2 +
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Figure 1: Cylindrical shell of length `, radius R2, surface charge density σ2

rotating relative to the inertial frame of reference S with an angular velocity
ω2(t) around the z axis and acting on a test charge q1 at a distance R1 from
the z axis.

R2ω̇2ϕ̂2, where ρ̂2, ϕ̂2 and ẑ are the unit vectors of cylindrical coordinates
at the location of dq2, while ω̇2 ≡ dω2/dt. The test charge q1 is located
at the internal cylindrical shell of radius ρ1 = R1. It may also have
centripetal and tangential components of its acceleration. We assume
that contact forces maintain this test charge at a constant distance R1

from the axis of the cylinder, so that ρ̇1 = 0 and ρ̈1 = 0. We consider
the test charge located at z1 = 0. We assume that it will move along the
tangential direction ϕ with an angular velocity ω1(t) = dϕ1(t)/dt. Its
position vector, velocity and acceleration relative to the inertial frame
of reference S are then given by, respectively: ~r1 = ρ1ρ̂1, ~v1 = ρ1ω1ϕ̂1

and ~a1 = −ρ1ω
2
1 ρ̂1 + ρ1ω̇1ϕ̂1, where ω̇1 ≡ dω1/dt.

Equation (4) yields the force exerted by the source charge dq2 acting
on the conduction electron q1. Integrating equation (4) over the surface
of the cylindrical shell of radius R2 yields the following net force acting
on the test electron along the tangential or azimuthal direction ϕ̂1:4

~F =
∫ ∞

z2=−∞

∫ 2π

ϕ2=0

µoq1dq2

4π

r̂12

r12
(r̂12 · ~a12)

=

−µoq1σ2R2(ω̇2 − ω̇1)ρ1ϕ̂1/2 , if ρ1 < R2 ,
−µoq1σ2R2(ω̇2 − ω̇1)R2ϕ̂1/2 , if ρ1 = R2 ,
−µoq1σ2R2(ω̇2 − ω̇1)R2

2ϕ̂1/(2ρ1) , if ρ1 > R2 .
(5)

4[17] and [1].
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We now apply Newton’s second law of motion to the test charge
q1 of inertial mass m1 located at ρ1 = R1 and moving only along the
azimuthal direction, namely:

~F = m1~a1 = m1R1ω̇1ϕ̂1 . (6)

Here ~F represents the total force acting on the test charge. We are
considering only the azimuthal component of this force along the ϕ di-
rection, as contact forces prevent the test particle from moving along the
radial ρ direction.

We assume two neutral cylindrical shells of infinite lengths and radii
R1 and R2 > R1 concentric along the z axis. The outer shell is a normal
conductor with positive surface charge density σ2+ > 0 and negative sur-
face charge density σ2− = −σ2+, while the inner shell is superconducting
with positive surface charge density σ1+ > 0 and negative surface charge
density σ1− = −σ1+. All these charges are supposed initially at rest rel-
ative to the inertial frame of reference S. Our goal is to calculate the
motion induced in the positive and negative charges of the inner shell
when an external azimuthal current is applied to the outer shell. We will
assume that the positive lattice of the external resistive shell remains sta-
tionary during the whole process. The conduction electrons of the outer
shell will be accelerated by an external source along the azimuthal direc-
tion during the time interval 0 < t < tf , moving around the z axis with
a variable and given angular velocity ~ω2−(t) = ω2−(t)ẑ. They begin at
rest and at the end of this time interval they will be moving with the
final and constant angular velocity ω2−f ẑ.

The test charge q1 at the superconducting shell is located at
(ρ1, ϕ1, z1) = (R1, ϕ1, 0). It can rotate freely around the z axis in the
time interval 0 < t < tf with a variable angular velocity dϕ1/dt ≡ ω1(t)
which needs to be calculated. There are four sets of source charges
which exert a force on any test charge of the inner shell in the time
interval 0 < t < tf , namely: (a) the stationary positive lattice of the
outer shell with surface charge density σ2+ and zero angular velocity
ω2+(t) = 0; (b) the set of negative conduction electrons of the outer
shell with surface charge density σ2− = −σ2+ moving with an angular
velocity ~ω2−(t) = ω2−(t)ẑ; (c) the positive lattice of the inner shell with
surface charge density σ1+ and angular velocity ω1+(t); and (d) the set
of negative conduction electrons of the inner shell with surface charge
density σ1− = −σ1+ and angular velocity ω1−(t). These four forces act-
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ing on a test particle with mass m1 > 0 and charge q1 will be represented
by, respectively, ~F2+, q1 , ~F2−, q1 , ~F1+, q1 and ~F1−, q1 .

The total force ~F in equation (6) will be given by equation (5) exerted
by the four sets of source charges presented in the previous paragraph,
namely, (a), (b), (c) and (d), acting on the the test charge.

We first consider the test charge to be a positive ion of the supercon-
ducting lattice with mass M and charge q1 = Ne = N×1.6×10−19 C >
0, where N > 0 represents the number of free electrons per atom and
e = +1.6 × 10−19 C > 0 represents the charge of the proton. The an-
gular velocity of this positive charge q1 will be represented by ω1+. As
it will be moving together with all other positive ions of the inner shell,
we have ṙ = 0 and r̈ = 0 for any pair of positive ions of the inner shell,
so that ~F1+, q1 = ~0. Combining equations (5) and (6) for these four sets
of source charges acting on this positive ion yields:

~F2+, Ne + ~F2−, Ne + ~F1+, Ne + ~F1−, Ne

=
µoNeR1R2σ2+ω̇1+

2
ϕ̂1 +

µoNeR1R2σ2+ (ω̇2− − ω̇1+)
2

ϕ̂1

+ ~0 +
µoNeR2

1σ1+ (ω̇1− − ω̇1+)
2

ϕ̂1

= MR1ω̇1+ϕ̂1 . (7)

Let |mW1| ≡ µoeR1σ1+/2 > 0 and |mW2| ≡ µoeR2σ2+/2 > 0 be the
magnitudes of the weberian electromagnetic masses for this cylindrical
geometry.5 With these definitions of |mW1| and |mW2| equation (7) can
be written as:

N |mW2|ω̇2− + N |mW1| (ω̇1− − ω̇1+) = Mω̇1+ . (8)

We now consider the test charge to be a free electron of the super-
conducting lattice with mass m = 9.1× 10−31 kg and charge q1 = −e =
−1.6× 10−19 C < 0. Its angular velocity will be represented by ω1−. As
it will be moving together with all other free electrons of the inner shell,

5[17], [18] and [1].
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we have ṙ = 0 and r̈ = 0 for any pair of electrons of the inner shell, so
that ~F1−, q1 = ~0. Combining equations (5) and (6) for the four previous
sets of source charges (a), (b), (c) and (d) acting on this free electron
yields:

~F2+, −e + ~F2−, −e + ~F1+, −e + ~F1−, −e

= −µoeR1R2σ2+ω̇1−

2
ϕ̂1 −

µoeR1R2σ2+ (ω̇2− − ω̇1−)
2

ϕ̂1

+
µoeR

2
1σ1+ (ω̇1+ − ω̇1−)

2
ϕ̂1 +~0

= mR1ω̇1−ϕ̂1 . (9)

With the previous definitions of |mW1| and |mW2| this equation can
be written as:

−|mW2|ω̇2− + |mW1| (ω̇1+ − ω̇1−) = mω̇1− . (10)

Equations (8) and (10) yield:

ω̇1− = − M |mW2|
mM + mN |mW1|+ M |mW1|

ω̇2− , (11)

and

ω̇1+ =
Nm|mW2|

mM + mN |mW1|+ M |mW1|
ω̇2− = −Nm

M
ω̇1− . (12)

We can also integrate these two equations in time utilizing the initial
conditions ω1+(0) = ω1−(0) = ω2+(0) = ω2−(0) = 0. After integration
we obtain our final results, namely:

ω1−(t) = − M |mW2|
mM + mN |mW1|+ M |mW1|

ω2−(t) , (13)

and
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ω1+(t) = −Nm

M
ω1−(t) . (14)

Let us give some orders of magnitude. The free electron mass is given
by m = 9.1× 10−31 kg. Suppose R1 = 0.1 m and a lead superconductor
with four free electrons per atom (N = 4) and a mass of its positive ion
given by M = 3.44 × 10−25 kg � m. Its number density is n = 3.3 ×
1028 atoms/m3, equivalent to 1.0× 1019 atoms/m2. The surface charge
density of these positive lead ions (each ion charged with four protons)
is then given by σ1+ ≈ 6.6 C/m2. With an outer copper conductor
with R2 = 0.2 m and σ2+ ≈ 3 C/m2 we have |mW1| ≡ µoeR1σ1+/2 ≈
6.6× 10−26 kg and |mW2| ≡ µoeR2σ2+/2 ≈ 6.0× 10−26 kg, such that:

m � |mW2| < |mW1| < M . (15)

Applying equation (15) with the appropriate orders of magnitude for
the masses into equations (13) and (14) yields:

ω1−(t) ≈ −σ2+R2

σ1+R1
ω2−(t) ≈ −0.91ω2− , (16)

and

ω1+(t) = −Nm

M
ω1−(t) ≈ 1.06× 10−5ω1− . (17)

Therefore, |ω1+| � |ω1−|, while |ω1−| ≈ |ω2−|. Although the angular
velocities of the free electrons in shells 1 and 2 have the same order of
magnitude, they rotate in opposite directions. That is, if the electrons in
the external shell begin to rotate in the clockwise direction, the induced
motion of the free electrons in the internal superconducting sample will
take place in the counter-clockwise direction.

Multiplying equation (14) by R2
1 shows that the sum of the angular

momentum acquired by the each positive ion of the superconducting
lattice with the angular momentum acquired by its N free electrons
goes to zero, namely:

MR2
1ω1+(t) + NmR2

1ω1−(t) = 0 . (18)

Equations (13), (14) and (18) show that when the electrons are forced
by external means to rotate in the resistive conductor, the free electrons
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of the internal superconductor will be induced to rotate in the opposite
direction, while the positive lattice of the superconductor will rotate in
the same direction as the electrons of the external resistive conductor,
Figure 2.

+
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_
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w1+
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O
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Figure 2: When the electrons of the resistive cylindrical shell 2 are rotated by
external means around the z axis with an angular velocity ω2−, they induce
the free electrons of the superconducting shell 1 to rotate in the opposite
direction with an angular velocity ω1−. They also induce the positive ions of
the superconductor to rotate in the same direction as the electrons of shell 2
with a much smaller angular velocity |ω1+| � |ω2−|.

Moreover, there will be no net angular momentum given to the su-
perconducting material as a whole, considered as being composed of the
positive lattice plus the free electrons of the superconductor. This net
or total angular momentum will be always zero according to equation
(18).

3 Rotation of a Resistive Conductor Due to Electro-
magnetic Induction

It is now simple to include resistivity in the inner conductor. As is well
known, the resistive force responsible for Ohm’s law can be expressed
microscopically as a frictional force proportional to the relative velocity
between the conduction electrons and the lattice of the metal. This re-
sistive force tries to decrease the relative motion between the lattice and
the free electrons of the metal. We can then add to the left side of equa-
tion (9) the resistive force exerted by the lattice on any free electron as
given by ~F res

latt, −e = −b (~v1− − ~v1+), where b = e2n/g > 0 is the positive



Rotation of a superconductor due to electromagnetic. . . 121

coefficient of the frictional force. Moreover, n > 0 represents the number
density of the resistive conductor and g its conductivity. Analogously, by
Newton’s third law of motion, we must also add to the left side of equa-
tion (7) the resistive force of reaction exerted by the conduction electrons
acting on the lattice, namely, ~F res

−e, latt = −~F res
latt, −e = b (~v1− − ~v1+). As

these two forces comply with action and reaction, they will not generate
any net angular momentum on the resistive conductor. Therefore equa-
tion (18) will remain valid for a resistive internal cylinder. That is, the
external variable current can produce a rotation of the positive lattice of
the resistive conductor in one direction (supposing that the lattice is free
to rotate). However, the external current will also produce a rotation
of the conduction electrons of this resistive conductor in the opposite
direction. These opposite rotations will not generate any total angular
momentum of the internal cylinder considered as a single body (that is,
composed by the positive lattice together with the negative conduction
electrons).

4 Discussion and Conclusion

Although it is beyond the scope of this paper, it would be interesting to
perform the calculation of the induced torque, on each type of charge,
using the standard Maxwellian electrodynamics. In this formulation the
external variable current creates a magnetic field and an electric field
which act on the inner non-resistive or resistive neutral system by mutual
induction between cylinders.

In this work we showed with Weber’s electrodynamics that a variable
current flowing in an external cylinder can induce rotations in one direc-
tion of the positive lattice of an internal superconducting cylinder, while
the induced rotation of the free electrons belonging to the sample will
take place in the opposite direction. The material composed of positive
lattice and corresponding free electrons will receive no net angular mo-
mentum from the external source. We also reached a similar conclusion
by extending our treatment to a resistive inner sample.
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