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Foreword

C. Stewart Gillmor
Professor of History and Science, Emeritus

Wesleyan University
Fellow, American Physical Society
Email: sgillmor@wesleyan.edu

I am pleased to write the Foreword to this expanded, English edition of Charles Augustin
Coulomb’s memoirs in Electricity, Magnetism and Torsion. The Editor, A. K. T. Assis, is well
known not only for his monographs in Electrodynamics, Mechanics and History of Electricity,
but for his body of important critical editions in several languages of the works of classical
physicists. Coulomb’s memoirs were supposed to be published following his death in 1806,
but this came not to be, except for a partial collection of his mechanical and civil papers
published in 1821.1 Following the naming of electrical units in 1881, the French Society
of Physics authorized physicist Alfred Potier to publish a collection of Coulomb’s papers.
These were published beginning in 1884,2 sometimes in truncated form. Professor Assis has
done a masterful job of including the omissions in the Potier edition and has included several
other papers of interest in Coulomb’s Electricity, Magnetism and Torsion work. This English
edition is expanded from Assis’ recent edition in Portuguese,3 especially with his enhanced
critical notes and comments as well as those of Louis L. Bucciarelli, a Professor (Emeritus)
of Engineering and Technology Studies at MIT. The expanded bibliography is superb. Assis
describes his own decades-long research in the action-at-a-distance worldview in physics from
Isaac Newton, through Coulomb, André-Marie Ampère and then Wilhelm Weber. This is
contrasted to the worldview of Fields, other than Central Forces, which came to prominence
in Physics by the mid-nineteenth century. Professor Assis concerns himself with Experiment
and Measurement in all its details and difficulties, from antiquity through the early modern
period, and how standards differed over the ages. The results of Experiment in Science are
frequently contested, sometimes for decades as was the case with some of Coulomb’s results.

Many years ago, soon after the publication of my biography of Coulomb,4 I was invited to
speak at the Barnard-Columbia University History of Physics laboratory of Samuel Devons.
During my visit and in a lengthy discussion, Devons emphasized the considerable difficul-
ties he experienced in duplicating Coulomb’s experiments with the Torsion balance — the
extreme sensitivity to air currents, temperature fluctuations, sound volumes, motional per-
turbations, among other factors. It is quite difficult to reproduce exactly the circumstances

1[Coulomb, 1821].
2[Potier, 1884].
3[Assis, 2022].
4[Gillmor, 1971a].
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of a classical experiment. One example is that when Potier compared Coulomb’s data for
wires used in his Torsion balance, Potier used “modern” brass and iron wire where rigidity
and hardness varied from the eighteenth-century harpsichord wires (cuivre jaune, laiton, fer)
used by Coulomb. For the iron, the differences included the low carbon, high phosphorus
content in the old wire. And in general, several properties of wire are sensitive to the de-
gree of their reduction.5 German, Italian, and some English followers contested Coulomb’s
electric balance results for several decades, as extensively discussed by modern authors men-
tioned by Assis (Heering, Blondel, Wolff, Martinez, Buchwald.) The differing reception of
Coulomb’s results was not simply experimental, but philosophical, just as Coulomb saw
the mid-eighteenth century worldviews of Newtonian forces at a distance versus Cartesian
vortices and effluvia.

Coulomb was a military engineer and served in half a dozen different locations over
more than twenty years. Whatever personal papers he may have been able to transfer
and move with him basically are missing. His widow auctioned all his instruments within
six months after his death in 1806. His physical research notes and papers were given to
J. B. Biot for presentation and publication and Biot utilized some of these in his work
published in 1816.6 The location of these Coulomb papers is unknown as are the locations
of all his instruments. In reading the Assis translation, as one who donated several years
to reading Coulomb’s manuscripts and correspondence in seven or eight military, maritime,
engineering and scientific French archives, I find excitement in places, as if I am hearing
Coulomb speaking. I heartily applaud Professor Assis’ new English edition.

5[Goodway and Savage, 1992].
6[Biot, 1816a], [Biot, 1816b], [Biot, 1816c] and [Biot, 1816d].

18



Chapter 1

Introduction to the Translations of
Coulomb’s Memoirs on Torsion,
Electricity, and Magnetism

Andre Koch Torres Assis
Institute of Physics

University of Campinas — UNICAMP
13083-859 Campinas, SP, Brazil
Email: assis@ifi.unicamp.br

Homepage: www.ifi.unicamp.br/~assis

The portrait on the cover is an oil on canvas of Charles-Augustin de Coulomb (1736-1806)
made in 1894 by the French painter Louis Hierle (1856-1906). It is located in the Palace of
Versailles. It is based on an oil painting of Coulomb made between 1803 and 1806 by an
unknown artist. Some authors attribute the original portrait to Hippolyte Lecomte (1781-
1857). It shows Coulomb in the military blue coat of the Corps Royal du Génie. He is
holding his famous torsion balance and a scientific work. This is the most famous image of
Coulomb.

This book presents the English translation of Coulomb’s main works on torsion, electric-
ity, and magnetism. A Portuguese translation of all of these works was published in 2022.7

Most of these works, although not all of them, had been reprinted in 1884 by the French
Society of Physics.8 In this French edition of 1884 some papers were only partially reprinted.
In the present English translation I present a complete translation of all these works, with
commentary, together with some other papers which were not included in the 1884 French
edition.

The words between square brackets, [ ], were introduced by myself in order to facilitate
the comprehension of some sentences. Coulomb’s footnotes are represented by [Note by
Coulomb]. The Notes by Alfred Potier (1840-1905), the editor of Coulomb’s works published
in 1884, are represented by [Note by Potier]. The Notes by L. L. Bucciarelli are represented
by [Note by Bucciarelli]. All other footnotes were introduced by myself.

7[Assis, 2022].
8[Potier, 1884].
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Coulomb’s main biographies were written by Charles Stewart Gillmor.9 Christine Blon-
del, Bertrand Wolff and John Heilbron also produced extremely important studies related
to Coulomb’s life and to several of his works.10

1.1 My Motivations to Undertake These Commented

Translations of Coulomb’s Memoirs

A. K. T. Assis

My first motivation is related to the importance of Coulomb’s work. His force between
electrified bodies appears in almost all textbooks on electricity. An analogous expression
which he obtained for the force between magnetic poles is also mentioned in several pub-
lications. Between 1788 and 1793 he published his famous 7 Memoirs on electricity and
magnetism containing these results and many other extremely important facts. To arrive at
these experimental results he utilized a torsion balance. He had obtained the law of torsion
of metal wires in 1784. Despite the relevance of his works, only few of his papers have been
fully translated. His paper on the force of torsion of metal wires was translated in 2001.11

His First Memoir on electricity has been translated in its entirety into German, English and
Portuguese.12 His second, third and fourth major Memoirs have been translated in full only
into German and Portuguese.13 Beyond the complete Portuguese translation of his most im-
portant papers on torsion, electricity, and magnetism,14 I know of only a few partial English
translations which will be mentioned in the appropriate Chapters of this work. The English
translations presented in this book are intended to fill this gap.

Another motivation arises from my philosophical conceptions and my own lines of re-
search. I work with direct interaction between bodies separated spatially from one another.
That is, I do not utilize concepts like the gravitational field, the electric field and the mag-
netic field. This action at a distance approach was initiated by Isaac Newton (1642-1727)
with his law of universal gravitation in which the gravitational force between two particles is
a central force proportional to the product of their masses and inversely proportional to the
square of their distance, following the principle of action and reaction. This approach was
extended by Coulomb when dealing with the interaction between electrified bodies: that is,
a central force directly proportional to the product of the electric charge of these particles

9[Gillmor, 1971b] and [Gillmor, 1971a].
10[Blondel, 1982, Chapter I], [Blondel and Dörries (Editors), 1994], [Blondel, 1995], [Heilbron, 1999, pp.

468-477 and 494-500], [Blondel and Wolff, 2007], [Blondel and Wolff, 2008a], [Blondel and Wolff, 2008b],
[Blondel and Wolff, 2009], [Blondel and Wolff, 2011c], [Blondel and Wolff, 2011e],
[Blondel and Wolff, 2011d], [Blondel and Wolff, 2011b], [Blondel and Wolff, 2011a],
[Blondel and Wolff, 2011f], [Blondel and Wolff, 2013d], [Blondel and Wolff, 2013a],
[Blondel and Wolff, 2013b], [Blondel and Wolff, 2013e], [Blondel and Wolff, 2013c],
[Blondel and Wolff, 2014] and [Blondel and Wolff, 2015]. See also [Figueras, 1995].

11[Coulomb, 1787], with English translation in [Coulomb, 2012a] and [Coulomb, 2012b], and Portuguese
translation in [Assis, 2022]. See also [Bucciarelli and Buchwald, 2001].

12[Coulomb, 1788b]. Complete translations into German, [Coulomb, 1890b], English, [Coulomb, 2012c],
and Portuguese, [Assis, 2022].

13[Coulomb, 1788d], [Coulomb, 1788e] and [Coulomb, 1788c]. Complete German translations in
[Coulomb, 1890e], [Coulomb, 1890a] and [Coulomb, 1890d]. Complete Portuguese translations in
[Assis, 2022].

14[Assis, 2022].
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and inversely proportional to the square of their distance. He also obtained an analogous
expression for the force between magnetic poles (a central force proportional to the product
of their magnetic pole intensities and inversely proportional to the square of their distance).
This research project was followed by the force between current elements obtained by André-
Marie Ampère (1775-1836). Once again there is a central force pointing along the straight
line connecting the current elements and satisfying the principle of action and reaction. It
is proportional to the product of the current intensities in the two elements, to the product
of their infinitesimal sizes, and also inversely proportional to the square of their distance.
Moreover, it depends on the angle between the two current elements, and also on the angles
between each current element and the straight line connecting them. The most important de-
velopment of this line of research was made by Wilhelm Eduard Weber (1804-1891). Weber’s
electrodynamic force between two electrified particles depends not only on their distance r,
but also on their relative velocity dr/dt and on their relative acceleration d2r/dt2. Once
more there is a central force following the principle of action and reaction. Weber unified
the laws of Coulomb, Ampère and Michael Faraday (1791-1867) with his force law of 1846.
Moreover, the laws of Newton, Coulomb and Weber are compatible with the principles of
the conservation of linear momentum, angular momentum and energy.

Ampère and Weber’s electrodynamics have been practically abandoned in physics teach-
ing for more than a century. Instead of their approach, physics has followed the conception
of Faraday and James Clerk Maxwell (1831-1879) based on electric and magnetic fields.
This led to a neglect of the philosophical approach of Newton, Coulomb, Ampère and Weber
based on a direct force between the interacting particles. The fundamental works of Ampère
and Weber have been forgotten in general by the scientific community. I have been making
a huge effort to make this action at a distance approach known to students and scientists.
To this end I am translating their main works, with commentary. I made a Portuguese
translation of Newton’s masterpiece Principia (Mathematical Principles of Natural Philos-
ophy).15 I also translated into Portuguese his book Opticks.16 Together with João Paulo
M. d. C. Chaib, I published translations into English and Portuguese, with commentary,
of Ampère’s first paper of electrodynamics from 1820, together with his masterpice of 1826,
Théorie des Phénomènes Électro-dynamiques, Uniquement Déduite de l’Expérience. These
translations were published in the book Ampère’s Electrodynamics — Analysis of the Mean-
ing and Evolution of Ampère’s Force between Current Elements, together with a Complete
Translation of His Masterpiece: Theory of Electrodynamic Phenomena, Uniquely Deduced
from Experience.17 With the help of several colleagues, I edited the translation from Ger-
man into English, with commentary, of Weber’s main works. They were published in the
book Wilhelm Weber’s Main Works on Electrodynamics Translated into English. Volume 1:
Gauss and Weber’s Absolute System of Units.18 Volume 2: Weber’s Fundamental Force and
the Unification of the Laws of Coulomb, Ampère and Faraday.19 Volume 3: Measurement of
Weber’s Constant c, Diamagnetism, the Telegraph Equation and the Propagation of Electric
Waves at Light Velocity.20 Volume 4: Conservation of Energy, Weber’s Planetary Model of
the Atom and the Unification of Electromagnetism and Gravitation.21 In this translation

15[Newton, 1990], [Newton, 2008] and [Newton, 2010].
16[Newton, 1996].
17[Assis and Chaib, 2011] and [Assis and Chaib, 2015]. See also [Chaib, 2009].
18[Assis (editor), 2021a].
19[Assis (editor), 2021b].
20[Assis (editor), 2021c].
21[Assis (editor), 2021d].
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we also included 5 papers by Carl Friedrich Gauss (1777-1855), a translation of some letters
exchanged between Gauss and Weber, 1 paper by Weber and Friedrich Wohler (1800-1882),
2 papers by Weber and Rudolf Kohlrausch (1809-1858), 1 paper by Gustav Theodor Fechner
(1801-1887), 1 paper by Johann Christian Poggendorff (1796-1877), 1 paper by François Fe-
lix Tisserand (1845-1896), 2 papers by Carl Neumann (1832-1925), and 3 papers by Gustav
Kirchhoff (1824-1887).

In the last 35 years my main topics of research have been Newton and Coulomb’s force
laws, Ampère’s force between current elements and Weber’s law applied to electromagnetism
and gravitation. I have published several books on these subjects:

• Weber’s Electrodynamics.22

• Relational Mechanics.23

• Inductance and Force Calculations in Electrical Circuits.24

• The Electric Force of a Current: Weber and the Surface Charges of Resistive Conduc-
tors Carrying Steady Currents.25

• Ampère’s Electrodynamics — Analysis of the Meaning and Evolution of Ampère’s
Force between Current Elements, together with a Complete Translation of His Master-
piece: Theory of Electrodynamic Phenomena, Uniquely Deduced from Experience.26

• Weber’s Planetary Model of the Atom.27

• Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravita-
tional Force.28

• Wilhelm Weber’s Main Works on Electrodynamics Translated into English.29

• Commented Translation into Portuguese of Coulomb’s Main Works on Electricity and
Magnetism.30

My papers on these subjects can be found in my homepage.
With this English translation and commentary of Coulomb’s main works on electricity,

magnetism, and torsion I hope to make this fundamental line of research better known to
the scientific community and to students in general. In this way his original researches and
philosophical conceptions can be explored and developed experimentally and also theoreti-
cally.

22In English: [Assis, 1994]. In Portuguese: [Assis, 1992], [Assis, 1995] and [Assis, 2015a].
23In English: [Assis, 1999a]. In Portuguese: [Assis, 1998a] and [Assis, 1999b].
24In English: [Bueno and Assis, 2001]. In Portuguese: [Bueno and Assis, 1998] and

[Bueno and Assis, 2015].
25In English: [Assis and Hernandes, 2007]. In Portuguese: [Assis and Hernandes, 2009]. In German:

[Assis and Hernandes, 2013].
26In English: [Assis and Chaib, 2015]. In Portuguese: [Assis and Chaib, 2011].
27In English: [Assis et al., 2011]. In Portuguese: [Assis et al., 2014]. In German: [Assis et al., 2018].
28In English: [Assis, 2014]. In Portuguese: [Assis, 2013].
29Volumes 1 to 4: [Assis (editor), 2021a], [Assis (editor), 2021b], [Assis (editor), 2021c] and

[Assis (editor), 2021d].
30In Portuguese: [Assis, 2022].
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Thiago Pedro Mayer Alegre, José André Angotti, Alexandre Alberto Visentin Ramos de
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van Gent, Charles Stewart Gillmor, Marcio Peron Franco de Godoy, Jürgen Gottschalk,
Robert W. Gray, Jenaro Guisasola, Hermann Härtel, Peter Heering, John Lewis Heilbron,
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1.2 Parts, Particles, or Molecules; Fluids One or Two?
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Email: llbjr@mit.edu

I first encountered Coulomb in a serious way when preparing for teaching a course at MIT
together with Jed Buchwald back at the beginning of this century.31 The course confronted
students with the task of replicating two of Coulomb’s experiments, both now recognized for
their importance in improving physicists’ understanding of the laws governing the interaction
of charged electric bodies and the behavior of wires — of any cylinder for that matter — when
subject to twist, to torsion. It was necessary to translate the two memoirs “Theoretical and
Experimental Research on the Force of Torsion, and on the Elasticity of Metal Wires”32 and
“A First Memoir on Electricity and Magnetism”33 for student reference in the construction
and execution of both experiments.

The students were able to successfully carry out the experiments on torsion, reproducing
Coulomb’s results sufficient to appreciate his accomplishment. They were less successful in
replicating his experiment on the law governing the repulsion of two like-charged bodies.
(The paucity of data justifying Coulomb’s law of electrostatic repulsion in this experiment
is to be contrasted with the thoroughness of his experiments on the torsion of wires.) The
apparatus he constructed and used in his work on torsion was sine qua non for all of his
subsequent experimental work in electricity and magnetism. It is why his Memoir on torsion
is included in this volume.

In assisting Professor Assis in the translation of the other Memoirs, I found myself un-
settled on occasion by Coulomb’s description of the materials supporting and enabling the
electric and magnetic phenomena he so skillfully put to the test. In particular, he writes
of “parties” which I translated simply as “parts” while some historians have seen them as

31[Bucciarelli and Buchwald, 2001].
32[Coulomb, 1787], with English translation in [Coulomb, 2012a] and [Coulomb, 2012b], and Portuguese

translation in [Assis, 2022].
33[Coulomb, 1788b] with partial English translation in [Coulomb, 1935a]. There are complete English,

German and Portuguese translations in [Coulomb, 2012c], [Coulomb, 1890b] and [Assis, 2022], respectively.
This work was presented in 1785 to the French Academy of Sciences and published in 1788.
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“particles”. Coulomb seems to prefer “molecule” rather than “particule” for the elementary
ingredients of a material, the (small) interacting constituents of a body, a preference reflected
in his statement of his proposition: “Le Fluide magnétique agit par attracion ou répulsion,
suivant la raison composée directe de la densité du fluide, & la raison inverse du carré des
distances de ses molécules” found in his Second Memoir.34

I suspect Coulomb’s introduction of the word “molecule” was influenced by the way his
contemporaries, in particular, Laplace, had used the concept of (sensible) forces at (insen-
sible) distances to explain various phenomena.35 Evidence for this conjecture is found in
a long footnote ‘On the attractive and repulsive action of bodies, according to the law of
distance’ in Coulomb’s 2nd Memoir.36 There he suggests that “the cohesion, the elasticity
and all the chemical affinities” may be due to attraction and/or repulsion between elements
of the body “...in a relation very close to the inverse ratio of the cube of the distances”.

Coulomb subsequently came to see “molecules” as important in explaining how, when a
magnet is broken into pieces, each piece acts as a little magnet.37

And as to the question whether magnetism was due to one fluid [OEpinus] or two fluids,
Coulomb allows that:38 “These two hypotheses explain equally well, and in the same way,
all the magnetic phenomena” albeit with “some difficulties.” Although he prefers two fluids,
Coulomb appears quite open to the possibility that different hypotheses might serve to
explain electric phenomena and magnetism. In the Sixth Memoir, in a Section titled “Of the
Two Types of Electricity,”39 he notes that a one-fluid theory of electricity (again OEpinus)
“gives, as regards the calculation, the same results as that of the two fluids” but he prefers
two-fluids “because it seems to me contradictory to admit at the same time in the parts of
the bodies, an attractive force in inverse ratio to the square of the distances demonstrated
by universal gravity, and a repulsive force in the same inverse ratio of the square of the
distances; a force which would necessarily be infinitely large, relatively to the attractive
force due to gravity.” He concludes this Section with

As these two explanations have only a greater or lesser degree of probability, I warn,
in order to protect the theory that will follow from any systematic dispute, that in the
supposition of the two electric fluids, I have no other intention than to present with
the fewest possible elements the results of the calculation and of the experiment, and
not to indicate the true causes of electricity.

Like Newton, Coulomb is not making any hypothesis as to the true causes of electricity
and magnetism.40 His forte is experiment.

34[Coulomb, 1788d, p. 593] and Section 14.3, page 244 of this volume.
35[Bucciarelli and Dworsky, 1980, Chapter 4].
36See footnote 556 on page 238 of this volume.
37See Assis’ Section 4.4, “Magnetic Researches”, on page 42 of this volume.
38See page 135 of this volume.
39See Section 24.40 on page 418 of this volume.
40Coulomb’s use of two fluids and of molecules as substrata for his explanation of electric and mag-

netic phenomena brought to mind the two ways engineers can analyze the flow of fluids, i.e. either
by following the particles of the fluid (Lagrangian view) or by sitting at a point and figuring the
mass flow, the velocity, at that location (an Eulerian view). See https://en.wikipedia.org/wiki/

Lagrangian_and_Eulerian_specification_of_the_flow_field.
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Chapter 2

Notice of the French Society of
Physics when Coulomb’s Works were
Reprinted in 1884

Notice41

The Board of the French Society of Physics, following a proposal by Mr. Joubert,42

its general secretary, has decided that it would be appropriate and in agreement with the
intention of the founders of the Society, when there are available financial means, to publish
a series of Memoirs related to physics, focusing our attention on reprinting in particular the
Memoirs which were published around a century ago and which are difficult to find.

During the session of January 1883, the Society approved this proposal. Moreover, it de-
cided that the choice of Memoirs to be published and the order of their publication would be
decided by this Board. This Board, considering that Coulomb’s Memoirs form the founda-
tion of our present knowledge on electricity and magnetism, that the Collection of Memoirs
of the old Academy [French Academy of Sciences], where the most important Memoirs had
been published, is not widely known, decided that Coulomb’s Memoirs should begin this se-
ries of reprints. Although many subjects are treated in these Memoirs, spanning electricity,
magnetism and fluid resistance, they form a set in which the method and instrumentation
are the same. The Board decided, therefore, to put them together, while proposing, in the
following Volumes,43 to bring together Memoirs relating to a single subject and written by
different authors.

The publication of the present Volume has been entrusted to Mr. Potier.

41[Potier, 1884, pp. v-vi].
42Jules François Joubert (1834-1910).
43Volumes II and III were published in 1885, edited by Joubert, dealing with Electrodynamic Memoirs,

[Joubert, 1885a] and [Joubert, 1885b].
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Chapter 3

Introduction by Alfred Potier to the
1884 Reprint of Coulomb’s Works

A. Potier44

Coulomb (Charles-Augustin de) was born on June 14, 1736, in Angoulême, to a family of
magistrates. In his youth he showed a decided interest in mathematical sciences, joined the
army military corps and was sent to Martinique, remaining there for nine years. Among the
various projects on which he worked, he had to study several mechanical questions applied to
constructions and buildings. His works on these topics earned him the title of Correspondent
of the Académie des Sciences.

He then returned to France and, in 1779, shared the prize in the Academy of Science
contest for the best method of making magnetic compasses with Van Swinden;45 in 1781 he
received the prize for the theory of simple machines. In this work he presented his classical
experiments on friction.46

Called to Paris in 1781, he was nominated a Member of the Academy and worked ac-
tively on the laws of magnetism and electricity. During the period 1784-1789 he wrote the
fundamental Memoirs on the laws of torsion, the laws of electric and magnetic interactions,
together with the distribution of electricity and magnetism.

When the Revolution took place [1789], he was lieutenant-colonel of the Génie, general
Intendant of the fountains of France, and was superintendent of the Intendance des Plans et
Reliefs. He resigned from all of these positions. The Academy had been suppressed; he had
been excluded from his membership on the Commission of Weights and Measures. Finally,
forced to leave Paris by the law that expelled all nobles, he moved to the Blois region,
together with his friend Borda.47 He returned to Paris when the Institute was founded,48

being appointed General Inspector of Studies. His health had been declining for some time
when he died on August 23, 1806.49

Delambre,50 when presenting his eulogy in 1807, announced that Coulomb’s works would

44[Potier, 1884, pp. vii-xiii]. I inserted in footnotes some additional information related to Potier’s text.
45Jan Hendrik van Swinden (1746-1823). See also [Licoppe, 1995].
46See, for instance, [Coulomb, 1821].
47Jean-Charles de Borda (1733-1799).
48The Academy of Sciences was abolished in 1793, being succeeded by the Institute of France in 1795.
49Coulomb’s best biography with a detailed study of his works was written by Gillmor, [Gillmor, 1971a],

see also [Gillmor, 1971b].
50Jean-Baptiste Joseph Delambre (1749-1822).
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be published, that a note had been found in his papers indicating the order in which his
several Memoirs should be placed. This project, which was to be carried out by Biot,51 was
not completed. In any event, its completion remains timely.

No doubt scientific progress, particularly in mathematical physics, will make some of
Coulomb’s reasonings seem less than rigorous and even singular; however, the laws which
he deduced from these experiments are exactly the reason for this progress. As regards
magnetism, Coulomb established the law of actions and reactions; as regards electricity,
he not only established these laws, but showed that the internal surface of an electrified
conductor is not charged with electricity, and that the electric density [on the external
surface] is, in each point, proportional to the force;52 he also noticed the sudden variation of
the electric force, when passing from a point belonging to the surface to an external point
which is infinitely close [to the surface]. Finally he demonstrated the proportionality to the
speed of the resistance of fluids coming from their viscosity or internal friction and discovered
the laws of torsional elasticity. His Memoirs therefore deserve the title of fundamental.

As regards especially electricity, his work is frequently reduced to the discovery of the
law of attractions and his utilization of the proof plane.53 Normally it is attributed to Biot,
for instance, the experiment in which a metal sphere is completely discharged when it is
maintained inside a conductor formed of two mobile hemispheres.54 However, this experiment
has been described by Coulomb in his Sixth Memoir (1788), page 382 of this Volume,55 so
clearly [presented] that we can not doubt that Coulomb modified the experimental conditions;
it shows that the external envelop does not need to have the shape of the internal conductor.
Coulomb returns several times (pages 319 and 349)56 to this question and shows that the
absence of electricity in the interior of the conductor is a necessary consequence of the law
of repulsion. His demonstration is not rigorous, but Poisson,57 in 1812, still did not know
the modern classical demonstration.

Also to be found in Coulomb’s Memoirs are all the elements of the demonstration of the
proportionality of the force [acting] on a point [on the surface] of the conductor in relation to
the [surface charge] density at this point. Initially in the [Sixth] Memoir of 1788 (page 383 of
this Volume)58 he presented the value of the attraction of a uniformly charged sphere [acting]
on a point belonging to this surface, and the value of the attraction on an external point, and
multiplied the density by the value 2π in the first case and [by the value] 4π in the second
[case].59 Moreover, in his theory of the proof plane (§XLIV and §XLV of the same Memoir),

51Jean-Baptiste Biot (1774-1862).
52That is, the electric force acting on an element of charge located on the surface of an electrified conductor

in equilibrium is proportional to the surface charge density at this point.
53A detailed description of Coulomb’s proof plane can be found in Section 7.2 (Charge Collectors) of Volume

1 of the book The Experimental and Historical Foundations of Electricity, [Assis, 2010b], [Assis, 2010a],
[Assis, 2011], [Assis, 2015b] and [Assis, 2017]; together with Section 2.6 of Volume 2 of the same book,
[Assis, 2018b], [Assis, 2018a] and [Assis, 2019].

54The internal metal sphere is discharged when it comes into contact with one of the external hemispheres,
or when it touches this hemisphere through a metal wire.

55In the original, [Potier, 1884, p. ix]: dans son cinquième Mémoire (1788), page 233 de ce Volume. By
a slip Potier wrote Fifth Memoir. However, this specific experiment appears on Coulomb’s Sixth Memoir.
Page 233 of Potier’s book corresponds to page 382 of this English translation. See, in particular, Section 24.4
of the Sixth Memoir.

56Pages 178 and 205 of Potier’s book, [Potier, 1884].
57Siméon Denis Poisson (1781-1840).
58Corresponding to page 233 of Potier’s book, [Potier, 1884].
59See Section 23.4 on page 376 for a discussion of the factor 2π in Coulomb’s formulas. See also foot-
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he indicates clearly that the action of an electrified body on an external point infinitely close
to it is twice the action of the surface element which is infinitely close, an action that is
given by 2πy, in which y is the [surface charge] density.60 Coulomb regularly utilizes these
formulas in the calculations of the Fifth and Sixth Memoir. Moreover, although the theorem
which is being discussed here is nowhere explicitly enunciated, Sir W. Thomson61 does not
hesitate to call Coulomb’s Theorem the proposition that the electric force, [acting] on an
external point infinitely close to a conducting surface, is the product of 4π and the surface
[charge] density in the neighborhood of this point.62

Beyond the Memoirs reproduced here, Coulomb left some manuscripts which were in
Biot’s hands, who summarized them in his Traité de Physique.63 It was deemed unnecessary
to reproduce the Memoir in which Coulomb examined if magnets act in other substances
beyond iron, steel, nickel and cobalt; his conclusion was that traces of iron, insensitive to
chemical analysis, would suffice to give to the metals which he studied (gold, silver, lead,
copper and tin) the observed magnetism. Also not included, as foreign to the goal of the
Society of Physics, a Mémoire sur la Statique des voûtes, the Recherches sur les moyens
d’exécuter sous l’eau toutes sortes de travaux hydrauliques, sans employer aucun épuisement,
his Théorie des machines simples, and his Recherches sur les moulins à vent.

Coulomb has always been concerned with the absolute value of the forces which he
measured. His estimations, in the Memoirs before 1789, are given in the old system of
measures. We have inserted, in parenthesis, after each value given by Coulomb, the value
of the magnitude measured in units of the CGS system: that is, the number in parenthesis
presents the lengths in centimeters, the masses in grammes and the forces in dynes. Here
are the elements utilized for these calculations:64

1 toise = 6 feet = 72 inches = 864 lines = 194.9 cm.65

1 pound = 16 ounces = 9216 grains (mass) = 489.5 g.66

1 pound = 16 ounces = 9216 grains (force) = 480200 dyn.67

notes 796, 849 and 850 on pages 351, 383 and 383, respectively.
60That is, charge by unit area.
61William Thomson (1824-1907).
62For a discussion of Coulomb’s theorem see also [Gillmor, 1971a, p. 209], [Heilbron, 1999, pp. 495-496]

and [Blondel and Wolff, 2011c].
63[Biot, 1816a], [Biot, 1816b], [Biot, 1816c] and [Biot, 1816d].
64In the original:

1 toise = 6 pieds = 72 pouces = 864 lignes = 194,9 cm.
1 livre = 16 onces = 9216 grains (masse) = 489,5 gr.

1 livre = 16 onces = 9216 grains (force) = 480200 dynes.

65An English foot corresponds to 30.48 cm, while a French foot utilized in this book corresponds to 32.48
cm = 0.3248 m. The modern English inch corresponds to 2.540 cm. The French inch utilized in this book
corresponds to 2.707 cm = 0.02707 m. An English line corresponds to 0.212 cm. The French line utilized in
this book corresponds to 0.226 cm = 0.00226 m.

66That is, in terms of mass we have 1 pound = 489.5 g = 0.4895 kg; 1 ounce = 30.59 g = 0.03059 kg and
1 grain = 0.05311 g = 5.311× 10−5 kg.

67That is, in terms of force we have 1 pound = 480200× 10−5 newtons = 4.80200 N; 1 ounce = 0.300125
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Coulomb represents the ratio of the circumference to the diameter sometimes by c/2,
sometimes by ϕ/2, sometimes by 180◦.68 To comply with modern usage, this ratio has
always been represented by π, and this letter has not been employed for any other purpose;
the utilization of the symbol

∫

has been reserved for the expressions containing differentials.69

The symbols a2, R2, ..., have been used instead of aa, RR. When, to avoid repetitions, we
considered that we should remove a portion of Coulomb’s text, we have always indicated this
fact with small characters;70 the same character was utilized for the observations suggested by
the text; the numbering of paragraphs and Sections, on the other hand, has been maintained.

As regards the figures, which form separated plates in the Memoirs of the Academy, we
have reproduced a certain number of them in wood, and inserted them into the text, in
particular the purely geometric figures. Plates I and VII are photographic reproductions
made on zinc of the plates of the Mémoires de l’Académie. The figures of the Memoir of
1789 had to be grouped in a different way to satisfy some format requirements; they were
engraved in copper by Mr. Pérot, which reproduced the character with as much fidelity as
the photography; they form Plate VIII.

It seemed useful to compare Coulomb’s experiments with the results of Poisson’s cal-
culations, relative to the distribution of electricity on two conducting spheres and to the
division of electricity between these two spheres, when they are put in contact. Therefore,
side by side the numbers obtained by Coulomb, we placed Poisson’s values deduced from his
calculations and which are, to some extent, equally verifications of the fundamental law.

Poisson’s work can be found in the Memoirs of the Institute for the year 1811, although
read only on May 19 and August 3, 1812, for the first part, and on September 6, 1813, for
the second part.71

By adopting the analysis of Laplace72 for the attraction of spheroids, Poisson shows that
the distribution on the surface of an ellipsoid should be such that a force and, consequently,
the three partial derivatives of the function V =

∑ m
r

should be null in the interior of
the ellipsoid or, according to the modern language, the potential should be constant in
the interior. However, he solves this problem only for an ellipsoid which is just a little
different from a sphere and recovers the known solution that the electric layer should be
contained between two similar ellipsoids. He then calculates, neglecting the square of the
eccentricity, the force exerted on an electric mass infinitely close to the external surface,
finding it proportional to the thickness.

“It is natural to think”, he says,73 “that this is a general result, and that it also takes
place on the surface of a conducting body of arbitrary shape; however, although this
proposition seems very simple, it would be very difficult to demonstrate it by the

N; and 1 grain = 5.2105× 10−4 N.
68See, for instance, the footnotes 275, 334 and 1065 on pages 120, 150 and 476, respectively.
69 Potier, in particular, substitute in several places Coulomb’s integration symbol

∫

by the summation
symbol

∑

. In this English translation I have maintained the integration symbol
∫

utilized by Coulomb.
70In this English translation I included the portions of Coulomb’s text which had been suppressed by Potier

in his reprint of 1884. That is, all papers presented here have been completely translated into English. When
Potier presented some sentences which he himself had written in the middle of Coulomb’s text, I decided to
include Potier’s text as a footnote indicated by [Note by Potier].

71[Poisson, 1812a], [Poisson, 1812b], [Poisson, 1813] and [Poisson, 1814].
72Pierre-Simon de Laplace (1749-1827).
73[Poisson, 1812a, p. 232].
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formulas for the attraction of spheroids; this is one of those cases in which we should
supplement the imperfect analysis by some direct consideration”.

As a matter of fact, he presents a demonstration of this theorem, which Laplace commu-
nicated to him, which is just a more rigorous reproduction of the considerations utilized by
Coulomb.

Like Coulomb, he establishes that the action of a conductor on an external point infinitely
close [to the surface] is twice the action of the infinitely close portion of the surface, which is
supposed to be limited by a plane parallel to the tangent plane. But a spherical conductor,
uniformly charged, of which this infinitely small surface is a part, would exert a repulsion
4πy, where y denotes the [surface charge] density. This force does not depend on the radius
of the sphere. We can imagine for the normal as many planes as we wish, separated by
dihedral angles ε, and replace each element of the surface of the conductor by an element
considered on a sphere of convenient radius; the normal component of the attraction of this
element is, therefore, ε

2π
×2πy = εy, no matter the radius of the sphere. The total attraction

of the infinitely small surface, limited by a plane parallel to the tangent plane, will be then
y
∑

ε or 2πy, and the total electric force will be 4πy.
The constant value of the potential in the interior of a conductor and the proportionality

between the [surface charge] density and the force, or the derivative of the potential along
the normal to the surface of the conductor, are the only two theorems utilized by Poisson;
at this time, he had not yet demonstrated that the absence of electricity in the interior of
conducting bodies, in electric equilibrium, is a consequence of the fundamental law.

The question of the attraction or repulsion between two electrified spheres is intimately
connected to the distribution [of charges on the surfaces of the spheres]; it presents a practical
interest related to the measure of the amounts of electricity or of the potentials. Poisson did
not deal with these topics, but we can easily deduce from his formulas how to calculate the
mutual action between two spheres.

It is thought that the goal proposed by the French Society of Physics would be served by
inserting, after the reprint of Coulomb’s Memoirs, a Note summarizing Poisson’s Memoir,
which is not well known, together with the recent works of Sir W. Thomson on the same
subject. Sir W. Thomson takes for granted some general theorems, which are classic nowa-
days and which can be found in the general and specialized physics treatises; it was deemed
unnecessary to reproduce the demonstration of these theorems. The reader who wants to
study this question should consult, beyond the Reprint of Papers of Sir W. Thomson,74

Plana’s Memoirs in the VIIth Volume of the second series of the Mémoires de l’Académie
de Turin;75 these works contain numerical tables which can be reconstructed utilizing the
formulas presented in the Annexes.76

74[Thomson, 1884].
75[Plana, 1845] and [Plana, 1854].
76These annexes summarizing the theoretical works of Poisson and Thomson were not included in this

English translation.
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Chapter 4

The Background to Coulomb’s
Researches

A. K. T. Assis

4.1 Electric Researches

In Coulomb’s time there were two main systems or sets of ideas to explain electric phenomena.
One of these systems was based on attractive and repulsive forces acting at a distance

between electrified bodies, in analogy with the law of universal gravitation due to Isaac New-
ton (1642-1727). It followed Newton’s ideas presented in his two main publications, namely,
the book Mathematical Principles of Natural Philosophy,77 and in the book Opticks.78 In
this model the electrified bodies act directly on one another, without the mediation of any
material agent between them.

In this Newtonian system there were two sub-systems. One of these sub-systems assumed
the existence of two active kinds of electricity (or the existence of two active electric fluids). It
was introduced mainly by Charles F. d. C. Du Fay (1698-1739) and Robert Symmer (c. 1707-
1763).79 Originally Du Fay called the two kinds of electricity vitreous and resinous, believing
they were connected with the materials on which these phenomena were first detected. As the
research was developed by other scientists, it was realized that any specific kind of material
might be charged with the two kinds of electricity, depending on the material with which it
was rubbed. Nowadays what was called vitreous electricity is called positive electricity. In
this case we also say that a body has been positively electrified. What was called resinous
electricity, on the other hand, is now called negative electricity. In this case we also say that a
body has been negatively electrified. Du Fay also discovered the principle that bodies charged

77In English: [Newton, 1934] and [Newton, 1999]. In Portuguese: [Newton, 1990], [Newton, 2008] and
[Newton, 2010].

78In English: [Newton, 1979]. In Portuguese: [Newton, 1996] and [Assis, 1998b].
79[Du Fay, 1733], [Du Fay, 1734] with Portuguese translation in [Boss and Caluzi, 2007]; [Symmer, 1759]

and [Mitchell, 1759]. See also Sections 4.3 (Du Fay Recognizes Electrical Repulsion as a Real Phenomenon)
and 5.2 (Du Fay Discovers Two Kinds of Electricity) of Volume 1 of the book The Experimental and Historical
Foundations of Electricity, [Assis, 2010b], [Assis, 2010a], [Assis, 2011], [Assis, 2015b] and [Assis, 2017]; to-
gether with Section 1.2 (The Triboelectric Series) of Volume 2 of the same book, [Assis, 2018b], [Assis, 2018a]
and [Assis, 2019]. See, moreover, [Fontenelle, 1741], [Heilbron, 1976], [Aepinus, 1979, pp. 198-202],
[Heilbron, 1979], [Heilbron, 1981b], [Heilbron, 1982], [Borvon, 1994], [Benguigui, 1995], [Heilbron, 1999],
[Borvon, s d], [Borvon, 2009] and [Blondel and Wolff, 2012].
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with the same kind of electricity repel one another, while bodies charged with opposite kinds
of electricity attract one another.

In the other Newtonian sub-system one assumes the existence of only one kind of elec-
tricity (or the existence of a single electric fluid). This second Newtonian sub-system is
due to Benjamin Franklin (1706-1790).80 Nowadays many expressions used in the science of
electricity are due to Franklin like “plus and minus” or “positive and negative”. Franklin
was one of the most important scientists responsible for the establishment and utilization of
the law of the conservation of electricity (or conservation of electric charges). Some expres-
sions which he utilized to designate electric particles (or electrified particles) were “electric
fire”, “electric matter” and “electric fluid”. He assumed the existence of a single electric
fluid, instead of working with two kinds of electricity. He believed that there was a normal
quantity or density of this electric fluid in all substances. A body positively electrified would
be due to the fact that it had more electric fluid than the normal amount, that is, an excess
relative to the normal density of electric fluid. A body negatively electrified, on the other
hand, would be due to the fact that it had less electric fluid than the normal amount, that is,
a shortage or deficiency relative to the normal density of electric fluid. Franklin emphasized,
with his conception of the conservation of electricity, that electric charge was not generated
nor produced in the friction between two substances, or in any other electrification process.
The only thing that happened during friction was a redistribution or transference of electri-
fied particles, of electric fluid or of electric charge. That is, one of the bodies received the
same amount of electric fluid which had been lost by the other body.

Nowadays we adopt Franklin’s nomenclature, while working with a different paradigm,
that is, accepting the existence of two different kinds of electricity (or the existence of two
types of electric charge, positive and negative). In this modern perspective we also accept
the conservation of electricity. But now we say that in any electrification process beginning
with two neutral bodies, one of these bodies becomes charged with one kind of electricity,
while the other body becomes charged with the same amount of electricity of the other kind.

Franklin also assumed that there was repulsion between two electric fluids (or between
two particles of electric matter). There would also be an attraction between the electric fluid
and common matter. This common matter might be a body of any nature (water, glass,
metal, wood etc.). When there is a normal amount of electric fluid distributed on common
matter, this body (composed of common matter together with the electric fluid) will not act
electrically on another body in the same state. Two positively electrified bodies will repel one
another due to the excess of electric fluid in each one of them. However, Franklin’s model
leads to a singular assumption. One knows that there is repulsion not only between two
positively electrified bodies, but also between two negatively electrified bodies. According
to Franklin, a negatively electrified body has less electric fluid than the normal amount.
Therefore, to explain with Franklin’s model the repulsion between two negatively electrified
bodies, it was necessary to assume repulsion between two particles of common matter, that
is, between two arbitrary material bodies. For instance, it was necessary to assume repulsion
between two pieces of metal, between two pieces of glass, between a piece of metal and a piece

80[Franklin, 1769], [Franklin, 1904], [Franklin, 1941], [Cohen, 1966], [Cohen, 1996], [Heilbron, 1999,
Chapter XIV], [Morse, 2004b], [Morse, 2004a], [Silva and Pimentel, 2006], [Silva and Pimentel, 2008],
[Blondel and Wolff, 2013c], [Moura and Bonfim, 2017], [Moura, 2018], [Moura, 2019], [Moura, 2020] and
[Moura, 2023]. See also Section 11.7 (Gray, Franklin, the Power of Points and the Electric Nature of Light-
ning) of Volume 2 of the book The Experimental and Historical Foundations of Electricity, [Assis, 2018b],
[Assis, 2018a] and [Assis, 2019].
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of glass, etc. This singular assumption of Franklin’s model always bothered many scientists,
as it seemed to be against Newton’s theory of universal gravitation according to which matter
attracts matter with a force that is directly proportional to the product of their masses and
inversely proportional to the square of the distance between their centers. Heilbron, for
instance, in several portions of his book Electricity in the 17th and 18th Centuries, discussed
how several scientists tried to deal with the minus-minus repulsion in Franklin’s system, that
is, how they interpreted repulsion between two negatively electrified bodies.81

Franz Ulrich Theodor Aepinus (1724-1802) was one of the main scientists who adopted
Franklin’s point of view according to which there was a single electric fluid. He was a
German scientist who worked in Russia for many years and performed original research on
electricity and magnetism. His main work was published in 1759, Essay on the Theory of
Electricity and Magnetism.82 Aepinus had a great influence on Coulomb and is quoted in
his publications.

The other system or set of ideas utilized to explain electric phenomena was based on the
contact between material bodies. In this case the electric attractions and repulsions were
explained by mechanical impulses produced by the collision of fluids or particles against the
electrified bodies. In this model the electrified bodies would not interact directly with one
another. The interaction was transmitted by fluids or particles emitted and absorbed by
these bodies.

Several different models were proposed to explain by contact the interaction between two
electrified bodies which are separated spatially from one another. Normally these models
were based on some kind of mechanism or by mechanical contact, that is, assuming the
existence of other bodies or of other particles beyond the two electrified bodies. Some of
these models assumed the existence of material effluvia which were emitted and absorbed by
electrified bodies. These effluvia or emanations, when they came in contact with the other
electrified body, somehow would exert attractive and repulsive forces on this second body.
These effluvia might be a stream of material particles or corpuscles emitted and absorbed
by electrified bodies. In other models there would exist material vortices or whirlpools
circulating around electrified bodies. These material vortices would exert attractive and
repulsive forces on other electrified bodies when there was a contact between these vortices
and these other electrified bodies. In another model there would exist a material atmosphere
around each electrified body. When a second electrified body was located in the atmosphere
of the first electrified body, it would feel an attractive or repulsive force exerted by this
atmosphere. In other models the electrified bodies would emit a filament or some sticky
matter that would exert attractive forces in other electrified bodies when these filaments or
sticky matter came in touch with them.

I will not present the details of all these mechanical models. Nor will I indicate the names
of the authors who defended these ideas of action due to material contact. There are a large
number of scientists with many different explanatory models. I recommend the works of J.
L. Heilbron and R. W. Home for anyone interested in these ideas.83

In his publications Coulomb always opposed these conceptions of electric effluvia or
electric atmospheres to explain electric phenomena by mechanical contact.84 He continued

81[Heilbron, 1999, pp. 337, 356-357, 372, 377-378, 387-389, 396, 446].
82[Aepinus, 1759] with English translation in [Aepinus, 1979]. See also [Heilbron, 1981a] and

[Blondel and Wolff, 2013c].
83[Heilbron, 1979], [Heilbron, 1981c], [Heilbron, 1982], [Heilbron, 1999]; [Aepinus, 1979, pp. 3-224],

[Home, 1981] and [Home, 1992].
84[Gillmor, 1971a, pp. 193-196, 205 and 214-219], [Gillmor, 1971b], [Aepinus, 1979, pp. 215-217],
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the researches of John Michell (1724-1793), Aepinus and Johan Carl Wilcke (1732-1796) in
favour of a Newtonian system based on attractive and repulsive forces acting directly at a
distance to explain electric and magnetic phenomena.85

Coulomb accepted the Newtonian system to explain electric phenomena. At the same
time he maintained that the sub-system of two fluids was mathematically equivalent to the
sub-system of a single fluid to explain electric phenomena. Despite this fact, he preferred
the system based on the existence of two electric fluids. For instance, in his Sixth Memoir
on electricity and magnetism, he said the following in Section 24.40 when discussing the two
kinds of electricity:86

Whatever may be the cause of electricity, all its phenomena will be explained, and
the calculation will be found to conform to the results of experiments, assuming two
electric fluids, the parts of the same fluid repelling each other in inverse proportion
to the square of the distances, and attracting the parts of the other fluid in the
same inverse ratio of the square of the distances. This law was found by experiment
for electric attraction and repulsion, in the First and Second Memoirs on Electricity,
volume of the Academy of 1785;87 according to this supposition, the two fluids in
the conducting bodies always tend to unite until there is equilibrium, that is to say,
until by their meeting, the attractive and repulsive forces compensate each other. It
is the state in which all bodies are found in their natural state; but if by any operation
whatsoever, a superabundant quantity of one of the electric fluids is passed into an
insulated conducting body, it will be electrified, that is to say, it will repel the electric
parts of the same nature, and will attract the electric parts of another nature than
the superabundant fluid with which it is charged. If the electrified conducting body is
brought into contact with another insulated conducting body, it will share with it the
superabundant electric fluid in the proportions indicated in this Memoir and those
which precede; but if it is made to communicate with a non-insulated body,88 it will
lose in an instant all its electricity, since it will share it with the globe of the Earth,
whose dimensions relatively to it are infinite.

Mr. Aepinus has supposed in the theory of electricity,89 that there was only one
electric fluid, whose parts mutually repelled each other and were attracted by the
parts of bodies with the same force as they repelled each other. But to explain the
state of bodies in their natural situation, as well as the repulsion in the two kinds of
electricity, it is necessary to suppose that the molecules of bodies repel each other with
the same force as they attract electric molecules, and that these electric molecules
repel each other. It is easy to perceive that the supposition of Mr. Aepinus gives, as
regards the calculation, the same results as that of the two fluids. I prefer that of the
two fluids which has already been proposed by several physicists, because it seems to
me contradictory to admit at the same time in the parts of the bodies, an attractive
force in inverse ratio to the square of the distances demonstrated by universal gravity,

[Heilbron, 1999, pp. 95-96] and [Blondel and Wolff, 2011a].
85[Michell, 1750], [Michell and Canton, 1752], [Aepinus, 1759] with English translation in [Aepinus, 1979],

[Wilcke, 1766]. See also [Grozier, 2013].
86Section 24.40 of [Coulomb, 1791]. This work is translated in Chapter 24.
87These Memoirs are translated in Chapters 11 and 14, respectively.
88That is, if it is grounded when it comes into contact directly with the Earth, or with a conducting body

connected to the Earth.
89See footnote 182 on page 73. See also [Aepinus, 1759] with English translation in [Aepinus, 1979].
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and a repulsive force in the same inverse ratio of the square of the distances; a force
which would necessarily be infinitely large, relatively to the attractive action from
which gravity results.

The supposition of the two fluids is, moreover, in conformity with all the modern
discoveries of chemists and physicists, who have made us acquainted with different
gases whose mixture in certain proportions suddenly and completely destroys their
elasticity; an effect which cannot take place without something equivalent to a re-
pulsion between the parts of the same gas which constitutes their elastic state, and
to an attraction between the parts of the different gases which makes them suddenly
lose their elasticity.

As these two explanations have only a greater or lesser degree of probability, I warn,
in order to protect the theory that will follow from any systematic dispute, that in
the supposition of the two electric fluids, I have no other intention than to present
with the fewest possible elements the results of the calculation and of the experiment,
and not to indicate the true causes of electricity. I will refer to the end of my work
on electricity, the examination of the principal systems to which electric phenomena
have given rise.

4.2 Coulomb’s Electric Terminology

In this Section I present some expressions utilized by Coulomb to refer to electric fluids.

In the Second, Third and Sixth Memoir Coulomb utilized the expressions “electric mass”,
“mass of the electric fluid” and “mass of electricity” in order to express the total amount of
charge contained in an electrified sphere.90 Certainly these expressions were influenced by
Newton’s law of universal gravitation according to which the gravitational force is propor-
tional to the product of the masses of the interacting bodies.91

An electrified particle (or an electric particle) is sometimes called an “electrified molecule”
(or an “electric molecule”) (molécule électrique).92 Sometimes Coulomb refers to an electric
particle in French as a “partie électrique”.93

Many times Coulomb will utilize the expressions “electric density” or “density of an
electric fluid” when referring to an electric body or electric molecule.94 In some situations
this concept of an electric density (or density of an electric fluid) will refer to what is called
nowadays the amount of electric charge of a body or the amount of electric charge of each
electrified particle. In the Fifth and Sixth Memoirs he studies the distribution of charges
on the surface of conducting bodies. Normally in these situations these expressions (electric
density or density of an electric fluid) will refer to the surface charge density, namely, to the
amount of charge per unit area at each point on the surface of these conductors.

90See, for instance, footnotes 528, 530, 663, 689, 843 and 847 on pages 230, 231, 290, 300, 382 and 383,
respectively. See also [Gillmor, 1971a, pp. 175, 187 and 191].

91[Newton, 2008, Book III].
92See, for instance, footnotes 622 and 912 on pages 257 and 419, respectively.
93See footnote 909 on page 419. See also footnotes 647, 730 and 733 on pages 283, 321 and 322, respectively.

See also [Gillmor, 1971a, pp. 159, 201 and 217].
94See, for instance, pages 257, 284 and 318.
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4.3 Some Basic Concepts of Magnetism

The local geographic meridian, usually called simply meridian, is a great circle passing by
this place, containing the North and South poles of the diurnal rotation of the Earth relative
to the set of fixed stars.

Consider a compass composed of a magnetized needle ns which is free to rotate in a
horizontal plane around a vertical axis passing through the center of the needle. When it is
released at rest in an arbitrary orientation, usually it will begin to oscillate around a certain
direction and will point along this direction when it comes to rest relative to the ground. The
straight line indicated by this needle in equilibrium (or the vertical plane passing through
this needle) is called the local magnetic meridian. By convention, the extremity of a needle
pointing approximately toward the geographic North pole of the Earth, is called the North
pole of a needle, n. The South pole of the needle, s, is located at the other extremity of the
needle. Let us consider two horizontal straight lines beginning at the center of the needle.
One of these straight lines points along the needle toward its North pole n when the needle
is in equilibrium at rest relative to the ground. The other straight line points from the center
of the needle toward the geographic North pole of the Earth. The magnetic declination is the
angle ϕ on the horizontal plane between these two straight lines: that is, the angle between
the direction indicated by the North end of a magnetized compass needle, and the direction
along a meridian passing through the geographic North pole, Figure 4.1.
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Figure 4.1: Magnetic declination.

By convention, declination is positive when magnetic North n is East of the true North
N , and negative when it is to the West. That is, ϕ > 0 when the North pole of the needle
points clockwise relative to the geographic North pole of the Earth and ϕ < 0 when it points
anti-clockwise. This angle varies depending on the location on the Earth’s surface. It also
changes over time. For instance, the magnetic declination in October 2021 in Paris was
approximately +1◦, while in São Paulo it was approximately −21◦.

The knowledge of the magnetic declination has always been extremely important in
navigation and for orientation in general. In Coulomb’s time it was known that the value
of the magnetic declination in any specific location changes over the hours, days and years.
It was important to know this phenomenon in greater detail. A needle supported over a
pivot does not always point along the true magnetic meridian if there is a large friction
at the point of support which prevents the free motion of the needle. Another method of
suspension is the thread-suspended compass in which the needle is suspended horizontally
by its center of gravity by a vertical thread. This method was known to Francesco Lana
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de Terzi (1631-1687) in 1686, Lous in 1773 etc.95 Coulomb began his magnetic researches
studying the diurnal variation of the declination. He utilized thin silk threads to support
his needle. However, the torsion of the thread may prevent the orientation of the compass
along the true magnetic meridian. His studies on the force of torsion, or rotational moment,
seem to have originated on these researches. He began studying hair and silk thread, and
later on studied the torsion of metal wires.

A magnetized needle ns which is free to rotate on a vertical plane around a horizontal
axis passing through its center of gravity is called a dip needle, Figure 4.2.

Figure 4.2: Dip needle or dip circle, [Müller-Baden (Editor), 1905, Fig. 265].

It is utilized with the horizontal axis of rotation of the needle orientated perpendicularly
to the local magnetic meridian. When the dip needle is released at rest in an arbitrary
orientation, normally it will begin to oscillate in a vertical plane around a specific direction,
pointing along this direction when it comes to rest in equilibrium relative to the ground.
The magnetic inclination θ, also known as magnetic dip θ, is the angle that the North pole
n of the needle makes with the downward side of the horizontal plane, Figure 4.3.

By convention, θ > 0 when the North pole of the needle points below the horizon, while
a negative value of θ happens when n remains above the horizon. The magnetic dip changes

95[Gillmor, 1971a, pp. 141-142 and 162-165], [Hackmann, 1995] and [Heilbron, 1999, pp. 185-192 and 469].
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Figure 4.3: Magnetic inclination or magnetic dip.

at different points on the Earth’s surface. It also changes over time in any specific location.
For instance, the dip angle of Paris in October 2021 was approximately +64◦, while in São
Paulo it was approximately −39◦.

4.4 Magnetic Researches

In Coulomb’s time there were two systems or sets of ideas to explain magnetic phenomena,
one based on the ideas of René Descartes (1596-1650) and another one based on Newtonian
conceptions.

Descartes presented his model in the book Principles of Philosophy published in Latin in
1644. A French translation was published in 1647 under Descartes’ supervision.96

Descartes tried to explain magnetic interactions (like the interaction between two magnets
or the interaction between the Earth and a magnet) through a mechanism or by mechanical
contact. That is, assuming that the action was due to contact and collision between material
bodies. To this end he had to assume the existence of other material bodies (or particles)
beyond the two magnets that were separated from one another. He assumed the existence
of streams of particles passing through each magnetized body and circulating around it like
vortices. He believed that the Earth, natural magnets, magnetized iron and steel would
have two sets of pores or axial channels along their magnetic poles. One of these sets of
channels would accept only right-handed particles, while the other set of channels would
accept only left-handed particles. These particles would describe vortices or whirls around
the magnetized bodies, entering through one extremity of these bodies and leaving from the
other extremity. They would then circulate around the magnetized bodies until entering
again through the first extremity. An example of these vortices appears on Figure 4.4.

In this case the Earth is represented by the central sphere D. The right-handed particles
might enter the Earth, for instance, by its South pole A. They would pass through the
Earth by internal channels, leaving the Earth at the North pole B. These particles would
then circulate around the Earth, entering it again once more through A. They might, for
example, describe the trajectory ABFGEA or the trajectory ABFHEA. The left-handed
particles, on the other hand, would move in the opposite direction, that is, passing through
the Earth from B to A.

In this Figure 4.4 we can also see several spherical magnets I, K, L, M and N . The
particles circulating around the Earth would pass through the pores or channels of these
magnets. By colliding with these channels, they would orientate these magnets.

Non magnetic bodies, or bodies which cannot be magnetized, would be substances which

96[Descartes, 1647] with Portuguese translation in [Descartes, 1997] and [Descartes, 2002]. See also
[Andrade, 2013].
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Figure 4.4: Descartes’ vortices, [Descartes, 1647, Plate XIX, Figure 1].

did not have these internal channels. Due to this fact they would not react to the presence
of the Earth or to the presence of magnets in their neighborhood.

In Coulomb’s time this Cartesian theory of magnetism was still very popular. In 1742
and 1744 the Royal Academy of Sciences in Paris organized a competition for the best
explanations for magnetism. There were no winners. Then in 1746 it was presented once
more. There were now three prize winning essays due to Leonhard Euler (1707-1783); Étienne
François Dutour de Salvert (1711-1789), also known as Du Tour; Daniel Bernoulli (1700-1782)
and Jean Bernoulli, also known as Johann Bernoulli.97 These authors followed Descartes
ideas according to which magnetism was due to a vortex of a material fluid (or a flux of
material particles) entering each magnet by one end and exiting at the other end, circulating
around the magnetized body. The interaction between two magnets causing, for instance,

97[Euler, 1752], [Du Tour, 1752] and [Bernoulli and Bernoulli, 1752]. According to Home, [Aepinus, 1979,
p. 145], the joint work between the Bernoulli’s was made by Daniel and his father Jean I (1667-1748), also
known as Johann I. According to Gillmor and Heilbron, [Gillmor, 1971a, pp. 177, 193 and 288 n. 10] and
[Heilbron, 1999, pp. 31, 88, 93 and 575], this joint work was made by Daniel and his brother Jean II (1710-
1790), also known as Johann II. In the published essay the authors appear as Daniel and Jean Bernoulli, so
that it is not clear if the second author was Jean I or Jean II, [Bernoulli and Bernoulli, 1752, p. 115].
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their mutual orientation, would be due to the action of the vortices of material fluid of
one magnet interacting with the pores or channels of the other magnet, and vice versa. A
discussion of these Cartesian systems to explain magnetism can be found in Gillmor’s work.98

The second main system or set of ideas to explain magnetic phenomena in Coulomb’s time
was the Newtonian system. In this case magnetic phenomena are explained by assuming the
existence of attractive and repulsive forces acting between magnetic particles. These forces
would act directly at a distance along the straight line connecting the particles, following
the principle of action and reaction.

There were two main sub-systems in this Newtonian approach. One of them assumed the
existence of two kinds of magnetic fluids. One kind was called austral fluid, South magnetic
fluid or simply South fluid. The other kind was called boreal fluid, North magnetic fluid
or simply North fluid. Fluids of the same kind would repel one another, while fluids of
opposite kind would attract one another. Anton Brugmans (1732-1789) and Johan Carl
Wilcke (1732-1796) followed these ideas.99

The other sub-system in this Newtonian approach was adopted by Aepinus. In this
second sub-system one assumes the existence of a single type of magnetic fluid. It was an
adaptation of the electric system advocated by Franklin in which there would be a single
electric fluid in nature. As regards magnetism, this approach assumes the existence of a
single kind of magnetic fluid which repels other magnetic fluid, but attracts particles of iron,
steel and their compounds. When there is a normal or natural amount of magnetic fluid
in iron or steel, we say that these bodies are not magnetized. During magnetization of a
steel bar by any procedure, part of the magnetic fluid would move to a portion of the bar,
increasing its normal amount, while the other portion of the bar would remain with less
magnetic fluid than the normal quantity. Aepinus called the portion of a magnetized steel
bar in which there is an abundance of magnetic fluid (having more fluid than the normal
amount) the positive pole. The negative pole would be the portion of the bar deprived of
magnetic fluid (having less fluid than the normal amount).

However, it was known that magnetic poles of the same type repel one another, while
opposite poles attract one another. To explain this fact Aepinus was led to a curious or
singular assumption, namely, he assumed the existence of a repulsion between the negative
portions of two magnetized steel bars (that is, between the portions with less magnetic fluid
than the normal amount). Therefore he was obliged to assume a repulsive force between two
iron particles.

But according to Newton’s law of universal gravitation, matter attracts matter. Therefore
this property of Aepinus’ system was strange to many authors, as it seemed to go against
Newtonian ideas. This violation bothered several physicists, including Coulomb.

Coulomb always opposed the use of the Cartesian system to explain magnetic phenom-
ena.100 He presented his points of view against vortices especially in his works of 1777 and
1793. The prize winning paper of 1777, published in 1780, is translated in Chapter 5. See, in
particular, Section 5.6. His work of 1793 is the Seventh Memoir on electricity and magnetism,
translated in Chapter 26. See, in particular, Section 26.25.

For instance, in his 1777 prize winning Memoir he said the following:101

98[Gillmor, 1971a, pp. 176-177, 193-194 and 214-219].
99[Brugmans, 1765], [Wilcke, 1766], [Gillmor, 1971a, pp. 180 and 215-216] and [Aepinus, 1979, pp. 200,

209-210 and 216-217].
100[Gillmor, 1971a, pp. 177-179, 193, 214-215 and 218] and [Blondel and Wolff, 2011a].
101See page 60 of this English translation.
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Therefore it seems that it follows from experiment, that it is not vortices which
produce the different magnetic phenomena; and that, to explain them, we must
necessarily resort to attractive and repulsive forces of the nature of those which we
are obliged to make use of to explain the weight of bodies and celestial physics.

Coulomb attacked the Cartesian system and defended the Newtonian system based on
attractive and repulsive forces acting at a distance. Initially he was in favor of Aepinus’ sub-
system which assumed the existence of a single magnetic fluid. In any event, he emphasized
that both Newtonian approaches (that of Aepinus based on the existence of a single magnetic
fluid and that of Brugmans and Wilcke which assumed the existence of two magnetic fluids)
were mathematically equivalent in the explanation of magnetic phenomena. His final choice
in favor of the Newtonian sub-system containing two magnetic fluids took place only in a
paper read in 1799, after the publication of his Seventh Memoir on electricity and magnetism.
In this paper of 1799 he said the following:102

It follows from these experiments that, whatever the cause of magnetic phenomena,
all these phenomena could be explained and subjected to calculation, assuming in
the steel laminae or in their molecules, two magnetic fluids, the parts of each fluid
repelling each other in direct proportion to their density, and in inverse proportion to
the square of their distance, and attracting the molecules of the other fluid in the
same ratio; so that each lamina of iron or steel contains in each molecule, before
being magnetized, a sufficient quantity of both fluids to saturate or balance each
other, that the two fluids thus combined no longer exert any action on each other.

When one reads the works of Coulomb and other scientists of the same period, one
realizes that they assumed that any specific portion of a magnet or magnetized needle might
contain a single type of magnetic fluid. That is, this portion might possess more North fluid
than South fluid (if one assumes the existence of two magnetic fluids), or this portion might
be positively magnetized (if one assumes the existence of a single magnetic fluid, with this
portion of the material having more magnetic fluid than the normal amount). When a steel
needle was magnetized by another magnet, these authors assumed that the magnetic fluid
might move along the needle, concentrating in one portion of the needle and leaving the
other portion with a deficiency of fluid.

Consider a magnetized cylindrical piece of steel A0B. Figure 4.5 shows ideal distributions
of the volume density ρ of North and South magnetic fluids as a function of the longitudinal
coordinate x. Configuration (a) presents a simplified model in which the left half A0 has
a constant magnetic density −ρ0, while the right half 0B has a constant magnetic density
+ρ0. Configuration (b) presents another model which was assumed by some of Coulomb’s
contemporaries in which the density increased linearly from the center toward each end of the
magnet, being positive in one side and negative in the other side. Configuration (c) presents
the model in which the North and South fluids were concentrated only at the extremities of
the magnet.

Coulomb tried to estimate the distribution of magnetic fluid along a magnetized needle,
with the density of magnetic fluid varying from point to point. If this were the case, it
would be possible to separate the two magnetic fluids by breaking the needle at its center.
One half of the needle would have an excess of North fluid relative to the South fluid in

102See page 499, Chapter 28 of this English translation. See also [Gillmor, 1971a, p. 216].
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Figure 4.5: Distributions of magnetic fluids along a magnetized cylinder A0B. (a) Constant and
opposite volume densities ±ρ0 in each half of the cylinder. (b) Densities increasing linearly from
the center of the cylinder toward each extremity. (c) North and South magnetic fluids concentrated
only at the extremities of the magnet.

the two-fluid model, or it would be positively magnetized in the one-fluid model (having an
excess of fluid in relation to the normal amount). The other half of the needle would have
an excess of South fluid relative to the North fluid in the two-fluid model, or it would be
negatively magnetized in the one-fluid model (having a deficiency of fluid in relation to the
normal amount). Therefore, by separating the two halves of the broken needle, the Earth
might exert a net force different from zero when acting on each half of the needle. However,
this does not take place in reality. Experiments show that any piece of a broken magnet
feels only a pair of equal and opposite forces exerted by the Earth and producing a torque
on it. That is, there is no net force exerted by the Earth and acting on any piece of a broken
magnetized needle. Petrus Peregrinus, also known as Pierre de Maricourt, knew since 1269
that when one breaks a magnet in two halves, each half becomes a new magnet with two
equal and opposite magnetic poles.103

Probably due to this fact, in 1777 Coulomb began thinking in molecular terms:104

Each point of a magnet or of a magnetized bar can be regarded as the pole of a tiny
magnet...

In his Seventh Memoir, in Section 26.29, Coulomb called attention to the fact that when
a magnet is broken into pieces, each piece acts as a little magnet. In Section 26.30 he then
developed a new theory of magnetism based on molecular polarization. In this model the
North fluid, for instance, cannot move along a magnetized needle, but only inside each steel
molecule, the same happening with the South fluid. These fluids could not pass from one
molecule to another. In the natural state these fluids would be joined together and the
molecule would not be magnetized. When a steel needle is magnetized, there would be a
separation of the two magnetic fluids only inside each steel molecule, so that these molecules
would become magnetically polarized. His words:105

I believe that we could reconcile the result of the experiments with calculation by
making some changes in the hypotheses; here is one which appears able to explain
all the magnetic phenomena of which the preceding experiments have given precise

103[Peregrinus, 1904], [de Grave and Speiser, 1975], [Sparavigna, 2016] and [Martins, 2017].
104See Article 23, page 72, and [Gillmor, 1971a, pp. 180-181 and 216-217].
105See page 479 of this English translation and also [Gillmor, 1971a, pp. 180-181 and pp. 216-218].
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measurements. It consists in supposing in Mr. OEpinus’ system that the magnetic
fluid is contained in each molecule or integral part of the magnet or the steel; that
the fluid can be transported from one extremity to the other of this molecule, which
gives each molecule two poles, but that this fluid cannot pass from one molecule to
another. Thus, for example, if a magnetized needle was of a very small diameter,
or if, Figure 7, each molecule could be regarded as a small needle whose North end
would be united to the South end of the preceding needle, there would be only the
two ends n and s of this needle which would give signs of magnetism, because it
would be only at the two ends where one of the poles of the molecules would not be
in contact with the opposite pole of another molecule.

Figure 4.6: Coulomb’s model of molecular magnetic polarization.

Coulomb’s model was later important to J.-B. Biot, S. D. Poisson and René Just Haüy
(1743-1822).106 Poisson, for instance, said the following:107

This opinion, very singular upon first glance, is, however, that which has generally
prevailed.

Coulomb’s molecular polarization model was also important to André-Marie Ampère
(1775-1836) and Augustin-Jean Fresnel (1788-1827). However, these two authors changed
the idea of molecular polarization to the assumption that magnetism was due to microscopic
electric currents flowing in a plane normal to the magnetic axis of each molecule or particle
of a magnetized substance. A discussion of Ampère’s molecular currents can be found in
the book Ampère’s Electrodynamics — Analysis of the Meaning and Evolution of Ampère’s
Force between Current Elements, together with a Complete Translation of His Masterpiece:
Theory of Electrodynamic Phenomena, Uniquely Deduced from Experience.108

4.5 Coulomb’s Magnetic Terminology

In French the magnetic fluid is called “fluide magnétique” or “fluide aimantaire”.109 The
boreal or North fluid is called “fluide boréal”, while the austral or South fluid is called “fluide
austral”.110

A “magnetic particle” or “magnetic molecule” is called “molécule magnétique”, “molécule
aimantaire” or “partie magnétique”.111 This magnetic particle or molecule would be a parti-

106[Gillmor, 1971a, pp. 175 and 217-218].
107[Poisson, 1822, p. 250] and [Gillmor, 1971a, p. 218].
108[Assis and Chaib, 2011] and [Assis and Chaib, 2015]. See also [Chaib, 2009].
109See, for instance, footnotes 147, 148 and 310.
110See footnotes 306 and 307.
111See, for instance, footnotes 181, 595, 606, 624, 998 and 1110.
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cle having only one kind of magnetic fluid. It would be equivalent to what is called nowadays
a magnetic monopole.

The extremities of magnetized needles are called magnetic poles. The extremity pointing
approximately toward the geographic North pole of the Earth is called a North pole, “pôle
boréal”, “pôle boréal N”, “pôle N” or “pôle nord”. The extremity pointing approximately to-
wards the geographic South pole is called a South pole, “pôle austral”, “pôle austral S”, “pôle
S” or “pôle sud”.112 The magnetic pole of a needle is also called a center of action, “centre
d’action”, center of magnetic action, “centre d’action magnétique”, or center of gravity of
the curve of magnetic densities, “centre de gravité de la courbe des densités magnétiques”.113

Sometimes Coulomb refers to the “density of magnetic fluid” or to the “magnetic den-
sity”.114 In some situations these expressions refer to the total amount of magnetic fluid
contained in a particle or in a magnetic pole. In other situations these expressions refer to
the linear, surface or volume density of magnetic fluid, that is, to the amount of magnetic
fluid per unit length, area or volume, respectively.

The quantity of magnetic fluid in a particle is also indicated by the expressions “mass
intensity”, “magnetic intensity” and “mass of the magnetic fluid”.115

Many times he utilizes the expression “momentum magnétique”. In some situations this
expression may refer to the “magnetic moment” of a magnetized needle, that is, to the degree
of magnetization of this needle. In other situations it can refer to the “magnetic torque”
exerted by the Earth on this needle. This torque is proportional to the magnetic moment or
to the magnetization of the needle.

4.6 Magnetization Methods: Magnetization by Con-

tact, Simple Touch, Divided Touch and Double

Touch

To contextualize Coulomb’s work, I present here some magnetization methods.116 These
methods were used to produce artificial magnets. The main methods in Coulomb’s time,
with several variations, were called magnetization by contact, single touch, divided touch
and double touch. John Michell (1724-1793) created the expressions single and double touch
in 1750.117

Magnetization by contact is very old and was well known much before Coulomb. Petrus
Peregrinus, for instance, in his letter on the magnet of 1269 mentioned that an iron or steel
needle can be magnetized by touching a natural magnet.118 When the North pole of a magnet
touches the extremity of a needle for some time, this extremity becomes a South pole, and
vice versa. Consider a non magnetized piece of iron. When it touches a strong magnet for
some time, or simply remains close to this magnet for some time, this piece of iron becomes

112See, for instance, pages 51, 56, 70 and 242.
113See footnotes 568, 1043 and 1046.
114See, for instance, pages 137, 248, 257, 467 and 479.
115See footnotes 129, 998 and 1072.
116[Brewster, 1837, Chapter X: Account of the different methods of making artificial magnets, pp. 283-320],

[Aepinus, 1979, pp. 179-182], [Dhogal, 2008, pp. 88-89], [Ricker III, 2011] and [Martins, 2017, Notes 23 and
45].
117[Michell, 1750, pp. 8 and 36-37] and [Michell and Canton, 1752].
118[Peregrinus, 1904], [de Grave and Speiser, 1975], [Verschuur, 1996, p. 9], [Bacha and Vannucci, 2014],

[Sparavigna, 2016] and [Martins, 2017].
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magnetized. However, when separated from the strong magnet, it loses all of its magnetism.
If the same procedure is repeated with a piece of steel, this piece will remain magnetized for
a long time after being separated from the magnet. The extremity of the steel object which
touched the North pole of the magnet becomes a South pole, while the other extremity of
the object becomes a North pole, Figure 4.7.
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Figure 4.7: Magnetization by contact. (a) An initially non magnetized steel object AB. (b)
Magnetization of AB when it remains in contact with a strong magnet NS for some time. (c) The
object AB remains magnetized after being separated from the magnet.

Peregrinus seems to have been the first person to utilized the word “pole” in relation to
magnetism. He also seems to have been the first scientist to mention that opposite poles
attract one another, showing also three methods to localize the poles of a spherical magnet.119

Figure 4.8 presents a simplified representation of the three magnetization methods when
there is motion between the magnet and the object to be magnetized.
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Figure 4.8: (a) Magnetization by single touch, (b) by divided touch, and (c) by double touch.

In the single touch method a single pole of a magnet is utilized to magnetize a steel
needle or bar. This method was also known long before Coulomb. Normally a single pole of
a magnet is rubbed in one direction along a steel bar AB in order to magnetize it, Figure
4.8 (a). This process is repeated many times on both faces of the bar AB, increasing its
magnetization, until it reaches a saturation point. Two magnets are utilized in the divided
touch method. They are placed with their opposite poles on the center of the steel bar AB
and move in opposite directions towards the extremities of the bar, Figure 4.8 (b). This
process is also repeated many times on both faces of the bar. The double touch method
also utilizes two magnets. However, in this case both magnets remain together with a fixed
distance between their extremities, as they are rubbed in both directions along the bar,
Figure 4.8 (c). That is, instead drawing the poles apart at each stroke, they are held a small
fixed distance apart and moved together back and forth several times along the bar.

We now present these three methods in greater detail.
Suppose we want to magnetize a steel bar AB. In the single touch method this bar is fixed

on a support on the laboratory and a permanent magnet NS is placed vertically above it,
Figure 4.9 (a). This magnet is rubbed on the surface of the bar, always in the same direction

119[Araújo, 2010] and [Martins, 2017].
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(for instance, from A to B) with the same pole of the magnet (N for example) sliding on
the bar. When the magnet reaches the end B, it is raised, placed at A and the procedure
is repeated a few times. The same procedure is done on both faces of the bar. At each
repetition this process increases the magnetization of the bar, until it reaches a saturation
point when the acquired magnetism no longer increases. At the end of this process extremity
A of the steel bar acquires a North pole n, while extremity B acquires a South pole s, Figure
4.9 (b):

A A
n s

B B

N

S

(a) (b)

Figure 4.9: Single touch method. (a) Magnet NS is rubbed a few times against the steel bar AB.
(b) Extremity A acquires a North pole n, while extremity B acquires a South pole s.

In a variation of this process the magnet NS is rubbed in an inclined orientation relative
to the bar, Figure 4.10.
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Figure 4.10: Single touch method. (a) The inclined magnet NS is rubbed a few times against the
steel bar AB. (b) Extremity A acquires a North pole, while extremity B acquires a South pole.

It is also possible to keep the magnet at rest relative to the laboratory, while the steel
bar is rubbed against it. Consider a bar AB with its extremity A above the North pole of
a vertical magnet NS. We rub the bar against the North pole of the magnet, from A to B,
Figure 4.11 (a). When extremity B reaches the end of the magnet, we raise the bar, place
extremity A above the North pole and repeat this process a few times. At the end of this
procedure extremity A acquires a North pole n, while extremity B acquires a South pole s,
Figure 4.11 (b).

During the XVIIIth century there was a revolution in magnetization methods. New
magnetization procedures were devised, creating stronger and more homogeneous magnets.
These developments were essential for Coulomb’s researches.

The divided touch method due to Gowin Knight (1713-1772) was utilized during the
1740s. The final result was presented to the Royal Society, although the method was kept
secret during his life for commercial reasons, being published only after his death.120 It is

120[Knight, 1744a], [Knight, 1744b], [Knight, 1746], [Knight, 1754], [Brewster, 1837, Chapter X: Account of
the different methods of making artificial magnets], [Aepinus, 1979, pp. 158-160, 179 and 390], [Fara, 1995]
and [Fara, 1999].
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Figure 4.11: Single touch method. (a) The bar AB is rubbed from A to B against the North pole
of a magnet. (b) Extremity A acquires a North pole, while extremity B acquires a South pole.

shown in Figure 4.12.
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Figure 4.12: Knight’s procedure.

The steel bar AB to be magnetized is placed under the opposite poles of magnets I and
I ′, Figure 4.12 (a). These poles are then rubbed in opposite directions against the bar, the
pole N moving towards A and the pole S ′ moving towards B. This procedure is repeated a
few times. At the end of the procedure, extremity A acquires a South pole s, while extremity
B acquires a North pole n, Figure 4.12 (b).

Figure 4.13 illustrates the divided touch method due to Henri-Louis du Hamel du Mon-
ceau (1700-1782), known as Duhamel’s method.121
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Figure 4.13: Duhamel’s method.

AB and A′B′ are two steel bars to be magnetized. They remain parallel to one another
between two pieces of soft iron M and M ′, called the armors or armatures, orthogonal to
them and forming a rectangle. Two magnets I ′′ and I ′′′ are aligned with AB with their poles
as indicated in Figure 4.13. He utilizes two strong magnets I and I ′ with opposite lower
poles. Pole N of magnet I is placed toward pole N ′′ of magnet I ′′, while pole S ′ of magnet
I ′ is placed toward pole S ′′′ of magnet I ′′′. Magnets I and I ′ can be orthogonal or inclined
relative to bar AB, as shown in the Figure. They are rubbed against this bar by being slid
in opposite directions toward the extremities of the bar. Magnets I and I ′ are again placed

121[Du Hamel, 1745], [Du Hamel, 1750], [Brewster, 1837, pp. 285-287] and [Aepinus, 1979, pp. 179-180].
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at the center of AB and the whole procedure is repeated a few times, Figure 4.13. Lamina
AB is turned upside down and this procedure is repeated to magnetize its lower side.

The same method is applied with bar A′B′, but now magnet I ′ is placed with its lower
pole S ′ toward A′, while magnet I is placed with its lower pole N toward B′. Moreover,
magnets I ′′ and I ′′′ are placed along A′B′ with inverted poles. Magnets I and I ′ are rubbed
against A′B′ by being slid in opposite directions a few times toward its extremities, Figure
4.14.
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Figure 4.14: Duhamel’s method.

It is also possible to replace magnets I and I ′ by two sets of magnetized laminae. In each
set the poles of the same type are fixed together, forming a single magnet.

At the end of Duhamel’s method, bar AB becomes magnetized with poles n and s, while
bar A′B′ becomes magnetized with poles n′ and s′, as indicated in Figure 4.15.
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Figure 4.15: Final result of Duhamel’s method.

Figure 4.16 illustrates the double touch method due to Michell and John Canton (1712-
1772).122

A set of three magnetized laminae CD is placed over bar AB to be magnetized. This
bar can be divided into three pieces as shown in the Figure, or in six pieces as described by
Michell. Let us assume that the South pole of laminae CD is located at D, touching AB.
Another set of magnetized laminae EF is placed with its opposite pole on AB. With our
assumption we would have the North pole of these laminae EF located at F , touching AB.
There is a small separation between the lower poles D and F . This system of six laminae is
slid together a few times back and forth between the extremities A and B of the steel bar,
with a fixed separation maintained between the two sets of three laminae. Bar AB is turned
upside down and the same procedure is repeated a few times. At the end of the process, the
bar AB acquires a North pole n at extremity A and a South pole s at extremity B, Figure
4.17 (a) and (b).

122[Michell, 1750], [Canton, 1752a] with German translation in [Canton, 1752b],
[Michell and Canton, 1752], [Brewster, 1837, pp. 287-288], [Aepinus, 1979, pp. 180-182 and 373],
[Fara, 1995] and [Reich and Roussanova, 2022].
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Figure 4.16: Michell’s double touch method.
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Figure 4.17: Illustration of Michell’s method.

Figure 4.18 illustrates the method of double touch due to Aepinus (1724-1802) and
Antheaulme.123
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Figure 4.18: Aepinus’ double touch method.

Aepinus placed the two steel bars to be magnetized between two magnets i and i′ with
inverted poles, Figure 4.18, instead of placing them between two iron pieces as in Duhamel’s
method. Magnets I and I ′ utilized to magnetize the steel bars were placed above the center
of one of these bars. However, instead of being almost orthogonal to this bar as in Michell’s
method, they were now very inclined relative to it, with inclinations of only 15 or 20 degrees,
with lower poles of opposite kinds. This inclination was the great advancement relative to
Michell’s method. There was a fixed small separation between magnets I and I ′. Moreover,
instead of I and I ′ being moved in opposite directions toward the extremities of the bar,
magnets I and I ′ were now moved together back and forth between the extremities of the

123[Aepinus, 1759] with English translation in [Aepinus, 1979, pp. 181-182 and 380-383],
[Antheaulme, 1760] and [Brewster, 1837, pp. 291-292].
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bar. These magnets I and I ′ remained inclined relative to the bar, while a small piece of
wood connecting their lower extremities maintained them at a constant distance while they
were rubbed against the bar. The bar AB was turned upside down and the whole procedure
was repeated. The same procedure was performed with bar A′B′, but now magnet I ′ was
placed toward A′, while magnet I was placed towards B′.

At the end of the process, extremity A acquired a South pole s, while extremity B
acquired a North pole n. Bar A′B′ became magnetized with opposite poles, Figure 4.19.
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Figure 4.19: Final result of Aepinus’ method.

It is also possible to replace the two magnets I and I ′ with two sets of magnetized laminae.
In each set the laminae are fixed to one another with poles of the same kind placed together.

Coulomb improved the double touch method due to Antheaulme and Aepinus.124 With
his procedure Coulomb obtained long artificial magnets with strong, well defined poles.
These artificial magnets were essential in order to obtain the force law between magnetic
poles. For instance, in his Second Memoir he utilizes cylindrical magnetized bars 54 to 68 cm
long (20 to 25 inches) with a diameter of 0.3 cm (1.5 line). They were made of an excellent
steel, uniformly magnetized following the double touch method of Michell and Canton, as
improved by Antheaulme and Aepinus. Coulomb showed that their centers of action, or
magnetic poles, were concentrated in very small regions located approximately at 2.3 cm
(10 lines) from each extremity. He then utilized his torsion balance to measure the force
between two magnetic poles and showed that it was inversely proportional to the square of
their separation.

124[Aepinus, 1979, pp. 179-182] and [Heilbron, 1999, pp. 91-96, 373 and 469-470].
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Chapter 5

Investigations of the Best Method of
Making Magnetized Needles, of
Suspending Them, of Ensuring that
They are in the True Magnetic
Meridian; Finally, of Explaining Their
Regular Diurnal Variations

Coulomb125

While all the parts of the Earth are united by their respective needs and by the exchange
of excess goods; while whole armies and nations span and inhabit the seas: scholars as for
their love of the public good as for their wisdom, offer to the researches of physicists and
mathematicians, the perfection of the instrument which directs the paths of ships; which,
placed in the center of a vast and uniform horizon, traces a line whose direction is known: it
is to serve humanity and our homeland to respond to their views and to focus our attention
on such a useful object.

5.0.1 Definitions and Principles

1. If we suspend a magnetized needle by its center of gravity, around which we suppose that
it can turn freely in all directions, it will take a fixed direction, so that, if we move it away
from this direction, it will always be brought back to it while oscillating.

If, through the direction of this needle, we pass a vertical plane, this plane will be the
meridian of the compass, or in other words the magnetic meridian. The angle formed by
this plane with the true meridian of the world,126 will be the declination of the compass.

125[Coulomb, 1780] with Portuguese translation in [Assis, 2022]. This work published in 1780 shared the
1777 award from the French Academy of Sciences related to the investigations of the best method of making
magnetic needles, [Gillmor, 1971a, pp. 176-182].
126That is, with the local geographic meridian, the vertical plane that contains the Earth’s axis of rotation

in relation to the stars.
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If through the point of suspension of the needle, we pass a horizontal plane, the angle
formed by the direction of the needle with this plane, will be the inclination of the compass.

One distinguishes in the magnetic needles, their extremities with the names of poles.
The extremity which points almost to the [geographic] North is called the boreal pole. The
extremity which points roughly towards the [geographic] South is called the austral pole.127

The poles of the same name of different magnets or needles appear to exert on each other a
repulsive force. The poles of different names appear to exert an attractive force.

Steel blades are only able to take on a certain degree of magnetism which they cannot
exceed. Having reached this point, they are said to be magnetized to saturation.

5.0.2 First Fundamental Principle

2. If, after having suspended a needle by its center of gravity, we move it away from the
direction that it takes naturally, it is always brought back by forces which act parallel to
that direction and which are different for different points along the needle, but which are
the same for each of these points separately, in whichever orientation the needle is placed in
relation to its natural direction; so that a magnetized needle always experiences the same
action, in any position, due to the magnetic forces of the Earth.128

Development of This Principle

The globe of the Earth is a natural magnet which, by its action, produces the orientation
of the compass. If we suppose that the magnetic forces are attractive or repulsive forces
placed inside the globe of the Earth, the centers of these forces will be at a distance which
may be regarded as infinite relative to the length of the compass. But, as the action of the
attractive or repulsive forces, depends on the nature and the intensity of the masses,129 and
on a function of the distance, the distance being able to be supposed the same, in any position
which we place the compass, and each point of this compass taken separately, experiences
no variation with change of position with respect to the constitution of its parts, it follows
that each of the points of the needle will be solicited by a force whose direction will always
be the same, and the intensity will be independent of the orientation of the needle.

The experiments of Mr. Musschenbroek,130 and those of Wiston,131 cited by the same

127In the original: pole boréal and pole austral. The word boreal refers to things that belong to the North
of the Earth or that are relative to the Northern hemisphere. The word austral refers to things that belong
to the South of the Earth or that are relative to the Southern hemisphere. Nowadays we call the North Pole
of a bar magnet (or of a compass) to its extremity that points approximately towards the geographic North
pole of the Earth. Therefore, Coulomb’s boreal pole would nowadays be called the North pole of the needle,
while its austral pole would be called the South pole of the needle.
Some other authors have adopted a definition opposite to Coulomb’s for the denomination of the poles of

a magnet, calling the tip of the needle that is directed approximately towards the geographic North pole of
the Earth as the austral pole of the needle.
There has never been a consensus on the name of the magnetic poles of a magnet.

128A discussion and illustration of this first fundamental principle can be found in Section 6.1.
129In the original: intensité des masses. Newton’s gravitational force of attraction is proportional to the

product of the masses of the interacting particles. In this case Coulomb is referring to the magnetic force
exerted by the Earth on the different points of a magnetized needle. What he calls here the “intensity of the
masses” seems to be referring to the product of the quantities of magnetic fluid contained in the particles
that would be interacting by magnetic forces.
130Pieter van Musschenbroek (1692-1761) was a Dutch scientist.
131Maybe Coulomb was referring to William Whiston (1667-1752), an English natural philosopher.
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author, support the theory. Mr. Musschenbroek (Dissertatio de magnete, Exp. CIII),132

found that when a dip needle133 oscillated in a vertical plane other than that of the magnetic
meridian, the forces which produced the oscillations in the different planes were between
them like the cosines of inclination, formed by the natural direction of the needle with these
planes. Now if we suppose that the particular force which solicits each point of the compass
always has the same direction, and that its action is independent of the orientation of the
needle, it will result from this supposition and from the principle of the decomposition of
the forces, that the forces which will make the magnetic needle oscillate in planes inclined
to the natural direction, will be like the cosines of the angles which these planes form with
this direction. This being confirmed by experiment, it follows that the established principle
is legitimate.

Another fact that we have every day before our eyes; proves again, it seems to me, this
principle in an indisputable way. When we suspend on the tip of a pivot an ordinary needle
of declination, if it was in balance, before being magnetized,134 it will cease to be so when
magnetized, the boreal part will be heavier than the austral part,135 and we will be obliged,
in order to restore the balance, either to add a small counterweight to the austral part, or to
reduce the weight of the boreal part. Therefore these forces are dependent on the magnetic
power which increases the gravity of the boreal part, or which decreases that of the austral
part. But when the balance has been restored by a small counterweight, if the compass is in a
horizontal position naturally directed in its magnetic meridian, and if this compass is rotated
horizontally, it will continue, left to itself, to remain horizontal in all the positions to which it
finds itself brought by its oscillatory movement. Therefore the magnetic force136 increases the
weight of the boreal part, or decreases the weight of the austral part by the same amount, in
whatever orientation this compass is found with respect to its magnetic meridian, therefore
the orientation of the compass does not influence the action of the different magnetic forces.

5.0.3 Second Fundamental Principle

3. The magnetic forces of the terrestrial globe that attract the different points of a compass
needle act in two opposite ways. The boreal part of the needle is attracted towards the
boreal pole of the magnetic meridian.137 The austral part138 of the needle is attracted in the
opposite direction. Whatever may be the law according to which these forces act, the sum
of the forces which attract the needle towards the boreal pole is exactly equal to the sum of
the forces which attract the austral pole of the needle in the opposite direction.139

132[Musschenbroek, 1754].
133In the original: aiguille d’inclinaison. This expression can also be translated as dip circle or inclination

needle.
134That is, if this non-magnetized needle were to remain in equilibrium pointing in a horizontal direction.
135If we have a dip circle in Paris, it is observed that, in equilibrium, the boreal pole of the magnetized

needle (with Coulomb’s definition, equivalent to the North pole of the compass) remains below the horizon,
while the austral pole of the needle remains above the horizon.
136In the original: force aimantaire.
137In the original: La partie bóreale de la boussole est attirée vers le pole boréal du méridien magnétique.

The boreal part of a compass needle is nowadays called its Northern magnetic part. When the needle is in
equilibrium, this part will point to the Earth’s magnetic South pole, which is close to the Earth’s geographic
North Pole.
138In the original: La partie australe. That is, the austral or Southern part of the needle.
139A discussion and illustration of this second principle can be found in Section 6.2 on page 140.
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Development of This Principle

Mr. Musschenbroek (Dissertatio de magnete, Exp. XXVI) found that a steel blade weighed
before being magnetized, and after being magnetized, did not change its weight at all.
However precise he was in conducting his experiments, they always gave him the same
result. Thus if follows from this experiment and from the principles of statics that for all the
forces which act on a magnetized needle, when these forces are decomposed into horizontal
and vertical components, the sum of the vertical forces must be null.

From another perspective, we know that when we float a magnetic needle on a small
piece of cork, it is directed along the magnetic meridian, but the center of gravity of the
whole system soon reaches a state of rest; however if the sum of the horizontal forces is not
zero; if, for example, the sum of the forces which pull towards the [Earth’s] boreal pole were
greater than the sum of the forces which act in the opposite direction, the center of gravity
of the system should move towards the [geographic] North with a continuous movement.

We conclude from these two experiments, that since the sum of the force components
in the horizontal plan directed along the magnetic meridian is null, just as the sum of the
vertical forces, it follows that the sum of the forces which act along the natural direction of
the compass, is also zero.

As to the possibility that the cohesion of water might destroy the effect of horizontal
forces in this last experiment,140 here is a fact which seems to me undeniable.

A very light wooden ruler AB (Figure 1), pierced in the middle C and furnished at this
point with a compass cap,141 was suspended, by means of this cap, on a pivot in the same
way as we suspend a declination needle.142 ,143

140That is, this person could claim that the resultant magnetic force on the compass is not zero, but the
needle would not move due to the frictional force exerted by the water, which would cancel the magnetic
force exerted by the Earth.
141In the 1777 original: chappe de boussole, [Coulomb, 1780, p. 172]. In the 1884 text edited by Potier, this

expression appears as chape de boussole, [Potier, 1884, p. 7]. The compass cap is a small hollow cavity, in the
form of a cup, cover, cone or concave spherical cap (like a thimble), to receive the pivot or axis around which
the compass rotates. In an ordinary compass, this cap is fixed or welded to the top face of the magnetic
blade of the compass, around the hole in its center, with the concave part facing downwards. It can be made,
for example, of metal or agate. Figure (a) of this footnote illustrates a magnetic needle SN with a hole in
the center and a conical cap above it. In (b) the cover fastened around the hole is seen in perspective. In
(c) the needle with the cap is seen from the side. In (d) the needle can be seen from the side with the cap
resting on the tip of a pin.

N N N NS S S S

(a) (b) (c) (d)

142In the original: aiguille de déclinaison.
143In this experiment the cap is fixed above a hole at the middle of a wooden ruler as shown in Coulomb’s

Figure 1.
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A [magnetized] needle sn, was attached to the end of this ruler, and formed a right angle
with it, a small counterweight was placed at A, so that the whole system was balanced
horizontally, and could move freely on the tip of a pivot, around the center of suspension
C.144 After the oscillations had died down, the needle sn found itself directed along the
magnetic meridian, that is to say, along the same line, as if it had been supported on the tip
of a pivot at its center E.145 Here is the explanation and the result of this experiment. The
forces which act on this needle, when it is in its magnetic meridian, are directed along its
length: now, since experiment shows us that the compass reaches its state of rest, when it
is directed along the magnetic meridian, it follows that the boreal and austral forces having
the same lever arm; cannot be in balance unless they are equal.

I repeated this experiment on a very large number of needles magnetized to saturation
or not, having only one magnetic center, or having a greater number.146 I consistently found
the same result. This experiment will be even more exact, by suspending the small wooden
ruler with silk threads, as I will explain later in this Memoir.

144The letters s and n on the needle refer to its magnetic poles. That is, this is a magnetized needle with
s being its South pole and n being its North pole. The magnetic needle sn is fixed on the ruler. Both the
ruler and the needle sn are horizontal. This system can rotate around the small concave cap fixed in the
center C of the wooden ruler, supported on a pivot or vertical axis.
145This center E of the needle sn was not indicated in Coulomb’s original Figure 1.
146In the original: centre aimantaire. The expression “centre aimantaire” is being translated here as

magnetic center. In the case of an ordinary homogeneously magnetized compass needle, the magnetic center
is at the midpoint between its magnetic poles, that is, at the midpoint between the North and South poles
of the compass. It is possible to magnetize a steel blade such that it has more than two magnetic poles.
For example, it might have three pairs of magnetic poles, namely, N1 and S1, N2 and S2, as well as N3 and
S3. In this case this blade will have three magnetic centers, C1, C2 and C3. The center C1 will be at the
midpoint between N1 and S1, the center C2 will be at the midpoint between N2 and S2, while C3 will be at
the midpoint between N3 and S3.
There is a simple way to produce a wooden skewer or plastic straw with three magnetic centers. It is

enough to attach along its length three magnetized needles, as in the Figure of this footnote:

N1 N2S2S1

C1 C2 C3

S3 N3
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5.0.4 General Corollary

4. We can, it seems to me, conclude from these two principles that the direction of a
magnetized needle cannot depend on a stream of fluid which, moving rapidly along the
magnetic meridian, forces the needle, by its impulsion, to align itself along this meridian.
For, by the first established principle, the needle always experiences the same action from
the magnetic fluid,147 whatever angle it forms with its natural direction, which should be the
direction of the stream of magnetic fluid.148 However, according to all that we can know of
the laws of the impulses of the fluids, they act differently, according to how the bodies they
strike are posed and whether they present a less or greater surface to the direction of the
stream. Thus, since experiment teaches us that the magnetic forces of the terrestrial globe
act equally on the needle in all orientations, this action cannot come from a stream of fluid.

In the second place, from the second principle, the sum of the forces which act on the
needle, is equal in the two opposite directions; it follows then that, if we want to make the
direction of the needle depend on the impulse of a fluid, it is necessary to imagine opposite
streams which will also act in opposite directions without mutually destroying each other.
Such hypotheses seem to be rejected by physics, as being too contrary to the principles of
mechanics.

Therefore it seems that it follows from experiment, that it is not vortices which produce
the different magnetic phenomena; and that, to explain them, we must necessarily resort to
attractive and repulsive forces of the nature of those which we are obliged to make use of to
explain the weight of bodies and celestial physics.

5.1 Chapter I. Formulas which Derive from All the

Forces, Either Active or Coercive, Which Can In-

fluence the Orientation of a Needle in Equilibrium

in a Horizontal Plane

5. When a declination needle balanced in a horizontal plane, can turn freely around its point
of suspension; if it is removed from its magnetic meridian, it will be brought back there by
the [Earth’s] magnetic force, which acts on each point of this needle; and its movement will
be retarded by all the coercive forces, coming either from the friction of the [compass’] cap
on its pivot, or from the torsion of the silk thread, to which we can suppose the compasses
suspended, or finally from the resistance of the air, in which the compass makes its oscilla-
tions. We do not consider here the errors which may arise from the position of the point of
suspension, and from the imperfection of the pivots and the caps.149 We will come back to
this later.

Of these different coercive forces, all of which tend to destroy the motion of the oscillating
needles: some are constant and depend either on friction or on the cohesion of the air: others
also depend on the friction and cohesion of the air; but increase with speed; so that the
moment150 of all the coercive forces will be represented by a quantity (A + Fu) where A

147In the original: fluide magnétique.
148In the original: fluide aimantaire.
149That is, for now Coulomb will focus on errors or deviations due to the resistance of air.
150In the original: momentum. This expression can also be translated by torque, moment of force or

rotational force.
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being a constant quantity, Fu will be a function of the angular velocity.

6. Let AB (Figure 2) be the true meridian of a declination needle, from which it is
assumed to be displaced, at the beginning of its movement, by the angle BCN = B, the
point C being the point of suspension, which deviates very little from the center of gravity
and from the magnetic center, in homogeneous blades magnetized to saturation.151

When the needle has arrived at n, let the angle NCn = S, the angle nCB = B − S, the
angular velocity = u = dS/dt, the magnetic force µe, which acts on any point µ (decomposed
along the horizontal plane), parallel to the magnetic meridian = ϕ, Cµ = r, CN = l, the

151In Figure 2 the letter N at the bottom should be replaced by N ′, as corrected in the 1884 reprint of
Coulomb’s work:
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moment of the magnetic force of the point µ, will be represented by152

ϕµr sin(B − S) .

If R = (A + Fu) represents the moment of all the coercive forces, we will have, for the
total moment, around the point C, the quantity

∫

ϕµr sin(B−S)−R; but, when the needle
has arrived at its state of rest, the active and coercive forces must be in equilibrium; thus
we will have, for the needle’s error,153

sin(B − S) =
R

∫

ϕµr
;

and, when the deviation angle is small,154 we will have (B − S) = R :
∫

ϕµr; thus, to have
the most advantageous dimensions of a needle, it is necessary, when we know the quantity R
and the quantity

∫

ϕµr, integrated for all the length of the needle, to ensure that the angle
(B − S) be a minimum.

7. Now let us move on to the oscillatory movement: we will need it in the following,
either to compare the magnetic force of different needles, or to compare the magnetic force
with the coercive force.

The moment of all the forces which produce the acceleration of the needle when it
has arrived at the point n, is, as we have just seen in the previous Article, expressed by
∫

ϕµr sin(B − S)−R; but the acceleration of the point µ, or the small arc traversed by this
point, is expressed by rdu; thus we will have, in naming dt the element of time,155

152In the original 1777 paper this equation appears as, [Coulomb, 1780, p. 175]:

ϕµCµ
sin(B − S)

rayon
.

In 1884 Potier wrote this equation as, [Potier, 1884, p. 11]:

ϕµr sin(B − S) .

In this English translation I will follow Potier’s modern notation. That is, if θ represents an angle, then the
sine and cosine of that angle will be represented by sin θ and cos θ, instead of Coulomb’s original notation,
sin θ

radius and cos θ
radius .

What Coulomb calls ϕµ in this equation, is the horizontal component of the Earth’s magnetic force acting
on the point µ of the needle which is at a distance r from the axis of rotation. The component of this force
normal to the direction of the needle is given by ϕµ sin(B − S). Therefore, the torque it produces on the
needle is given by ϕµr sin(B − S).
153In the original: l’erreur de l’aiguille. That is, the error or deviation of the needle in relation to the

magnetic meridian. This deviation is caused by frictional or coercive forces that prevent it from returning
exactly to the magnetic meridian.
154The angle of departure of the compass from the magnetic meridian is given by B−S. When B−S ≪ 1

radian, we have sin(B − S) ≈ (B − S).
155In the next equation, µ on the right side represents an infinitesimal element of inertial mass, where r is

the distance from this element of mass to the vertical axis of rotation. Therefore, the moment of inertia of
the entire needle about this axis of rotation is given by I =

∫

µr2. The integration here should be thought
of as a volumetric integration over the entire volume of the needle. The angular velocity around this axis is
given by u = dS/dt = Ṡ, where S is the angle NCn of Figure 2. Therefore, du/dt = d2S/dt2 = S̈ represents
the angular acceleration. The torque around the axis of rotation is given by τ =

∫

ϕµr sin(B − S)−R. The
equation given by Coulomb is then the well-known second law of motion of mechanics applied to rotation,
given by τ = IS̈. That is, the torque acting on the needle is equal to its moment of inertia times its angular
acceleration.
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[∫

ϕµr sin(B − S)− R
]

dt = du
∫

µr2 ;

whence, by integrating this quantity, after having substituted, in place of dt, its value dS : u,
and noticing that u vanishes, when S = 0, we have156

∫

ϕµr [cos(B − S)− cosB]−
∫

RdS =
u2

2

∫

µr2 .

8. If the angle B is very small, this is the only case we will need in the sequel, we will
have157

cos(B − S)− cosB =
1

2
(2BS − S2) ;

so the equation reduces to
∫

ϕµr(2BS − S2)− 2
∫

RdS = u2
∫

µr2 .

9. If we make u = 0, we find

2B − S =
2
∫

RdS

S
∫

ϕµr
;

and if R were a constant quantity, we would have

2B − S =
2A
∫

ϕµr
;

thus when the needle, after having traversed the arc NB, goes back to N ′,158 letting the arc
BN ′ be B′, we will have

B −B′ =
2A
∫

ϕµr
;

which always gives, on the assumption of constant coercive forces, the same quantity for the
difference of the descending and ascending arcs.

156In the original article this equation appears as, [Coulomb, 1780, p. 175]:

∫

(ϕµr)
(cos(B − S)− cosB)

rayon
−
∫

RdS =
uu

2

∫

r2µ .

As stated in footnote 152, I am following Potier and replacing Coulomb’s expression cos θ
radius with cos θ, where

θ represents any angle.
157When the angle B is very small, also B − S will be very small. Assuming B expressed in radians, the

following approximations can then be made: cosB ≈ 1 − B2/2 and cos(B − S) ≈ 1 − (B − S)2/2. Using
these approximations, we arrive at the next result presented by Coulomb.
158See footnote 151 on page 61.
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10. If we suppose R = A+ Fu, we will then have, however small the velocity u, B − B′

greater than

2A
∫

ϕµr
.

This consideration will suffice in what follows to prove that the resistance of the air cannot
produce a sensible error in the orientation of the needle.

11.159 When, in the previous equation, we suppose R = 0, we obtain the approximate
equation

u2 =

∫

ϕµr
∫

µr2

(

2BS − S2
)

;

from which

(
∫

ϕµr
∫

µr2

)1/2

dt =
dS√

2BS − S2
.

Or

∫

dS√
2BS − S2

is the angle whose radius is B, and S the sine-verse; quantity equal to π/2, when S = B;
thus, by naming T the time of a total oscillation,160 we will have

T

(
∫

ϕµr
∫

µr2

)1/2

= π .161

12. If we want to compare the magnetic force with gravity: letting g represent this force,
we have162

159I present in Section 6.3 on page 141 a detailed discussion of this Article 11.
160In the original: en nommant T le temps d’une oscillation totale.
161See Section 6.3 on page 141 for a discussion of the meaning Coulomb gave to the expression “time of a

total oscillation”, along with a deduction of this formula presented by him.
162Although Coulomb calls g the “force” of gravity, he is referring to the free-fall acceleration at the Earth’s

surface, that is, the gravitational force per unit mass. Suppose we have a simple pendulum of length λ that
makes small oscillations in a vertical plane due to the gravitational action of the Earth, starting from rest
at an angle θo. In the next equation T ′ represents the time for the pendulum to go from θo to −θo, see
Section 6.3 on page 141. So T ′ is then given by:

T ′ =
1

2

(

2π

√

λ

g

)

= π

√

λ

g
.

In the original article Coulomb wrote this relationship as follows, [Coulomb, 1780, p. 176]:

T ′
( g

λ

)1/2

= (180)◦ .
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T ′
(

g

λ

)1/2

= π

for the oscillations of a pendulum, whose length is λ; thus, if we want the time T ′ to be
isochronous with the oscillations of the magnetic needle, we will make

g

λ
=

∫

(ϕµr)
∫

µr2
,

hence

λ = g

∫

µr2
∫

ϕµr
.

Assuming that the compass is a blade of a uniform width and thickness, naming δ the
transverse section of this blade, and l half of its length, we will find163

∫

µr2 = 2δl · l
2

3
;

but 2δl represents the mass of the needle, which, multiplied by the force of its gravity g,
equals its weight P ; thus

∫

µr2 =
P l2

3g
,

and therefore

λ =
P l2

3
∫

ϕµr
.

13. If we look for a weight Q, which, placed at the end of the lever l, has the same
moment as the magnetic force of the needle, we will have

Potier, [Potier, 1884, p. 13], replaced it with

T ′
( g

λ

)1/2

= π .

163 In the next equation Coulomb is presenting the moment of inertia of a blade in the shape of a paral-
lelepiped of length 2ℓ, width a and thickness e, such that ℓ ≫ a and ℓ ≫ e. Let M be the mass of this needle
and ρ = M/(2ℓ · a · e) its volumetric mass density. Consider an axis perpendicular to the plane 2ℓ · a passing
through the center of the needle. The moment of inertia of this blade relative to this axis is given by

I =

∫

i

µir
2
i =

M(2ℓ)2

12
=

Mℓ2

3
.

What Coulomb calls δ or cross section of this blade is its linear mass density, or else its volumetric mass
density multiplied by the area ae of the cross section of the blade, namely:

δ =
M

2ℓ
= ρae .

Assuming a mass density equal to unity, δ = ae. In this case, the mass of the needle is represented by
M = 2δℓ, as mentioned by Coulomb shortly thereafter.
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Ql =
∫

ϕµr ;

but, as a result of the previous Article,

∫

ϕµr =
P l2

3λ
;

thus Q = P l
3λ
; quantity which is the same as that found by Mr. Euler,164 in the work which

competed for the Prize [of the French Academy of Sciences], in 1743,165 where this geometer,
dividing the magnetic force into two parts, which act in opposite directions, at the two
extremities of the needle, found for each [of these parts the value] Q = P l : 6λ.

5.2 Chapter II. Theoretical and Experimental Deter-

mination of the Magnetic Forces

13∗.166 Mr. Musschenbroek (Dissert. de Magnete, Exp. CVII) says that, in the oscillations
of magnetic blades, the square of the time in which a certain number of vibrations take
place, is in a compound ratio of the length of the blades and their weight; which, expressed
algebraically, gives

T 2 = mlP ,

T expressing the time of a certain number of vibrations, m being a constant coefficient, 2l
the length, and P the weight of the needle; but we have found, in the preceding Articles,

T 2 = π2

∫

µr2
∫

ϕµr
= π

P l2

3g
∫

ϕµr
;

thus, by comparing this value of T 2 with the experiment, it results from this comparison the
equation

mlP = π2 P l2

3g
∫

ϕµr
,

from which

∫

ϕµr = π2 l

3gm
= Ql ;

thus, by comparing the experiments of Musschenbroek with the theory of oscillations, we
would find that the total moment of the magnetic forces of a blade, whatever the dimensions
of this blade, would always be equal to a constant weight, multiplied by the length of the
blade.

164Leonhard Paul Euler (1707-1783) was a Swiss scientist.
165[Euler, 1752].
166In the reprint of Coulomb’s work of 1884, Potier used the number 13 twice in the Articles of this work,

[Potier, 1884, pp. 14-15]. We are following the original work and naming this second Article 13 by the
number 13∗, [Coulomb, 1780, p. 178].
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14. From there we would conclude that at equal lengths, the friction of the needles of
declination, which turn on a pivot, increasing according to a law of weight, and the moment
of the magnetic action being always a constant quantity, the lightest compasses would be
the best.

15. It would also result that if the moment of friction increased in direct proportion to
the weights, it would increase, all else being equal, like the lengths of the compasses: now
the moment of the magnetic force, increases in the same proportion. Thus, the ratio of the
moment of the magnetic forces, to the moment of the frictions, being constant, the same
error in the orientation of the needles would always result.

16. If we wanted to seek, according to the same formulas, founded on the experiments of
Musschenbroek, the law of the magnetic forces of different points of the needles, here is how
we could go about it.

Let S ′N (Figure 3) represent a needle, whose magnetic center is at C, that is to say,
whose point C is such that all points µ of the part CN , experience a boreal force,167 while
all the points µ′168 of the part CS ′ experience an austral force.169

If the ordinate µr represents the force on the point µ, and if, through the extremities

167In the original: force boréale. That is, these points have a boreal fluid or North fluid. It can also be said
that the points µ of the CN part suffer a magnetic force that points approximately towards the geographic
North pole of the Earth.
168In the original text, µ appears here instead of µ′.
169In the original: force australe. That is, these points have an austral fluid or a Southern fluid. It can

also be said that the points µ′ of the CS′ part suffer a magnetic force that points approximately towards the
geographic South pole of the Earth. In Figure 3 the letter r at the bottom should be replaced by r′. This
was corrected in the 1884 reprint of Coulomb’s work. The problem is that when this Figure was remade in
1884, the tip and tail of the magnetized needle were inverted in relation to the original Figure:
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of all the ordinates, we pass a line MCM ′, this line will be the locus170 of all the magnetic
forces, and will cut the needle at a point C, which will be the magnetic center. But, by the
second principle, the sum of the boreal forces is equal to the sum of the austral forces, from
which we conclude that the area CMN = the area CM ′S ′.

But experiment shows us that in homogeneous needles, magnetized to saturation, the
magnetic center is in the middle of the needles: thus, if we suppose that the quantity ϕ, [that
is,] the magnetic force of the point µ, is expressed by nlqrk, n being a constant coefficient, l
half the length of the needle, and r the distance from point µ to point C, q and k the powers
of l and r, we will derive from this [assumption] that

∫

ϕµr = Ql, Q being a constant weight,

∫

ϕµr =
∫

nδlqrk+1dr =
nδlqrk+2

k + 2
;

and, when r = l, we will have

2nδlq+k+2

k + 2
= Ql ;

however, as this equation must be satisfied, and as Q is a constant quantity, it is necessary
that (q + k + 1) = 0, or (q + k) = −1; thus, the force ϕ, for the end N , being nlq+k, we
always have at the end of the needles, ϕ = (n/l), whatever the value of q or of k.

17. If we suppose with most of the authors who have dealt with magnetism, that the
boreal and austral forces on the different points µ of the needle, vary as the distances cµ of
these points from the magnetic center,171 in this case ϕ = nlqr and q = −2; thus ϕ = nr/l2,
and the locus MCM ′, will be a straight line.

18. Although there are several experiments which seem to agree in proving that the forces
of the different points of a blade are proportional to the distances of these points from the
magnetic center, there arises a difficulty which must, it seems to me, make us wary of this
hypothesis: one sees, in truth quite easily, that when a needle is magnetized to saturation,
the magnetic center being in the middle of the blade, the geometric locus of the magnetic
forces, can be represented by two equal triangles, opposed at the [magnetic] center and linked
by the same equation: but we have mastered [the way] to move this magnetic center towards
the ends of the blade, using the practice prescribed by Mr. le Monnier (Loi du Magnétisme,
page 107).172 If we suppose that this center is in another point than the middle of the blade,
then the boreal forces will be represented (Figure 4), by a triangle CMN , and the austral
forces by a triangle M ′CS (Figure 4).173

170In the original: le lieu géométrique. In geometry, a locus (Latin word for place or location) is a set of
all points, whose location satisfies or is determined by one or more specified conditions. This set of points is
commonly a line, a line segment, a curve or a surface.
171That is, if the density of magnetic fluid at each point is assumed to be proportional to the distance from

that point to the center of the needle. With that assumption the magnetic force exerted by the Earth on
each point on the needle will also be proportional to the distance of that point from the center of the needle.
172Pierre Charles Le Monnier (1715-1799) was a French astronomer. His work on the laws of magnetism

was published in two parts between 1776 and 1778, [Le Monnier, 1778]. See also [Licoppe, 1995].
173 In Figure 4 the letter M at the bottom should be replaced by M ′, as corrected in the 1884 reprint of
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The law of continuity requires that the two triangles be similar, or that MCM ′ be a
straight line: but it results from the first principle, that the sum of the austral forces must
be equal to the sum of the boreal forces: thus it is necessary, to satisfy this principle, that the
two triangles are equal, which is incompatible with the similarity of the two triangles, when
the line NC will be larger or smaller than CS: thus, the hypothesis of the magnetic forces
of the different points of the needle, proportional to the distance of these points, cannot be
admitted.

5.2.1 New Experiments to Determine the Directing Force of Mag-

netized Blades

19. If Musschenbroek’s experiments were more numerous; if the theory of magnetism had
been carried in his time to the degree it has reached; the authority of this author in physics
having such great weight I would have blindly adopted the simple formulas which result from
his work, but it will be easy to see that they are incompatible with the theory of magnetism,
when we expose what repeated tests have shown over the past few years, regarding the way
in which the magnetic virtue is communicated: I will draw consequences from these that I
believe are interesting for the subject I am dealing with.

20. When the pole of a magnet is placed on the end of a steel blade (Figure 5) at n,174

if it is, for example, the austral pole of the magnet, which touches the point n, a part nC
of this blade takes on a boreal force,175 while the other Cs, takes on an austral force; and

Coulomb’s work:

174In the original article, n′ appears here instead of n.
175In this experiment it must be assumed that the steel blade was not initially magnetized. After the

magnet NS has been on one end of the blade for some time, with its South pole touching the blade, it
is observed that the piece nC of the steel blade is magnetized with a boreal fluid (that is, with a North
magnetic fluid, or with a North pole). The piece nC acquires a fluid of a type opposite to the pole of the
magnet that was touching this part of the steel blade.
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the center C, which separates the boreal part from the austral part, which has no magnetic
force, is called the magnetic center, or center of indifference.176

If the pole S of the magnet is made to slide along the blade, the center of indifference C
approaches the point s; the austral force of the extremity s increases first, until the pole of
the magnet has reached a point E, then it decreases until the pole has reached a point Q
where it is zero. It then becomes boreal, and continues to increase until the austral pole S
of the magnet has reached the point s: what is said in relation to the point s will also take
place for the point n, its force initially boreal, will increase, will decrease, will become null,
then austral, while the pole of the magnet traverses the length of the blade.

What we have just found for the austral pole of the magnet, will also take place, vice
versa, using the boreal pole N .

These experiments have been made by several authors; we find the most detailed infor-
mation of it in a work by Vanswiden, (Tentamina theoriae mathematiae de phaenomenis
magneticis);177 it is conceivable that, in the operation that we have just detailed, when the
magnetic force of the ends n or s becomes zero; in this case the center of indifference of this
blade, falls at the extremities of the blade.

21. In general, the pole of a magnet being applied to a point µ (Figure 6) of a blade,
communicates to this point a force of a name contrary to that of the pole of the magnet
which touches the point of the blade.178

176The magnetic center is the non-magnetized point of the steel blade ns. Assuming that the austral pole
(the modern South pole) of the magnet is on the point n of the steel blade, it is observed that the part nC
is magnetized with a boreal fluid or North fluid, while the part Cs is magnetized with an austral fluid or
South fluid.
177Jean Henri van Swinden (1746-1823) was a Dutch physicist and mathematician. The work cited by

Coulomb was published in 1772.
178 In Figure 6 the letters C and M on the right should be replaced by C′ and M ′, respectively, as corrected

in the 1884 reprint of Coulomb’s work, namely:
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For example, if it is the boreal pole of the magnet which touches the point µ, this point µ
will take on an austral force: the same thing will take place with all the surrounding points,
which will all take on an austral force, this force will always decrease to the points C and C ′,
which will be the magnetic centers: the extremities CM and C ′M ′ will have boreal forces.
It will most often happen that the shortest extremity µM ′,179 will have an austral force, and
that the blade will only divide into two parts by a center C: it could also happen that it
divides into three and four parts by several magnetic centers, which depends on the nature
of this blade, its dimensions, and the strength of the magnet.

If the pole N of the magnet is made to slide along the blade, the magnetic centers will
traverse this blade; but the point on which the pole N will be found, will always receive a
force of a name contrary to this pole.

22. From these experiments it results that since the pole of a magnet always produces
on the part of the blade where it is applied, a force of a name different from the pole which
touches; if we join together two blades magnetized to saturation, by uniting the poles of the
same name; whatever be the cause of their action, they tend to produce on each other a
force of a name contrary to that with which they are endowed: thus, the effect of this action
must diminish the polar force of each of these blades.

Consequently, the magnetic force of each longitudinal element of an artificial magnet nec-
essarily decreases as its thickness increases: thus, the ratio of the total force of two artificial
magnets of the same length, but of unequal thickness, both magnetized to saturation, will

Moreover, the letter B at the lower end of the vertical magnet represents a boreal pole, that is, a North
pole. In Figure 5, this boreal pole was represented by the letter N for North pole.
179In order for Coulomb’s original text to conform to his Figure 6 as indicated in footnote 178, we must

replace the expression “shortest extremity” with “longest extremity” here. Or else we keep this expression
“shortest extremity µM ′,” only then the letters C and M on the left side of Coulomb’s original Figure 6
have to be replaced by C′ and M ′.
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be smaller than that of their mass.

23. If, instead of making the pole of a magnet touch a steel blade, we present it only one
or two lines away [0.226 or 0.452 cm], we will observe the same phenomena as in Article 21;
but the degree of magnetism which the blade will acquire will be less than in the first case.

Thus, each point of a magnet or of a magnetized bar can be regarded as the pole of a tiny
magnet, which tends to produce in the other points of this bar a force of a name contrary
to that which it has itself;180 and the effect of this action is all the greater, as the intensity
of the force of the point which acts, is greater, and as its distance from the points on which
it acts, is less; thus the magnetic force of a magnet, depends on the reciprocal action which
all the points of this magnet exert one on the other.

24. If we develop the preceding reasoning, it will be seen that since the action experienced
by a magnetic point necessarily increases as the intensity of the force of the other points that
form the blade increases, as the number of points that act is greater, and as they exert their
action at a shorter distance: the closer the points of an artificial magnet are brought together
by the shape of this magnet, the greater the action which the different parts exert on each
other, tending to destroy their reciprocal forces, will be considerable, and consequently the
smaller the force of each point.

Thus, in two blades of the same weight and of the same length, the magnetism will be
greater, in the one whose width will be greater, because the longitudinal fibers will be more
isolated in the wider blade.

Thus, if a blade is separated into two parts, each of them magnetized to saturation will
in particular receive a greater degree of magnetism than when they were united.

Thus of all the shapes, the cylindrical shape being for steel rods, that where the parts of
equal length, for the same weight, are brought closer together, will also be that where the
mutual action of the magnetic parts181 will be the greatest, and consequently that whose
magnetism will be the least.

By continuing to follow the same analogies, we will find that the points of the surface of
a blade will necessarily be endowed with a more considerable magnetic force than the points
of the interior of this blade, since the interior parts are touched on all sides by elements
which tend to destroy their magnetic force; whereas, in the surfaces, there is only one side
which is in contact.

It will also be found that the corners of magnetized rods are the parts that will take on
the greatest degree of magnetism, because they are the parts that are the most isolated.

Finally, we will conclude that, for the same thickness, the ends of a long blade magnetized
to saturation, and whose magnetic center is in the middle, will have less force than the ends
of a small blade; since, in the first, there are more parts that act, than in the second, etc.

180Original sentence: qui tend à produire dans les autres points de cette lame une force d’un nom contraire à
celui qu’il a lui-même. The meaning of this sentence is that each point of a magnetized bar tends to produce,
in the other points of this bar, a magnetic pole of a name contrary to that which the point has itself.
181In the original: parties aimantaires. This expression can also be translated as elementary magnetic parts,

[Gillmor, 1971a, p. 217]. Another possible translation is “magnetic particles” (die magnetischen Theilchen),
[Coulomb, 1890c, p. 37].
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25. From these reflections, we can draw a multitude of consequences, on the choice of
magnetized blades in the construction of compasses: but, before engaging in this discussion,
we will report on several experiments, which will help us to develop this theory in a more
sure and precise manner.

26. To magnetize to saturation the blades, we used in the experiments that follow two
steel bars, the length of which was 12 inches (32.48 cm), the width one inch (2.71 cm), and
the thickness 5 lines (1.128 cm). We magnetized them, by the method of the double touch,
such as it is prescribed by Messrs. Antheaume and OEpinus:182 it consists (Figure 7), in
tilting the two artificial magnets on the blade that we want to magnetize; so that the austral
pole S of the bar NS is only one or two lines [0.226 or 0.452 cm] from the boreal pole N ′ of
the bar N ′S ′.

The two magnets are slid in this orientation from one end of the blade to the other: when
the blade is thin and only seven to eight inches long [18.95 to 21.66 cm], it is rare that it
is not magnetized to saturation, after seven to eight rather slow rubbings on each of the
faces: we can be sure that the blade is magnetized to saturation if, suspended horizontally,
it continues to make the same number of oscillations at the same time, however many times
they are rubbed again, or whether you use other magnets than the first.183

In all the experiments, very pure steel of the same grain was used: all the blades were
taken from a German saw, of a more or less uniform thickness: but care was taken to flatten
it for a long time while cold under the hammer; experience has shown that this is the only
way to obtain consistent results, and to avoid inequalities which are due to the dissimilarity
of the position of the parts, and for which no hypothesis can account.

When a blade was magnetized to saturation, it was suspended from the side horizon-
tally,184 by a very flexible silk [thread], at the end of which was attached a little wax which
was stuck to this blade (Figure 8).

182Franz Ulrich Theodor Aepinus (1724-1802) was a German physicist who carried out original research
on electricity and magnetism. His main work was published in 1759, Essay on the Theory of Electric-
ity and Magnetism, [Aepinus, 1759] with English translation in [Aepinus, 1979]. See also Section 4.1,
[Heilbron, 1981a] and [Blondel and Wolff, 2013c]. Antheaulme published in 1760 the work Sur les Aimans
Artificiels, [Antheaulme, 1760]. The double touch method is discussed in Section 4.6.
183See Section 4.6 on page 48.
184In the original: on la suspendait de champ horizontalement. Let a blade in the form of a parallelepiped

with length L, width W and thickness T be such that L > W > T . It is said to be suspended sideways when
the length L and thickness T are horizontal, while the width W is vertical.
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We were assured by experiments, which will be explained later, that the torsion of the
silk could not influence the time of the oscillations:185 we carefully counted the time that
the blade took to make 20 oscillations; each operation was repeated twice, then one inch [2.7
cm] was cut from each side of the blade; the remainder being magnetized to saturation, the
same operations were carried out as on the first blade.

The blade oscillated in a well-closed box, so that the currents of air which prevailed in
the room did not disturb the experiments: this precaution is above all indispensable, when
we [are heating the room] with a fire.

5.2.2 Experiments to Determine the Magnetic Force of the Blades
with Regard to Their length

First Experiment

27. The blade was three lines wide (0.677 cm): one foot long (32.48 cm), weighed 288 grains
(15.30 g);186 it made these oscillations:

Lengths Duration of 20
oscillations

16 inches (43.31 cm) 231”
12 inches (32.48 cm) 180
10 inches (27.07 cm) 154
8 inches (21.65 cm) 126
6 inches (16.24 cm) 98
4 inches (10.83 cm) 80

Second Experiment

The blade was eight lines wide (1.805 cm): a length of one foot (32.48 cm) weighed 976
grains (51.83 g), it made these oscillations:

185After the blade is in equilibrium, it is rotated through a certain angle around the vertical axis that
coincides with the silk thread and released from rest. Coulomb’s experiments showed that the number of
oscillations it performs per unit of time does not depend on this initial angle. In the next experiments
Coulomb will not even mention what those initial angles were.
186Assuming a steel blade with a mass density of 8× 103 kg/m3 its thickness would be 0.087 cm.
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Lengths Duration of 20
oscillations

16 inches (43.31 cm) 254”
12 inches (32.48 cm) 202
8 inches (27.07 cm) 154
4 inches (21.65 cm) 104

Third Experiment

This blade was twelve lines wide (2.71 cm); a length of one foot (32.58 cm) weighed 1105
grains (58.70 g); it made these oscillations:

Lengths Duration of 20
oscillations

16 inches (43.31 cm) 250”
12 inches (32.48 cm) 205
8 inches (27.07 cm) 153
4 inches (21.65 cm) 110

Result of These Three Experiments

In the first experiment, for a blade 12 inches long and 3 lines wide; we have 20 oscillations in
180”. In the same experiment, we have, for a blade 4 inches in length, and having moreover
the same dimensions as the preceding one, 20 oscillations in 80”: thus, the difference in time
for 20 oscillations in these two blades, is 100”.

In the second experiment, we have, for a blade 8 lines wide and 12 inches long, 20
oscillations in 202”: for this same blade reduced to 4 inches, we find 20 oscillations in 104”:
thus, the time difference, for a decrease in length equal to 8 inches, is found for 20 oscillations
98”.

In the third experiment, we find, for a blade 12 lines wide and one foot long, 20 oscillations
in 205”: we have, by the same experiment, for a 4-inch blade, 20 oscillations in 110”, which
gives, for a decrease of 8 inches, for the time of 20 oscillations, a decrease of 95”.

By actually comparing these three results, we see that an equal reduction in the lengths
gives, more or less, the same reduction in the time of oscillations:187 thus, the width of the
blades influences this decrease only a very little.

If we compare, in each particular experiment, the diminution of the time of the oscilla-
tions, with the shortening of the blades, we will see that this time decreases, more or less,
by quantities which are proportional to the shortening of the blades.

We see again, by these experiments, that the total time of the oscillations is greater,
at equal thicknesses and lengths, for the wide blades than for the narrow blades. This is
evident in comparing the results of the first experiment with the third; this is what the theory
predicts: the second experiment compared with the third, seems to give a contrary result;
but, if we note that the second blade, although narrower than the third, is proportionally
heavier, and consequently thicker, we will see that they give a result conforming exactly to
the theory.

187In the original: dans le temps des oscillations.
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Fourth Experiment

28. In this experiment, we tried to determine if, by increasing the thickness of the blades,
the increase in the time of oscillation would continue to be proportional to the increase of
the blade length, as in the previous Articles.

The blade used in this experiment was of the same nature as the preceding ones: it was
three lines wide [0.677 cm], like that of the first experiment; but its thickness was a little
more than threefold, and the 12 inches in length [32.48 cm] weighed 936 grains (49.71 g): it
made these oscillations:

Lengths Duration of 20
oscillations

12 inches [32.48 cm] 229”
10 inches [27.07 cm] 208
8 inches [21.65 cm] 176
6 inches [16.24 cm] 151
4 inches [10.83 cm] 128

Result of This Experiment

If we subtract in this experiment from the time that a 12-inch blade takes to make 20
oscillations, the time that a blade 4 inches in length employs to make the same 20 oscillations;
we obtain 101”, a quantity almost exactly the same as that which we found by the first
experiment. Thus, it appears that the thickness does not contribute anything to the increase
in the time of the oscillations, which is always proportional to the increase in the lengths.

29. Considering now the results of all the preceding experiments, it will easily be seen
that the time T , of a certain number of oscillations, can always be represented for blades
of uniform thickness and width, by a quantity (A + ml) where A expresses a function of
the thickness and the width, and (ml) is the product of a constant coefficient by the length
l, the quantity A will increase as the width and thickness increase: it will be greater for a
cylindrical rod than for any other shape.

The constant coefficient m, will depend on the nature of the steel and the degree of
magnetism to which it is susceptible. This coefficient will be greater, as the steel or the
iron will be less susceptible to magnetism. In commercial wires, we find on average that a
reduction of eight inches in length [21.65 cm] produces a reduction of 120” for 20 oscillations:
let us now determine the quantity A.

5.2.3 Experiments Relating to the Width of the Blades

Fifth Experiment

We tried, in this experiment, to find a relationship between the time of the oscillations
and the width of the blades: we therefore took a blade 4 inches long [10.83 cm] and one
inch wide [2.71 cm], which we divided exactly into 36/3 lines [2.707 cm]: this blade, of a
uniform thickness, weighed 378 grains (20.08 g); after having been magnetized to saturation,
it was suspended like the blades of the preceding Articles, and the time required to make
20 oscillations was determined. Then part of its width was cut off; the remaining part was
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magnetized again to saturation, and the time it took to make 20 oscillations was measured,
continuing this operation while gradually decreasing the width of the blade, we obtained:

Width Duration of 20 A
of the blades oscillations

First trial 36/3 lines (2.707 cm) 114” 65”
Second trial 22/3 lines (1.654 cm) 99 50
Third trial 13/3 lines (0.997 cm) 83 34
Fourth trial 7/3 lines (0.526 cm) 74 25
Fifth trial 3/3 line (0.226 cm) 68 19

Result of This Experiment

The general expression for the time of the oscillations, is represented by the quantity (A+ml):
now a decrease of 8 inches in the length [21.65 cm] of the blades, produces (Experiments 1
, 2, 3), for 20 oscillations, a decrease of 98”, a quantity about average between 100 and 95,
given by the first and the third experiment. Thus, the blade having here 4 inches in length,
ml will be equal to 49”, and the general expression will become T = (A + 49′′): thus, by
subtracting everywhere, in this experiment, 49” from the time of the 20 oscillations, we will
have the designated quantity A at the end of each trial.

But we have just seen, in the previous Article, that this quantity is equal to a function
of the width and the thickness: thus, if this function can be represented by a single term,
we will have A = nLµEν , n being a constant coefficient, Lµ a power µ of the width, and Eν

a power ν of the thickness;188 and since in our tests the thickness is constant, we must find
the values of A proportional to Lµ: thus, comparing two blades of a different width L and
L′ with the quantities that correspond to them, A and A′, we will have

A : A′ :: Lµ : L′µ ,

from which

A

A′
=
(

L

L′

)µ

and µ =
log

(

A
A′

)

log
(

L
L′

) .

It is easy now, by substituting in place of A, and in place of L, their numerical values
obtained in each trial, to discover the quantity µ.

First and Fifth Trial

A blade 36/3 lines wide, gives A = 65′′.
A blade 3/3 line wide, gives A = 19′′.

It results from these two trials:

µ =
log

(

65
19

)

log
(

36
3

) = 0.4951 .

188Due to a lapse in the original text, we have here power E of the thickness instead of power ν of the
thickness.
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First and Fourth Trial

A blade 36/3 lines wide, gives A = 65′′.
A blade 7/3 lines wide, gives A = 25′′.

It results from these two trials:

µ =
log

(

65
25

)

log
(

36
7

) = 0.5835 .

First and Third Trial

It results from these two trials µ = 0.6363.

First and Second Trial

It results from these two trials µ = 0.5330.

Although the value of µ is not perfectly equal in all these comparisons; however the
differences are too slight for them to be attributed to anything other than the imperfection
in doing the experiments; and we can, without appreciable error in practice, suppose µ = 1/2.

Similar experiments, made with blades of six and eight inches in length, gave me the
same results, and the quantity µ never differed by 1/6 from its value 1/2. We must not,
moreover, hope in these experiments for greater exactness, a few disparate parts suffice to
produce these differences.

5.2.4 Experiments Related to the Thickness of the Blades

Sixth Experiment

31. To have a complete theory of magnetized blades, the only question remaining was to
determine how their thickness increased the time of oscillations. Here are different tests that
we have made to complete the story.

First trial. A blade 4 inches long, 3 lines wide, weighing 310 grains (16.46 g), was
magnetized to saturation; it made 20 oscillations in 136”, which gives A = 87′′.

Second trial. The surface of the blade from the previous test was filed down, without
reducing its width: this blade, reduced to 200 grains (10.60 g) and magnetized to saturation,
made 20 oscillations in 112”, which gives A = 63′′.

Third trial. Reduced by the same operation, to 104 grains [5.52 g] or to a third of its
first thickness, it made 20 oscillations in 79”, whence A = 30′′.

Fourth trial. Reduced on the grinding wheel to 64 grains (3.40 g), it made 20 oscillations
in 70” from which A = 21′′.

Fifth trial. Reduced to 33 grains (1.75 g), it made 20 oscillations in 60”; from which
A = 11′′.
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Result of This Experiment

The thicknesses of the blades are between them, in these five trials, approximately like the
numbers 3, 2, 1, 2/3, 1/3, the corresponding quantity A is expressed by the numbers 87, 63,
30, 21, 11, which differ very little from being in the same ratio as the first:189 thus, we can
deduce that the quantity A increases proportionally to the thickness; and the general formula
T = A+ml, which expresses the time of a certain number of oscillations, will become

T =
(

nL1/2E +ml
)

.

5.2.5 Compound Blades

Of the Degree of Magnetism of Several Blades Joined Together

32. In order to render a more exact account of the agreement of the theory of magnetism
with experiment, to be able to penetrate into the interior of the magnetized bars, we joined
several blades which touched exactly at all the points of their surface. They were fixed
together at their extremities and at their center, by three small very light silk ties: the
bundles thus composed were magnetized to saturation; they were suspended and made to
oscillate, to obtain their degree of magnetism; then decomposing these bundles, we made
each blade oscillate separately, in order to be able to compare them with each other. Here
is the result of some of these experiments.

Seventh Experiment

33. First trial. A single blade four inches long, three lines wide, weighing 108 grains [5.74
g], made 20 oscillations in 80” hence A = 31′′.

Second trial. Two blades of the same dimensions as the first, were joined together as
precisely as possible, they formed a single blade that was twice as thick as the first one, and
which weighed 218 grains; it made 20 oscillations in 114”, hence A = 65′′.

Third trial. Three blades united in the same way as the two previous ones, made 20
vibrations in 139”, hence A = 90′′.

Fourth trial. Five blades together made 20 oscillations in 190”, hence A = 141′′.
Fifth trial. Eight blades together made 20 oscillations in 242”, hence A = 193′′.

Result of This Experiment

It follows from this experiment, compared with the sixth, that a bundle of blades takes on
nearly the same degree of magnetism as a single blade of the same shape, and of the same
weight, consequently the quantity A, is proportional to the thicknesses. This is what results
again from the first three trials. But if we compare the first and the fifth trial, we will find
in the quantity A = nLµEν , that

ν = 0.7783 ,

a quantity smaller than the unity: from which it appears necessary to conclude, that when
the thickness is significant, everything else being equal, the quantity A increases in a lesser
ratio than the thicknesses; but this remark, which seems to introduce a second term into the

189That is, the quantities A are to each other as the ratio of the thicknesses.
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function of the widths and thicknesses which represent the quantity A, can only apply to
very thick bars, and not compass blades, which the theory of magnetism taught us must be
large and light.

Eighth Experiment

34. To obtain the magnetic force of the different blades united in the preceding experiment,
I have broken down the bundles, and I have caused each blade to oscillate separately.

First trial. A bundle of three blades, which made 20 oscillations in 139”, having been
decomposed, the two blades of the surfaces made their 20 oscillations, one in 100”; the other
in 114”; the center blade showed almost no sign of magnetism.

Second trial. The bundle of eight blades, which made 20 oscillations in 242”, being
decomposed, made for each particular blade, the same number of oscillations in the following
order:

Duration of 20
oscillations

I Surface blade 91”
II Blade 231
III Blade 278
IV Blade 211
V Blade 222
VI Blade 237
VII Blade, reversed poles 237
VIII Surface blade 90

Third trial. As I suspected that the magnetic matter in the two previous tests was in
a forced state because the bundles were decomposed only a few hours after having been
magnetized, here is what we did to determine the magnetism of each blade, when it would
have reached a stable state.

We took a bundle formed of five blades, from which we had carefully removed all the
magnetism, before they were brought together. This bundle was then magnetized to satura-
tion; it made 20 oscillations in 190”; we left this bundle for two months without disuniting it,
so that, if the magnetic matter found itself in a forced state, it would have time to distribute
itself, as in its natural state: at the end of two months, we sought to determine the magnetic
force of each blade, and here is what we found.

All the blades being united, [made] 20 oscillations in 196”.
The bundle of five blades decomposed:

Duration of 20
oscillations

I Surface blade 105”
II Blade 438
III Blade 340
IV Blade 320
V Surface blade 98
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Result of This Experiment

The magnetic force of each of the blades of the preceding experiments, being in inverse ratio
of the square of the times of their oscillations, it follows that the magnetic force of the interior
blades, is much less than that of the surfaces; it even sometimes happens, when decomposing
the bundles, that the poles of one or more blades are reversed; this is what I noticed in the
second trial for the seventh blade.

The last trial, which was done with great care, proves to us that the magnetic force of
the interior parts of the magnetized bar is almost zero compared to the magnetic force of
the surfaces.

We must however observe, that the magnetic moment of the interior blades,190 is probably
not the same one, when the blades are united;191 and, when they are divided, I have almost
always found, by calculating the magnetic moment of each particular blade, that the sum of
thesemoments, was greater than themoment of the bundle before separation, which probably
arises from the fact that the magnetic state of each blade, depending on the mutual action of
all the blades which compose the bundle, this state changes when the blades are separated.

Ninth Experiment

On the Magnetic Force in the Inner Parts of the Blades

35. Between two blades eight lines wide (1.805 cm) and four inches long (10.83 cm), each
weighing 244 grains (12.97 g), a third blade of the same dimensions was inserted, but divided
according to its length into three other blades; the blade of the center was 4 lines wide, that
of the two edges each had two lines: the blade of 4 lines was consequently placed in the
center of the bundle which was magnetized to saturation. Here is the result, which seemed
to me relevant to the theory of magnetism.

The bundle made 20 oscillations in 172”.

By decomposing the bundle:

The blades of eight lines of each surface, made 20 oscillations in 123”.

The blades of 2 lines which formed the edges of the central blade, [made] 20 oscillations
in 124”.

The central blade, 4 lines wide, made 20 vibrations in 128”; but its poles were in a
situation contrary to those of the bundle: so that its boreal extremity was located at the
austral extremity of the bundle.

Result of This Experiment

It evidently follows from this experiment, that it can often happen that the central parts of
magnetized bars have a force of a name contrary to that of the parts which adjoin them.192

190In the original: momentum magnétique des lames intérieures. Coulomb is referring here to the mag-
netization of the inner blades. The magnetic torque exerted by the Earth on these magnetized blades is
proportional to the magnetization of the blades.
191That is, by bringing together several magnetized blades, Coulomb found that the magnetism of the

blades that were in the center decreased in relation to their magnetism when they were isolated from the
other blades.
192That is, they may have a type of magnetic fluid with a name contrary to the fluid of neighboring parts.
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36. We have made a large number of experiments of the same kind, either by joining
several laminae to increase the thicknesses, or by joining the same laminae, according to their
width. We have also composed bundles, with very fine steel wires: but all these experiments,
which seemed to us suitable for enriching the theory of magnetism, do not have a sufficiently
direct relationship with the main subject of this Memoir, to merit including here. It is the
same with all the experiments that we have been able to make with blades, which were
first magnetized separately to saturation, and with which we then formed bundles, when we
came to separate them, the magnetic force of the central blades had almost disappeared, or
at least was hardly greater than in the experiments of Article 34.

5.2.6 Thoughts on the General Formula T =
(

mL1/2E + nl
)

37. It can be assured that the formula T = mL1/2E + nl has been confirmed by a large
number of experiments, and that it has always predicted the results as exactly as can be
expected in practice.

We are now going to compare it with the formulas of oscillatory motion, determined in
Article 7, and we will draw the consequences which relate to our object.

We found (Article 11):

∫

ϕµr =
π2
∫

µr2

T 2
.

On the other hand, we have, for blades of uniform width and thickness, assuming the density
equal to unity,193

∫

µr2 =
2LEl3

3
.

Substituting these two values, and setting K = 2π2/3, we will have

∫

ϕµr =
K · LE · l3

(mL1/2E + nl)
2 .

Here is what this equation implies:

38. The moment of the magnetic force
∫

ϕµr, will increase with the length of the blade,
and will become infinite when this length is infinite.

39. This same moment will grow as the width L increases; and when this width is infinite,
it will be equal to Kl3/(m2E).

40. If we differentiate this equation by making only E variable, we will find, for the
maximum of

∫

ϕµr:

dE

E
=

2mL1/2dE

mL1/2E + nl
and E =

nl

mL1/2
.

193See footnote 163 on page 65.
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41. If we divide
∫

ϕµr by the cross section LE, we will have the mean moment of the
magnetic force of each longitudinal fiber, of which we can suppose the lamina formed; which
will give

∫

ϕµr

LE
=

Kl3

(mL1/2E + nl)
2 ,

a quantity which will increase as the quantity l increases, which will become infinite with
this quantity, which will also increase, as L or E decrease, and which will be equal to Kl/n2,
when L or E will be zero; which gives the moment, in the latter case, proportional to the
length of the blade. We find here the formula of Mr. Musschenbroek, which is only true when
L or E can be assumed to be infinitely small, or when the quantity mL1/2E can be neglected;
but yet, in this case, the weight does not matter; it does not enter into this expression; which
is again contrary to the theory of this author.

5.3 Chapter III. Experiments and Theory on the Twist-

ing Force of Hair and Silk Threads. Comparison of

These Forces with the Magnetic Force. Air Resis-

tance in Very Slow Movements. Construction of a

New Declination Compass, Suitable for Observing

Diurnal Variations

42. All the means that can be used to suspend a declination needle necessarily entail incon-
veniences. If it is suspended by a silk thread, or by a hair, the compass will always have to
employ a certain force to twist them; and if the silk thread is supposed to be twisted, when
the needle is on its true [magnetic] meridian, the silk will make an effort to drag it in another
direction.

If the needle is supported, by means of a cap,194 on the tip of a pivot, however perfect
this cap, however hard the tip of the pivot, the cap will press with all the weight of the
needle onto the tip of the pivot: any pressure generates friction; thus, as soon as the moment
of the magnetic force, is equal to the moment of the friction, the needle will not experience
any [unbalanced] force tending to re-establish it along its magnetic meridian.195

Besides the difficulties which the means of suspension present, there is another which
arises from the cohesion of the air. Any fluid has some tenacity among its parts; thus, in
order that a body which is immersed in it may change its position, the force which draws
it from its state of rest must necessarily be greater than the resistance which this tenacity
opposes to it. But we will see presently that the resistance due to cohesion is small compared
to the magnetic force, and that it can be neglected.

194See footnote 141 on page 58.
195That is, friction will prevent it from orienting itself along its magnetic meridian.
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5.3.1 On the Twisting Force of Hair and Silk Threads

43. We cannot quote here the experiments of any author:196 but those which we are going to
report are so simple, so easy to repeat, that I hope that they will deserve some confidence.

First Experiment

I suspended (Figure 9), with a hair six inches long (16.24 cm), a round piece of copper eight
lines in diameter (1.80 cm), and weighing 50 grains (2.66 g), so that it was supported by its
center C, and that its plane was horizontal. I have turned this plate around its center C,
without disturbing it from its horizontal position; the wire AC always remaining vertical;
left to itself, it assumed, while oscillating, a rotational movement, around its center C.

We measured the time of each oscillation, and we found that whether this plate made
one, two and up to six or seven revolutions per oscillation, the time of each oscillation was
constant and equal to 16

2

′′
.197

Result of This Experiment

When a body suspended by a thread or a hair is left to itself, it soon comes to a state of rest,
in which the thread, which supports it, makes no effort to make it rotate in any direction.
This state is what can be called the natural situation of the hair. But if, the center of
gravity remaining motionless, we make the body rotate around this center; as it moves from
its state of rest, the hair will twist, and in twisting it will make an effort to reestablish itself
in its natural situation: now we find, in this experiment, that this effort produces oscillations
whose time is constant, whatever the initial angle of rotation: thus, the forces of torsion,
which bring a body back to its natural situation, are necessarily proportional to the angle

196That is, Coulomb is being original here, as he has not encountered any other scientist who has studied
the twisting force of threads.
197As will be seen in Section 6.3 on page 141, this time interval of 8 s to perform each oscillation is the

time for the torsion thread to start at rest at an initial angle θo around the vertical axis, with that angle
measured from a certain horizontal reference line fixed in the laboratory, until it comes to rest at angle −θo
at the other side of this reference line. The total period required to begin at θo and to arrive again at this
initial angle θo is 16 s. What Coulomb found is that the 8 s time for each oscillation was constant, no matter
if θo = 360◦, 720◦, ..., or even θo = 7× 360◦ = 2520◦.
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of torsion.198

Second Experiment

44. We sought in this experiment if the weight of the body supported by the hair, influenced
the force of torsion. Here is what we find.

First trial. A single plate of the same dimensions as in the preceding experiment, sus-
pended from a six-inch hair, makes one oscillation in 16

2

′′
.

Second trial. Under this first plate, a second plate absolutely similar to the first was
glued with a little wax: the two pieces joined together made one oscillation in 22

2

′′
.

Third trial. A third plate, joined to the other two, made each oscillation in 27
2

′′
.

Fourth trial. A fourth plate joined together like the preceding ones, makes each oscillation
in 30

2

′′
.

Fifth trial. A fifth [plate] joined together makes each oscillation in 35
2

′′
.

Sixth trial. A sixth piece [joined together makes each oscillation] in 39
2

′′
.

Seventh trial. A seventh [plate joined together makes each oscillation] in 42
2

′′
.

Result of This Experiment

The torsion force, being in consequence of the preceding Article, proportional to the angle
of twist, if the difference of the weights does not change this force, it will be the same in
each test, and T 2 will be proportional to

∫

µr2, T being the time of one oscillation,199 and
∫

µr2 the sum of the products [of the masses] of all the points of the plate, and the square
of their distance from the center of rotation C, but the plates being all equal,

∫

µr2 is as the
number of plates used in each test; thus, it is only a question of seeing if T 2 is proportional
to the number of plates.200

198That is, the torques exerted by the hair or silk thread are proportional to the angle of twist. Let a rigid
body with moment of inertia I be able to rotate through an angle θ with respect to an inertial frame of
reference, this angle being measured with respect to a fixed line in this frame of reference. The second law of
motion of mechanics for the case of rotations is given by τ = Id2θ/dt2 = Iθ̈, where τ is the torque acting on
the body. The body will describe a periodic harmonic motion of rotation that does not depend on the initial
angle θo if τ = −kθ, where k is a positive constant. In the case of Coulomb’s experiment, this constant k is
called the torsional elastic constant, the torsion elastic modulus, the torsion coefficient or simply the torsion
constant. In this case, assuming that the body starts from rest at the initial angle θo, the solution of the
equation of motion Iθ̈ + kθ = 0 is given by θ = θo cos(ωt), with ω =

√

k/I being the angular frequency of
oscillation (measured in radians per second). The period for a complete round-trip oscillation is given by
T = 2π/ω = 2π

√

I/k, which does not depend on the initial angle θo.
199In the original: T étant le temps d’une oscillation.
200The moment of inertia of a disk of mass M1 and radius R about its axis of symmetry is given by

I1 = M1R
2/2. Therefore, if we have N equal disks, the moment of inertia of this set is given by IN =

NM1R
2/2 = NI1. From footnote 198 on page 85 we obtain that the square of the period of oscillation

for a single disk is given by T 2
1 = 4π2I1/k. The square of the period of oscillation of N disks is given by

T 2
N = 4π2IN/k = N(4π2I1/k) = NT 2

1 , if k does not depend of the weight of the body that is supported by
the thread. That is, T 2

N is proportional to the number N of disks. The period of oscillation of N disks must

be proportional to the square root of N , that is, TN = (
√
N )T1. It was using this formula that Coulomb

presented the expected theoretical results that can be found in the second column of the following Table.
For example, since the period found for a single disk was 16/2 s, the expected period for two equal disks
is given by (

√
2 )16/2 s = 22.6/2 s. In the following Table, all the times in the second and third columns
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by theory by experiment
The first trial, compared with the 22.6” 22”

second, gives, for the time
of the oscillations of two pieces

Trials I and III 27.7 27
Trials I and IV 32 30
Trials I and V 35.8 35
Trials I and VI 39 39
Trials I and VII 42.3 42

We see, by this Table, that experiment and theory have the greatest conformity, and thus
that the mass of the bodies supported by the hair, or, what comes to the same thing, the
tension of these hairs, has no influence on the force of torsion.

It should, however, be noted that when the weight of the body is greatly increased, and
the hair or silken threads are threatening to break, the same law is not exactly observed; in
that case the torsion force seems much reduced; the oscillations are no longer isochronous,
the time of the large ones is much greater than that of the small ones: it happens in this
case that the thread, under too much tension, loses its elasticity, almost like a blade which
only keeps its elasticity, when it is bent up to a certain point.

Third Experiment

45. We sought to determine, in this experiment, according to which law the increase in
length, in the hair, reduced the force of torsion.

First trial. A hair three inches in length [8.12 cm], charged with a piece of copper, similar
to those in the preceding Articles, made each oscillation in 11

2

′′
.

Second trial. A hair six inches in length, charged with the same piece, made its oscillations
in 16

2

′′
.

Third trial. A hair twelve inches in length, by suspending the same piece on it, made its
oscillations in 22

2

′′
.

Result of This Experiment

As the hair is lengthened, the copper plate can make a greater number of revolutions, without
increasing the twist of this hair. If, for example, we compare the twist of each part of the
hair, when the piece of copper makes one revolution with a hair of three inches in length,
with the twist, when the plate makes one revolution with a hair of six inches; the twist
of each part of the hair will be double in the first case, of what it will be in the second.
It must therefore happen, according to all that we know of the action of springs, that the
reaction of torsion must also be double in the first case; thus, the torsion forces must, at
equal revolutions, be in inverse proportion to the lengths.201 But the formulas of isochronous
oscillatory motion say that the forces are202 in inverse proportion to the square of the times

should have been divided by 2.
201That is, the torques exerted by the threads must be inversely proportional to their lengths.
202The forces of torsion, that is, the torques.
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of the oscillations; thus, the squares of the times must be in direct proportion to the length
of the hair. Let us compare this theory with experiment.203

by theory by experiment

Trials I and II give 15
2

′′
+ 1

4
16
2

′′

Trials I and III 22
2

′′ 22
2

′′

The experiment and the theory thus agree again here, proving that the forces of torsion
are, with equal revolutions, inversely proportional to the lengths of the hair.

Fourth Experiment

46. Finally, we tried to determine how much the diameter of the hair, or of homogeneous silk
threads, influenced the force of torsion. I will not report here the details of the experiments
that I have been able to make on this subject; because the difficulty of measuring the diameter
of a hair, or of a very fine silk thread, and of making sure that it is homogeneous throughout
its length, has caused the results to vary; but it has been generally found, by comparing
a large number of experiments, that for homogeneous silk threads of the same length, the
forces of torsion were, at equal revolutions, in the triple ratio of the diameters.204

These same experiments have been repeated with silken threads, preferring their use for
suspending the compass needles; because we have recognized that with equal forces, they are
infinitely more flexible than the first,205 and we have found the same laws as in the preceding
experiments.206

203It was seen in footnote 198 on page 85 that the period for a harmonic oscillation is given by T = 2π/ω =
2π
√

I/k, where I is the moment of inertia of the body and k is the torsion coefficient of the suspension
thread. Therefore, T 2 is inversely proportional to the coefficient k. If k is inversely proportional to the
length ℓ of the thread, we will have T 2 proportional to this length ℓ. Thus T must be proportional to

√
ℓ.

Therefore, if a thread of length ℓ1 performs its oscillations in a period T1, a thread with a length ℓN = Nℓ1
will perform its oscillations in a period TN = (

√
N )T1. The theoretical results presented in the next Table

were obtained using this formula. For example, since a 3-inch thread performed its oscillations in 11/2 s, a
6-inch thread must perform its oscillations in (

√
2 ) · 11/2 s = 15.556/2 s ≈ (2/15+ 4/1) s. A 12-inch thread

must perform its oscillations in (
√
4 ) · 11/2 s = 22/2 s.

204That is, the torques are proportional to the cube of the diameters. Later on Coulomb corrected himself,
arriving in 1784 at the result that the torques (or twisting forces) are proportional to the fourth power of
the diameters of the wires, [Coulomb, 1787]. This work of 1784 is translated in Chapter 7.
205That is, silk threads are more flexible than hair.
206That is, Coulomb found that the torques exerted by silk threads follow the same laws as hairs. The

torque τ exerted by these two types of thread as they rotate through an angle θ with respect to the relaxed
orientation can be written as τ = −kθ, which is valid even for large angles of up to seven turns (that is, with
an initial angle θo going up to θo = 7 × 360◦ = 2520◦ = 14π rad). In this equation k is a positive constant
that Coulomb found to be independent of the weight of the body that is suspended on the thread, being
inversely proportional to the length of the thread and proportional to the third power of the diameter of the
thread. Later on Coulomb will correct himself, arriving at the result that the torques (or twisting forces)
are proportional to the fourth power of the wire diameters, see Chapter 7.
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5.3.2 Comparison of the Moment of the Magnetic Forces, with the

Moment of the Torsional Force of Silk Threads

47. We have seen, in Articles 6 and following, that when a declination compass is moved
away from its true [magnetic] meridian by a small angle C, the moment207 of all magnetic
forces, to bring it back to its meridian, is expressed by the quantity C

∫

(ϕµr), and that the
time of the oscillations is given by the equation

∫

ϕµr
∫

µr2
=
(

π

T

)2

.

But we have just seen, by experiments on torsion; that if a body is supported by a silk
thread, whose angle of twist is C ′, we will have aC ′ for the moment of the torsion force; a
being a constant quantity,208 and thus we will have for the time of one oscillation,

a
∫

µ′r′2
=
(

π

T ′

)2

.

Thus, in either case, the time of the oscillations being given by experiment, as well as
the quantities (

∫

µr2) and (
∫

µ′r′2), it will always be easy to determine, for a given angle C,
the ratio between the moment of the torsion force a and [the moment of] the magnetic force
∫

(ϕµr), and to find, therefore, by how much a given angle of torsion can move a needle away
from its true magnetic meridian.

If we suppose (Figure 10), that the needle SCN suspended by a silk thread, and balanced
horizontally, is distant from its true [magnetic] meridian BA by the angle NCA = C, and
that the angle of torsion of the silk which supports this needle is fCN = C ′; this needle,
arriving at its state of rest, is solicited by two forces, namely, the magnetic force, whose
moment to bring it towards A = C

∫

ϕµr, and the force of torsion, whose moment is aC ′;
and as there is equilibrium, we find the equation

C
∫

ϕµr = aC ′ , or C =
aC ′

∫

ϕµr
;

whence it follows that the error of the needle,209 expressed by C, will increase as the product
of the torsion force by the angle of torsion, and will decrease as the magnetic force increases.

207In the original: momentum. See footnote 150 on page 60.
208That is, the torque is given by aC′.
209In the original: erreur de l’aiguille. That is, the angle of deviation of the needle from its true magnetic

meridian. This deviation can also be called the compass error since, because of the resistance of the silk
thread, it will not be pointing at rest along the true local magnetic meridian.
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It is therefore easy to suspend a needle in such a way that the torsion of the silk [thread]
has very little influence on its orientation, and produces only insensible errors. Here is how
we can do it: we will first suspend from the silk thread that we want to use, a silver or copper
needle, and we will make sure that, when the silk will have arrived in its natural state, the
direction of the copper needle coincides with the magnetic meridian: we will then substitute
a magnetized needle, of the same weight, for the copper needle, and we will be sure that
the torsion of the silk only insensibly influences the direction of the needle; since the torsion
angle roughly coincides with the magnetic meridian.

48. But, to give to these principles the attention they appear to deserve, considering
their utility in what follows, and relevance that they can have for the arts, we are going to
prove that in suspending magnetic needles from very fine, untwisted silk threads, sufficient to
support the weight without breaking, even if the angle of torsion were supposed to be more
than 100 degrees with the magnetic meridian; the torsion force would still be so insignificant,
compared to the magnetic force, that it would still only produce insensible errors.

Fifth Experiment

49. A silk thread, such as it emerges from the cocoon, supports, without breaking, a weight
of 200 grains (10.6 g). To determine the moment of its force of torsion, we suspended,
horizontally from this thread, a small cylindrical copper needle of one inch length (2.71 cm),
and six grains of weight (0.32 g). The silken thread, from its attachment to the point of
suspension, was only an inch in length; the copper wire210 was rotated horizontally around its
center of gravity: left to itself, it made its substantially isochronous oscillations in 40”.211,212

Result of This Experiment

We find, for a body that oscillates due to torsion, the equation

a =

∫

µ′r′2

T ′2
π2 .

By naming P ′ the weight of the needle, and l′ half of its length, we will have

210That is, the copper needle.
211[Note by Potier] That is, a torsion couple of 0.0012 for an angle = 1.
212The cylindrical needle has a length ℓ = 2.71 cm = 0.0271 m and a mass M = 0.32 g = 0.00032 kg. The

moment of inertia of this needle about an axis orthogonal to it passing through its center is given by

I =
∑

i

mir
2
i =

∫ ℓ/2

−ℓ/2

x2dm =

∫ ℓ/2

−ℓ/2

x2Mdx

ℓ
=

M

ℓ

∫ ℓ/2

−ℓ/2

x2dx =
Mℓ2

12
.

That is, in this case I = 1.96 × 10−8 kgm2. The reaction torque τ exerted by the wire when it is twisted
through a small angle θ with respect to an inertial frame of reference is given by τ = −kθ, where k is a
positive constant.
As shown in footnote 198 on page 85, the period T for the needle to leave and return to the same point when

it is released from rest removed by a small angle θ relative to its natural orientation is given by T = 2π
√

I/k.
In this case Coulomb obtained T = 2 × 40 s = 80 s. So k = 4π2I/T 2 = 1.2 × 10−10 kgm2/(s2rad) =
1.2× 10−3 dyn ·m/rad.
Therefore the torque exerted by the thread when it is twisted through an angle θ = 1 radian is given by

τ = kθ = 1.2× 10−10 Nm = 1.2× 10−3 dyn · cm, as calculated by Potier.
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∫

µ′r′
2
=
P ′l′2

3g
,

from which

a =

(

π

3g

)2
P ′l′2

T ′2
.

We find, for the moment of the magnetic force,

∫

(ϕµr) =

(

π

3g

)2
P l2

T 2
.

By comparing these two equations, it follows
∫

ϕµr

a
=
P l2T ′2

P ′l′2T 2
.

Example

Thus, if we want to compare the magnetic force of a blade 4 inches long (10.83 cm), 3
lines wide (0.677 cm) and with 100 grains of weight (5.3 g), with the torsion force, which
results from this experiment, we will find that this blade, magnetized to saturation, makes
20 oscillations in 80”, so we have the time for one oscillation = 4′′, [and]

P

P ′
=

100

6
,

l2

l′2
=

42

1
,

T ′2

T 2
=
(

40

4

)2

= (10)2 ,

from where we find
∫

ϕµr

a
=

26670

1
.

Thus, a torsion angle (Article 47) of 26670’, or 444◦, would produce, with this silk thread,
only one minute of error in the orientation of a needle four inches in length, weighing 100
grains.213,214

213 One degree has 60 minutes, that is, 1◦ = 60′. The magnetic torque τmag exerted by the Earth on a
magnetized needle deflected by a small angle θ with respect to the local magnetic meridian, assuming θ ≪ 1
radian, is given by τmag = −kmagθ, where kmag =

∫

ϕµr. The torque τthread due to twisting the thread
at an angle θ with respect to the relaxed orientation of the thread is given by τthread = −kthreadθ = −aθ,
where the torsion constant of the thread is given by kthread = a. The relationship Coulomb just found is
that kmag/kthread = 26670/1, that is, kmag ≫ kthread. That is, in practice we can neglect the torque exerted
by the suspension thread on the needle in comparison with the magnetic torque exerted by the Earth on the
magnetized needle. Only in the case of high precision experiments, such as those carried out later by Carl
Friedrich Gauss (1777-1855) andWilhelm EduardWeber (1804-1891), will it be necessary to take into account
both the magnetic torque exerted by the Earth on the magnetized needle, and the torque exerted by the
torsion of the suspension thread. The works of Gauss and Weber related to this topic are already translated
into English in the book Wilhelm Weber’s Main Works on Electrodynamics Translated into English. Volume
1: Gauss and Weber’s Absolute System of Units, [Assis (editor), 2021a]; Volume 2: Weber’s Fundamental
Force and the Unification of the Laws of Coulomb, Ampère and Faraday, [Assis (editor), 2021b]; Volume 3:
Measurement of Weber’s Constant c, Diamagnetism, the Telegraph Equation and the Propagation of Electric
Waves at Light Velocity, [Assis (editor), 2021c]; and Volume 4: Conservation of Energy, Weber’s Planetary
Model of the Atom and the Unification of Electromagnetism and Gravitation, [Assis (editor), 2021d].
214[Note by Potier] If we suppose the horizontal component of terrestrial magnetism equal to 0.185, the

magnetic moment of the needle would be, per unit of volume, approximately 250. In the first experiment of
Article 27, this moment would be 453 for a blade four times longer.
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Sixth Experiment

50. We took a silk thread 20 inches in length (54.14 cm), and composed of 12 brins,215 such
as they come out of the cocoon or the spinneret of the silkworm.216 These 12 threads were
glued together without being twisted, and could support, without breaking, a weight of 1800
grains (95.6 g). The same copper needle was suspended from this thread horizontally as in
the preceding experiment: it made its substantially isochronous oscillations in 29”.

Result of This Experiment

The quantity
∫

µ′r′2 = P ′l′2/(3g), is the same as in the previous experiment, since it is
the same copper wire217 that the torsion force causes to oscillate: thus, comparing this
experiment with the previous one, we must find themoments of the forces of torsion, inversely
proportional to the square of the times: thus, the force of torsion is here a(40/29)2 = 1.90a
or double, approximately, the force of torsion calculated in the first experiment: thus, an
angle of torsion, equal to 222◦, would produce only one minute of error, in the orientation
of the needle described in the previous Article.218

We are therefore certain that the torsion of the threads can only influence in an insensible
manner the orientation of the magnetic needles which will be suspended there. It remains
to be determined whether the cohesion of the air can produce errors.

5.3.3 Air Resistance in Very Slow Movements

51. Some famous authors have thought that the component of the resistance of the air,
which is constant and independent of the speed, was of such magnitude that it should not be
neglected in the formulas of the motion of bodies in this fluid. I will prove, I believe, that the
moment of this constant resistance, is only a very small part of the moment of the magnetic
force [acting] on a blade; that it can only produce insensible errors in the orientation of the
compass, and that there is scarcely any research in which it cannot be neglected. This is
what we can first, it seems to me, conclude from the following.

If we suspend horizontally from the silk thread of the previous experiment, a copper
blade, it will always stop, within a few degrees, in the same direction: but as there is only
the torsion force here which acts, and that we have found this force very small for a rather
considerable angle; it follows that, since this blade is always brought back nearly to the
same direction, the constant component of the resistance of the air can only be an insensible
quantity.219 But here is something more specific.

215[Note by Bucciarelli] A brin is one of the two circular fibers that issue from the silkworm. It consists of
two parts, the inner of fibroin, or true silk, and the outer of sericin, or silk-glue.
216A spinneret is a silk-spinning organ of a spider or the larva of an insect.
217That is, the same copper needle.
218Let us compare this result with the one presented in footnote 213 on page 90. We now have

kmag/kthread = 222◦/1′ = 13320/1 such that again kmag ≫ kthread.
219[Note by Bucciarelli] The copper blade is not magnetized. So the only torque acting is due to the

stiffness of the silk thread. Coulomb seems to be thinking that the resistive medium of the air is like a
constant frictional force (torque) which, after a forced rotation, the blade will return to a different orientation
depending upon the initial displacement. But, in even a viscous fluid, is this possible? Will not the blade,
given enough time, eventually return to the same initial orientation? But if the blade is in motion through
the air, as in the experiments which follow, then the moving air (relative to the blade) will have a resisting
effect. But as Coulomb’s experiments show, this is negligible.
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Seventh Experiment

52. An iron wire NS (Figure 11), 9 inches in length [24.36 cm], and weighing 24 grains [1.27
g], was weakly magnetized. It was suspended, by its center C, with a silk thread of a single
brin six inches in length [16.24 cm], and whose angle of twist was nil: its magnetic force
made it perform 4 oscillations in 62”. As it was only a question of determining the constant
part of the resistance of the air, an attempt was made to further reduce the speed of the
oscillations: this was easily [accomplished] by attaching to each end of this needle, a small
weight of 50 grains [2.66 g]: we then glued to the iron wire a rectangle abcd of paper, one
inch wide, and eight inches long.

In the first trial the plane of the paper was horizontal; in the second, it was vertical: the
whole system made very small movements, very slowly; 4 oscillations in 155”. Making the
needle oscillate in the two tests, we observed how much the angle described diminished at
each oscillation, from the beginning of the movement until the oscillations were insensible.

First trial. The plane of the paper being horizontal, the needle displaced 2◦ of its true
magnetic meridian:

It arrived at in
1◦ 45′ 2 oscillations
1◦ 30′ 2 oscillations
1◦ 15′ 2 oscillations
1◦ 2 oscillations
45′ 2 oscillations
30′ 4 oscillations
15′ 4 oscillations
0′ 6 or 8 oscillations

Second trial. Vertical paper plane:

92



[it arrived at] in
from 2◦ 5′ to 1◦ 50′ 2 vibrations

1◦ 20′ 2 vibrations
50′ 4 vibrations
20′ 4 vibrations
10′ 4 vibrations
0′ 4 or 6 vibrations

Result of This Experiment

The iron wire, which was used in this experiment, oscillates by virtue of the magnetic force.
The twist of the silk is zero, the arcs described at each oscillation decrease by the resistance
that the air opposes to the movement: now we have found (Article 9), that when a needle
oscillated under the magnetic force, if it experienced a resistance whose moment was a
constant quantity A, we would have at each vibration, for the difference of the described
angles (B − B′) = 2A :

∫

ϕµr; thus, if we assume that the iron wire when oscillating does
not move more than 30’ away from its meridian, it then experiences a constant resistance.
We will see that since, in the first trial, we still distinguish 15 oscillations up to the point
of rest, we have 2 minutes of loss at each oscillation: thus, A :

∫

ϕµr = 1′; a quantity which
expresses (Article 6) the error that the quantity A can produce.

If we now compare the magnetic moment of this needle, which we have magnetized very
weakly, with the magnetic moment of a blade 4 inches long, 3 lines wide, 100 grains of weight,
we shall find that the quantity A could hardly produce, in the orientation of this needle, an
error of 5 to 6”, a quantity which may be neglected.

If we want to obtain the resistance that the plane of the paper experiences when it is
vertical, we will find, by reasonings similar to those which precede, that, since it makes 11
or 12 oscillations when it began to vibrate at 30’ from its meridian, the resistance of the air
is still insensible in this case: it seems to follow that, in whatever way the plane is placed,
in relation to the direction of its movement, the constant resistance is about the same, and
that the difference found between the first and the second trial is due to the low speed in
these two tests.

53. By oscillating different needles with small planes of paper, as in the previous Article,
and by extending the oscillatory movement up to 10 or 12 degrees from the magnetic merid-
ian, we have made observations which, compared using the formulas of oscillatory motion,
appeared to us appropriate for the theory of the resistance of the air, when the bodies move
very slowly; but this work has no connection with this Memoir.

These experiments, moreover, are very delicate, and demand the greatest attention. The
needle and the thread which suspends it, must be enclosed in a box where the air cannot
penetrate: We make the needles oscillate by presenting to them the [magnetic] pole of another
needle outside the box; the small oscillations are observed with a magnifying glass.
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5.3.4 Construction of a Compass Suitable for Observing Diurnal

Variations

54. Knowing that the cohesion of the air and that the torsion of the silk threads could only
influence the orientation of the magnetized needles in an imperceptible way, I had a compass
made, almost without the help of any artisan,220 with which I have been observing, for five
months, the diurnal variation [of terrestrial magnetism] with a precision that we could never
hope for with capped needles suspended on pivots.221

Figure 12, No. 1, represents in perspective all the parts of the box where the needle is
enclosed.222

H
N

Part AB is a hollow rod, which rises 20 inches [54.14 cm] above the box HKLM , in the
middle of which it is fixed, by means of a crosspiece and two small struts which support
it. At the end of this rod, we put, at C, a circular copper plate, mobile and pierced in its
center, to receive there the end of a silk thread which supports the needle. Part ONQR is
an extension of the large box HKLM on a lower height. These boxes are closed by frames
lined with glasses, which allow seeing everything that happens inside.

SV P is a wooden support, fixed to the table upon which the compass box is placed. This
support carries at its summit V a small hollow cylinder, or a small telescope223 with a very

220A discussion of this new compass and its later improvements can be found in
[Heering and Osewold, 2005]. See also [Licoppe, 1995].
221See footnote 141 on page 58.
222Since the letters H and N were not showing up clearly in this Figure, I emphasized these letters.
223In the original: lunette. This word can also be translated as lunette or spyglass.
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wide field of view, so that the observer always places his eye at the same point.

Figure 12, No. 2, represents a vertical section of the box, made along its greatest length,
which we take care to place approximately parallel to the magnetic meridian.

abcd represents the steel blade, or magnetic needle suspended sideways.224 It is ten inches
long (27.07 cm), three and a half lines wide (0.795 cm), and weighs 250 grains (13.3 g).225

At its boreal extremity b is welded a small, very light copper blade bdef , which ends in an
extraordinarily fine tip. At the austral extremity is a small counterweight which embraces
the blade, and is supported there by friction;226 it serves to set the needle in a horizontal
position. CB is a silk thread of 12 brins,227 similar to that which we have worked in the
preceding experiments: it has been untwisted, or brought back to its natural direction, by a
copper needle which was first suspended by it; and as the attachment C is fixed to a circle
movable around its center, it was easy to make the copper needle coincide, when the silk was
in its natural state, with the magnetic meridian, which was more or less well known.

224[Note by Coulomb] We used, without choice, the first steel blade that presented itself: we could have
determined the dimensions of this blade by the equations of Article 37 and following; but the resistance which
the kind of suspension that we employ here, is so slight, that this degree of perfection appears unnecessary.
225Assuming a steel blade with a mass density of 8× 103 kg/m3, its thickness would be 0.077 cm.
226This counterweight is represented in the Figure by the letter π.
227In Figure 12, Number 2, this wire is represented by the letters CG. The letters C and B appear in

Figure 12, Number 1.
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In K, is the arc of a circle which has a radius of 15 inches [40.61 cm], and whose center
is on the vertical CG. This circle is divided every 16’, or rather every 4’, by means of the
diagonals which cross the arc, as shown [in Figure 12,] No. 3.228

The distance from the extremity ef of the needle to the limb of the circle, was so small
that it could produce, for the observer, in a variation of one or two degrees, only insensible
errors; but that it is easy to calculate, because this distance is known, and the eye is always
in the same position. We will give, in the last Chapter of this Memoir, the extract of the
observations made with this needle.

55. This kind of suspension does not, it seems to me, entail any of the faults which it
is perhaps impossible to correct when a needle with a cap is supported on a pivot: all the
vertical forces are counterbalanced here necessarily; and their resultant passes through the
vertical direction CG which is invariable: all the magnetic forces, which solicit the compass,
being decomposed along a horizontal line, lie, because of the thinness of the plate which
we suspend from the side, in the same vertical plane, and consequently this plane will be

228The numbers that appear in this Figure 12, No. 3, from bottom to top, are: 80, 64, 48, 32, 16, 0, 16,
32, 48, 64 and 80.
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directed along the magnetic meridian. If we want more precision, it will be easy to suspend
this same blade by the other side of its surface,229 so that the surface is always vertical. It
will be observed whether the surface of the blade retains the same direction; and in case
there should be a difference, half the angle observed will give, as we shall see in the following
Chapter, the true magnetic meridian.230

56. The facility of constructing compasses of the kind we have just proposed, and of
making the arms longer without difficulty; the accuracy of observations of variations of
declination, must, it seems to me, make them preferable to using needles suspended on pivot
tips in making observations of all related physical phenomena.

But, on the other hand, as it would be very difficult to adapt such compasses to naval ser-
vice, not only because of the movement of the vessels but because, in addition, the flexibility
of suspension would allow them to oscillate for a very long time whenever displaced from
their [magnetic] meridian; which cannot be suitable for the operations of navigators, which
must almost always be done with celerity: we are obliged, for the usefulness of navigation,
to try to discover where the inconveniences of the caps and pivots may come from, and what
are the means of knowing the errors which result from it.

5.4 Supplement

Although231,232 the compass of which we have just spoken gives observations in a more exact
manner than any we have hitherto had, it will nevertheless be susceptible of a greater degree
of perfection, when we are able to procure more skilled workers than those I had at my
disposal, during the time that I was working on my Memoir: I was then in charge of some
repairs to the Fortifications of La Hougue, a small Fort in Lower Normandy, on the Côtes of
the Presqu’Isle du Cotentin, and I found absolutely no help there.

The compass, which I will describe in this Supplement, will give the variations [of terres-
trial magnetism], within seconds [of arc].

The first Figure [of this Supplement], represents externally, in perspective, all the parts
of the new compass.

229In the original: par l’autre côté de son champ. See also footnote 184 on page 73.
230This will be seen especially in Article 63 on page 104.
231[Note by Coulomb] This Supplement was made only after the judgment of the Academy.
232Coulomb is referring to the 1777 Academy of Sciences Award judgment. He was one of the winners

of this contest with this Memoir. It should be noted that this Supplement was not included in the partial
reprint of this Memoir contained in Potier’s edition of Coulomb’s works, [Potier, 1884].
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It is formed of a box two or three feet in length [65 or 97 cm], on which rises a vertical
hollow rod, intended to enclose the thread which supports the needle: this box is placed
on two copper crosspieces BB′, ii′;233 at the end of these crosspieces, and without touching
the box, rise vertically the pillars AB, A′B′, and iP , i′P ′; the first two are linked, in their
upper part, by a crosspiece Nn, pierced towards the middle by a circular hole, which enfolds,
without touching it, the hollow rod CF : on this same crosspiece, and corresponding to the
same hole, one fixes a circular ring, such as one sees it represented in the third Figure [of
this Supplement].234

This ring, which has its center in the vertical thread which supports the needle, serves
as a circle of rotation with a horizontal alidade al;235 the alidade carries, at its extremity l,

233In the original text we have here ii.
234Below the crosspiece of Figure 3 of the Supplement we see the scale (Echelle) of the Figure, in inches

(Pouces), each inch corresponding to 2.7 cm.
235This alidade al appears in Figure 1 of the Supplement. An alidade is a device intended to measure angles
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a small microscopic telescope, placed vertically, to observe the movements of the end of the
magnetized needle.

The second Figure, No. 1 [of this Supplement], represents a section of this same compass,
along its length.

The needle ad is supported sideways by means of a slider b, attached at its upper part to
the vertical silk thread cb:236 at one end a of the compass, there is a second slider a, which
serves as a counterweight to set the needle in a horizontal position: at the other end d, we
weld a small copper plate, shown in [Figure 2,] No. 2, on which we draw a very fine line,
following the length of the needle, which indicates the magnetic meridian.

by means of optical alignment. It can be a wooden or metal ruler that rotates around one of its points and
of which one of the ends moves on a scale.
236This slider or ring b, coulant in French, appears in Figure 2, Number 3, of this Supplement:
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At the focus of the telescope eg, we have placed, at f , a small silk thread, directed along
the radius of the alidade, or whose center of rotation, in the movements of the alidade, is the
same as that of the needle: at l, is the limb of a circle, which the end of the alidade travels,
divided according to the method of Nonius:237 the alidade executes the small movements of
rotation, by means of a micrometer screw,238 as is used in all instruments intended to give
the angles with precision.

It is useless to go into greater detail on the construction of this compass: the box is
placed so that its length corresponds to the magnetic meridian, and the variations of the
needle are measured by means of the alidade, in matching the thread of the telescope, with
the line which divides the copper plate, soldered to the end of the needle: instead of the
line that we draw on this plate, it would perhaps be more convenient to pierce this plate,
along its length, and to substitute for the line, a silk thread, in order to be able to check the
direction of the needle, by reversing it.239

If we wanted to use this compass to determine the absolute declination, we would have
to place horizontally on the alidade, and parallel to its radius, an ordinary telescope, with
which we would observe a point on the horizon.

The box, as well as the crosspieces, are fixed to some solid bodies, by several copper
screws, so that the whole is unshakable: the pillars are separated from the box; and, between
the ring which serves as the center of rotation of the alidade, and the vertical rod, which
contains the plumb line,240 there is enough play, so that the movements of the alidade cannot
cause any shaking, neither to the rod nor to the box.

237Nonius is a measuring tool used in navigation and astronomy named in honor of its inventor, the
Portuguese mathematician and navigator Pedro Nunes (1502-1578) (Latin: Petrus Nonius). The nonius was
created in 1542 as a system for taking finer measurements on circular instruments such as the astrolabe.
238In the original: une vis de rappel.
239[Note by Bucciarelli] I think what Coulomb is suggesting is to make a slot all the way through this plate

so that one could see the line, now a silk thread, when one turns the needle over (reverses it). This would
be a check for errors due to the needle not being exactly straight.
240That is, the silk thread.
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5.5 Chapter IV. General Principles on the State of

Equilibrium of Bodies. Their Application to Mag-

netized Plates, Placed on Horizontally Balanced

Planes. What Results for the Suspension Point,

and for Tracing on the Blades the True Magnetic

Meridian. On the Friction of Pivots and Caps. Ap-

plications of All These Principles to the Construc-

tion of Marine Compasses

57.241 When a free body, solicited by any powers whatsoever, is supposed to have reached
its state of rest; if all the forces which act on this body are decomposed along two directions,
one perpendicular to any plane, and the other parallel to this plane, the sum of the forces
decomposed along the direction perpendicular to the plane, will be zero. If we then decom-
pose all the forces parallel to the plane into two others still parallel to this same plane, but
perpendicular to each other, the sum of the forces decomposed along each of these directions,
will also be zero.

58. On the other hand, when a free body has arrived at its state of rest, any line
whatsoever which crosses the body or not, can be regarded as a fixed axis, around which
all the forces, which solicit the body, act to make it turn. Now the body being at rest, it is
necessary that the moments of all the forces are balanced around this axis: thus, if we pass,
in the plane assumed in the preceding Article [57], two lines perpendicular to each other,
and that at their meeting point we draw a perpendicular to this plane, these three lines can
be regarded as three fixed axes of rotation, and it is necessary, for the equilibrium to subsist,
that the moment, of all the forces around these three axes, is zero.

These three conditions of equilibrium, joined together with the three other conditions
explained in the preceding Article, form six conditions to be fulfilled, so that a body solicited
by any powers, persists in its state of rest.

As these propositions for statics are developed in all books on mechanics, I will not stop
there.

59. If we now suppose that this body, solicited by any powers whatsoever, is further
pressed at one of the points on its surface by the tip of a pivot; then imagining a plane which
touches the surface of the body at its point of pressure, and raising at the point of contact a
perpendicular to this plane, we will have in consequence of the two preceding propositions:

1. That the sum of the forces decomposed along two directions perpendicular to each
other, and parallel to the plane of contact, will be zero.

2. That the sum of the forces decomposed perpendicular to this plane, will be equal to
the pressure experienced by the point of contact.

If we were to consider the friction caused by the pressure at the point of contact, equi-
librium would exist whenever the friction provided a resistance greater than the resultant of
all the forces which act parallel to the plane of contact.

241Articles 57 to 73 were not included in the partial reprint of this Memoir in Potier’s edition of Coulomb’s
works, [Potier, 1884].
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The first three conditions of equilibrium fulfilled, we will easily satisfy the three others for
the moment, by passing three fixed axes through the point of contact, and friction will only
be able to influence the conditions of equilibrium of the moments of all the forces around
these three axes, if the tip of the pivot pressed on one surface or several points at the same
time.

60. Let us apply these general propositions to the state of equilibrium of compasses,
namely (Figure 13), a heavy plane aobe, balanced horizontally by means of a cap, whose
axis is vertical,242 so that that the bottom of the cap, which bears on the tip of a pivot, can
be regarded as a very small horizontal plane.

Let a magnetized needle be placed on this plane,243 considered as a line, and balanced
by the small counterweight P , so that the plane always remains horizontal; No. 1 [of Figure
13] represents the plane, and No. 2 its section along the magnetic meridian.244

If we here apply the foregoing principles, we shall find that all parts of the plane are acted
upon by the forces of gravity. We will find in the second place that the needle is solicited by
its gravity and by its magnetic force, which acts on each point [of the needle], along a constant
direction. We will find, by decomposing the magnetic force, along a horizontal direction, and

242The vertical axis passes through the point C in Figure 13, Number 1, the cap being represented by the
small circle around the point C. This cap has the shape of a cone. The section of this cone appears in the
center of Figure 13, Number 2.
243This magnetized needle is represented in Figure 13 by the letters SN .
244That is, Figure 13, No. 2, represents the section of the heavy plane aobe as seen in a vertical plane along

the magnetic meridian.
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along a vertical direction, that the vertical force increases the weight of the boreal part [of
the needle], and acts in a contrary direction, or decreases the gravity of the austral part.245

We shall further find, in consequence of the second principle, that the increase in weight of
the boreal part is exactly equal to the diminution of weight of the austral part; and that thus
the pressure experienced by the tip of the pivot is equal to the weight of the whole system.

We will then notice that the action of the terrestrial globe on the needle, having, for all
the points of this needle, a constant direction; if we decompose this action, there results,
for each point, a horizontal force, along the magnetic meridian, and that, because of the
equality of the sums of the forces, in the two opposite directions, the needle, like we have
already explained in the second principle, will be directed along the magnetic meridian.

61. It also follows from the preceding principles, that in any position, and at any distance
from the center of rotation, [for] this needle located on the horizontal plane, the force that
will bring it back to its true [magnetic] meridian, when it is moved away from it by any angle
b, will always experience the same moment.

To demonstrate this let C, (Figure 14),246 be the center of rotation of a needle SN , posed
as in the previous Article, on a horizontally balanced plane; let the magnetic center of this
needle be assumed at K;247 through this center is drawn the line aKb, which represents the
magnetic meridian; and through the point of rotation C, let the line AB be drawn parallel
to this meridian; let the angle NKb, between the direction of the needle and its meridian,
be assumed [equal to] b.

According to the first principle, each point µ of this needle is driven by a force µe,248

parallel to the magnetic meridian. All the forces of the KN part, being directed towards
the North; all the forces of the KS side, being directed towards the South, let ϕ be the force

245That is, the Earth’s magnetic force acting on the boreal or Northern part of the needle has a downward
component in Paris, which would be equivalent to an increase in weight on that side. In the austral or
Southern part of the needle, the magnetic force has an upward component in Paris, equivalent to a decrease
in weight on that side. See Section 4.3 on page 40 and the footnotes 127 and 135 on pages 56 and 57.
246All points and lines in Figure 14 must be understood as being in the same horizontal plane.
247In the original text the letter K appears in lower case, k. I substituted the uppercase letter K because

the lowercase letter k does not appear in Figure 14.
248In the original text appears here µE. I replaced the uppercase letter E with the lowercase letter e so

that the text matches Figure 14.
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acting on the boreal point µ, and ϕ′ the force which acts on the austral point µ′, on the
other side of the magnetic center;249 we will have (when drawing from the points µ, K, µ′

the perpendiculars on the meridian AB) for the moment of the force which acts on the point
µ, around the center of rotation C,

(ϕµ) · (DK − qµ) ;

and, for the moment of the force acting on the austral point µ′,250

ϕ′µ′(DK + q′µ′) .

As the forces are directed in two opposite directions, it follows, for the total moment around
the center of suspension C, the formula

(∫

ϕ′µ′ −
∫

ϕµ
)

DK +
∫

ϕ′µ′ · q′µ′ +
∫

ϕµ · qµ ;

and, as the sum of the austral forces, is equal to the sum of the boreal forces, it follows that
the first term vanishes, and that the formula is reduced to

∫

ϕµr (sin b) ,

integrated for the whole of the needle, r representing here the distance (Kµ).
Thus, a magnetized needle, placed on a horizontally balanced plane, will always return

to the direction of its magnetic meridian; and when it is moved away from this direction by
any angle b, its moment about the center of rotation, will always be proportional to

sin b ,

and independent of the distance of the needle, from the center of rotation.
62. Remark. If the sum of the austral forces were not equal to the sum of the boreal

forces, then we would have the position of the needle, with respect to its meridian, in the
state of equilibrium, assuming the preceding formula,251

(∫

ϕ′µ′ −
∫

ϕµ
)

DK +
(∫

ϕµ ·Kµ+
∫

ϕ′µ′ ·Kµ′
)

sin b = 0 ;

but, as we have shown that the sum of the austral forces is equal to the sum of the boreal
forces, we will not stop to discuss these new results.

63. We come to see that there is never any difficulty in determining the magnetic meridian
when the magnetized needle can be regarded as a line; since it necessarily aligns with the
direction of the magnetic meridian. But let us now suppose that this needle is a magnetized
blade, which has width; and see what angle the direction of the magnetic meridian will take

249In Figure 14, I replaced the letter µ near the S pole with the letter µ′.
250In the original text appears here µ′µ instead of µ′.
251In the original text the next equation appears with the lowercase K, namely, k:

(
∫

ϕ′µ′ −
∫

ϕµ

)

Dk +

(
∫

ϕµ · kµ+

∫

ϕ′µ′ · kµ′

)

sin b

rayon
= 0 .

I replaced it with the capital letter K.
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with one of the sides of the blade, when the plane, balanced horizontally, will have arrived
at its state of rest.

On a horizontal plane, similar to that of the previous Article, let a magnetized blade
(ABDE) (Figure 15) be placed;252 let the extremity BE of this blade have a boreal force,253

and the extremity AD an austral force.

If we suppose that the resultant of all the boreal forces is represented by kϕ, and the
resultant of all the austral forces by gf , the forces of the boreal part, as of the austral part,
being all directed by virtue of the first principle, along the magnetic meridian, will conse-
quently be all parallel to each other, and their resultants will be parallel to the magnetic
meridian: thus, if when the compass has reached its state of rest, we draw, from the point
of rotation C, a perpendicular to the magnetic meridian, it will be at the same time perpen-
dicular to the resultant of the magnetic forces. Now, as the sum of the boreal forces equals
the sum of the austral forces, the lever arm must be the same for the two resultants, which
will consequently be in a straight line.254

We easily see that in whatever location of the horizontally balanced plane the blade is
placed, it will always take the same direction, provided that it is supported on the same face.

If we now suppose that, for the blade ABDE, the line fϕ of the resultants remaining
motionless, the whole blade is made to rotate about this line, until it is placed on its other
face, it is obvious that when this blade has made a half-revolution around the axis fϕ; if
the blade was in equilibrium on its first face, due to the forces lying in the horizontal plane,
it will still be so when it has made a half-revolution around the axis fϕ, when it is placed
on the other side, represented here by the dashed lines A′B′D′E ′; where DD′ represents the
diameter or the projection of the semi-circle, traversed by the point D, which is cut into two
equal parts by the resultant fϕ; and AA′ represents the diameter of the circle traversed by
the point A.

If we now extend the corresponding lines AB, A′B′, as well as the resultant ϕf , we will
see that these three lines must meet at the same point T , and that the angle ATf , formed
between the direction of the side AB of the blade, and the resultant fϕ, will be half of the

252All points in Figure 15 must be considered in the same horizontal plane.
253That is, let the end BE be of the boreal type, namely, a North pole, see footnote 127 on page 56.
254That is, at equilibrium the two resultants will lie along the same straight line.

105



angle ATA′.

It will now be very easy for us to trace, on a blade, a line which corresponds to the
magnetic meridian: we will place this blade on the horizontally balanced plane, and we will
observe the direction of its side AB; we will reverse this blade on its other face: we will again
balance the plane horizontally, and we will observe the new direction on the side A′B′. Half
of the angle, formed by these two directions, will give us the magnetic meridian: instead of
observing the direction of one of the sides of the blade, we can draw a line on the middle of
this blade, and observe its direction, which will come to the same thing.

64. Remark. When the [magnetized] needle SN is placed on a plane ABDE (Figure 16),
inclined to the horizon, suspended and mobile around the point of suspension i, it will still
be easy to determine all the equilibrium conditions.

Through the point of suspension i, let us pass three axes: iF , horizontal axis in the plane
of the magnetic meridian; iO, horizontal axis perpendicular to the magnetic meridian; if ,
vertical axis: all the forces of gravity and magnetism must be in equilibrium around these
three axes.

If we decompose all the magnetic forces µR, which act on each point µ of the needle, into
a horizontal force µQ, and a vertical force QR, located one and the other in the plane of the
magnetic meridian, we will see that all the vertical forces have no moment around the axis
if , since they are parallel to it. So only the horizontal forces remain: but because of the
equality between the austral forces and the boreal forces, and because the horizontal forces
are parallel with the magnetic meridian, the needle will necessarily take a direction parallel
to the plane of this meridian.

On the other hand, the horizontal axis iF , being supposed along the magnetic meridian,
and the needle SN being parallel to this meridian, the horizontal forces will have no moment
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around the axis iF , since they are parallel to it; and the magnetic vertical forces, will all
have the same lever arm around this axis. From there it follows, due to the equality between
the sums of the magnetic forces, in the opposite directions, that these forces, decomposed
vertically, are counterbalanced around the axis iF ; thus, the forces of gravity of the whole
system must also counterbalance each other; and if we cause a vertical pk to pass through
the center of gravity p, it will necessarily meet the axis iF at an arbitrary point k, distant
from the point i by the quantity ki, which we are going to determine.

To this end, all that remains is to find themoment of all these forces, around the horizontal
axis iO, perpendicular to the magnetic meridian. We have just seen that the needle always
aligns itself along the plane of the magnetic meridian: thus, the magnetic forces µR of each
point µ, which we have found, by the first principle, parallel to each other, are in a plane
perpendicular to the axis oi. Thus, if this plane meets this axis at the point O, and if C is
the magnetic center of the needle SN , it follows, from Article 61, that the moment, of all
the magnetic forces around this axis iO, will be the same as the moment, of all these forces,
around the magnetic center C. Thus, by naming H the angle NµQ, inclination of the needle
on the horizontal line µQ, and I the angle QµR, formed by the magnetic direction µR, with
this same horizontal; we will have, as in Article 61, by naming also µR = ϕ, and Cµ = r,255

the equation

∫

ϕµr · sin(H + I) = magnetic moment around the axis iO .

If a is the distance from the center of gravity p, to the suspension point i; if, moreover,
we suppose the angle pif = G, and the total weight = P , we will have, for the moment of
the weight of the system, around the axis io, the quantity aP · sinG; and, because of the
state of equilibrium, where the system is supposed to have arrived, we will have, in general,

Pa · sinG =
∫

(ϕµ · cµ) · sin(H + I) .

65. Here are several conclusions that can be drawn from this remark. When we have
balanced horizontally, at any place, a compass rose,256 with its magnetized needles, the
magnetic force, as well as the direction, changing as we change latitude and longitude, the
plane of the rose will revolve around its center of suspension, bowing to the horizon; but this
plane will always remain perpendicular to the plane of the magnetic meridian of the place
where we stop. The center of gravity of the whole system, will revolve around the point of
suspension i, approaching or moving away from the perpendicular if , without ever leaving
the plane of the magnetic meridian; and the angle traversed by this center of gravity will be
equal to the inclination of the rose on the horizontal plane. This is shown in Figure 17, where
the center of gravity is at P when the rose is horizontal, point i is the point of suspension,
and ie′ a perpendicular drawn from the point of suspension on the plane of the rose.257

255In the original text, the letter C appeared in lower case, namely: cµ = r.
256In the original: rose de boussole.
257I replaced the letters SN in the dashed needle of Figure 17 with the letters S′N ′.
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When point P arrives at P ′, the vertical line ei will arrive at ie′, and the compass NS
at N ′S ′, the angle NCN ′ = eie′ = PiP ′; thus, in the equation of the previous Article,

a sinG · P =
∫

(ϕµcµ) · sin(H + I) .

If sinG = A, when the rose is horizontal, we will have A−G = H , and consequently258

aP · sin(A−H) =
∫

ϕµcµ · sin(H + I) .

If the magnetic force and its direction were given, we would easily obtain the inclination H
of the compass.

66. All that remains, to complete this theory, is to determine the coercive forces, which
depend either on the friction of the pivot at the bottom of the cap,259 or on the imperfection
of these caps: but we notice in advance that the friction, necessarily increasing with the
weight, and the magnetic force being, proportionally, smaller for a heavy blade than for
a light blade, and moreover, the moment of a blade, tending to return it to its magnetic
meridian, being independent of its position in the plane of the rose; we should always prefer
compasses formed with several light blades, whose magnetic meridian lines are parallel to
each other, to a single thick and heavy blade. But, to put us in a position to say something
more precise, let us see what experiment and theory tell us about the friction of pivots.

5.5.1 Pivot Friction

67. All the authors who have written about friction, all the experiments that have been
made on this subject, have all together proved that the surface plays a small part in the

258In the original text this equation appeared as follows:

aP · sin(A−H) =

∫

ϕµcµ · (sinH + I) .

259See footnote 141 on page 58.
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friction of light bodies, and that it follows more or less the ratio of pressures.260 We have
tried to determine if this same law holds when very hard surfaces are made to slide on needle
tips.

5.5.2 Experiment

ABCD (Figure 18, No. 1 and 2), is a small board, on which three needles have been planted
pointing upwards. This board is mobile around the axis BD, fixed to a horizontal table. By
these means we gave the board AB, [Figure 18,] No. 2, the necessary inclination to cause a
small blade ab of glass or copper placed on the tip of the three needles to begin to slip. Here
are the results of some experiments.

Using a glass plate weighing 1/2 ounce [15.3 g], it was found that in order for it to begin
to slide on the steel tips, the sine of inclination must be one-seventh of the radius.261 We
successively loaded this plate with 1, 2, 3 and 4 ounces [30.6 to 122.4 g], and we always found
that it began to slide under the same inclination. The glass plate, reduced to 100 grains [5.3
g], gave substantially the same result.

For a blade of yellow copper,262 flattened with a hammer, and very well polished, we had
results analogous to the preceding ones: only the friction was more considerable between the
steel tips and the copper, than between steel and glass. The copper plate only starts to slide
on the steel tips, when the sine of inclination is to the radius :: 1 : 51

2
.263

It follows from these two experiments that the friction of pivot tips is approximately
proportional to the pressures.

260That is, frictional forces are approximately proportional to the pressures or normal forces acting on
the surfaces, being independent of the contact area. In 1699 Guillaume Amontons (1663-1705) arrived at
the laws of friction, that is, the resistance to linear motion when bodies make contact, [Amontons, 1732],
[Amontons, 1742], [Gillmor, 1971a, p. 119], [Heyman, 1997, p. 76] and [Oliveira, 2004]. He concluded that
the frictional force is proportional to the normal force (applied load) and does not depend on the area of
contact between the surfaces. He stated that the coefficient of friction was approximately the same for all
tested materials and that the friction force was approximately 1/3 of the normal force.
261That is, the sine of the angle of inclination of the plate with respect to the horizon was 1/7.
262In the original: cuivre jaune. This expression can be translated as “brass”, “bronze”, “copper”, “yellow

brass” or “yellow copper”. In cases where Coulomb uses the word laiton, we chose to translate it as brass.
When he uses the word cuivre, we chose to translate it as copper. See also [Goodway and Savage, 1992].
263That is, when the sine of inclination of the copper plate with the horizon was 1/(5.5).
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68. We now suppose that a body, ABDE (Figure 19, No. 1), is supported on the
horizontal section of a column, the circular plane of which is shown in [Figure 19,] No. 2.

If we suppose, moreover, that the center of gravity of this body corresponds to the point
C, and that horizontal forces act to make it turn around this center, it is obvious that this
body will be retained by the friction of its plane AE on the circle CMH ; friction which will
depend on the pressure experienced by all the points of the circle. But the pressure of all
the points of this circle must here be a constant quantity;264 this is what appears at least
very probable, supposing the whole surface of this circle covered with an infinity of small
equal springs, which, because of the center of gravity placed at C, will be compressed equally
between the two contact planes. Thus, since we have found the friction proportional to the
pressure, the moment, due to the resistance of each point of the circle, will be proportional
to the distance of this point from the center C.

Let δ/n express the friction of a point of the circle, δ being the pressure of this point,265

the total moment of friction around the point C, will be equal to266 δ(CM)3

3·n · 2π; and, as the
weight of the body equals the total pressure of the circle of contact, we will have, by naming

P the weight of the body, P = δ(CM)2

2
· 2π; thus, the total moment of the friction around the

center C, will be 2P
3n
CM , where 1/n expresses the ratio of the pressure to the friction: thus,

the moment of the friction of a body, which rotates on a circle, is in ratio composed of its
weight, and of the diameter of the circle of contact.267

69. Remark. If the vertical, passing through the center of gravity of the body, met the
contact circle ABDE in a point P (Figure 20), other than its center of figure C, we would

264[Note by Bucciarelli] This assumption is not realistic but other assumptions for the pressure distribution
will give the same result. For example if you assume a linear distribution with maximum po at the center
and going to zero at the edge, the moment of the friction is still proportional to the product of the weight
and the diameter. Only the constant out front changes.
265That is, if the normal force on this point is represented by δ, then the force of static friction is given by

δ/n, where 1/n is the coefficient of static friction.
266In the original text this formula was written as δ(CM)3

3·n · 360◦.
267That is, in this case the torque due to friction is proportional to the weight and diameter of the contact

circle.
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thus find the equilibrium conditions:

1. The sum of the pressures of all the points of the circle, must be equal to the weight of
the body.

2. If we pass two axes BD, AC perpendicular to each other, through the point P , in the
plane of the circle of contact, we will see that, since the point P is assumed in the
vertical which corresponds to the center of gravity, the moments of the weight of all
parts of the body, are in equilibrium around these two axes; and that consequently
the moments of the reaction of the pressure experienced by all the points µ must be in
equilibrium around the same two axes.

Thus, if we draw from all the points µ of the circle, two perpendiculars µϕ and µπ, to
these two axes; if δ represents the pressure of the point µ, and P the weight of the body, the
three equations which express the state of equilibrium, will give,

First:
∫

δ · µ = P .
Second:

∫

δ · µϕ = 0.
[And third:]

∫

δ · µπ = 0.
If we now wanted to determine the resistance that friction would oppose to a horizontal

force KR,268 suppose for a moment that the body can only rotate around a fixed vertical
axis, passing through the point N ; from the point N is drawn the perpendicular NK in
the direction of the force KR, the frictional resistance to a horizontal rotation around the
vertical axis N , will be

∫ δ
n
· Nµ, and the total moment, around this same axis, will be,

naming k the force RK,

268[Note by Coulomb] This force KR is a resultant, which is only considered here relative to its moment;
it must be supposed to be formed of different equal and opposite forces, which, apart from friction, would
cause the body to turn horizontally around its center of gravity, which corresponds to the point P .
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(

k ·NK −
∫ δ

n
·Nµ

)

;

it is clear that, as soon as this quantity is positive, the body will turn around its axis N ;
thus, if the body is free, and there is no fixed axis, to obtain the true axis, around which the
body will begin to turn, it is necessary, by varying the point N , to determine its position,
assuming the quantity (k ·NK − ∫ δ

n
Nµ), is a maximum; because, by this operation, we will

easily see that, for this point N , thus found, the quantity k · NK − ∫ δ
n
Nµ, will begin to

have a positive value, while it will still be null, or negative for all the other points; so, once
the value of δ is assumed to be given, the rest will be a fairly simple problem of geometry.

We will not dwell any longer on this remark; because, in the cases we need [to consider],
either the tip of a pivot is enclosed in the conical bottom of a [compass] cap, or penetrates
naturally forcing itself a little into the interior of a horizontal plane, the axis of the pivot
necessarily becomes the axis of rotation; especially since the contact plane is always smaller
than all sensible measures, as we will see, Article 81.

70. If nature provided us with bodies that were perfectly hard, or whose parts were
united by an infinite cohesion, these would be, without a doubt, those that we should choose
for making [compass] caps and pivots; since such pivots would have the diameters of their
tips infinitely small without breaking, and without penetrating into the interior of the caps.
But all the means that we can use, the firmest and best tempered steel, all vitrifications,
even diamond, have only a certain degree of cohesion, which yields for a given surface at a
given weight. Thus, when a heavy surface is balanced on the tip of a pivot, the surface of
contact must be sufficiently great enough for the cohesion of all the parts of this surface to be
able to resist without rupture the weight which presses it. Consequently, for finite weight,
this surface must be finite. To better understand where the friction of a pivot can come
from, suppose that solid bodies are formed of an infinity of small hollow globules, filled with
an elastic fluid matter; that all these globules are joined together, as well as the solid parts
which form the surface of these globules, by an adhesion of which the cause is unknown to
us; it will be seen that each of these small globules can only support a certain small weight
without breaking. Thus, as soon as the tip of a pivot is loaded by a heavy plane, (Figure
21), the surface of the contact circle, whose diameter is ab, must be large enough for the
number of globules, which form this surface, to be able to support a given weight; whence it
follows that when the tip of a pivot is loaded with different weights, the surface of contact
will be proportional to the weight.
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If, instead of supposing the bodies to be made up of an infinite number of small globules,
we would suppose them to be made up of an infinite number of small springs, we would also
find that each of these small springs could, without breaking, support only a small weight,
and we would still conclude from this [assumption] that the contact surface is proportional
to the pressure.

It therefore appears probable that when a very hard surface is supported on the tip of a
pivot, the surface of contact is proportional to the total pressure: thus, this pressure is like
the square of the diameter.

But we have found, Article 68, that the moment of friction of a heavy plane, on a circular
surface, is in a compound ratio of the diameter and the pressure. Thus, as this diameter is
here as the [square] root of the weight, we will find the moment of the friction of the pivots
proportional to P 3/2.269

71. If we want to obtain a formula for the moment of friction, based on even more general
hypotheses, suppose that the tip of the pivot at C, on which is supported the surface AB,
which we consider as inflexible, is a solid of revolution, (Figure 22, No. 1), if the tip of this
pivot Mcm is compressed to Mm, which is the diameter of the contact circle, each point ϕ
of the surface of the pivot will arrive at µ, and the pressure that the point µ will experience,
will be like a function of the ordinate ϕµ, distance from the point ϕ in its natural situation
to its forced situation in the state of compression. [Figure 22,] No. 2, represents the contact
circle, whose diameter is Mm.

Let [Figure 22,] No. 2, the angle MCM ′ = b [and] cµ = x, we will have, for the pressure
of the small elementary surface, µµ′νν ′,

function (ϕµ) · dxbx = function (CP − qϕ)bxdx ;

269Coulomb found that in the case of needles resting on pivots, the frictional torque (or resistance to
circular motion) was proportional to the 3/2 power of the weight (or normal force), [Potier, 1884, p. 53] and
[Gillmor, 1971a, p. 119].
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but, since CM is only a small portion of the surface,270 we will have, without noticeable
error, ϕq proportional to (Cq)2, and CP proportional to (CB)2 = (CM)2; thus, we will
have, for the elementary pressure,

function (n′((CM)2 − x2))bxdx ,

where n′ is a constant quantity, depending on the curvature of the point C: if, for simplicity,
we suppose that the pressure of the point µ can be represented by a power m, of (ϕµ), we
will have, for the elementary pressure, n′m(cM2−x2)mbxdx; this quantity, integrated in such
a way that it vanishes, when x = 0, will give, for the whole of the circle,

n′m2π

2(m+ 1)
CM2(m+1) ;

a quantity which must be equal to the total pressure P .

Likewise, for the moment of the elemental pressure, n′m(CM2 − x2)mbx2dx; quantity
which will be integrated, either exactly, or by quadratures, according to the value of m; but,
without going into the detail of this integration, it follows, from the operation of the integral
calculus, and from the law of homogeneity, which must be observed between the integral
quantities and their differentials, that we will always have the moment of the pressure of the
entire circle, proportional to271 (CM)2(m+1)+1, and P proportional to (CM)2(m+1); thus, the

moment of friction will be proportional to PP
1

2(m+1) . If m = 0, then the pressure will be
constant for all points µ, and the moment of friction will be proportional to P 3/2.

If m = 1, we will have the moment of the pressure proportional to P 5/4.

5.5.3 General Formula for the Friction of Pivots, and of Flexible
Caps

72. Finally this theory will extend over all, and it will become applicable in all parts of the
arts, if we continue to suppose that the tip of the pivot is formed by a solid of revolution,
and that this pivot carries a cap, the interior surface of which is also a surface of revolution;
if we further assume that the bottom of the cap is compressible, as is the tip of the pivot,
and that the weight with which the cap is loaded is balanced so that the axis of the pivot
and the axis of the cap are on a vertical line, which passes through the center of gravity of
the weight.

In Figure 23,MCM ′ represents the pivot head before its compression. MC ′M ′ represents
the head of this same pivot after compression; mcm′ represents the bottom of the [compass]
cap before the compression; mc′m′ represents the bottom of this same cap after compression.

270[Note by Coulomb] See Article 81.
271[Note by Coulomb] The remark which we make here on the homogeneity of the integral quantities, and

of their differentials, often avoids much calculation in the problems which relate to physics; thus, the integral
of

(xmdx(aµ + naµ−1x+ n′aµ−2x2 + x)q) ,

taken when x = a, gives us Gam+1+µq, where G is a constant quantity, independent of the value of a, and
where n and n′ are zero-dimensional constant coefficients.
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D

´

´

The tip of the pivot, as well as the bottom of the cap, must be of a very hard material, so
that the problem can be simplified, and [it is also necessary to] suppose that the compressed
parts CC ′M and cc′m are terminated by small curved lines, which can, without appreciable
error, be taken for arcs of a circle.

We draw the tangents CB and C ′B′, cb and c′b′ at the top of all the curved surfaces, and
we take the line Lq′ parallel to the axis Pc′, which intersects the tangents at the points Q,
Q′, q, q′, and the curves at the corresponding points D, D′, d , d′.272

It is clear that CM , C ′M ′, as well as cm and c′m′, being supposed, because of the
hardness of the pivot and the cap, of very small portions of curve, CC ′ and DD′, cc′ and dd′

will represent the compressions of the corresponding points C and D, c and d.

Now let us make PM = a, PL = x, the radius of curvature at C, of the pivot, before

272I inserted in Figure 23 the letter D mentioned by Coulomb. At the top right I replaced the letter b with
b′. At the bottom horizontal line I replaced the letter L with L′.
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its compression, = D/2, the radius of curvature at C ′, of the pivot, after its compression,
= D′/2; the radius of curvature of the bottom of the cap, at C, before its compression,
= d/2; the radius of curvature of the same cap, after its compression, = d′/2.273

We first see that after the compression, the bottom of the cap having to touch the end
of the pivot at all the points of a part of its surface, the curve M ′C ′M is exactly the same
than the curve m′c′m, and thus D′ = d′.

We also see that, as the small portions of curves, which touch after compression, can,
because of the hardness of the pivot and the cap, be taken for a start of a curve, we will
have, without sensible error274 BM = a2/D, B′M = a2/D′, b′m = a2/D′, bm = a2/d,
QD = x2/D, Q′D′ = x2/D′, q′d′ = x2/D′, qd = x2/d; but the compression of point D is

DD′ = BM −QD −D′L =
(

1

D
− 1

D′

)

(a2 − x2) .

The compression of the corresponding point d, of the bottom of the cap, is

dd′ = b′m− q′d′ − dL′ =
(

1

D′
− 1

d

)

(a2 − x2) .

At present, the pressure experienced by any point D′, depends on the state of com-
pression, and therefore can be expressed by a function of the compression: to simplify this
hypothesis, suppose the pressure of the pivot as a power m of the compression, and the pres-
sure of a point of the cap, as a power m′ of the compression, we will have, for the pressure
of the point D′, the quantity

((

1

D
− 1

D′

)

(

a2 − x2
)

)m

;

and, for the pressure of the corresponding point d′ of the cap, we will have

gm
′

((

1

D′
− 1

d

)

(

a2 − x2
)

)m′

,

where g is a quantity, which depends on the ratio of the flexibility of the cap to that of the
pivot.

Now, because the pressure is common to the corresponding points D′ and d′, these two
quantities must be equal, and will give the equation

((

1

D
− 1

D′

)

(

a2 − x2
)

)m

= gm
′

((

1

D′
− 1

d

)

(

a2 − x2
)

)m′

.

This first equality teaches us an interesting truth, which is that for it to subsist, it is
necessary that m = m′, since it must take place for all the points of contact; thus, when the
pressure is not expressed, for the cap and for the pivot, by the same power m, the cap will
only touch the pivot in parts, and the contact will not be continuous.

But, as soon as we have used two homogeneous materials, then m = m′, and we imme-
diately have

273[Note by Bucciarelli] Here is a problem. D is a label for a point. Coulomb is now changing its meaning
to be twice the radius of curvature of the cap/pivot. The same change of meaning happens for D′, d and d′.
274[Note by Coulomb] In Figure 23, the cap is shown detached vertically above the head of the pivot, so

that the line mm′, end of the contact, which must merge with the line MM ′, when the cap is supported on
the head of the pivot, is here to make the same line with the tangent CB of the pivot, before its compression.
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(

1

D
− 1

D′

)

= g
(

1

D′
− 1

d

)

,

from where we get

1

D′
=

(

1
D
+ g

d

)

g + 1
;

whence it follows that the curvature produced by the compression is independent of the
power m.

If we substitute this value 1/D′, in the formula

((

1

D
− 1

D′

)

(

a2 − x2
)

)m

,

which expresses the pressure of the point D′, we will have





(

g
D
− g

d

)

g + 1

(

a2 − x2
)





m

.

We are now in a position to determine the total pressure, and the moment of friction,
which is the interesting part of our research.

As we assumed here that the compressed part M ′C ′M , is only a small portion of curve,
we can, without significant error, suppose that the surface generated by the revolution of
CDM , around the axis CP , or, what comes to the same thing, that the surface of the
pivot, is equal to the surface of the circle, of which MM ′ is the diameter: according to this
supposition we will have, for the pressure of a zone, of which x = CQ is the radius, and dx
the width, the quantity

2π





(

g
D
− g

d

)

g + 1

(

a2 − x2
)





m

xdx ;

by integrating, we will have, for the entire surface of the circle, of which PM = a is the
radius,

2π





(

g
D
− g

d

)

g + 1





m

a2(m+1)

2(m+ 1)
;

a quantity which must be equal to the entire pressure, or to the weight P , of which the cap is
supposed to be charged: to have the moment of the pressure, it will be necessary to multiply
the elementary pressure by x; which will give

2π

( g
D
− g

d

g + 1

)m
(

a2 − x2
)m

x2dx .

This equation is exactly integrable whenever m is an integer; thus, in the case of perfect
elasticity, where we would suppose the pressure proportional to the compression, we would
have m = 1; which would give, for the moment of the total pressure,
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2

15
(2π)

(

g

g + 1

)

(

1

D
− 1

d

)

a5 ;

but, on this assumption,

P =
1

4
(2π)

g

g + 1

(

1

D
− 1

d

)

a4 ,

from which we deduce the moment of the pressure

=
2

15

(4P )1/4
(

2π g
g+1

(

1
D
− 1

d

))1/4
;

and if 1/f expresses the ratio of friction to pressure, it will suffice to divide this quantity by
f , to obtain the moment of friction. By following the path of the previous Article, we will
find, without going into the details of the integration, by naming

N = 2π

(

g

g + 1

)m (
1

D
− 1

d

)m

,

that since the pressure of the zone is N(a2 − x2)mxdx, and the elementary moment of the
pressure of this same zone is N(a2 −x2)mx2dx, we will have, for the integral of the pressure,
when x = a, the quantity GNa2(m+1); and, for the integral of the moment, G′Na2(m+1)+1,
where G and G′ are functions of m, independent of a and N ; thus, since GNa2(m+1) = P ,
we will have G′

G
Pa for the total moment of the pressure, or

G′

G
P
(

P

GN

)

1
2(m+1)

;

thus, by substituting the value of N , we will have the moment of the pressure, and conse-
quently the moment of the friction, proportional to

P
(2m+3)
(2m+2)

((

g
g+1

) (

1
D
− 1

d

)) m
2(m+1)

.

If m = 0, we find this quantity = P 3/2, as in Article 70.
When using the same caps and the same pivots, we must find the moment of friction

increasing with the weight, and proportional to P
2m+3
2m+2 .

This quantity will decrease, everything else being equal, as
(

1
D
− 1

d

)

will increase; that
is to say, as we increase the curvature of the extremity of the pivot, and as one flattens, or
decreases the curvature of the bottom of the cap; whence results this usual practice, when
we need to make turn very large masses around a vertical axis, to present a convex surface
to the convex extremity of the pivot, because then

(

1
D
− 1

d

)

becomes
(

1
D
+ 1

d

)

.
Finally the moment of friction will decrease as the quantity g increases; that is to say, as

the hardness of the bottom of the cap increases, that of the pivot being given: if, instead of
assuming the pressure of a point D of the pivot, = (DD′)m, we had assumed this pressure
= (δ ·DD′)mδ increasing with the hardness of the pivot, we would have, in the formula which
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expresses the moment of friction,
(

gδ
δ+g

)

, instead of g : (g+1). But, as the moment of friction
decreases as this quantity increases, and as this quantity increases as g and δ are greater, it
follows that the greater the hardness, or the inflexibility of the pivot and the cap, the more
the moment of the friction will decrease; it will become zero, when g and δ will be infinite.

73. Remark. When the cap is supported by a very fine needle, if the tip of this needle
is strongly tempered, and if it is much harder than the bottom of the cap, then it may
happen that it will penetrate into the interior of the cap, of which it will divide the parts;
the previous theory cannot be applied to this case.

In Figure 24, MCm represents the tip of the pivot that split the parts of the cap; let
the small angle mCM = 2A; let PM = a be the distance of the point M , from its natural
situation, when it is in P , to its compressed situation, when it has reached m; let P ′D = x,
which expresses the compression of the point D.

The pressure on the part CM , will depend on the compressions PM and pD, of the
points D and M ; suppose that this pressure is like a power m of the compression, we will
have, for the pressure DQ, that the point D experiences perpendicular to CM , its value
(gP ′D)m, or (gx)m: let us decompose this force into two others, one vertical DO, and the
other horizontal OQ, the similarity of the triangles will give us the vertical force

DO = (gx)m sinA .

If the tip of the pivot could penetrate the interior of the cap, without experiencing friction,
it would be necessary, in consequence of the principles of statics, which we reported at the
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beginning of this Chapter, that the sum of the vertical forces (gx)m sinA was equal to the
weight of the cap, and the weight with which it would be loaded.

But the pressure DQ generates a friction, and the pivot cannot pierce the solid cap,
without overcoming this friction, which will be proportional to DQ, and will prevent the
pivot from sliding along CM .

If (1/f) expresses the ratio of pressure to friction, (gx)m

f
will be the friction which acts,

in D, along CM , to prevent the tip of the pivot from penetrating the solidity of the cap; let
us decompose this new force into a vertical force and a horizontal force, we will have, for the
vertical force,

(

(gx)m

f
· cosA

)

.

Thus, the reaction of friction and pressure, to support the weight of the cap, will be, in D,

(gx)m
(

sinA+
cosA

f

)

.

This reaction, being multiplied by the small circular area of the surface of the pivot, of which
pD or x is the radius, and dx

sinA
the width, gives, for the vertical pressure of this small area,

gm2π
1

sinA

(

sinA +
cosA

f

)

xm+1dx .

This quantity, integrated for the whole surface of the pivot, gives, by making x = a,

gm(2π)
1

sinA

(

sinA+
cosA

f

)

am+2

m+ 2
= P .

On the other hand, if the pressure of the point D, which we found [equal to] (gx)m, is
multiplied by dx

sinA
, width of the zone, and by its circumference 2πx,275 we will have

gm

f
2π

1

sinA
xm+2dx

for the moment of the friction of this zone; integrating this quantity, assuming x = a, we
will still have

gm

f
2π

1

sinA
· a

m+3

m+ 3
;

and, since we have just seen that

P = gm2π
1

sinA

(

sinA +
cosA

f

)

am+2

m+ 2
,

it results, for the total moment of the friction,

275In the original, [Coulomb, 1780, p. 239]: “par sa circonférence 360◦x.” We are here writing the circum-
ference of the circle of radius x as being given by 2πx. This substitution is also made in the other formulas
of this work.
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1

f(m+ 3)

(

sinA

2πgm

)1/(m+2)




(m+ 2)P

sinA+ cosA
f





m+3
m+2

.

When the pivot is very acute, then the angle A being very small, we will have, for the
moment of friction,

1

m+ 3

(

sinA · f
2πgm

)1/(m+2)

((m+ 2)P )
m+3
m+2 .

This quantity decreasing as sinA decreases, it follows that the most acute pivots would be
the best; which would indeed be true, if we could give them sufficient strength to support
the weight of the cap, without bending.

It is easy to foresee all the inconveniences which result, in practice, from a very fine pivot,
which pierces the solid part of the cap: because, although we first suppose that this cap is
supported by the lateral pressure of its divided parts, the slightest oscillatory movement
will soon have worn away, by friction, the compressed lateral parts, and at that time the
head of the pivot must either be rounded or bent in order to support all the weight alone:
the case where the head of the pivot comes to be rounded, returns in the situation of the
preceding Article: that [case] where the extremities of the pivot bend, give a significant
friction, because the cap is then supported, not on a point, but on a small line, and the
friction will therefore increase in proportion as the length of this line increases. If there are
any inequalities in the bottom of the cap, the curved extremity of the pivot will penetrate
there, either obliquely or horizontally, and we can no longer absolutely rely on the direction
of the compass.

But, before entering into discussions relative to the practice, on the force and on the
shape of the pivots, we are going to relate some experiments, which we will compare with
the theory.

5.5.4 Pivot Friction Experiment

74. We took, Figure 25, Nos. 1 and 2, a compass needle, pierced at its center of gravity with
a hole C, [Figure 25,] No. 2; we glued (No. 1), 3 or 4 lines [0.68 or 0.90 cm] above this hole,
a small highly polished glass plate; this plate was separated from the needle by means of two
small wooden posts i and l, glued to the compass and the plate. This compass weighed, all
inclusive, 150 grains (8.97 g), the glass plate and the small pieces of wood weighed together
9 grains; the needle was ten inches long (27.07 cm) and made 10 oscillations in 60”.
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This needle was placed horizontally on the tip of a pivot of very hard steel ([Figure 25,]
No. 1),276 it was necessary to search to find the point of equilibrium, but, as the center of
gravity is much lower than the point of suspension, this was easily done: when the needle
was a little inclined, it was soon restored to the horizontal position with sand spread on the
lighter end.

This needle being completely closed in a box, we sought the limits of its region of in-
difference277 by presenting to it at a distance the pole of another [magnetized] needle, or
the angle formed between all the directions ca, that it could take, without its magnetic and
directing force bringing it back to its true [magnetic] meridian: it is obvious that the angle
of indifference acb was proportional to the friction.

First trial. The compass suspended freely on its pivot gave the angle acb of 8 or 10′.
Second trial. The compass loaded with two small copper plates, weighing together 300

grains [15.93 g], gave the angle acb of 30′.
Third trial. The compass loaded with 600 grains, gave the angle acb of 60′.
Fourth trial. The compass loaded with 1200 grains, gave the angle acb of 3◦ 15′.
Fifth trial. The compass loaded with 1800 grains, gave the angle acb of 5◦.

Result of This Experiment

In all these tests, the needle is always suspended horizontally placed on the tip of the same
pivot; supported by a very polished plane, and which, on account of its great hardness,
may be regarded as impenetrable to steel. The bottom of a cap,278 its inequalities and its
curvatures, could not influence here the increase in friction: thus, the errors of the compass
measured by the region of indifference, could only be caused by the horizontal friction of
the glass plate on the tip of a pivot: if we now suppose that the moment of friction is like a
power n of the weight, or rather of the compression, we will find, neglecting the first trial,
because of the difficulty of obtaining a correct measurement because of the small magnitude
of the angle acb, and then comparing the second trial with all the others, that it results from
the second and third trials,

(450)n : (750)n :: 30′ : 60′ ,

from which

n = 1.357 .

The second and fourth trial give

n = 1.703 .

The second and fifth trial give

276The pivot passed through the hole in the center of the magnetized needle and the glass plated rested
against its tip. The pivot supported the combined weight of the glass plate, the two small wooden sticks
and the magnetized needle.
277In the original: champ d’indifférence. This expression can also be translated as field of indifference, zone

of indifference or sphere of indifference.
278See footnote 141 on page 58.
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n = 1.571 .

By taking an average value, we will find

n = 1.544 ,

from which it seems to result, that the moment of the friction is approximately proportional
to P 3/2, as the theory (of Article 70) seems to indicate; whence it follows, therefore, that
when the tip of a pivot is compressed by an impenetrable plane, all the points of the circle
of contact experience nearly an equal pressure.

We have made a very large number of experiments, suspending, as in the preceding tests,
the magnetized needles by means of plates of glass, agate, yellow copper, and of different
compositions, and we always have found similar results to those just described.

When the pivots had been in use for a long time, and their tip was worn, it was found
quite exactly that the moment of the friction was proportional to the pressures.

The best caps we have been able to obtain have given us friction values proportional to
P 3/2; but the slightest inclination in the position of the compass, and the small curvatures,
which are found at the bottom of these caps, most often produce, in the result of the
experiments, inequalities for which no hypothesis can account.

5.5.5 Comparison of the Moment of Magnetic Forces, with the Mo-

ment of Pivot Friction

75. We have hitherto endeavored to develop all the elements which produce the direction
of the needles; we have also endeavored to determine the coercive forces, which can produce
errors in this direction. By comparing now the coercive forces with the magnetic force, it
will be easy to decide on the choice of blades that we must use to form compasses, according
to the different uses to which they can be put.

We found (Article 6), that (B − S) or the angle of error of a magnetic needle, could
be represented by R/(

∫

ϕµr), and therefore, to reduce this error as much as possible, this
quantity had to be a minimum.

But we found, Article 37,279

∫

ϕµr =
KLEl3

(mL1/2E + nl)2
.

We found, by the preceding Articles, that the moment of the friction of a pivot, must be
proportional to a power of the pressure, and if we call this power λ, experiment has taught
us that it was approximately equal to 3/2.

Thus, if we suppose, keeping the same letters, that a marine compass rose, of which the
weight is (2gA) is balanced horizontally on the tip of a pivot, and directed by a magnetized
blade of uniform thickness and width throughout its length, we will find, naming LEl =
M ,280 that

279Coulomb is considering here a magnetized needle of length l, width L and thickness E.
280That is, M is the volume of the needle.
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R
∫

ϕµr
= B

2g(A+M)λ

kMl2

(

mL1/2E + nl
)2

.

B being a constant coefficient, by substituting, in place of L1/2E, its valueM : L1/2l, we will
have, for the minimum, ...,281

d

[

(A +M)λ

M

(

mM

L1/2l2
+ n

)2
]

= 0 .

which gives, by varying M ,

λdM

A +M
− dM

M
+

2m
L1/2l2

dM
m

L1/2l2
M + n

= 0 ,

a quadratic equation, from which it is easy to deduce the value of M .
It is useless to vary L and l, because we see immediately, that M remaining constant,

it is necessary to increase these quantities to infinity, or at least as much as nature and the
solidity of steel can allow it.

The quantities L and l being given, the previous equation will give the thickness of the
blade.

76. We will easily determine, by the same process, the length of a blade whose other
dimensions would be given, in the equation282

(A+M)λ

M

(

mM

L1/2l2
+ n

)

;

substituting, in the place of M , its value δl, or δ = LE, a quantity that is constant here, by
hypothesis,283 and we will have

d
(A+ δl)λ

δl3

(

mδ

L1/2
+ nl

)2

= 0 ,

or284

λδ

A+ δl
− 3

l
+

2n
mδ
L1/2 + nl

= 0 ,

a quadratic equation, from which we will deduce the value of l.

281That is, the minimum of this quantity is obtained when its derivative vanishes, as expressed in the next
equation.
282The next equation did not appear in Potier’s reprint of Coulomb’s works, [Potier, 1884, p. 57]. Probably

the second factor should be raised to the second power, namely:

(A+M)λ

M

(

mM

L1/2l2
+ n

)2

.

283The quantity δ = LE represents the cross-sectional area of the needle with length l.
284[Note by Bucciarelli] Differentiation is here with respect to l.
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77. If we suppose, in the formula of the preceding Article, that the needle is charged
with no weight, then we will have A = 0, and the equation is reduced to

(λ− 3) +
2nl

mδ
L1/2 + nl

= 0 ;

from which

l =
3− λ

λ− 1

mEL1/2

n
.

5.5.6 Example

We found, first experiment, Article 26, that a blade 12 inches in length and weighing 288
grains, made, when reduced to 4 inches in length, 20 oscillations in 80”. We have seen that
a reduction of 4 inches in the length of this blade produces a reduction of 49” in the time of
the oscillations: now, as T = (mEL1/2 + nl), we will have, for a needle 4 inches in length,
nl = 49′′; and, as T = 80′′, we will have

mEL1/2 = 31′′ ;

substituting these values into the formula l = 3−λ
λ−1

m
n
EL1/2, we will find

l =
3− λ

λ− 1

31′′

49′′
· 4 inches

and, if we assume λ = 3/2, as we have learned from experience, we will have

l =
31′′

49′′
× 3 · 4 inches = 7.59 inches (20.57 cm) .

Remark. From the formula l = 3−λ
λ−1

m
n
EL1/2, we conclude that l will decrease as EL

decreases, that is to say, that the length of the needles must be decreased as they become
lighter; this is what practice had already indicated.

78. Questions285 similar in kind [addressed] in the two preceding Articles that one might
face are too easy to resolve for it to appear necessary to dwell on them any longer. We
are going to end this theory with two small problems, which will often be of use in the
construction of compasses formed with several magnetized needles.

We have seen, in the theory of magnetism, that the lightest blades were those which,
proportionally speaking, were most strongly magnetized. We have seen (Articles 61 and 62),
that a needle balanced on a horizontal plane, always had the same moment, to reestablish
itself in the direction of its magnetic meridian: whence it is easy to see that a compass, formed
of several parallel and separate blades, has more force to direct itself along its meridian, than

285In the original work, this Article came out with the number 77, as was the previous Article. We changed
the numbering to 78, following this number onwards in the next Articles of this work.
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a single blade which would have the same weight as all the blades united: these considerations
present these two problems to us.

79. Problem. The weight of the marine compass rose, being given, as well as all the
dimensions of the magnetized blades which we wish to employ, of how many blades must the
compass be composed, so that it comes as close as possible to its magnetic meridian.

Let 2gA be, as above, the weight of the [compass] rose, and 2gM , the weight of one of the
given needles, let k be the number of needles, the moment of the pressure, and consequently
of the friction, will be like (A+ kM)λ: but the moment of the magnetic force expressed for
each lamina by

∫

ϕµr, will give, because of the equality of the laminae, for the moment of
the magnetic force, k

∫

ϕµr: thus, the angle of error will be

(A+ kM)λ : k
∫

ϕµr ;

a quantity to be differentiated, making only k variable; which gives, for the condition of the
problem,

k =
A

(λ− 1)M
;

and, if λ = 3/2, as experiment has taught us, k = 2A/M : thus, it would be necessary, for
example, 4 blades of 100 grains, for a rose which would weigh 200 grains.

80. Problem. The number k of the blades being given, as well as their length and their
width, determine the thickness or the weight of these blades.

We still have here the general equation

(A + kM)λ : k
∫

ϕµr

or

(A+ kM)λ

kM

(

m

L1/2l2
M + n

)2

;

this differentiated equation, by making only M variable, gives

λk

A+ kM
− 1

M
+

2m
L1/2l2

m
L1/2l2

M + n
= 0 ;

a quadratic equation, from which it results, by letting

2m

L1/2l2
= m′ ,

the reduced formula
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M = −
[

(λ− 1)nk +m′A

2(λ+ 1)m′k

]

+





(

(λ− 1)nk +m′A

2(λ+ 1)m′k

)2

+
nA

(λ− 1)m′k





1/2

.

We believe that we have collected in this Chapter the greater part of the principles which
can guide us in the construction of compasses appropriate to the service of the navy. We are
going to end with a few remarks relating either to theory or to practice, which have not yet
been mentioned.

81. First remark. If we cut in two parts, at point B, a blade NS (Figure 26, No. 1),
magnetized to saturation, of which N is the boreal extremity, and S the austral extremity,
and whose magnetic center is placed nearly in the middle of the blade; after the separation,
the extremity B of the part NB will be the austral pole, and the extremity N will retain its
boreal force: the extremity B of the part SB will have a boreal force, the extremity S will
retain its austral strength; each of these parts will take a magnetic center in C and C ′.

If, instead of being divided into two parts, this same blade is only pierced with a hole B
(Figure 26, No. 2), then the two ends are in separate parts, and this blade must have two
magnetic centers, like the preceding one.

This multiplication of poles led to the belief that a blade thus pierced must partly lose
its directing force,286 and that it was not very suitable for indicating the declinations. Here
is what experiment gives on this subject.

When a blade was pierced in its center, with a hole whose diameter did not exceed half
the width of the blade, it had sensibly the same directing force287 as before being pierced;
this is what it is easy to convince oneself of, by making this blade, magnetized to saturation
and suspended horizontally, oscillate. It will be found that in both cases it gives substantially
the same number of oscillations for the same time.

When the hole of the blade is almost equal to its width, we then find that the magnetic
moment of this blade, is equal to the sum of the magnetic moments of two other blades
which would have only half the length of the first: this is what also conforms to the theory
that we have explained (Article 61 and 62); thus, when the blade is very light, as in this
case its magnetic moment is approximately equal to a constant quantity, multiplied by its
length; whether the blade, in this case, is pierced, or whether it is not, we will always have
approximately the same moment.

286In the original: force directrice. This expression can also be translated as directive force, directed force,
force of direction, directional force, driving force or guiding force.
287In the original: force de direction.
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82. Second remark. After all that we have said on the communication of magnetism,
we did not believe that it was necessary to make researches on the various shapes, either
rectilinear, or curved, which we can give to the magnetized plates, it is easy to predict all
that can be expected from these variations.

Arrow-shaped needles, of the form shown in Figure 25, give, at equal weight and thickness,
the same ratio between the magnetic moment and the frictional moment, and therefore
produce about the same errors as blades of uniform width; it is observed, however, that
light blades of uniform width have an advantage over arrow-shaped blades, and that when
the blades are heavy, the latter have an advantage over the former: the theory predicts this
result, the experiment confirms it.

The needles, such as in Figure 25, which we are quite in the habit of using for the
observations that have been made on Earth, are most often thicker towards their extremities
than in the other parts: this practice appears disadvantageous; we will easily see that it is
better, by preserving the same weight, to widen the end, and to decrease the thickness, so
that the parts exert, the ones on the others, their magnetic action at a greater distance, and
therefore retain a greater degree of magnetism.

83. Third remark.288 We have said before that there is always an advantage in con-
structing compasses of several light blades: the theory of magnetism leaves no doubt about
this. The more the blades are multiplied, making them light in proportion, the more the
directing force of the compass will have an advantage over the friction. In the construction
of navigational compasses, where magnetized needles can scarcely be given more than six
inches in length [16.2 cm], blades of 50 to 60 grains [2.7 to 3.2 g] fulfill quite well all the
uses for which these compasses are intended: we determine the number of blades by the
formula of Article 81.289 These blades calibrated exactly according to the same dimensions,
are placed sideways, at equal distances from the point of suspension, spaced four or five lines
[0.9 or 1.1 cm] apart from each other, so that their reciprocal action does not destroy the
magnetism.290 They must be quite straight and solidly fixed to the [compass] rose: the rose
and the [compass] cap will be as light as possible. The [compass] caps that are well centered
and turned with care must form in their concavity a cone rather obtuse than acute: most of
the caps, although they appear to the eye fairly well centered and exactly polished, have, in
their concavity, inequalities and small depressions which mesh with the tip of the pivot; so
that there are positions where the center of gravity of the load is lower than in the others.
In this situation, the cap cannot turn horizontally, its axis remaining vertical, without these
inequalities being released, the center of gravity of this cap and of the mass which is fixed
there, does not rise.

Thus, a compass carried by such a cap and balanced horizontally on the tip of a pivot,
finds itself at the same time solicited by the magnetic force, and by its own weight, which,

288The text henceforth was not included in the partial reprint of this paper in Potier’s work, [Potier, 1884].
289In the original text appears here “Article 78”. We changed this expression to “Article 81” due to the

renumbering introduced earlier, see footnote 285 on page 125.
290[Note by Coulomb] When several blades are fixed to the plane of the [compass] rose, their reciprocal

action cannot influence the position of the plane of this rose, because of the equality of action and reaction;
however, this reciprocal action being able to diminish more or less the magnetism of the parts of each blade,
there can be a change of position in the resultant of the magnetic forces of each blade; but it will always
be easy to find the common resultant of all the needles attached to the rose, by reversing this rose, and
practicing the same operations that we have indicated (Article 63), for a single blade.
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by combining the inequalities of the bottom of the cap with those of the tip of the pivot,
tends to make it take the position where the center of gravity is lowest: the patience and
the skill of the artisan, can only provide us with exact caps; but the observer can also, by
different trials, recognize its faults. Here is a way that worked pretty well for me.

A magnetized blade is suspended sideways with silk threads, as we have indicated before;
in this way we easily determine the magnetic meridian. This meridian is also traced across
the width of the blade, by suspending it so that its width is in a horizontal plane, and then
turning it over on the other side, as we have explained (Article 63).

We now take (Figure 27), a small, very light wooden ruler AB, equipped in C with the
[compass] cap we wish to test.

We place at any point g, a blade SN magnetized to saturation, whose magnetic meridian
we know: we balance the whole thing horizontally, by means of a counterweight P , which
can slide along CB, and with a little sand that we spread lightly on the parts that seem to
rise.

If the cap is perfectly centered, if its axis is vertical, the small plane of contact between
the pivot and the bottom of the cap will be a small horizontal circle, and the direction of the
needle will be determined solely by the magnetic force: we will make the error due to friction
vanish by knocking lightly and quickly on the table where the pivot is fixed; this produces,
in the elastic parts of this table, a rapid oscillating movement, which causes the pivot to rise
and fall. During the time that the pivot descends, it is conceivable that it is partly detached
from the bottom of the cap, and that during this time the pressure and consequently the
friction is insignificant. It actually follows from all that we have said previously, that in
whatever position the magnetic needle is placed in relation to its center of rotation, it must
take the direction of its magnetic meridian: now, as this direction is known to us, the angle
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which it will form with this direction, will be the error due to the defects of the cap and the
pivot.291

By successively posing this blade, so that its magnetic meridian SN , make different angles
with the punctuated line AB of the balance; we will recognize all the imperfections of the
cap, whose different defective points will be located differently in relation to the magnetic
direction at each trial and will give different errors.292

Several other means can be used. If, for example, we suspend, with this cap, a needle
pierced in its center, and that, through the point of suspension, we make pass the magnetic
meridian; this needle must not only be placed on its magnetic meridian; but when it is put
into oscillation, it must make equal excursions to the right and to the left of this meridian,
or at least the excursions will decrease an equal amount.

If we don’t have the help of a good artisan, and if we can get an obtuse hole punch, well
polished and slightly rounded at its tip, we will form a fairly good cap, by driving this punch
with a small hammer blow perpendicular at the center of a small copper plate in a quarter
of a line [0.06 cm].

The pivots must be more or less acute, according to the loads they are intended to
support: in compasses, for the service of ships, the pivots wear out a lot, not only because of
the weight of the cardboard rose where the [magnetized] needles are fixed, but also because
of the continual movement in the place where the compasses are located. It is customary,
and with good reason, to make these pivots more reinforced, less sharp than those which
must support needles intended to carry out operations in a fixed place.

The hardness of the caps and pivots is the most essential condition for the perfection of
these instruments; the pivot should never be sharp enough to penetrate the solid part of the
cap, nor to be able to bend under its weight.

84. Fourth remark. The point of suspension or the contact of the end of the pivot and
the bottom of the cap, is a small circular surface, as we have seen (Article 70): it seems
interesting for the topic we are dealing with, and for the arts in general, to seek to determine
the diameter of this circle. Here, according to the theory and the experiments which precede,
is the way to do it.

We have seen (Article 74,) that it resulted from experiment, that the small circle of
contact, formed by the compression of the extremity of the pivot, was equally pressed in all
its points: we found (Article 68), that the moment of friction on the small contact circle, was
expressed by the quantity 2P

3n
· CM , where CM is the radius of the contact circle, and P/n

the friction of the weight P , which would slide along a surface; a quantity that we found for
[the contact between] glass and steel, equal to P/7 (Article 67).

We saw, Article 6, that the angle of error of a magnetized needle293 was (B − S) =
R/(

∫

ϕµcµ), and we found (Article 12), that

∫

ϕµcµ =
g · ∫ µr2

λ
,

291That is, the angle that the needle will make with the magnetic meridian will be the deviation of the
declination due only to the defects of the cap and the pivot. This angle of deviation from the magnetic
meridian is caused by the friction between the cap and the pivot.
292That is, with each defect producing a different angular deviation of the compass from the true magnetic

meridian.
293That is, the angle of deviation of the needle from the magnetic meridian.
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where λ is the length of a pendulum which beats oscillations isochronous to those of the
needle: thus, we have

(B − S) =
2λP

3gn
∫

µr2
CM ;

and B − S being given by experiment, as well as λ, we will easily find, for a given needle,
the value of CM .

5.5.7 Example

We found (Article 74, Experiment, First Trial), that a needle in [the shape of an] arrow, 10
inches in length and 150 grains of weight, made 10 oscillations in 60”, and that its angle of
error due to friction, was 5’: now we have for a needle of this shape,

∫

µr2 = P ·l2

6g
, where l

here equals 5 inches: thus, CM = (B−S)nl2

4λ
; and, substituting the numerical values, n = 7,

λ = 1321 inches, (B−S) = 5′, l = 5 inches we will have the diameter of the circle of contact,
2CM = 1/862 of a line.294

We can conclude, it seems to me, from the smallness of the diameter of the circle of
contact, found in this example, that the plane of contact can be regarded as a fixed point.

5.5.8 Dip Circles

85. Fifth remark. Dip circles have always presented very great difficulties in their execution,
either because it is difficult to bring the center of gravity down into the axis of the trun-
nions,295 or because the curvature of these needles, changing according to their inclination,
makes the position of this center of gravity variable, with respect to the axis of suspension:
nothing can be added to the scholarly research that Mr. Daniel Bernoulli has given on this
subject:296 but when we cannot have an artisan as skilful and as exact as those who appear
necessary, to fulfill the views of this author, here is how it seemed to me that we could make
up for it.

The needle SN (Figure 28), is balanced on its trunnion C, which bear on two glass
blades; a copper wire p weighing one or two grains [0.05 or 0.10 g], but whose weight is
exactly determined, can slide along the austral part, from C to S, its moment is measured
by the distance (Cp).297

294That is, diameter = (1 line)/862 = (0.226 cm)/862 = 2.6× 10−4 cm.
295In the original: tourillons. A trunnion is a pin or pivot on which something can be rotated or tilted.
296Daniel Bernoulli (1700-1782) was a Swiss mathematician and physicist. See, in particular,

[Bernoulli, 1752].
297In the original article Coulomb represented the copper wire by the letter π, see [Coulomb, 1787, p. 254]

and the Figure in this footnote:
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p

Before magnetizing this blade, now subject to no moment, it will be balanced very exactly
on these trunnions, in a horizontal position, the small weight p then placed at C on the axis
of the trunnions. The blade will then be magnetized to saturation: if it is of a very pure
steel, the magnetizing center will fall approximately at C, the forces µQ which will act on
each point µ of the boreal part CN , will be parallel to each other and to the magnetic
direction: the forces µ′Q′ which will act on the austral part, will have the same direction
[but pointing] in an opposite sense; it will therefore be necessary, to keep the needle in the
horizontal position, to bring the small weight p to the distance Cp from the point C.298

If we now decompose all the magnetic forces µQ into two other forces, one horizontal
RQ, and the other vertical Rµ, and if we name ϕ the force following µQ, and B the angle

We are here following Potier and representing the copper wire by the letter p in the Figure 28 that was
placed in the middle of the text, to avoid confusion with the number π = 3.14159..., see [Potier, 1884, p. x]
and the page 32 of this English translation. This copper wire can be thought of as having the shape of an
inverted U letter. It can slide along the axis of the magnetized needle.
298See footnote 135 on page 57.
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µQR, inclination of the magnetic direction with the horizon, we will have, for the magnetic
moment of all the vertical forces

∫

ϕµcµ sinB ,

which must be equal to p · pC.299
If we then suspend this needle horizontally, by means of a silk thread, as we have done

before, and make it oscillate,300 the time of the oscillations will give us, in accordance with
Article 13, a weight Q, which, multiplied by half the length of the needle, would have a
moment equal to all the magnetic forces RQ, which act in a horizontal direction; from which
we will we get

Q · CN =
∫

ϕµcµ cosB .

Now divide the moment of the vertical forces, by the moment of the horizontal forces, and
we will have the equation

p · pC
Q · CN =

sinB

cosB
= tanB ;

which will give the angle B that we are looking for.
By substituting the value of B, thus determined in the equation

299An illustration of this experiment appears in the Figure in this footnote:

C C C

N

NS

S

p

(a) (b) (c)

We have a non-magnetized needle that can rotate in a vertical plane around a horizontal axis that passes
through its center of gravity. This needle is initially placed in a horizontal orientation, as shown in letter
(a) of the Figure of this footnote. When it is magnetized, the North pole of the needle will be below the
horizon if the needle is located in Paris, while the South pole will be above the horizon, as shown in letter
(b). If there is little friction on the axis and if this axis passes exactly through the center of gravity of the
needle, the needle will orient along the direction of the Earth’s magnetic force, see Section 4.3. Coulomb
then places a copper wire of weight p that can slide around the side CS of the needle. He slides this weight
from the center C of the needle towards the end S, until he finds a certain point at which the needle becomes
horizontal again, as illustrated in letter (c). In this situation, the magnetic torque exerted by the Earth on
the needle must be equal to the gravitational torque. This gravitational torque is given by the weight p of
the copper wire multiplied by the lever arm, that is, multiplied by the distance pC.
300That is, the needle will oscillate in a horizontal plane around the vertical axis given by the silk thread.

133



Q · CN
cosB

=
∫

ϕµcµ ,

we will deduce the moment of the magnetic forces, something of interest at different points
on the Earth.

We note that, for this method to be feasible, it is necessary to take care to bring the
axis of the trunnions very close to the center of gravity of the blade, because the slightest
variation in the position of the weight p will result in an appreciable angle of inclination.

5.6 Chapter V. Regular Diurnal Variations of the Dec-

lination of the Needles

86. Up to now we have always preceded theory by experiments, and we have not made any
assumptions about the nature of the magnetic fluid: but as it is a question, in this Chapter,
of determining a cause, and as we lack observations made over a series of years, and on whose
accuracy we can rely, we will not be able to follow such a sure course.

The general system of physicists has held for a long time that the cause of magnetism was
due to a vortex of fluid matter, which made its revolution around magnets, whether artificial
or natural, entering through a pole and leaving through the other. This fluid acted, it was
said, on iron, because of the configuration of its pores, but it did not exert any action on
any other species of body. As difficulties in this hypothesis were encountered in explaining
new magnetic phenomena, or in the variations of the declination of the needles, so too some
new suppositions were made, either by imagining several vortices or several magnetic poles,
or by imagining a magnet in the center of the Earth, to which a particular movement was
given.

On these principles were based the three Memoirs on the cause of magnetism, which
were crowned in 1746.301 However, the difficulty of explaining all magnetic phenomena with
vortices, has made several physicists suspect, for some years, that the cause of magnetism
might come from attraction.

I believe I have proved, in the beginning of this Memoir, that the causes of the orientation
of the magnetic needle, could not be explained by impulse.302 I would add here, that when
we magnetize a steel bar with an artificial magnet, it does not appear that the bar, which is
used to magnetize, has lost its magnetism after the operation: however, in the hypothesis of
impulse, the vortex of the magnetizing bar produced a movement in the whole mass of the

301Coulomb is referring here to the works of Leonhard Euler (1707-1783); Étienne François Dutour de
Salvert (1711-1789); Daniel Bernoulli (1700-1782) and Jean Bernoulli (see Section 4.4): [Euler, 1752],
[Du Tour, 1752] and [Bernoulli and Bernoulli, 1752]. These authors followed the ideas of René Descartes
(1596-1650) that magnetism would be due to a vortex of a material fluid that would circulate around the
magnets, entering the magnets at one end and exiting at the other. The interaction between a magnet and
a piece of iron, for example, would be caused by the pressure caused by this fluid when pushing or colliding
with the pores or channels that would exist in the iron. The interaction between two magnets causing their
mutual orientation would be due to the action of the vortices of material fluid of one magnet when interacting
with the pores or channels of the other magnet, and vice versa. On the other hand, non-magnetic materials
would not have these pores and, therefore, would not suffer the action of nearby magnets. For a discussion
of this topic see, for example, Section 4.4 and [Gillmor, 1971a, p. 176].
302That is, the orientation of compasses could not be explained by the impulse of a fluid colliding with the

parts of the magnetized needle.
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magnetic fluid of the magnetized bar; this movement could not have been produced without
an impulse, which, by its reaction, must have destroyed part of the movement, or changed the
direction of the magnetic fluid of the bar which was used to magnetize; and consequently, if
the magnetism were due to impulse, a magnet should lose its force while magnetizing, which
is contrary to the experiment.

87. Among the different authors who have had recourse to attraction to explain magnetic
phenomena, most, like Messrs. Brugman and Wilke,303 used two elastic fluids; they supposed
that, when a blade of steel was in its natural state, these two fluids were joined together, and
spread uniformly throughout the blade; but that, when it was magnetized, the two fluids
were divided: according to these authors, the two fluids exert an attractive action on each
other; but they exert on their own parts a repulsive force,304 like the air and all the elastic
fluids: they named one of these fluids, positive, and the other, negative.

Mr. OEpinus has adapted Mr. Franklin’s system of electricity to magnetism:305 he thinks
that, for magnetism, there is only one elastic fluid, which acts on its own parts by a repulsive
force, and on parts of steel, by an attractive force. This fluid, once engaged in the pores of
the steel, only emerges with difficulty. This system leads to a singular conclusion; it is that
it results from magnetic phenomena, that the solid parts of the steel exert on each other a
repulsive force. Mr. OEpinus calls positive pole, the part of the steel blade where the fluid
abounds, and negative pole, the part which has been emptied, or which does not retain its
natural portion of magnetic fluid.

These two hypotheses explain equally well, and in the same way, all the magnetic phe-
nomena: there remain however some difficulties to be solved; here is one of the main ones.
Suppose that a steel blade is magnetized to saturation, if we consider the hypothesis of the
two magnetic fluids, these two fluids will be separated, the boreal fluid306 will be carried
to the boreal part; the austral fluid307 will be carried to the austral part of the blade; the
magnetic center, if the blade is homogeneous, will be almost in the middle [of the blade];
suppose that we cut this blade into two equal parts, if the two fluids are separated, each
part of the blade will have only one species of fluid, and consequently will not be susceptible
of the same degree of magnetism, as a blade of the same size, which would be in its natural
state: however experiment proves the contrary. This same difficulty arises against the system
of Mr. OEpinus. How, for example, can the part of the blade, empty of magnetic fluid, be
susceptible to the same degree of magnetism as such a blade in its natural state?

It seems, according to this experiment, that it is necessary to admit that the quantity
of fluid, transported by magnetism, from one end of a steel blade to the other, is much less
considerable than the total quantity of fluid that each part of this blade contains. Perhaps,
moreover, the greater part of the magnetic elastic fluid is found in the blades in a state of
fixity, and without any kind of action, as experiment has taught us that the fixed air was
diffused in all bodies in much greater quantity than the elastic air which these bodies can
contain?308 It seems, in fact, probable that it exists, in all bodies and in their atmospheres,

303Anton Brugmans (1732-1789) and Johan Carl Wilcke (1732-1796). See [Brugmans, 1765], [Wilcke, 1766],
[Gillmor, 1971a, pp. 180 and 215-216] and [Aepinus, 1979, pp. 200, 209-210 and 216-217].
304That is, two fluids of the same type repel each other, while fluids of opposite types attract each other.
305See Section 4.4 on page 42. See also footnotes 80 and 182 on pages 36 and 73, respectively.
306In the original: fluide boréal.
307In the original: fluide austral.
308In the original: “comme l’expérience nous a appris, que l’air fixe étoit répandu dans tous les corps en
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parts which exert attractive forces, and others which exert repulsive forces, of which differ-
ent combinations with other bodies, change and develop the action: evaporation of fluids,
elasticity and the cohesion of solids, electricity, in short all chemical analyses, are perhaps
only the result of different properties analogous to magnetism: but we are still very far from
having lifted the veil which hides this part of physics from us.

88. After explaining these different hypotheses, we will present some probabilities on the
cause of the diurnal variations:309 let us gather some facts.

We have seen, in the theory of magnetism, that the action of each point of a magnetized
blade tends to destroy the magnetism of the neighboring parts: hence it appears that the
magnetic state is a forced state, and that the magnetic fluid makes an effort to spread
evenly; this is what experiment proves, since we are obliged to renew from time to time the
magnetism of the needles.

The globe of the Earth is a natural magnet, which, left to itself, seems to preserve its
magnetic force: however, the variation of the declination tells us that the magnetic matter is
there in a continual movement: thus, reasoning by analogy, the magnetic matter should have
spread uniformly, and the magnetism of the Earth should have long since been annihilated.

There is therefore some cause which preserves or renews the magnetism of the Earth.

It is probable that the same cause which maintains the magnetism of the Earth, produces
the movements of magnetic matter, [and] produces in the declinations, the annual variations
and the diurnal variations.

The diurnal variation is nearly regular; the needle is currently in our climates in its
greatest declination at one o’clock after noon: this declination decreases until seven or eight
o’clock in the evening; it is almost stationary until eight o’clock in the morning; it grows
more rapidly when the Sun approaches its meridian... These variations are not always equal.
I found, in 1776, from the month of March until the end of July, that they were sometimes
18 or 20 minutes, but more often between 8 and 12’. I did not find the daily excursions
regularly greater during one month than during the other: the greatest variations were
observed during the equinox, and during the heat of the month of July: there were during
these five months, three noticeable irregular variations; the first, on March 28, began to be
seen around six o’clock in the evening; at ten o’clock the needle was in its greatest excursion,
and its declination of 61’ less than at one o’clock in the afternoon. The second was noticeable
on April 5; we began to observe the direction of the needle at seven o’clock in the morning;
the declination was 41’ larger than usual; at 1 o’clock it had diminished by 30’, and the
needle was almost in the same direction in which it is usually observed at the same hour.
The third variation was noticeable on April 8, it began to be observed at 5 o’clock in the
evening, it marked its greatest excursion at 9 o’clock and at that time the declination was
44’ less than at 1 o’clock in the afternoon; at midnight the needle appeared in its usual
direction; on the same day we could distinguish an aurora borealis in the northwestern part.
During the first two observations, the weather was overcast and stormy. In the irregular
variations, the needle is continually in motion, its oscillations are sometimes of half an hour,
and of a quarter of a degree.

beaucoup plus grande quantité, que l’air élastique que ces corps peuvent contenir?” Joseph Black (1728-1799)
was a Scottish physicist and chemist. He discovered carbon dioxide, which he called “fixed air”, because it
can be absorbed or fixed by strong bases.
309Diurnal variations of the magnetic declination of a compass.
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The influence of the aurora borealis on the direction of the needle has long been observed;
it is even very probable that the fluid, which forms this meteor, is the same as the magnetic
fluid:310 we find, on this subject, the most ingenious ideas in the [work] Loix du Magnétisme
of Mr. le Monnier;311 it will be easy to adapt the following theory to it.

89. If we examine the regular diurnal variations of the needle, we will see that they have
a revolution adjusted like that of the Sun. It is therefore an action due to this celestial body
which produces these periodic variations. Some authors have claimed that these variations
were the effect of the solar heat, which would destroy the magnetism of the part of the Earth
which was opposite to it. They based themselves on the fact that a magnetized blade loses
its magnetic virtue in the fire: but, even if this opinion would explain the diurnal variation, it
would not be admissible; because a cause which tends continually to destroy the magnetism
of the Earth, would not have left to it for a long time any magnetic quality.312

If it is not the heat of the Sun which produces the diurnal variations; if, however, this
effect is due to this celestial body, the Sun must act on the terrestrial globe, as a magnet
acts on another magnet.

Here is, according to this idea, how it seems that all magnetic phenomena can be ex-
plained: the solar atmosphere, known under the name of zodiacal light, will be nothing else
than a magnetic fluid; this fluid, admitting the system of Mr. OEpinus, and it will be easy
to adapt the same reasonings to any other system, will act on the parts of the Earth to drive
out the magnetic fluid which is contained therein, like the positive pole of a magnet, tends
to expel the magnetic fluid from the point of a steel blade where it is applied.

But the action of this fluid will be all the greater, as its density will be greater and its
distance less; now this density decreasing as one moves away from the Sun, it follows that
this fluid will act more strongly on the part of the hemisphere illuminated by the Sun, than
on the opposite hemisphere; that its action will be greater in the perigee than in the apogee:
thus, during the winter, the southern part of the Earth must be emptied of magnetic matter:
during the summer, the solar atmosphere will produce an opposite effect; but the Sun being
then at its apogee, this action will be smaller than during winter: whence it must result that
the Earth will be magnetized positively in the boreal part, and negatively in the austral part:
as the apogee will change, there will be a revolution in the position of the magnetic fluid;
but this movement is too slow for the effect to be very perceptible, since the declination of
the magnetic needle is observed with exactness.

It is now easy to explain the diurnal variations: the magnetic fluid, spread over the surface
of the Earth, acts by its attractive force on the points of the needle negatively magnetized,
and by a repulsive force on the parts of the needle positively magnetized. Thus, the direction
of the needle will be determined by all these forces, and this action will follow a law of the
density of the fluid in each point of the Earth,313 and of its distance from the needle, on the
different points of which it acts.

In Figure 29, the circle ESON represents the globe of the Earth, EO the equator, and
SN the meridian of the place, where the observation is made at g.

310In the original: fluide aimantaire.
311See footnote 172 on page 68.
312In other words, the Earth would have long ago lost its magnetic properties due to this cause.
313That is, the magnetic force exerted by each point on the Earth’s surface is proportional to the density

of magnetic fluid at that point.
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The direction of the needle AB, placed here on the boreal hemisphere, will be determined
by the magnetic action of all the parts of the Earth: thus, if the united action of all these
forces, determines the compass to form an angle Bgn with the meridian, it will be because
the magnetic fluid will be denser in the part OCN , than in the quarter hemisphere ECN :
we can do vice versa a similar reasoning with respect to the austral part ESO of the Earth.

If E represents the East, and O the West, as the Sun approaches the meridian of the
place where the compass is placed, it will expel the magnetic fluid from the part ECN ,
into the part OCN : thus, the density of the fluid will increase in the western part, and
will decrease in the eastern part: so, if ϕ was the center of all the forces which solicited the
needle when the Sun was at E, this center ϕ will move towards the West at ϕ′, and the
declination will increase, until the Sun is placed in the same meridian as this center ϕ′; and
as the declination at present in our climates carries the needle towards the West, it must
happen that the declination will still increase some time after the passage of the Sun in the
meridian of the place where the observation is made. When the Sun will be to the West of
the meridian where the center ϕ is placed, it is clear that in this case the declination must
decrease; whence it must follow the periodic movement of the diurnal variations.

If the magnetic fluid were spread symmetrically around the pole of the world, if the
Sun always traversed the same circle, and at the same distance from the Earth, the diurnal
movement of the declination of the needle would be perfectly regular, and the center ϕ would
run through an exactly closed oval. But [due to] the different density of this fluid in the
eastern and western parts; the change of position of the Sun must entail, either that this
center will not come to the point ϕ after a diurnal revolution, or that it will be carried
further; so that this center will travel every day, not in an exactly closed oval, but in a spiral
line; which will produce the annual movement, observed in the declination for more than a
century.
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Chapter 6

Remarks on Coulomb’s 1777 Work

A. K. T. Assis

I discuss here in more detail some aspects of this fundamental work that Coulomb pre-
sented in 1777 to the French Academy of Sciences and that was published in 1780.

6.1 Coulomb’s First Fundamental Principle

Coulomb described in Subsection 5.0.2 his first fundamental principle as follows:

If, after having suspended a needle by its center of gravity, we move it away from
the direction that it takes naturally, it is always brought back by forces which act
parallel to this direction and which are different for different points along the needle,
but which are the same for each of these points in particular, in whichever orientation
the needle is placed in relation to its natural direction; so that a magnetized needle
always experiences the same action, in any position, due to the magnetic forces of
the Earth.

I illustrate this principle in Figure 6.1 assuming a particular case in which the magnetized
needle can rotate in a horizontal plane when supported by a vertical axis passing through
its center. Let NS be a uniformly magnetized needle of length ℓ that can rotate about a
vertical axis passing through its fulcrum C in the middle of the needle. The dashed line AB
indicates the local magnetic meridian, that is, the direction naturally pointed by the needle
at that location, Figure 6.1 (a). Let us assume that the North pole of the needle points to
B. Point m indicates an arbitrary point on the needle.

In Figure 6.1 (b) we see the needle rotated around point C at an angle θ1 with respect
to the magnetic meridian. By the first fundamental principle, the magnetic force exerted by
the Earth on the point m of the needle is indicated by the arrow Fm, parallel to the direction
AB.

Also by the first fundamental principle, as shown in Figure 6.1 (c), when the needle is
rotated through another angle θ2 relative to the magnetic meridian, the force acting on point
m continues with the same intensity and direction as in the case of Figure 6.1 (b).

Let us now assume another point q of the needle, as shown in Figure 6.2 (a). When the
needle is displaced by an angle θ1 from the magnetic meridian, the force Fq acting on point
q is still parallel to the direction AB of the magnetic meridian, but its magnitude may be
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Figure 6.1: (a) Direction AB indicates the magnetic meridian. (b) The force Fm acting on a point
m of the magnetized needle is parallel to the direction AB. (c) The intensity of this force Fm does
not depend on the angle θ of the needle with respect to the meridian.

different from the force acting on the point m. This can be seen by comparing Figures 6.1
(b) and 6.2 (b).
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Figure 6.2: (a) Another point q on the needle. (b) The force Fq is also parallel to the magnetic
meridian, but can have an intensity which is different from the force Fm. (c) The force Fq also does
not depend on the angle θ.

When the needle is displaced by another angle θ2 with respect to the magnetic meridian,
the intensity and direction of Fq remain the same, as can be seen by comparing cases (b)
and (c) of Figure 6.2.

6.2 Coulomb’s Second Fundamental Principle

Coulomb’s second fundamental principle was presented in Subsection 5.0.3:

The magnetic forces of the terrestrial globe that attract the different points of a
compass needle act in two opposite ways. The North part of the needle is attracted
towards the North pole of the magnetic meridian. The South part of the needle is
attracted in the opposite direction. Whatever may be the law according to which
these forces act, the sum of the forces which attract the needle towards the North
pole is exactly equal to the sum of the forces which attract the South pole of the
needle in the opposite direction.

An illustration of this second principle can be found in Figure 6.3 assuming a particular
case in which the needle can rotate in a horizontal plane when supported by a vertical axis
passing through its center. In (a) we have a uniformly magnetized needle NS pointing along
the magnetic meridian AB. Points 1 and 2 are equally distant from its center C, with point 1
being on the austral or southern part of the needle, while point 2 is on the boreal or northern
part of the needle.

140



BA A B
N

C C

F2

F1

N

S

S

(a) (b)

q

21
1

2

Figure 6.3: (a) Direction AB represents the magnetic meridian. Points 1 and 2 are equally distant
from the center C of the uniformly magnetized needle. (b) Forces F1 and F2 acting on points 1
and 2.

When the needle is displaced in the horizontal plane by an angle θ with respect to the
magnetic meridian, point 1 experiences a force F1 parallel to the meridian (by the first
principle) pointing to the South side of the magnetic meridian (that is, from B to A), while
point 2 experiences a force F2 also parallel to the magnetic meridian, but pointing to the
North side of the magnetic meridian (that is, pointing from A to B), as shown in Figure
6.3. Furthermore, these two forces have the same intensity, although they act in opposite
directions.

It is also possible to think of the force F1 as the resultant force acting on the southern
part CS of the needle, while F2 would be the resultant force acting on the northern part
CN of the needle. These forces are parallel to the magnetic meridian AB, have the same
intensity and opposite directions, acting along parallel lines separated from each other. The
two together do not exert a net force on the needle, they exert only a net torque on the
needle, as they constitute a couple. That is, these two forces reduce to a couple, two equal
and opposite forces whose lines of action are parallel but not congruent.

A couple is a pair of forces, equal in magnitude, oppositely directed, and displaced by
a perpendicular distance d. The simplest kind of couple consists of two equal and opposite
forces of magnitude F , whose lines of action do not coincide. The forces have a turning effect
or moment called a torque about an axis which is normal (perpendicular) to the plane of
the forces. The SI unit for the torque of the couple is Newton-meter. If the two forces are
F and −F , then the magnitude of the torque τ is given by τ = Fd.

6.3 Meaning Given by Coulomb to the Time Interval

of a Total Oscillation

Article 11 of this work of 1777 appears on page 64 of this English translation. To understand
this Article, I begin by quoting it in full in the original French language:314

11. Lorsque, dans l’équation précédente, l’on suppose R = 0, l’on a l’équation

approchée uu =
∫

φµr
∫

µr2
(2BS − SS); d’où

(∫

φµr
∫

µr2

)1/2

dt = dS : (2BS − SS)1/2; or
∫

dS : (2BS − SS)1/2 est l’angle dont le rayon est B; & S le sinus-verse; quantité
égale à 90◦, losque S = B; ainsi, en nommant T le temps d’une oscillation totale,

l’on aura T
(∫

φµr
∫

µr2

)1/2

= (180)◦.

314[Coulomb, 1780, p. 176].
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I will put here some comments that help to understand this sentence. I also show how
to get the integrated result of the function presented by Coulomb.

First, what Coulomb here calls (180)◦ is the ratio of the circumference to the diameter
of a circle.315 Nowadays this ratio is represented by the letter π = 3.14159.... So I am going
to replace 180◦ with π, while 90◦ will be replaced with π/2.

The letter φ used by Coulomb was replaced by Potier in the 1884 reprint of Coulomb’s
works with the letter ϕ. In this English translation I am adopting Potier’s nomenclature.

Here is the translation we adopted for that paragraph:

11. When, in the previous equation, we suppose R = 0, we have the approximate
equation

u2 =

∫

ϕµr
∫

µr2

(

2BS − S2
)

;

from where

(
∫

ϕµr
∫

µr2

)1/2

dt =
dS√

2BS − S2
;

now

∫

dS√
2BS − S2

is the angle whose radius is B, and S the sine-verse; quantity equal to π/2, when
S = B; thus, by naming T the time of a total oscillation, we will have

T

(
∫

ϕµr
∫

µr2

)1/2

= π .

In this Article 11 Coulomb called T the “time of a total oscillation”. What he called the
time of a total oscillation is when the pole n of the magnetized needle ns goes from N to N ′

in Figure 6.4:
Line ACB in Figure 6.4 represents the magnetic meridian. The pole n of the magnetized

needle ns is moved to point N and released from rest. It then oscillates between points N
and N ′. Coulomb denominates the angle NCn in this Figure by the capital letter S, while
letter B denotes the angle NCB. We will call T1/4 the time interval for the needle to leave
its initial angle S = 0 at rest, until it arrives along the magnetic meridian with S = B. That
is, T1/4 is the time interval for the extremity n of the needle to start at point N and arrive
at point B in this Figure. The equation we are going to integrate was provided by Coulomb
in this Article 11, namely (replacing Coulomb’s letter φ with the letter ϕ):

(
∫

ϕµr
∫

µr2

)1/2

dt =
dS√

2BS − S2
. (6.1)

315See Alfred Potier’s Introduction to Coulomb’s works, [Potier, 1884, pp. x and 13], as well as page 32 of
this English translation.
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Figure 6.4: Figure 2 from Coulomb’s 1777 work.

Integrating this equation with time t going from 0 to T1/4 and with angle S going from
0 to B we get:

∫ T1/4

t=0

(
∫

ϕµr
∫

µr2

)1/2

dt =
∫ B

S=0

dS√
2BS − S2

. (6.2)

The left side of this equation is given by:

∫ T1/4

t=0

(
∫

ϕµr
∫

µr2

)1/2

dt =

(
∫

ϕµr
∫

µr2

)1/2
∫ T1/4

t=0
dt =

(
∫

ϕµr
∫

µr2

)1/2

T1/4 . (6.3)

The right side is given by:

∫ B

S=0

dS√
2BS − S2

=
∫ B

S=0

dS
√

B2 − (S − B)2
=
∫ B

S=0

dS
B

√

1−
(

S−B
B

)2
. (6.4)

Defining the magnitude γ = (S −B)/B we get dγ = dS/B and:

∫ B

S=0

dS
√

B2 − (B − S)2
=
∫ B

S=0

dγ√
1− γ2

= [arcsin γ]BS=0 =
[

arcsin
S − B

B

]B

S=0

= [arcsin 0− arcsin(−1)] =
(

0− −π
2

)

=
π

2
. (6.5)

From Equations (6.3) and (6.5) we get:

(
∫

ϕµr
∫

µr2

)1/2

T1/4 =
π

2
. (6.6)

Twice T1/4 gives the time interval for what Coulomb calls the “time of a total oscillation
of the needle” to occur, which he will later on represent by the letter T :

TCoulomb = 2T1/4 = π

√

∫

µr2
∫

ϕµr
. (6.7)

143



This result of the integration of Equation (6.1) was written by Coulomb in Article 11 as
follows:

T

(
∫

φµr
∫

µr2

)1/2

= (180)◦ . (6.8)

Nowadays, the time interval between departure and return to the same point is called
the complete period of oscillation. This is the time interval for the pole n of the needle to
start from point N , arrive at point N ′, and return to point N . This time interval is given by
the quadruple of T1/4. This complete period of oscillation is also represented today by the
letter T :

Tmodern = 4T1/4 = 2π

√

∫

µr2
∫

ϕµr
. (6.9)

Gillmor mentioned the following related to this topic:316

Coulomb employs the French definition of the period equal to π radians (that is,
equal to one-half the English period).

Elsewhere in his book Gillmor stated that:317

Note that in the French system utilized by Coulomb, the period of an oscillation is
defined as π radians or 180◦, rather than 360◦.

Despite these words by Gillmor, it should be emphasized that in his works Coulomb does
not use the word period (French: période). The terms Coulomb uses in his works are temps
d’une oscillation (time of one oscillation), temps d’une oscillation totale (time of a total
oscillation), temps d’une oscillation entière (time of a complete oscillation), etc.318

316[Gillmor, 1971a, p. 154].
317[Gillmor, 1971a, Note on p. 180].
318See, for instance, footnotes 160, 199 and 332 on pages 64, 85 and 149, respectively.
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Chapter 7

Theoretical and Experimental
Research on the Force of Torsion, and
on the Elasticity of Metal Wires

Coulomb319

Application of this theory to the use of metals in the Arts and in various
physics experiments: Construction of different kinds of torsion balances, for
measuring the smallest force levels. Observations on the laws of elasticity and
of coherence.

Read in 1784.

7.1 I

This Memoir has two objectives: the first, to determine the elastic force of torsion of filaments
of iron and of brass320 as a function of their length, their thickness, and their degree of tension.
I have already had need, in a Memoir on magnetized needles printed in the neuvième volume
des Savans étrangers,321 to determine the force of torsion of hair and of silk; but I have
never occupied myself with filaments of metal, because the nature of my research led me to
choose the most flexible suspensions for the same force, and I have found that the filaments
of silk had incomparably more flexibility than filaments of metal. The second objective of
this Memoir is to evaluate the imperfection of the elastic reaction [inelastic behavior] of
filaments of metal, and to examine the consequences that we can deduce about the laws of
coherence322 and elasticity of bodies.

319[Coulomb, 1787], with English translation in [Coulomb, 2012a] and [Coulomb, 2012b], and Portuguese
translation in [Assis, 2022]. This work was read in 1784 to the French Academy of Sciences and pub-
lished in 1787. Recently Heering replicated some of Coulomb’s experiments on the torsion of metal wires,
[Heering, 2006b] and [Heering, 2006a]. See also [Oliveira and Pisano, 2022].
320In the original: laiton. Brass is an alloy of copper and zinc.
321[Coulomb, 1780]. This Memoir is translated in Chapter 5.
322In the original: cohérence. This word can be translated as cohesion or coherence, [Gillmor, 1971a, pp.

126 and 150].
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7.2 II

The method to determine the force of torsion, via experiment, consists of suspending a
cylindrical weight by a filament of metal in a manner such that its axis is vertical, in the
direction of the filament of suspension. As long as the filament of suspension is not twisted,
the weight will remain at rest; but if one turns the weight about its axis, the filament
twists, and will attempt to re-establish itself in its natural situation; if one lets go of the
weight, it will oscillate for a longer or shorter length of time, accordingly as the elastic
reaction in torsion is more or less perfect. If in this type of test, one carefully observes the
duration of a fixed number of oscillations, it will be easy to determine, from the formulae
of oscillatory movement, the force of reaction of torsion which produces these oscillations.
Thus, in varying the weight323 of the suspended load,324 the length and the thickness of
the filament of suspension, we can expect to determine the laws of reaction of torsion with
respect to the tension, the length, the thickness, and the nature of the filaments.

7.3 III

If the filament of metal be perfectly elastic, and the resistance of the air does not alter the
amplitude of oscillations, the weight supported by the filament of metal, once set in motion,
will oscillate until one [forcibly] stops it. The diminution of the amplitudes of oscillations
can be attributed to air resistance and to the imperfection of the elasticity of torsion; thus,
in observing the successive diminution of the amplitude of each oscillation, and in taking
out the part of the alteration that it is necessary to attribute to air resistance, we could, by
means of the formulas of oscillatory movement, applied to these tests, determine according
to which laws this force of elasticity of torsion is altered.

7.4 IV

This Memoir is divided into two Sections; in the first, we will determine the law of the
force of torsion, in supposing the forces of torsion are proportional to the angle of twist, a
supposition conforming to experiment when we do not give too great an amplitude to the
angle of twist: we will give several applications of this theory to practice.

In the second Section, we will explore, by experiment, how the laws of elastic force of
torsion is altered in large oscillations: we will make use of this research to determine the
laws of coherence and of elasticity of metals and of all solid bodies.

323In the original: pesanteur.
324In the original: poids. This word can also be translated as weight.
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7.5 V. First Section. Formulas of Oscillatory Move-

ment, in Supposing the Reaction of the Force of

Torsion Proportional to the Angle of Twist, or Al-

tered by a Very Small Term

A cylindrical body B (Figure 1, Number 1) is supported by a filament RC, in a manner
such that the axis of the cylinder is vertical, in line with the prolongation of the filament
of suspension; we turn this cylinder about its axis, without disturbing this axis from the
vertical; it is necessary to determine, in assuming the force of torsion proportional to the
angle of twist, the formulas of oscillatory motion.

Figure 1, Number 2, shows a horizontal section of the cylinder; all the [mass] elements of
the cylinder are projected on this circular section at p, p′, p′′, etc.325

325In the original article Coulomb represented these material elements by the letters π, π′ and π′′, see
[Coulomb, 1787, p. 231] and the Figure in the present footnote:
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We assume that the starting angle of twist326 is ACM = A, and that after time t, this
angle is ACm, or that it is diminished by the angle MCm = S, so that

ACm = (A− S) .

Since we suppose the force of torsion is proportional to the angle of twist, the moment327

of this force will be represented by n(A−S), n being a constant coefficient, whose value will
depend on the nature of the filament of metal, on its length and on its thickness.328 If we
call v the velocity of any point p, after a time t, when the angle of twist is ACm, we will
have, by the principles of dynamics,329

I am here following Potier and representing these points by p, p′ and p′′ to avoid confusion with the angle
of π radians, see [Potier, 1884, p. x] and the page 32 of this English translation.
326The body is released from rest at this initial angle.
327In the original: momentum. This word can be translated as moment, torque or moment of force. See

footnote 150 on page 60.
328The magnitude n is the torsional stiffness of the wire. It has dimensions [force] · [length]/[angle], so

that its SI units are N · m/rad. When the wire is attached by the upper end and its lower end is rotated
relative to an inertial frame of reference at an angle θ around the vertical axis, it exerts a reactive torque
τ = nθ, where θ = 0 is the situation where the wire is not twisted.
329In the original paper the next equation appears as follows, [Coulomb, 1787, p. 232]:

n(A− S)dt =

∫

πrdv .
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n(A− S)dt =
∫

prdv ,

where r is the distance Cp from point p to the axes of rotation G.330

But if the radius CA′ of the cylindrical weight = a, and the velocity of point A′ on the
circumference of the cylinder, be at the end of time t, represented by u, we will have

v =
ru

a
,

from which it results

n(A− S)dt = du

∫

pr2

a
;

and as dt = adS/u, we will have for the integrated equation

a(2AS − S2) =
u2

a2

∫

pr2 ,

from which we draw

dt = dS

√

√

√

√

∫

pr2

n(2AS − S2)
.

But dS/
√

(2AS − S2) represents an angle of which A is the radius and S the versed

sine,331 which vanishes when S = 0, and which becomes equal to 90 degrees when S = A.
Thus the time of a complete oscillation will be332

T = π

√

∫

pr2

n
.

In this English translation we wrote this equation as

n(A− S)dt =

∫

prdv .

The letter p represents the infinitesimal element of mass located at a distance r from the axis of rotation.
Let δ be the volumetric density of mass and dV the infinitesimal volume occupied by this element of mass.
In this case Coulomb’s letter p can be replaced by dm = δdV , where dm is the infinitesimal mass of that
element. This integration should be understood as being a three-dimensional integration throughout the
volume of the cylinder.
330Probably the axis of rotation should be represented by the letter C instead of G, since point G does not

appear in Figure 1.
331Original sentence, [Coulomb, 1787, p. 232]: “Mais dS√

(2AS−SS)
représente un angle dont A est le rayon

& S le sinus verse”.
Potier, [Potier, 1884, p. 69], wrote this sentence as: “Mais dS√

(2AS−S)2
représente un angle dont S

A est le

sinus verse”. That is: “But dS
sqrt(2AS−S)2 represents an angle of which S

A is the versed sine”.

It seems that due to a typographical error, the integral symbol was missing before dS/
√

(2AS − S2). The

sentence should read: “But
∫

dS/
√

(2AS − S2) represents an angle of which A is the radius and S the versed
sine”. A discussion of how to arrive at this result and its integrated value can be found in Section 9.1 on
page 187.
332In the original: Ainsi le temps d’une oscillation entière sera. A complete oscillation here is but one half

of what we today call a full cycle.
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7.6 VI

In order to compare the force of torsion with the force of gravity in a [simple] pendulum, it
is necessary to remember that in the pendulum the time T of a complete oscillation

T = π

√

λ

g
,

where λ is the length of the pendulum and g the force of gravity.333 Thus a pendulum which
is isochronous to the oscillations of the cylinder gives

∫

pr2

n
=
λ

g
.

From this formula we will easily draw the value of n from the experiment, since the dimensions
of the cylinder or of the weight are given, and so too the time of one oscillation, which
determines the value of λ.

If we wish then to search for a weight Q which, acting at the extremity of the lever b,
would have a moment equal to the moment of the force of torsion, when the angle of twist
is (A− S), it requires setting Qb = n(A− S).

7.7 VII

It is necessary now to search for a cylinder such that the value of
∫

pr2, we will find equal to
πδLa4/2, where π is the ratio of the circumference to the diameter, δ is the [volume] density
of the cylinder, [L its length] and a its radius.334

But as the mass M of the cylinder is = πδLa2, we have

∫

pr2 =
Ma2

2
,

333In the original: où g est la force de gravité. Today we call g the gravitational force per unit mass, that
is, the free fall acceleration due to the Earth’s gravity. As will be seen in Section 9.1 on page 187, what
Coulomb calls the time for a complete oscillation is half of what is now called the period of one complete
swing of the pendulum.
334In the original, [Coulomb, 1787, p. 233]:

Il faut actuellement chercher, pour un cylindre, la valeur de
∫

πr2, que l’on trouvera égale à ϕδL·a4

4 ,
où ϕ est le rapport de la circonférence au rayon, δ est la densité du cylindre & a son rayon.

Here I am following Potier, [Potier, 1884, p. 70], in making several substitutions in this sentence. First
of all Coulomb’s letter π has been replaced by p, with this letter p representing an element of mass. The
magnitude ϕ, which for Coulomb indicates the ratio of the circumference to the radius, is being replaced
here by 2π with π = 3.14159.... The same substitutions are made in the other formulas in this work.
Let p be a mass element located at a distance r from the axis of the cylinder of mass M , length L, radius

a and volume mass density δ = M/(πa2L). I will use here cylindrical coordinates (r, ϕ, z) with the polar
angle ϕ going from 0 to 2π. The mass element p can be written as p = dm = δdV , where dV = rdϕdrdz is
a volume element. The moment of inertia I of this cylinder with respect to its axis of symmetry is given by:

I =
∑

i

mir
2
i = δ

∫ a

r=0

∫ 2π

ϕ=0

∫ L

z=0

r3dϕdrdz = πδL
a4

2
,

as obtained by Coulomb.
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and consequently

T = π

√

Ma2

2n
;

in comparing this, as in the preceding Section, with the isochronous pendulum, there re-
sults335

λ

g
=
Ma2

2n
,

and as gM is the weight P of the cylinder, we will have

n =
Pa2

2λ
,

which gives a very simple formula for determining n from the experiment.336

7.8 VIII

If the force of torsion, which we have taken equal to n(A−S), be altered by a quantity R,337

the formula of oscillatory motion would give as a law

[n(A− S)− R]dt = du
1

a

∫

pr2 ;

and putting as before, in place of dt, its value adS/u, we will have for the integration

n(2AS − S2)− 2
∫

RdS =
u2

a2

∫

pr2 .

If we wish to extend this integration to a complete oscillation, it requires dividing it into
two parts, the first from M until A, where the force of torsion accelerates the velocity u,
while the force of retardation diminishes [the velocity]; the second from A untoM ′,338 where
all the forces together retard the motion.

EXAMPLE I. Suppose R = µ(A − S)m, we will have, for the state of movement in the
first portion MA,

n(2AS − S2) +
2µ(A− S)m+1

m+ 1
− 2µAm+1

m+ 1
=
u2

a2

∫

pr2 ;

thus when the angle of twist will be null, or that (A− S) = 0, we will have

nA2 − 2µAm+1

m+ 1
=
U2

a2

∫

pr2 .

335That is, by comparing this magnitude T with an isochronous pendulum that performs its oscillations in
the same time.
336See footnote 328 on page 148.
337Coulomb will consider this torque R to be a frictional torque.
338Due to a typo, in the original text the letter M appears here instead of M ′. I have made the correction

and used M ′ instead of M .
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Let us consider now the other part of the movement from A toM ′, and suppose the angle
AGm′ = S ′, we will find, in calling U the velocity of point A;

nS ′2

2
+
µS ′m+1

m+ 1
=
U2 − u2

2a2

∫

pr2 .

Substituting in place of U2 its value

a2
∫

pr2

(

nA2 − 2µAm+1

m+ 1

)

,

we will have for the total integral, when the velocity becomes null, or when the oscillation
will be completed,

(A− S ′) =
2µ

n(m+ 1)

Am+1 + S ′m+1

A+ S ′
;

and if the retarding forces are such that at each oscillation, the amplitude be a little bit
reduced,339 we will have approximately for the value of (A− S ′),

(A− S ′) =
2µAm

n(m+ 1)
;

and if this quantity (A−S ′) be so small so that it can be treated as an ordinary differential,
we would have then, for a number Z of oscillations,

2µ

n(m+ 1)
Z =

1

m− 1

(

1

Sm−1
− 1

Am−1

)

,

where S represents this that becomes A after a number of oscillations Z. Thus we will have

S =
1

[

2µ(m−1)
n(m+1)

Z + 1
Am−1

] 1
m−1

,

which determines the value S, after any number of oscillations Z.

EXAMPLE II. If

R = µ(A− S)m + µ′(A− S)m
′

,

with µ′ and m′ having other values than µ and m, we will have, following the procedure of
the last example

n(A− S) =
2µ

m+ 1

Am+1 + Sm+1

A + S
+

2µ′

m′ + 1

Am′+1 + Sm′+1

A+ S
;

and if the retarding force is much less than the force of torsion, we will have for the value
approached,

n(A− S) = 2µ
Am

m+ 1
+

2µ′Am′

m′ + 1
.

In general, if

R = µ(A− S)m + µ′(A− S)m
′

+ µ′′(A− S)m
′′

+ ... ,

we will always have for an oscillation, in supposing R much smaller than the force of torsion,

n(A− S) =
2µAm

m+ 1
+

2µ′Am′

m′ + 1
+

2µ′′Am′′

m′′ + 1
+ ... .

339That is, such that S′ = A− ε, with ε ≪ A.
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7.9 IX. Experiments to Determine the Laws of the

Force of Torsion. Preparation

On a small, flat board KA, supported upon four feet, [see Figure 2,] raise a post ABD:
mount on the post AB, at four feet high [130 cm], the horizontal traverse DE, slid up and
down on the post and fixed to it by means of a screw E; the cylinder or the weight P , carries
at its top, along the prolongation of its axes, an end of a needle b, fixed to this cylinder.
This needle is fixed by the lower part of a double clasp340 a, which is tightened by some
screws; the upper part of this clasp holds the lower extremity of the filament of suspension;
the lower part of this same clasp holds the extremity of the needle fixed to the cylinder. The
top end of the filament of suspension is held by another clasp g, attached to the traverse
DE. On the surface AK, which serves as a base for the apparatus, we place a circle divided
into degrees, whose center C should be located along the prolongation of the axes of the
cylinder: we attach at the bottom of the cylinder an index eo, whose extremity o points to
the divisions of the circle.

340In the original: double pince. The word “pince” can be translated as clasp, clamp, pincer, chuck or
gripper. In the case of a double clasp, we have a piece composed of two articulated parts intended to hold
objects.
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7.10 X. Experiments on the Torsion of Filaments of

Iron

We have obtained three filaments of the harpsichord,341 such as we find in commerce, rolled
on bobbins, and numbered.342

The No. 12 filament of iron supported, before breaking, 3 pounds, 12 ounces (1836 g);
its six feet of length weighed 5 grains (0.1365 gram per meter).343

The No. 7 filament of iron supported, before breaking, a weight of 10 pounds (4895 g);
its six feet of length weighed 14 grains (0.1381 gram per meter).

The No. 1 filament of iron broke under a tension of 33 pounds (16154 g); its six feet of
length weighed 56 grains (1.525 gram per meter).

7.10.1 First Experiment. Filament of Iron, No. 12, the Cylinder
Weighed Half a Pound

We have taken a cylinder of lead weighing half a pound [244.75 g], which we have suspended
by the filament of iron No. 12; this cylinder had a diameter of 19 lines and 61

2
lines of height

(D = 4.294 cm, H = 1.466 cm); the filament of suspension had a length of 9 lines.344 We
rotated the cylinder about its axes, without disturbing this axis from the vertical, and we
obtained the following results:

First test. When we turned the cylinder about its axes through an angle smaller than
180 degrees, it made twenty, sensibly isochronous, oscillations in 120”.345

Second test. But in twisting three circles,346 the ten first oscillations have been of 2 to 3
seconds longer than the ten of the first test; and after the ten first oscillations, the amplitude

341In the original: j’ai pris trois fils de clavecin. This word can also be translated as clavichord. It is a
musical instrument played by means of a keyboard. The word “fil” can be translated as filament, cable,
thread, string or wire. Probably Coulomb chose harpsichord wire because of its consistently high quality.
See also [Goodway and Savage, 1992] and [Birkett and Poletti, s d].
342Gauge number or gauge size.
343Coulomb writes that his # 12 gauge wire with a length of 6 pieds (6 feet = 195 cm) weights 5 grains (5

grains = 0.266 g). The wire mass per unit length, m/L, is then 1.36× 10−3 g/cm = 0.136 g/m. The mass
per unit length equals the product of the volumetric mass density, δ, and the cross-sectional area, A, that
is, m/L = δ · A. For the density: Coulomb, in a final paragraph of Section 7.15, reports that “le pied cube
de fer, pesant à peu-prés 540 livres, ...”, that is, a cubic foot of iron (34265 cm3) weighs approximately 540
pounds (264330 g). This gives, after conversion, δ = 7.70 g/cm3 for the density. So A = 1.77 × 10−4 cm2;
and the diameter D = 1.50 × 10−2 cm = 1.50 × 10−4 m. In that same paragraph 7.15, Coulomb goes on
to state that “the diameter of a filament of iron, # 12, 6 feet long, weighing 5 grains, is approximately a
fifteenth of a line”, (0.226 cm)/15 = 0.0151 cm.
Moreover, Coulomb writes that his # 12 gauge wire supports, before breaking, 3 livres 12 onces (3 pounds

12 ounces = 1836 g), that is, a weight P = (1.836 kg) × (9.8 m/s2) = 18 N . So its rupture stress, tensile
strength or fracture strength is approximately equal to (18 N)/(1.77×10−8 m2) = 1.0×109 N/m2 = 1 GPa.
344In the original: 9 lignes de longueur. This was a typographical error by the author. The correct should

be 9 pouces or 9 inches (24.363 cm). Section 8.2 presents a discussion of this experiment.
345That is, each oscillation was performed in 6 seconds. Remember that each oscillation for Coulomb is

the time taken to go from one end of the motion to the other end. For example, if the cylinder is rotated by
+90◦ and released from rest, it takes 3 seconds to reach the origin with an angle of 0◦ and maximum speed,
taking another 3 seconds until it stopped at the opposite end at an angle of −90◦.
Today we call the total time interval to go to and return to the same initial condition the period. In this

example the total period of the cylinder is 12 seconds.
346That is, from an initial angle of 1080◦.
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of oscillations, which was at the start three circles, was reduced to five fourths of a circle.

7.10.2 Second Experiment. Filament of Iron, No. 12, the Cylin-

der Weighed 2 Pounds

First test. In suspending a cylinder weighing 2 pounds [979 g], having the same diameter as
the preceding but 26 lines of height [5.876 cm], from the same No. 12 filament of iron, we
had, for an angle of torsion of 180 degrees or less, twenty oscillations sensibly isochronous in
242”.

7.10.3 Third Experiment. Filament of Iron, No. 7, Cylinder

Weighing Half a Pound

First test. In suspending the cylinder of half a pound by the No. 7 wire of iron, we obtained,
for a torsion of 180 degrees or less, 200 oscillations sensibly isochronous in 42”.

7.10.4 Fourth Experiment. Filament of Iron, No. 7, Cylinder

Weighing 2 Pounds

Test. In suspending from the same filament a weight of 2 pounds, the twenty oscillations
were achieved in 85”.

7.10.5 Fifth Experiment. Filament of Iron, No. 1, Cylinder Weigh-

ing Half a Pound

Test. When we suspend a weight of half a pound by this filament of iron of 9 inches in
length, its stiffness is so considerable that this weight is not sufficient to straighten it out;
thus the oscillations are very irregular because they depend, not only on the angle of torsion,
but also on the curvature that the filament of iron retains when uncoiled from the bobbin,
even though it is stretched by the half-pound weight.

7.10.6 Sixth Experiment. Filament of Iron, No. 1, Cylinder

Weighing 2 Pounds

Test. But in suspending a weight of two pounds from this filament of iron of 9 inches in
length, the filament is visibly straightened and we have, for an angle of torsion of 45 degrees
or less, 20 oscillation sensibly isochronous in 23”.

Continuation of Experiments. Filaments of Brass.

Taking three filaments of brass, corresponding in number and approximately in thickness,
to the three filaments of iron that were subject to experiment.

The No. 12 filament of brass carries, at the moment of its rupture, 2 pounds 3 ounces
(1070 g): its six feet of length weighs 5 grains (0.136 gram per meter).
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The No. 7 filament of brass carries, at the moment of its rupture, 14 pounds (6853 g):347

its six feet of length weighs 181
2
grains (0.504 gram per meter).

The No. 1 filament of brass breaks under a tension of 22 pounds (10769 g): its six feet
of length weighs 66 grains (1.797 gram per meter).

7.10.7 Seventh Experiment. Brass Filament No. 12, Cylinder

Weighing Half a Pound

Test. The length of the filament of suspension was 9 inches, as in the preceding tests; we
suspended a cylinder weighing half a pound from it and obtained, for an angle of twist of
360 degrees or less, twenty oscillations sensibly isochronous in 220”.

But with an initial angle of twist of three full circles, the first twenty oscillations took 225
seconds; and after these initial twenty oscillations, the angle of twist was still approximately
two full circles.

7.10.8 Eighth Experiment. Brass Filament No. 12, Cylinder
Weighing Two Pounds

Test. The filament of suspension being 9 inches, and the cylinder weighing 2 pounds, we
obtained, for an angle of 360 degrees or less, twenty oscillations sensibly isochronous in 442”.

With an initial angle of twist of three full circles, the first twenty oscillation took approx-
imately 444 seconds, and the initial angle of twist was found to be reduced to two and one
quarter full circles [810◦].

7.10.9 Ninth Experiment. Brass Filament No. 7, Cylinder Weigh-
ing Half a Pound

Test. The length of the filament of suspension always being 9 inches, the initial angle of
twist being 360 degrees or less, one obtained twenty oscillations sensibly isochronous in 57”.

7.10.10 Tenth Experiment. Brass Filament No. 7, Cylinder Weigh-
ing Two Pounds

Test. The length of the filament of suspension again of 9 inches, the initial angle of torsion
being 360 degrees or less, one obtained twenty oscillations sensibly isochronous in 110”.

But the initial angle of twist being two full circles, it took 111 seconds for the first twenty
oscillation and the initial angle of twist, originally two circumferences, was reduced to one
and a half circumference.

7.10.11 Eleventh Experiment. Brass Filament No. 1, Cylinder
Weighing Half a Pound

Test. Under a tension of half a pound, the filament of suspension was not entirely straight-
ened and the duration of the oscillation, depending in part on its initial curvature, is uncer-

347According to Goodway and Savage, this value of 14 libres for the breaking load was a misprint,
[Goodway and Savage, 1992, p. 26].
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tain.

7.10.12 Twelfth Experiment. Brass Filament No. 1, Cylinder
Weighing Two Pounds

Test. The length of the filament of suspension, being, as always, 9 inches, the initial angle of
torsion being 50 degrees or less, we obtained twenty oscillations sensibly isochronous in 32”.

But the initial angle of twist being five-fourths of a circle, we observed the first twenty
oscillations in 331

2
seconds; and at the end of these oscillations, the initial angle had been

reduced to a quarter of a circle.

7.10.13 Thirteenth Experiment. Brass Filament No. 7, Cylinder

Weighing Two Pounds

Test. The length of the filaments of suspension in all the preceding experiments being 9
inches; needing to determine the force of torsion relative to the length of the filaments, we
have given 36 inches of length [97.45 cm] of suspension to this experiment and having had
up to three circles of torsion or less, we obtained twenty oscillation sensibly isochronous in
222”.

7.11 XI. Results of the Preceding Experiments

The force or reaction of the torsion of the filaments of metal ought to depend upon their
length, their thickness, and their tension. In order to determine in general the law of this
reaction, we have been obliged, in the preceding experiments, to suspend different weights
from filaments of iron and brass, of different thicknesses and different lengths: Here are the
results that these experiments present.

If we turn the cylinder about its axis, without disturbing this axis from the vertical, the
filament twists: when we release the cylinder, the filament, by its force of reaction, will try
to return to its natural situation; the cylinder will oscillate about this axis for a longer or
shorter length of time accordingly as the elastic force is more or less perfect.

But we find, in all of the preceding experiments, that when the angle of twist is not very
large, the period of oscillations is sensibly isochronous; thus we can regard as a first law,
that for all the filaments of metal, when the angle of twist is not very great, the force of
torsion is sensibly proportional to the angle of twist.

Having found from experiment that the force of reaction in torsion is proportional to the
angle of twist, it follows that all the oscillatory formulae that we have given, Sections 7.4
and following, based upon the supposition that a force of torsion proportional to the angle
of twist, or altered by a very small term, can be applied to these experiments.

Thus, as we have obtained, Section 7.7, by means of these formulas

T =

√

Ma2

2n
π ,

and that in all the preceding experiments, the cylinders of half a pound and of 2 pounds
having the same diameter, it follows that n ought to be always proportional to (M/T 2).
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Thus, if the tension in the filament, varying in magnitude, has no influence on the force
of torsion, then the quantity n for the same filament will be the same for the case of a tension
of half a pound and a tension of 2 pounds, and consequently we will have T proportional to
M1/2. Let us compare our experiments made with the two weights, one of half a pound, the
other of 2 pounds, of which the [square] roots are as 1 is to 2.348

First experiment. The filament of iron, No. 12, stretched by the half-pound weight,
makes 20 oscillation in 120”.

Second experiment. The same filament, stretched by a weight of 2 pounds, makes 20
oscillation in 242”.

Third experiment. The filament of iron, No. 7, stretched by the half-pound weight, makes
20 oscillation in 43”.

Fourth experiment. The filament of iron, No. 7, stretched by a weight of 2 pounds, makes
20 oscillation in 85”.

The fifth experiment cannot be compared with the sixth.
Seventh experiment. The filament of brass, No. 12, stretched by the half-pound weight,

makes 20 oscillation in 220”.
Eighth experiment. The filament of brass, No. 12, stretched by the 2 pounds weight,

makes 20 oscillation in 442”.
Ninth experiment. The filament of brass, No. 7, loaded with the half-pound weight,

makes 20 oscillations in 57”.
Tenth experiment. The filament of brass, No. 7, loaded with the 2 pounds weight, makes

20 oscillations in 110”.
The eleventh and the twelfth experiments cannot be compared.
It thus results from all of these experiments, that for the same filament of metal, a weight

of two pounds makes its oscillations in a time double of this of a weight of half a pound;
consequently the period of oscillations is as the [square] root of the weights;349 thus the
tension, of varying magnitude, has no sensible influence on the force of reaction of torsion.

However, from many tests made with very great tensions relative to the force of the
metal, it appears that the large tensions diminish or alter the force of torsion a small amount.
We can see in fact, that as the tension increases, the filament elongates and its diameter
diminishes, which ought to reduce the period of oscillation.

We have not been able to compare the filaments of iron or of brass No. 1, under the
tensions of half a pound and of two pounds because, as we have said in the details of the
experiments, the tension of half a pound is not sufficient to straighten the filament.

7.12 XII. On the Force of Torsion Relative to the Lengths

of the Filaments

We have found, in the preceding Section, that the variable tension in the filaments only
influences the force of torsion in a negligible way. We seek now to determine, from these
same experiments, how much, for equal angles of torsion, the length of the filament of
suspension increases or diminishes this force. But it is clear that to the extent that one

348Let m1 and m2 be the masses of the two bodies. So we have m1/m2 = 0.5/2 = 1/4. Therefore
√

m1/m2 = 1/2.
349That is, the period of the oscillations is proportional to the square root of the weights.
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increases the length of the filament of metal, we can make, in the same proportion, a greater
number of revolutions of the cylinder, without changing the degree of torsion; thus the force
of reaction of torsion ought to be, for the same number of revolutions, inversely proportional
to the length of the filament. Let us see if this reasoning is in accord with experiment.

The formula, of Section 7.7, gives us

T =

√

Ma2

2n
π ,

or for the same weight, T proportional to 1/
√
n. Thus, if n is inversely proportional to the

length, as the theory claims, T will be as the [square] roots of the lengths of the filaments
of suspension;350 let us compare with experiment.

We find, tenth experiment, that the filament of brass, No. 7, of 9 inches of length, being
stretched by the weight of half a pound, makes 20 oscillations in 110”.

We find, thirteenth experiment, that the same filament of brass, No. 7, of 36 inches of
length, stretched by the 2 pounds weight, makes 20 oscillations in 222”.

Thus the lengths of filaments make between them :: 1 : 4, while the time of oscillations
of the filaments make :: 1 : 2; thus the test proves that the times of the same number of
oscillation, make, for the same filaments stretched by the same weights, as the [square] root
of the length of these filaments, in accord with the claims of theory.351

We have made many tests of the same kind as the preceding, which have all very exactly
confirmed this law. We have not believed it necessary to fatten this Memoir with them.

7.13 XIII. On the Force of Torsion Relative to the

Thickness of the Filaments

We have determined the laws of the force of torsion relative to the tension and to the length
of the filaments; it remains for us only to determine them relative to the thickness of the
same filaments.352

We have, in the first six experiments, three filaments of iron of different thicknesses and
of the same length; and in the following six experiments, three filaments of brass of the same
length and of different thicknesses: but as we have the weights of one length of 6 feet of
each of these filaments, it is easy from them to fix the ratio of their diameters.353 Here is
our reasoning and consequent prediction; the moment354 of the reaction of torsion ought to
increase, with the thickness of the filaments, in three ways. Take for example two filaments
of the same material and the same length, where the diameter of one is double that of the
other, it is clear that for the one whose diameter is double, there are four times more parts
stretched by the torsion, than in those which have a simple diameter; and that the mean

350That is, if n is inversely proportional to the length of the suspension wire, T will be proportional to the
square root of that length, since T is proportional to 1/

√
n.

351Let L1 and L2 be the lengths of the two wires, while T1 and T2 are their periods of oscillation, respectively.
So we have L1/L2 = 1/4, while T1/T2 = 1/2. That is, T1/T2 =

√

L1/L2.
352See Section 8.3 on page 185 for a discussion of this topic.
353The weight ϕ of a cylindrical wire of length L and diameterD is given by ϕ = δπ(D/2)2Lg, where δ is the

volumetric density of mass and g the acceleration due to gravity. Therefore, for two wires of the same material
with the same length L and the same density δ, the ratio of their weights is given by ϕ1/ϕ2 = (D1/D2)

2.
354In the original: momentum.
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extension355 of all these parts will be proportional to the diameter of the filament, just as the
mean arm of the lever relative to the axis of rotation. Thus we are led to believe, from theory,
that the force of torsion of two filaments of metal of the same material and of the same length
but of different thickness, is proportional to the fourth power of their diameter, or for the
same length, to the square of their weights. Let us compare this with the experiments.356

We take here only the tests where the tension is 2 pounds, in order to compare all the
numbers, the filaments of No. 1 not being as exactly stretched by the weights of half a
pound: we have

Filaments of iron:
Second experiment. The filament of iron, No. 12, whose 6 feet of length weighs 5 grains,

gives 20 oscillations in 242”.
Fourth experiment. The filament of iron, No. 7, whose 6 feet of length weighs 14 grains,

gives 20 oscillations in 85”.
Sixth experiment. The filament of iron, No. 1, whose 6 feet of length weighs 56 grains,

gives 20 oscillations in 23”.

Filaments of brass:
Eighth experiment. The filament of brass, No. 12, whose 6 feet of length weighs 5 grains,

gives 20 oscillations in 442”.
Tenth experiment. The filament of brass, No. 7, whose 6 feet of length weighs 181

2
grains,

gives 20 oscillations in 110”.
Twelfth experiment. The filament of brass, No. 1, whose 6 feet of length weighs 66 grains,

gives 20 oscillations in 32”.

In order to determine, from these experiments, the law of reaction of the force of torsion,
relative to the diameter of the filament of suspension, let us suppose that357

T : T ′ :: Dm : D′m :: ϕm/2 : ϕ′m/2
,

where one supposes that T and T ′ represent the time of a certain number of oscillations for
a filament of metal, whose diameter is D and D′, and the weight for the same length is ϕ
and ϕ′; m being the power that one searches to determine. From this proportion, we deduce

m =
2(log T − log T ′)

logϕ− logϕ′
,

with which it is necessary to compare with the experiment.
The second test, compared with the fourth, gives m = −1.82.
The second test, compared with the sixth, gives m = −1.95.
The eighth test, compared with the tenth, gives m = −2.04.

355In the original: l’extension moyenne.
356Section 9.2 on page 189 explains how Coulomb concluded theoretically that the torque exerted by a

metal filament must be proportional to the fourth power of its diameter.
357That is,

T

T ′
=

(

D

D′

)m

=

(

ϕ

ϕ′

)m/2

.
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The eight test, compared with the twelfth, gives m = −2.02.
From which it results that358

T : T ′ ::
1

D2
:

1

D′2
::
1

ϕ
:
1

ϕ′
.

But the formula of oscillatory movement

T =

(

Ma2

2n

)1/2

π

gives, in the preceding experiments, because of the equality of the tensile loading,359 n
proportional to 1/T 2; thus the force of torsion, for the filaments of the same nature, of the
same length, but of different thicknesses, is as the fourth power of the diameter, thus as the
theory had predicted.360

7.14 XIV. General Results

It results thus from all the preceding experiments, that the moment of the force of torsion is,
for filaments of the same metal, proportional to the angle of twist, the fourth power of the
diameter, and inversely proportional to the length of the filament; so that if we let l be the
length of the filament, D its diameter, B the angle of twist, we will have for the expression
which represents the torque,

µBD4

l
,

where µ is a constant coefficient which depends on the natural stiffness361 of each metal:
this quantity µ, a constant for filaments of the same metal, can be easily determined from
experiment, as we see in the following Section.

7.15 XV. Effective Values of the Quantities n and µ

We have seen, in Section 7.7, that

358That is, as m = −2:

T

T ′
=

(

D′

D

)2

=
ϕ′

ϕ
.

359In the original: poids de tension. That is, due to the equality of the weights P of the cylinders hanging
from the suspension wire.
360Coulomb had experimentally found that

T

T ′
=

(

D′

D

)2

=
ϕ′

ϕ
.

However, n is proportional to 1/T 2 due to the equality of the weights of the cylinders supported by the
threads. Since T is also proportional to 1/D2 by the formula just written, n will be proportional to
1/(1/D2)2 = D4, as he had theorized.
361In the original: roideur.
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n =
Pa2

2λ
,

where P is the weight of the cylinder, a its radius, λ the length of a pendulum which is
isochronous with the oscillations of the cylinder produced by the force of torsion.

Let us apply this formula to the second experiment, where the filament of iron, No. 12,
is stretched by a 2 pounds weight, which has a radius of 91

2
lines, and makes 20 oscillations

in 242”.
As the length of a pendulum which completes one full swing in one second at Paris362 is

4401
2
lines (99.37 cm),363 the length of a pendulum, isochronous with the oscillations of the

cylinder, will be364

440
1

2

(

242

20

)2

;

thus

n =
2 pounds

(

91
2

)2

2 · 4401
2

(

242
20

)2 =
1 pound

715
,

therefore the moment nB of the No. 12 filament of iron, 9 inches in length, is equal to 1
715

pounds, multiplied by the angle of torsion B, acting at the extremity of a lever of one line
in length.365,366

We have seen, that for the same metal, it follows from the theory and the experiments of
the preceding Sections that the torque is inversely proportional to the length of the filament

362In the original: qui bat les seconds à Paris.
363A seconds pendulum is a pendulum whose period is precisely two seconds; one second for a swing in one

direction and one second for the return swing, a frequency of 0.5 Hz. With Tmodern = 2π
√

ℓ/g we obtain
ℓ = T 2g/(4π2). With Tmodern = 2 s and g = 9.81 m/s2 this yields ℓ = 0.994 m. The measure given by
Coulomb is ℓ = 440.5 lines = 0.995 m.
364Using that TCoulomb = π

√

ℓ/g we obtain T1/T2 =
√

ℓ1/ℓ2. If T1 = 1 s, ℓ1 = 440.5 lines and T2 =
(242 s)/20, then we have ℓ2 = ℓ1(T2/T1)

2 = 440.5(242/20)2 = 64 493.6 lines = 145.75 m.
365[Note by Potier] That is 151.50 (C.G.S.) for this wire, and 3691 for a wire number 12, 0.01 m long, and

twisted by an angle equal to 1; or again a couple 64.42 (C.G.S.) is necessary to twist this wire of length 1,
by one degree.
366In Section VII (Section 7.7) Coulomb showed that:

n =
Pa2

2λ
,

where n is what we call today the “torsional stiffness” of the wire (Coulomb never ascribes a label to n),
see footnote 328. P is the weight of the suspended cylinder, a its radius and λ is the length of a pendulum
isochronous with the period of oscillations of the cylinder. He applies this formula to the Second Experiment
where the # 12 iron wire (of length 9 pouces = 9 inches = 24.363 cm) is loaded with a cylinder of mass
m = 2 livres = 2 pounds = 979 g (that is, with a weight P = mg = 0.979 kg · 9.8 m/s2 = 9.5942 N), whose
radius a is 9.5 lines = 0.02147 m, and which makes 20 oscillations in 20 seconds — which, he shows, is
isochronous with a pendulum of length λ = 6.45× 104 lines = 1.4577× 104 cm = 146 m. The formula then
gives n = 1.52× 10−5 Nm/rad = 152 dyn · cm/rad which is equivalent to (1/715) livre · line, in the units
Coulomb used. This is the torque τ = nθ required to twist a # 12 iron wire, of length 9 pouces, by an angle
θ = 1 radian. Potier obtained the same result in footnote 365. As n is inversely proportional to the length,
if the suspension wire were 1 cm long, we would have n = 3.698× 10−4 Nm/rad. Since 1 rad = 57.30◦, the
torque required to twist this 1 cm long wire by 1◦ is given by 6.454× 10−6 Nm.
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of suspension and proportional to the fourth power of the diameter. Thus it is easy to
determine the value of the torque in a filament of iron, of any length and thickness; here is
the calculation.

Since a cubic foot of iron weighs approximately 540 pounds,367 the No. 12 filament of
iron, weighing 5 grains and 6 feet in length, has a diameter very nearly equal to a fifteenth
of a line;368 thus the moment of torsion369 of a filament of iron, of a fifteenth of a line in
diameter, is equal to 1/715 pound acting at the extremity of a lever of one line in length,
multiplied by the angle of twist.370,371

7.16 XVI. Comparison of the Stiffness of Torsion of

Two Different Metals

We can easily deduce, from the preceding theory and experiments, the ratio of the stiffness
in torsion of two different metals, for example, iron and yellow copper: we take the No. 12
filament of iron to compare with the No. 12 filament of brass.

In the preceding Section, we calculated the quantity n, for the filament of iron, which we
found = 1

715
pound, multiplied by a lever of one line. But as the filament of brass, loaded

with a weight of 2 pounds, makes 20 oscillation in 442”, we will have, by the same formula
for the filament of brass,

n′ =
1 pound

(

91
2

)2

4401
2

(

442
20

)2 ;

thus

n

n′
=
(

442

242

)2

= 3.34 ;

therefore the stiffness of the filament of iron, No. 12, is to the stiffness of the filament of
brass, No. 12, approximately in the ratio 31

3
: 1.

367The volumetric mass density δ of this piece of iron is then given by δ = (540× 489.5 g)/(32.48 cm)3 =
7.7 g/cm3 = 7.7× 103 kg/m3. See also footnote 343 on page 155.
368That is, D = 1 line/15 = 0.226 cm/15 = 0.015 cm. See footnote 343 on page 155.
369In the original: “le momentum de torsion”. This expression can also be translated as “torque” or

“moment of the force of torsion”, see footnote 150 on page 60.
370[Note by Potier] We can also deduce from Coulomb’s experiments Lamé’s coefficient µ (called rigidity

by the English authors). Assuming 7.8 for the specific weight of this wire, we should have

µ = n× 2L

πR4
= 7.628× 1011 [dyn/cm2] .

371As a final note (and check) on Coulomb’s calculation of the effective value of n for the Second Experiment,
Section XV (Section 7.15), we can draw out an estimate of the shear modulus, G, as it appears in today’s
expression for the torque, namely, Torque = τ = (GJ/L)B, where J = πD4/32 is the polar moment of
inertia of the wire cross-section for a cylindrical wire of diameter D, for an angle of twist B. For our #
12 iron wire of length, L, equal to 9 pouces = 9 inches (0.244 m), a twist, B, of 1 radian, and diameter
D = 1.50×10−4 m (see footnote 343) a torque of 1.52×10−5 Nm would produce 1 radian of twist according
to Coulomb, see footnote 366. Solving for G gives G = 74.6 × 109 N/m2 = 74.6 × 1010 dyn/cm2, a value
at the low end of the range 75 × 109 N/m2 to 80 × 109 N/m2 cited by Gillmor for the shear modulus of
wrought iron, [Gillmor, 1971a, p. 155].
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But as there is little difference between the specific weight of iron and of copper, which
according to Mr. Musschembroek,372 are in the ratio 77 : 83, we can suppose that the
No. 12 filament of iron and that of copper of the same number have approximately the
same diameter; thus for filaments of iron and of copper of the same diameter, every thing
otherwise equal, the stiffnesses in torsion are in the ration 31

3
: 1, which means that in twisting

the filament of iron one circle, one would have the same torsional reaction, in twisting the
filament of copper 31

3
circles.373 ,374

If we wish subsequently to compare the stiffness of torsion with the force of cohesion, we
note that our filament of iron carries, at the instant of its rupture, 60 ounces [1835 g], while
that of copper only carries 35 ounces; thus since they are approximately the same diameter,
the ratio of their force of cohesion approaches 60 : 35, while their force of torsion is found
to be [in the ratio] 31

3
: 1.

This last result, however, ought to be regarded as a special case and not as a general
result. We will see, in the second Section of this Memoir, that the force of metals varies
following the degree of cold-working and heat treatment,375 and that all the experiments
which we have carried out until now aimed at determining the force of metals can only be
regarded as some particular cases.

But what this last observation seems to indicate, and what practice confirms, is that if
we wish to support a moving body on a pivot point, there is an advantage to using a pivot of
steel or of iron to a pivot of copper, since under the same degree of pressure the iron bends
much less than the copper; thus the circle of contact formed by the pivot point, pressed by
the body that it supports, will be less for iron than for copper, this which, all else being
otherwise equal, reduces the moment of friction that it is necessary to overcome in order to
rotate a body about a pivot point: We will have occasion in the following to return to this
Section.

From some other experiments and by means of calculations similar to the preceding, we
have found that a filament of silk, formed of several brins376 joined by boiling water and
strong enough to carry up to 60 ounces [1835.4 g in tension], has 18 to 20 times less torsional
stiffness than the filament of iron which carries the same weight at its moment of rupture.

372Pieter van Musschenbroek (1692-1761) was a Dutch scientist.
373[Note by Potier] We conclude from this number, by assuming the specific gravity of brass to be 8.6, that

the coefficient µ′ of brass

=
1

3.34
· 8.6

2

7.82
· µ = 2.78× 1011 .

This number is much lower than that indicated by Sir W. Thomson, Wertheim and Mr. Everett, which
indicate from 3.4 to 4× 1011.
374See also [Goodway and Savage, 1992, p. 25].
375In the original: degré d’écrouissement et de recuit. Work hardening in materials science is the strength-

ening of a metal by plastic deformation. Cold working, cold forming processes or metalworking processes
intentionally induce plastic deformation to exact a shape change. They are characterized by shaping the
workpiece at a temperature below its recrystallization temperature, usually at ambient temperature. In met-
allurgy and materials science, annealing is a heat treatment that alters the physical properties of a material
to increase its ductility and reduce its hardness, making it more workable. It involves heating a material
above its recrystallization temperature, maintaining a suitable temperature for an appropriate amount of
time and then cooling.
376See footnote 215 on page 91.
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7.17 XVII. Use of the Experiments and of the Preced-

ing Theory

Using the theory which precedes, and the experiments on which it is based, we are able to
measure very small forces, with a precision that ordinary means cannot supply: we present
an example.

7.18 XVIII. Balance to Measure the Friction of Fluids

Against Solids

The formula that expresses the resistance of fluids against a body in motion, appears com-
posed of several terms, some of which depend on the impact of the fluids against the body,
and others which are due to the friction of the fluid: among the terms due to friction, there
is one which depends on adhesion,377 and which is believed to be constant; but this term
is so small, that confounded in the experiments with the other quantities which depend on
impact, it is very difficult to evaluate: we can see in the experiments that M. Newton has
made in order to discover this constant quantity. (Livre II des Principes mathématiques de
la Philosophie naturelle, Scholie du vingt-cinquième théorème.)378

The force of torsion provides an easy means to determine the [friction due to] adhesion
from experiment.

In a vase ADBE, Figure 3, filled with fluid of which we wish to determine the adhesion,
we suspend, by means of a filament of copper, a cylinder abcd, of copper or of lead; we place
above the vase a circle A′FB′, divided in degrees; the circle is located at the level of the end
d of an index id attached to the cylinder.

377In the original: adhérence.
378Book II, Scholium to Theorem 25 of [Newton, 1934], [Newton, 1999] and [Newton, 2008, pp. 98-108].
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When one turns the cylinder about its vertical axis, without disturbing it from its verti-
cality, we can observe, by means of the small index, how much each oscillation is altered; and
as the force of torsion of the filament which produces these oscillations, is known from the
preceding experiments; thus one knows the alteration due to the imperfection of elasticity [of
the filament], in making the cylinder oscillate in the void or even in the air; we can expect,
by this means, to find the constant quantity due to adhesion.

Example and Experiment

We have suspended the cylinder of lead weighing two pounds [979 g], which we used in the
preceding experiments, from a filament of copper, No. 12, of twenty-nine lines in length [78.5
cm], in a vase filled with water: The circle AB, on which we observed the oscillations, had
a diameter of forty-four lines [9.9 cm]; we waited, before beginning our observations, until
the amplitudes of oscillations diminished to the point at which the extremity d of the index
only traveled an arc of one and one half line379 on the circle, corresponding to approximately
3◦55′; and observing the displacement of the index through a lens,380 we have distinctly
counted fourteen oscillations before the movement ceased.

379That is, 1.5 line = 0.34 cm.
380In the original: loupe. That is, a convex magnifying lens.
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Results of This Experiment

If the successive diminution of each oscillation is supposed constant, and can be entirely
attributed to the adhesion of the fluid to the surface of the lead cylinder, we will have, [from]
Section 7.8:381

(A− S ′) =
(

2µ

n

)

,

where (A− S ′) is the diminution in each oscillation, n(A− S) the moment of the force due
to torsion, and µ the moment of the retarding force due to adhesion.

But as, after observing the oscillations, the arc traveled diminishes one and a half line
in fourteen oscillations, and given that the radius of the circle on which we observe this
reduction is twenty-two lines; in supposing this diminution constant, we obtain that the
angle (A− S ′) by which the amplitude diminishes each oscillation = 3

2·22·14 .
But we found, Section 7.16, that for a filament of brass of nine inches in length, No. 12,

n =
1 inch ·

(

91
2

)2

4401
2
·
(

442
20

)2 ;

and as we have also found that the forces of torsion are proportional to the length of the
filaments of suspension, we will have for our filament of twenty-nine inches in length

µ =
1

3155000
pound× 1 line ,

which is to say that the moment of the constant retarding force, µ, is approximately equal to
three millionths of a pound suspended at a lever arm of one line: a quantity which would have
been impossible to measure by any other means than this that we have come to employ.382

In order to now deduce the value of the adhesion from this experiment, it is necessary to
note that the height of the cylinder of lead, submerged in the water in the vase, is twenty-four
lines, and that the diameter of this cylinder is nineteen lines. Thus, in taking 22/7 for the
ratio of the circumference to the diameter, the surface of the submerged cylinder, is equal to
22
7
· 19 · 24; and as the movement is about the axis of the cylinder, whose radius is 91

2
lines,

if δ is the adhesion, the moment of the adhesion about the axis of rotation, will be

δ
22

7
(19)2 · 12 .

It is then necessary to add to this quantity the moment of the adhesion of the circle which
forms the base of the cylinder submerged in the water, of which the moment is

δ
22

7
19l

19l

4

2

3

19

2
,

381Coulomb is assuming here m = 0 in Section 7.8, such that the retarding force R is a constant equal to
µ.
382These calculations show that Coulomb’s torsion balance can measure extremely small torques on the

order of

µ =
1 pound

3155000
× 1 line =

4.802 N

3155000
× (2.26× 10−3 m) = 3.4× 10−9 Nm .
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so that the total moment of the resistance of the fluid against the cylinder will be

δ
22

7
(19)2

(

12 +
19

12

)

= δ
22

7
(19)2

(

163

12

)

.

But the experiment has shown us that this same moment is equal to

1 pound

3155000
· 1 line

for a square inch; thus

δ =
1 pound

3155000
· 7 · 12
22 · 163 · (19)2 ,

and for a square foot the adhesion will be

δ(144)2 =
1 pound

2345000
, 383

so that the constant resistance due to the adhesion of the water for a surface of 255 feet, can
not be more than a grain; thus there are few cases where this constant alteration, if it takes
place, cannot be neglected in the evaluation of the friction of water. We have not made any
tests on other fluids.

In giving the cylinder oscillations of two or three full circles of amplitude, and comparing
the successive diminutions of amplitudes of oscillations with the formulas of changing oscil-
latory movement,384 I have believed to have seen that for very small velocities, the friction
goes as the velocity, and for large velocities, as the square; but these experiments require
special attention and ought to be made in different fluids.385

7.19 XIX

Since the reading of this Memoir, I have constructed, according to the theory of the reaction
of torsion that I have put forward, an electric balance and a magnetic balance; but as these
two instruments, as well as the results bearing on the electric and magnetic laws that they
have given, will be described in the volumes following our Memoirs, I believe it suffices here
to simply announce them.

7.20 XX. Second Section. On the Alteration of the

Elastic Force in the Torsion of Filaments of Metal.

Theory of the Coherence and of Elasticity

When we torque the filaments of iron or of brass, stretched, as in the preceding experiments,
by a weight, we observe two things; if the angle of torsion is not so great, relative to the
length of the filament of suspension, at the moment when one releases the weight, it returns

383[Note by Potier] That is, 1.94× 10−4 dynes per square centimeter.
384Changing due to resistance.
385Later on Coulomb himself carried out these researches, [Coulomb, 1801b].
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approximately to the position that it had before twisting, that is to say, the filament of
suspension untwists completely by the quantity by which it had been torqued; but if the
angle of torsion given the suspending filament, is very large, then the filament only unwinds
a certain amount, and the center of the reaction of torsion will advance the whole quantity by
which the filament failed to unwind. It follows from these two considerations, that two suites
of experiments are required; the first to determine, by the diminution of oscillations, how
much the elastic force of torsion is altered in oscillatory movement under conditions in which
the center of reaction of torsion is not displaced; the second to determine the displacement
of this center of reaction, when the angle of torsion is sufficiently large for this displacement
to take place.

7.21 XXI. First Experiment

Filament of Iron, No. 1, Length, six inches six lines (17.96 cm).

We have taken a filament of iron of six inches six lines in length, that has been loaded with a
weight of two pounds, the same as has served us in the experiments in the preceding Section.
In turning the cylinder about its axis in order to twist the filament of suspension, we have
sought to determine how many degrees the amplitude diminishes with each oscillation, and
we have found:

Angle of torsion Loss of 10◦ in
First test 90◦ 31

2
oscillations

Second test 45 101
2

Third test 221
2

23
Fourth test 111

4
46

Remarks on This Experiment.

The reductions in amplitudes of oscillations have been very uncertain (irregular), when
the initial angle of torsion was more than 90 degrees; we have even observed that in this
case, in twisting the cylinder about its axis, it did not return to its initial position, and
the respective position of the constitutive parts386 of the filament have been altered, and
consequently, its center of reaction of torsion has remained displaced: here is what the
experiments gave for this displacement.

7.22 XXII. Follow on to the First Experiment

In this part of the first experiment, we have searched to determine the displacement of the
center of torsion, due to the degree of torsion that we have given to the filament of suspension.

386In the original: parties constitutives. This expression can also be translated as constitutive particles
or constitutive elements. Other possible translations: components, component parts, parts of the system,
constituent parts, constituent particles or constituent elements. See also [Gillmor, 1971a, pp. 159, 201 and
217].
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In twisting the filament The index or the center of torsion
has been displaced

First test 1
2
C [that is, 180◦] 8◦

Second test 1 [that is, 1C = 360◦] 50
Third test 2 310
Fourth test 3 1C + 300 [that is, 660◦]
Fifth test 4 2 + 290
Sixth test 5 3 + 280

Seventh test 6 4 + 260
Eighth test 10 8 + 240

Ninth test. Having wished to continue to twist the filament some 15 new circles, always
in the same sense, it broke at the fourteenth. After this experiment, this filament was
straight and very rigid, it had separated along its length into two parts; examining it with
a magnifying glass, this separation was very evident and it had exactly the shape of a cord
formed of two helices.387

7.23 XXIII. Remarks Concerning This Experiment

This first experiment and its sequel appears to show that below 45 degrees, the alterations
made are approximately proportional to the amplitudes of the angles of twist, as one sees from
the second, third and fourth tests of the first experiment;388 that above 45◦, the alterations
augment in a ratio much greater; that the center of reaction of torsion only begins to displace
when the angle of torsion is approximately a half circumference; that this displacement
increases as the torsion of the filament increases; that it is very irregular up to 1 circle
10 degrees [370◦]; and that, passing this level of torsion, the reaction of torsion remains
approximately the same for all the angles of twist: Thus, for example, in the fourth test, in
twisting the filament three circles, the center of reaction of torsion displaces one circle +300
degrees, so the reaction of torsion has only led the cylinder back one circle 60 degrees. In
the seventh test, we see that after having already experienced in the previous tests a [total]
displacement of more than eight circles, that six new circles of torsion displace the center
of reaction of torsion by 4C + 260 degrees, so that for more than fourteen circles of torsion,
the reaction of torsion is still only one circle plus 100 degrees; thus it only differs by a tenth
from the reaction of torsion for the fourth test which gave us one circle +60 degrees: the
experiments which follow clarify this remark.

7.24 XXIV. Second Experiment

Filament of iron, No. 7, length, 6 inches 6 lines.

387In the original: torons.
388 Let A(t) be the amplitude of oscillation of the cylinder at the time t after the suspension wire has

been twisted and released from rest at t = 0 with the initial amplitude Ao. Coulomb is concluding from
his experiments that for θ < 45◦ the changes in amplitudes with respect to time are proportional to the
amplitudes themselves. Mathematically this can be expressed as: dA/dt = −kA, where k is a positive
constant, as he observed the amplitudes decreasing with the passage of time. Integrating this equation gives
A(t) = Aoe

−kt.
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We have searched, in the first part of this experiment, how much the amplitudes of oscillations
diminish at each oscillation, when the center of torsion is not yet displaced.

Angle of torsion Loss of 10◦ in
First test 180◦ 31

2
oscillations

Second test 90 12
Third test 45 27
Fourth test 221

2
57

Follow on to This Second Experiment.

In this second part of the same experiment, we have sought the displacement of the center
of torsion.

In twisting the filament The index or the center of torsion
has been displaced

First test 3 circles 300◦

Second test 4 1C + 180 [that is, 540◦]
Third test 6 3 + 90 [that is, 1170◦]
Fourth test 8 5 + 90
Fifth test 12 9 + 40
Sixth test 20 16 + 310

Seventh test 30 26 + 180
Eighth test 50 46 + 20
Ninth test At the seventeenth circle of torsion,

the filament broke.

7.25 XXV. Third Experiment

Filament of iron, No. 12, length, 6 inches 6 lines.

The first part of this experiment has been made in accord with the first part of the two
preceding experiments.

Angle of torsion Loss of 10◦ in
First test 360◦ 1 oscillation
Second test 180 2
Third test 90 5
Fourth test 45 11
Fifth test 221

2
25

Follow on to This Third Experiment.
Displacement of the Center of Torsion.
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In twisting the filament The index or the center of torsion
has been displaced

First test 4 circles 300◦

Second test 6 2C + 40
Third test after six other turns

the filament broke.

The preceding experiments have been continued with the filaments of brass used in the
experiments of the first Section.

7.26 XXVI. Fourth Experiment

Filament of brass, No. 1, length, 6 inches 6 lines.

In twisting Loss of in
First test 180◦ 12◦ 2 oscillations
Second test 90 10◦ 6
Third test 45 10◦ 16
Fourth test 221

2
10◦ 40

Fifth test 113
4

10◦ 80

Follow on to the fourth experiment.
Displacement of the center of torsion.

In twisting the filament The index or the center of torsion
has been displaced

First test 2 circles 160◦

Second test 4 2C + 0
Third test 6 3C + 300
Fourth test 10 7C + 300
Fifth test 20 17C + 340
Sixth test at the twenty-eighth circle of torsion

the filament broke

Fifth Experiment.
Filament of brass, No. 7, length, 6 inches 6 lines.
Decrease of the amplitudes in the oscillations.

In twisting Loss of 10◦ in
First test 360◦ 21

2
oscillations

Second test 180 6
Third test 90 13
Fourth test 45 31
Fifth test 221

2
72
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Follow on to the fifth experiment.
Displacement of the center of torsion.

In twisting the filament four circles, the center is displaced 220 degrees; but in wishing
to torque it six circles, the filament broke.

7.27 XXVII

In the filament employed in this last experiment, the torsion altered the oscillations, and
hence the elastic force, less than in all the other experiments; it is this which occasions
the great number of oscillations before the oscillatory movement dies out; it is this likewise
which results in the sudden rupture of this filament, without being able to displace its center
of reaction one circle. I have found in general that the filaments of brass, those available
in commerce, between the numbers 5 and 8, were those whose elasticity in torsion was the
least imperfect: in comparing the filaments of iron and of brass with the same numbers, we
have similarly found that the filaments of brass have an amplitude of elasticity much more
extensive than the filaments of iron.

For the rest, the experiment presents many irregularities in the results: two bobbins of
the same filament and of the same number, do not always give the same displacement for the
same angle of torsion, this which can only be attributed to the way in which the filaments
are manufactured — to the more or less great pressure that they experience in passing under
the die,389 to the heat treatment given them in order to successively reduce the diameter
from one number to the next, from large to small.

7.28 XXVIII. First Remark

Despite the uncertainty which reigns in the experiments of oscillations for the range of
amplitudes,390 it appears that below certain limits, these alterations are approximately pro-
portional to the amplitude of oscillation, as we have announced in the remarks on the first
experiment, and as all the other experiments confirm.391 The resistance of the air can only
alter the amplitude of oscillations very little in our experiments. I am assured of this by the
following. The weight of two pounds, which has served us in the experiments of this Section,
was 26 lines in height and 19 lines in diameter. I have formed with a very light paper, a
cylindrical surface of the same diameter as this weight, but which had 70 lines of height:
I put a part of the cylinder of lead into my envelope of paper, and formed thus a cylinder
of 78 lines of height, or three times longer than the first, which should have tripled, in the
oscillatory movement, the alterations due to the air resistance; but I have never found that
these alterations were a tenth more considerable in the second case as in the first; most often

389In the original: lèvre de la filière. Drawing is a metalworking process that uses tensile forces to stretch
(elongate) metal, glass, or plastic. As the metal is drawn (pulled), it stretches to become thinner, to
achieve a desired shape and thickness. A die is a specialized machine tool used in manufacturing industries
to cut and/or form material to a desired shape or profile. A draw plate is a type of die consisting of a
hardened steel plate with one or more holes through which wire is drawn to make it thinner. See also
[Birkett and Poletti, s d].
390In the original: pour les amplitudes des étendues.
391See footnote 388 on page 171.
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they are equal; thus the resistance of air enters into our experiments only as quantities that
we can neglect.

7.29 XXIX. Second Remark

In order to make a torsion balance, it is always necessary to choose the filaments which have
the least imperfect elasticity; the filaments of brass are much more preferable to those of
iron: the choice of the thickness depends on the forces which we wish to measure. I have a
magnetic balance which will be described in our Memoirs, where I alternatively made use of
a filament of brass of 3 feet in length, numbers 12 and 7; the elastic force of torsion is such
that in twisting the filaments eight circles, over the course of thirty hours, there is not one
degree [1◦] of alteration or displacement in the center of torsion.

7.30 XXX. Third Remark

In all the filaments of metal, the behavior is elastic only up to a certain point:392 The
isochrony of the oscillations teaches us that in the first degrees of torsion, the elastic force is
almost perfect; but beyond the angle of torsion which serves, for thus to say, as a measure of
the elastic force, the center of reaction of torsion displaces nearly the whole of all the angle of
torsion which exceeds this of the elastic reaction. However, as we can note in the preceding
experiments, the amplitude of the elastic reaction is not a constant quantity for all angles
of twist, it increases as the torsion increases; the less the initial elasticity, in the filament
subject to test, has of extent, the greater this increase is. A filament of brass, No. 1, of 6 and
one-half inches in length, made red in a fire, in order to make it loose, by heat treatment, the
greatest part of its elasticity, only gives, after this operation, for the first circle of torsion,
50 degrees of reaction of elasticity; but it has acquired, after 90 circles of torsion, an elastic
extension of nearly 500 degrees in this interval; from the 2nd to the 3rd circle of torsion,
the reaction of elasticity increases 12 degrees; from the 40th to the 41st circle of torsion, the
same reaction increases 6 degrees; and from the 90th to the 91st circle of torsion, almost a
degree, such that the increase of the elastic reaction, after the center of reaction has been
displaced a certain angle, is nearly inversely proportional to the angle of displacement. It
is necessary to point out that after these 90 circles of torsion, I wished to twist the same
filament another 50 circles, but it broke at the 49th, so this filament, before breaking, could
be twisted to 140 circles. If we compare this result with that which followed from the first
experiment, where the same filament, No. 1, had not been heat treated, we found that after
25 circles of torsion, the reaction of elasticity was 480 degrees and that in twisting 15 new
circles, the filament fractured; this last filament can thus only take, without breaking, 40
circles of torsion. In following in this experiment the path of the elastic reaction, we deduce
from it that at the point of rupture, this reaction is almost equal to that of the heat treated
filament in the same point of rupture; from which it would appear that we are justified in
concluding that by torsion alone we can give to a heat treated filament all the elasticity of
which it is susceptible and that the plastic deformation393 adds nothing more to it; such that
reciprocally, if in passing it through the die394 or by any other means, we have been able

392That is, the behavior of the filaments is elastic only up to a certain characteristic angle.
393In the original: écrouissement. See footnote 375 on page 165.
394In the original: si en passant à la filière. See footnote 389 on page 174.
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to give to our filament of brass a cold working such that its elastic reaction had been 520
degrees, which appears to me to be this of our two filaments at the moment of rupture, in
this case the elastic reaction had been carried to its maximum by this first operation: There
would not have been any more possible displacement in the center of the reaction of torsion;
but all the time that we would have made to test this filament to a torsion of more than 520
degrees, it would break.

7.31 XXXI. Fourth Remark

From the preceding experiments, this, it appears, is how we can explain the elasticity and
coherence of metals. The integral parts395 of the filament of iron or of brass, or of any metal,
have an elasticity that we can regard as perfect, that is to say, that the forces necessary
to compress or dilate these integral parts are proportional to the dilatation or compressions
they experience; but they are only tied together by the coherence, a constant quantity and
absolutely different from the elasticity. In the first stages of torsion, the integral parts
change their shape, elongating or compressing, without the points by where they adhere
together changing position because the force required to produce these first stages of torsion
is considerably less than the force of adhesion; but when the angle of torsion becomes such,
that the force with which these parts are compressed or dilated is equal to the coherence
which unites these integral parts, then they ought to separate or slide one on the other. This
sliding of parts takes place in all ductile bodies but if by this sliding of parts, the ones on the
others, the bodies compress, the extent of the points of contact increases and the extent of
the domain of elasticity becomes greater. However as these integral parts have a determined
figure, the extent of the points of contact can only increase up to a certain degree, beyond
which the body breaks; it is this which explains the detailed facts of the preceding Section.
This which proves again that it is necessary to distinguish the cause of elasticity from the
adhesion, is that we can vary the coherence at will by the degree of heat treatment without
altering in any way the elasticity. It is thus the case when I heated to white396 my No. 1
filament of copper in the preceding experiments, it lost a great part of its force of coherence:
before heat treatment, it could carry up to the point of rupture 22 pounds and after the heat
treatment it only carried 12 to 14 pounds; but while the adhesion was diminished nearly by
half by the heat treatment and the amplitude of elasticity was nearly diminished in the same
proportion, however in all the extent397 of the elastic reaction that remained to the annealed
wire, the elasticity was the same, at equal angle of torsion, as in the same filament not heat
treated, since in suspending to one and the others the same weights, the time of the same
number of oscillations was exactly equal in the two cases.

395In the original: Les parties intégrantes. This expression can also be translated as individual particles or
integral particles, [Gillmor, 1971a, p. 159]. In Section 7.33 of this work Coulomb will refer to the molécules
intégrantes of the metal, see footnote 414 on page 180. See also footnote 181 on page 72. The integral parts
here can mean any part of the wire, small or large, which can be compressed or stretched. They can also be
the parts which contribute to the integrity of the whole.
Definition of the Dictionnaire de l’Académie Française, [de l’Académie Française, 1798]: “Les parties

intégrantes. On appelle ainsi en Philosophie, les parties qui contribuent à l’intégrité d’un tout, à la différence
des parties qui en constituent l’essence. Les bras, les jambes sont des parties intégrantes du corps humain.”
396In the original: je faisais recuire à blanc.
397In the original: toute l’étendue.

176



7.32 XXXII

An equally interesting effect due to the approximation398 of parts in torsion of filaments of
metals is this which takes place when we twist a filament of iron, which by this operation
alone acquires through the approximation of parts, the quality of taking the magnetism to
a higher degree than it had before. Here is the experiment which revealed this to me; I have
taken a filament of iron, such as we find them throughout the world of commerce, of the
thickness of those which serve for the small sounding bars;399 a length of six inches [16.24
cm], weighing 57 grains (3.13 g); this filament of six inches, magnetized and suspended
horizontally by a filament of silk, untwisted400 and very fine, makes an oscillation in 18
seconds: this same filament of six inches in length, twisted up to the point of rupture and
magnetized as in the first case to saturation by the method of double touch,401 makes an
oscillation in 6 seconds; such that the moment of the directive force402 for the two needles
equal and similar, being as the inverse of the square of the times for the same number of
oscillations, the magnetic moment of the twisted needle, was nine times more considerable
than that of the needle not twisted: I will have the occasion to return to this Section in
another Memoir.

7.33 XXXIII

To confirm all the preceding theory regarding the coherence and elasticity, I have made the
following experiments.

We have fixed, Figure 4, by means of a clamp CD403 with a vise V , a lamina of steel
AB on the edge of a very solid table; this bundle being pressed and held404 in its part Aa,
between two plates of iron E and F , by the vise V : this lamina was 11 lines wide (2.48 cm)
and half a line thick [0.11 cm] from point a to point B, where was suspended the weight P ,
there was seven inches of length (18.95 cm): we measured on the vertical rule rg, how much
the weight P made lower the lamina AB at its extremity B. Here are the details of the
results which took place following the different weights with which the lamina was loaded.

398In the original: rapprochement.
399In the original: sonnettes.
400In the original: détordu.
401See Section 4.6.
402See footnote 286 on page 127.
403In the original: au moyen d’une agrafe CD.
404In the original: serrée.
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We heated the lamina to white and we have given it a quenching;405 then we have attached
at B at seven inches from point a, different weights.

With a weight of The extremity B has deflected
1/2 pound (245 g) 8 lines (1.80 cm)
1 pound (489 g) 151

2
lines (3.49 cm)

11
2
pound (734 g) 23 lines (5.19 cm)

We have taken this same lamina and we have heated it until it took on a violet color
and it returned to the consistency of an excellent spring; and we have found equally, that in
loading it as in the first case,

With a weight of The extremity B has deflected
1/2 pound (245 g) 8 lines (1.80 cm)
1 pound (489 g) 151

2
lines (3.49 cm)

11
2
pound (734 g) 23 lines (5.19 cm)

405In the original: On a fait rougir la lame à blanc et on lui a donné une trempe très raide. In mate-
rials science, quenching is the rapid cooling of a workpiece in water, oil or air to obtain certain material
properties. A type of heat treating, quenching prevents undesired low-temperature processes, such as phase
transformations, from occurring. Quenching can reduce the crystal grain size of both metallic and plastic
materials, increasing their hardness.
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Finally we heated this same lamina to white and let it cool406 very slowly; and we have
had, in loading the extremity B [with a weight P ], exactly the same results as in the two
preceding experiments.

It appears to us that these three experiments prove in an incontestable manner, that
whatever the state of the lamina, the first degrees of its elastic force are in no way altered;
since in taking account of the lever arm, which diminishes as the lamina is loaded, the same
weights deflect it in the three states equally and proportionally to the load; [and] when one
removes407 the weights, it retakes exactly its original horizontal position.

I have wished to see subsequently what be the force of this lamina in these three different
states; and in the case where the center of flexure would begin to displace, what would be
the degree of flexure where the lamina would begin to be deformed without returning to its
original position. Here is the result of this experiment.

I have cut from a sheet408 of English steel, three lamina exactly similar to this of the
preceding experiment: one of these lamina have been quenched, the second had been returned
to the consistency of an excellent spring, and the third had been heat treated to white and
slowly cooled. I attached, Figure 4, a spring scale409 d at two and a half inches distant
from point a and I had carefully exerted a pull always perpendicular to the direction of the
lamina. Here is what I observed.

The lamina which had been rapidly quenched broke under a pull of six pounds; but
under whatever angle at which it was deflected below this of rupture, it returned exactly
to its original position. The lamina returned to a violet color, forming an excellent spring,
broke only under a pull of eighteen pounds; it bent410 up to the point of rupture, with an
angle nearly proportional to the angle of torsion, and under any angle that it was bent before
rupture, when we freed it,411 it retook its original position. The lamina heat treated to white
and slowly cooled, bent up to a pull of five to six pounds, proportionally to this force of
pull, and with an angle absolutely equal under the same force that in the state of quenching

406In the original: refroidir.
407In the original: ôtoit.
408In the original: planche de tôle.
409In the original: peson. This word can also be translated as spring balance, Newton meter or spring

dynamometer. In this case, this dynamometer is applied at point d, exerting a force perpendicular to the
plate AB, directed upwards. It is held at the top, having a hook at its lower end that is connected at point
d of the lamina. The Figure of this footnote shows a typical spring scale:

410In the original: se plioit.
411In the original: on la lachoit.
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and of spring;412 but in pulling always subsequently perpendicular to the direction of the
lamina, in order to conserve the same lever, with a force of seven pounds, we have bent it
under all the angles, without that it was necessary to augment this force: in letting go, it
raised itself back up only by the quantity of which it had been originally deflected by a pull
of six pounds; such that the angle of reaction of flexure, found itself changed from all the
angle which we had bent it with a force greater than seven pounds.

These last experiments lead us back to the same results as those which went before. It is
clear that in order to have an idea of what happens in the flexure of metals, it is necessary to
distinguish the elastic force of the integral parts from the force of adhesion which ties these
parts together: the elastic force depends, as we have already said, on the compression or
dilation that the integral parts experience and is always proportional to the tractions. These
integral parts are not altered, neither by the quenching nor by the heating, since we see that
in theses different states, the elasticity is the same under the same degrees of flexure; but
these integral parts, are only tied among themselves by a certain degree of adhesion which
probably depends on their shape and on the respective portion of the different fluids with
which their pores are filled, this which varies according to the quenching and the heating.
In the quenched steel413 and in the good springs the integral molecules414 can neither slide
one on the other nor experience the least displacement without the body breaking; but in
the ductile bodies, in the heat treated metals, these parts can slide one on the other and
displace themselves, without the adhesion being sensibly altered.

This that we have come to explain for metals appears to be able to be applied to all
bodies; their parts are always of a perfect elasticity, but the bodies are hard, soft or fluid,
according to the adhesion of their integral parts. If in the hard bodies, they can slide one
upon the other, without their distance being sensibly altered, the body will be ductile or
malleable; but if they cannot slide one on the other, without their respective distances being
sensibly altered, the bodies break when the force with which the bodies will be pulled or
compressed, will be equal to the adhesion.

412In the original: dans l’état de trempe et de ressort. See also footnote 405 on page 178.
413In the original: dans l’acier trempé roide.
414In the original: molécules intégrantes. See footnote 395 on page 176. This expression can also be

translated as integral particles, [Gillmor, 1971a, p. 159].
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Chapter 8

Bucciarelli’s Remarks on Coulomb’s
1784 Paper

L. L. Bucciarelli415

8.1 Weight and Length Conversion Factors

Source: Kisch, B., Scales and Weights: A Historical Outline, New Haven: Yale University
Press.416

Table 1. Weights, Mass:

livre marc onces gros deniers grain grams
livre 1 489.506
marc 2 1 244.753
onces 16 8 1 30.594
gros 128 64 8 1 3.823

deniers 384 192 24 3 1 1.274
grain 9,216 4,608 576 72 24 1 0.0531

Table 2. Lengths:

toise pied pouce ligne mm
toise 1
pied 6 1 324.8
pouce 72 12 1 27.07
ligne 864 144 12 1 2.26

8.2 Coulomb’s Torsion Experiments. Iron Suspension

Wire Characteristics

Figure 8.1 shows the experimental setup for the Première Essai of the PREMIÈRE EXPÉ-
RIENCE, Section 7.10.

415See also [Bucciarelli, 2001].
416[Kisch, 1976].
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Figure 8.1: Setup for the Première Essai of the Première Expérience.

The lead solid cylinder, with diameter of 19 lignes and height of 6.5 lignes, is suspended
by a steel wire, # 12 gauge, and of length, according to Coulomb’s original text, of “9 lignes”.
As we will show, this last dimension is incorrect, a typo no doubt; we take it as 9 pouces (=
108 lignes) as shown in Figure 8.1.417

As a check on this, and on Coulomb’s results in general, we first determine the wire
diameter from the information given in his original text, then, from the expression for the
fundamental frequency of the torsional pendulum in terms of the torsional stiffness of the
wire and the polar mass moment of inertia of the lead cylinder, deduce the length of the
suspension wire. First, the wire diameter:

Coulomb writes that his # 12 gauge wire supports, before breaking, 3 livres 12 onces
and a length of 6 pieds (195 cm) weights 5 grains (0.266 g). Leaving aside for the moment
consideration of the tensile strength, we have that the wire mass per unit length (m/L) is
then 1.36× 10−3 g/cm. The mass per unit length equals the product of the density, δ, and
the cross-sectional area, A:

417In the THIRTEENTH EXPERIMENT, Coulomb writes “The length of the filaments of suspension in
all the preceding experiments being 9 pouces”.
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m

L
= δ · A . (8.1)

For the density: Coulomb, in a final paragraph of section XV, reports that

Le pied cube de fer, pesant à peu-près 540 livres,...

This gives, after conversion, δ = 7.70 g/cm3 for the density. So A = 1.77 × 10−4 cm2;
and the diameter d = 1.50× 10−2 cm2.418

We can compare the properties of Coulomb’s gauge # 12 wire with those of standard
steel wire sizes of today. From a steel wire gauge chart posted by a maker of precision wire
drawing dies,419 we find a gauge # 44 has a diameter of 0.01472 cm and a weight per 1000
feet of 0.0908 pounds. The diameter is within a few percent of the wire diameter Coulomb
apparently used; 0.0908 pounds per 1000 feet is equivalent to 1.35 × 10−3 g/cm. This is a
very fine music wires size, at the limit of wires used in the treble range of a harpsichord.

Coulomb states that the # 12 gauge wire supports, before breaking, 3 livres 12 onces.
The latter is equivalent to 18 N, neglecting the weight of the wire itself. The stress at
rupture, the ultimate tensile stress, is then the latter divided by the wire cross-sectional area
which gives:

ultimate stress = 1.02× 109 N/m2 = 1020 MPa (mega pascals).

Our estimation of the ultimate strength of the # 12 gauge wire appears high. To be more
precise, we would need to know more about the strings of the harpsichord of “fer” (and of
“laiton”). Coulomb used in his experiments — “...strings of the clavecord such as one finds
throughout commerce, wound on bobbins and numbered...”. To explore further, we consider
experiments done with wire of gauge # 7 and # 1.

Iron Suspension Wire Data
Material Rupture Load Mass/Length Diameter Area Rupture stress

livre (g) grain/pied (g/cm) cm cm2 Mpa
Iron # 12 3.75 (1836) 5/6 (1.36× 10−3) 0.0150 1.77× 10−4 1020
Iron # 7 10 (4895) 14/6 (3.81× 10−3) 0.0251 4.95× 10−4 969
Iron # 1 33 (10769) 56/6 (1.52× 10−2) 0.0502 1.98× 10−3 799

With decrease in wire diameter, moving up in the Table, values for the rupture stress
increase significantly — a result of the cold working of the material drawn through a succes-
sion of dies.420 Still these values are high when compared to data obtained from one online

418In that same paragraph, section XV, Coulomb goes on to state that “the diameter of a filament of iron,
# 12, 6 feet long, weighing 5 grains, is approximately a fifteenth of a ligne”, (0.226/15 = 0.00151)!
419https://www.fwwd.com/wp-content/uploads/2016/02/FWWD_Steel_wire_guage_chart.pdf pub-

lished online by Fort Wayne Wire Die, https://www.fwwd.com/.
420Reproduction of Authentic Historical Soft Iron Wire for Musical Instruments,

Stephen Birkett and Paul Poletti, https://www.researchgate.net/publication/

228376665_Reproduction_of_Authentic_Historical_Soft_Iron_Wire_for_Musical_Instruments,
[Birkett and Poletti, s d]. Also: https://fiskalloy.com/products/wire-facts/tensile-yield-and-

elongation/.
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source.421 There the ultimate tensile strength of wrought iron is given as within the range
34 to 54 kpsi which converts to 234 to 372 MPa.

***

To check Coulomb’s results for the period of oscillation of his torsion pendulum of varying
suspension wire and suspended mass characteristics, we deduce the length of the suspension
wire from the equation for the frequency of oscillation of the torsional pendulum, f , in terms
of these system’s characteristics. We have

f =
1

2π
·
√

k

I
, (8.2)

where k is the torsional stiffness of the wire and I is the polar mass moment of inertia of
the suspended mass. Noting that Coulomb’s time period T of an oscillation is one half that
of a full a full cycle we have

T = π ·
√

I

k
, (8.3)

where

I =
1

2
·M · R2 and k =

GJ

L
, (8.4)

M is the mass of the cylinder, R its radius; L is the length of the wire, G is the shear modulus
of the wire (G = 77× 109 N/m2),422 and J is the polar moment of inertia of the wire cross
section about the axis of the wire,

J =
π · r4
2

, (8.5)

where r is the wire radius. Putting this all together and manipulating, we obtain the following
expression for L, the length of the wire

L =
T 2Gr4

πMR2
. (8.6)

For the Première Essai of the PREMIÈRE EXPÉRIENCE, the wire radius r = 7.50 ×
10−5 m. The cylinder makes 20 oscillations in 120 seconds, so T = 6 sec.

The suspended lead cylinder has a diameter of 19 lignes (4.29 cm) and height of 6.5 lignes
(1.47 cm). With the density of lead = 11.34 g/cm3, M , the mass of the cylinder is 0.241 kg.
(Coulomb’s weight of the cylinder is given as 1/2 livre which converts to 244 kg.).

Summarizing: T = 6 sec, R = 4.29/2 cm = 2.145 × 10−2 m, M = 0.241 kg, r =
7.50× 10−5 m and G = 77× 109 N/m2.

This gives, for the wire length

L = 0.251 m = 9.3 pouce . (8.7)

421https://engineersedge.com/manufacturing_spec/properties_of_metals_strength.htm.
422We take the shear modulus as 40% of the elastic modulus of wrought iron. The latter is given as 193

GPa in https://en.wikipedia.org/wiki/Wrought_iron (40% assumes the material is isotropic which is
probably not justified but a more exact value for the shear modulus is difficult to define or find.)
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Recall that Coulomb gave the wire length as 9 lignes, which we read as a typographical er-
ror. This calculation of the wire length using Coulomb’s stated wire and mass characteristics
confirms our reading.

8.3 Section XIII, De la Force de Torsion Relativement à la

Grosseur des Fils

In Section XIII, De la force de torsion relativement à la grosseur des fils, Coulomb, first
presents a “theory” from which he concludes that

...we are led to believe, from theory, that the force of torsion of two filaments of
metal of the same material and of the same length but of different thickness, is
proportional to the fourth power of their diameter...(emphasis mine).

Then, from an analysis of the results of his experiments suspension wires of brass and of
iron, show that this is indeed the case (evidently within an acceptable limit of accuracy). It
is his theory which concerns us here, to wit:

Voici ce que le raisonnement doit faire prévoir; le momentum de la réaction de torsion
doit augmenter, avec la grosseur des fils, de trois manières. Prenons pour exemple
deux fils de même nature & de même longueur, que le diamètre de l’un soit double
de celui de l’autre, il est clair que dans celui qui a un diamètre double, il y a quatre
fôıs plus de parties tendues par la torsion, que dans celui qui a un diamètre simple;
& que l’extension moyenne de toutes ces parties sera proportionnelle au diamètre du
fil, de meme que le bras moyen du levier relativement à l’axe de rotation. Ansi nous
sommes portés à croire...,

Here is my conjecture of his reasoning. First he considers two wires of the same material
and length, the diameter of one being double that of the other.

Prenons pour exemple deux fils de même nature & de même longueur, que le diamètre
de l’un soit double de celui de l’autre, il est clair que dans celui qui a un diamètre
double, il y a quatre fôıs plus de parties tendues par la torsion,

Since both wires have a uniform circular cross-section along their length, we need only
consider a cross section and its “parts”. Then think of each part as a differential element
of area and since the area is proportional to the square of the diameter, the wire of double
diameter will have four times more parts stretched by the torque of the wire.

Now we have to consider what is happening to each of the “parts”. He writes

l’extension moyenne de toutes ces parties sera proportionnelle au diamètre du fil,

Consider his analysis of V, First Section where he writes that the velocity of any point
in a cross-section is a proportional to the radius, r, at the point, i.e., v = u · r/a where u is
the velocity when r = a = D/2. Now here is a problem: If the velocity of each point in a
cross-section moves in this way, it means that the cross section moves like a rigid disc. There
is no relative motion of one point in the plane relative to any other point. So what is this
extension he refers to?
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Figure 8.2: Shear strain.

In today’s analysis, we consider the shear strain due to the rotation of one cross section
relative to another as shown in Figure 8.2. The shear strain γ is a linear function of the
radius and is given by γ = r ·∆φ/∆z.

Did Coulomb “see” this shear strain as his extension? We can only conjecture.
The main point is that the extension varies linearly with radius so its mean is proportional

to the diameter of the wire.

de même que le bras moyen du levier relativement à l’axe de rotation

just as the mean of the lever arm of the part is proportional to the diameter of the wire since
the lever arm is by definition the radius, so it varies linearly with the radius.

So what! How does this all together justify the claim that the stiffness is proportional to
the diameter to the fourth power?

Forget for the moment all talk about “means”. Consider a part at radius r in the cross
section. If we take the contribution to the torque as the product of the extension and the
radius, with the extension proportional to the radius, then the contribution of the part to the
torque will be proportional to the square of the radius. The sum of all these contributions of
all the parts will then be proportional to the radius to the fourth power since we sum over
the area which is proportional to the square of the radius.

The key ingredient of this “theory” is the claim that the extension is proportional to
the radius and just as important, we interpret this extension as a force. This last reading
reminds us that Coulomb does not hesitate to interpret an angular displacement as a reactive
torque.
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Chapter 9

Assis’ Remarks on Coulomb’s 1784
Paper

A. K. T. Assis

9.1 Period of Oscillation of a Cylinder

I present here some comments that help to understand how Coulomb obtained the period of
oscillation of the cylinder in Section 7.5. The case being studied is illustrated in Figure 9.1.

p

p´

p´´

Figure 9.1: Figure 1, Number 2.

The direction CA′A indicates the case in which the torsion wire is not twisted, where A′

is a point on the circumference of the cylinder. The cylinder along with the lower part of the
suspension wire is rotated through an angle ACM (this angle is represented by Coulomb by
the capital letter A) and released from rest. The line CA′ then oscillates between points M
and M ′. Coulomb represents the angle MCm by the capital letter S.

At the end of Section 7.5 Coulomb presented the equation of motion to be integrated:

dt = dS

√

√

√

√

∫

pr2

n(2AS − S2)
. (9.1)

In this equation t indicates the time interval for the line CA′ to start from M and reach
point m, p represents an element of mass of the cylinder located at a distance r from the
vertical axis of rotation passing through C,

∫

pr2 is the moment of inertia of the cylinder,
while n is a constant coefficient whose value will depend on the nature of the metal wire, its
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length and its thickness. This quantity n is called the torsion coefficient of the wire. When
the wire is attached by the upper end and its lower end is rotated through an angle θ about
the vertical axis, the wire exerts a reaction torque τ on the cylinder given by τ = −nθ, where
θ = 0 is the situation where the wire is not twisted.

Then Coulomb described the result of the integration as follows:423

Mais dS√
2AS−SS

représente un angle dont A est le rayon & S le sinus verse, qui
s’évanouit lorsque S = 0, & qui devient égal à 90 degrés lorsque S = A.

Ainsi le temps d’une oscillation entière sera

T =

(

∫ πr2

n

)1/2

180d .

What Coulomb here calls 180d is the ratio of the circumference to the diameter of a
circle.424 Today this ratio is represented by the letter π = 3.14159.... So I am going to
replace 180d with π, just as I am going to replace the expression “90 degrees” with π/2.

The letter π used by Coulomb to represent an element of mass in the expression of the
moment of inertia

∫

πr2 was replaced in the reprint of Coulomb’s works in 1884 by the letter
p, such that the moment of inertia is written as

∫

pr2. In this English translation we are
using this letter p adopted by Potier.

Here is the translation of that paragraph (see page 149 of the present work):

But dS/
√

(2AS − S2) represents an angle of which A is the radius and S the versed

sine,425 which vanishes when S = 0, and which becomes equal to 90 degrees when
S = A.

Thus the time of a complete oscillation will be426

T = π

√

∫

pr2

n
.

In that Section 7.5 Coulomb called T the “time of an entire oscillation”. What he called
the time of an entire oscillation is when the line CA′ goes from M to M ′ in Figure 9.1.

I will call T1/4 the time interval for the straight line CA′ of the cylinder to start from rest
from its initial angle S = 0 until it reaches the situation where the wire is not twisted with
S = A, that is, for the straight line CA′ to start from point M until it reaches point A in
this Figure 9.1. Integrating Equation (9.1) with time t going from 0 to T1/4 and with angle
MCm = S going from S = 0 to S =MCA = A gives:

∫ T1/4

t=0

√

n
∫

pr2
dt =

∫ A

S=0

dS√
2AS − S2

. (9.2)

423[Coulomb, 1787, p. 232] and [Potier, 1884, p. 69].
424See Alfred Potier’s Introduction to Coulomb’s works, [Potier, 1884, pp. x and 13], as well as the page 32

of this English translation.
425It seems that by a typographical error the integral symbol was missing before dS/

√

(2AS − S2). The

sentence should read: “But
∫

dS/
√

(2AS − S2) represents an angle of which A is the radius and S the versed
sine”.
426In the original: le temps d’une oscillation entière. A complete oscillation here is but one half of what

we today call a full cycle.
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The left-hand side is given by:

∫ T1/4

t=0

√

n
∫

pr2
dt =

√

n
∫

pr2

∫ T1/4

t=0
dt =

√

n
∫

pr2
T1/4 . (9.3)

The right-hand side is given by:

∫ A

S=0

dS√
2AS − S2

=
∫ A

S=0

dS
√

A2 − (S − A)2
=
∫ A

S=0

dS
A

√

1−
(

S−A
A

)2
. (9.4)

Defining the magnitude γ = (S −A)/A gives dγ = dS/A. Then:

∫ A

S=0

dS√
2AS − S2

=
∫ A

S=0

dγ√
1− γ2

= [arcsin γ]AS=0 =
[

arcsin
S −A

A

]A

S=0

= [arcsin 0− arcsin(−1)] =
(

0− −π
2

)

=
π

2
. (9.5)

Equating the expressions (9.3) and (9.5) yields:

√

n
∫

pr2
T1/4 =

π

2
. (9.6)

Twice T1/4 gives the time interval for what Coulomb called the “time of a complete
oscillation” (une oscillation entière) of the cylinder to occur, that is, the time T for the line
CA′ go from M to M ′ in Figure 9.1:

TCoulomb = 2T1/4 = π

√

∫

pr2

n
. (9.7)

This result of the integration of Equation (9.1) was expressed by Coulomb as:

T =

(

∫

πr2

n

)1/2

180d . (9.8)

Nowadays, the time interval between the departure and the return to the same point is
called the complete period of oscillation. That is, the time interval for the line CA′ to start
from point M , reach point M ′ and return to point M . This time interval is given by the
quadruple of T1/4. This complete period of oscillation is also represented today by the letter
T :

Tmodern = 4T1/4 = 2π

√

∫

pr2

n
. (9.9)

9.2 Torque Proportional to the Fourth Power of the

Wire Diameter

I will detail here how Coulomb theoretically concluded that the torque exerted by the wire
must be proportional to the fourth power of its diameter.427

427[Gillmor, 1971a, p. 156].
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In Section 7.13 Coulomb gave three independent reasons why, assuming wires of the same
material and of the same length, the torque should increase with increasing diameter D of
the wire, namely:

1. The amount of matter (that is, the number of stretched parts, in Coulomb’s terminol-
ogy) is proportional to the cross-sectional area of the wire. It is then proportional to
D2.

2. The mean extension of the stretched parts of the wire428 is proportional to the wire
diameter D.

3. The mean lever arm with respect to the axis of rotation is also proportional to the
diameter D.

Combining these three independent reasons, Coulomb concluded that the torque τ exerted
by the wire must be proportional to D4.

The first item is clear since the mass M of a cylindrical wire of length L, diameter D and
volumetric density of mass δ is given by M = δπ(D/2)2L. That is, M is proportional to D2.

Regarding the second item, when Coulomb mentions the mean extension of the wire
parts, he is referring to the horizontal distance of displacement or extension of the wire
when it is twisted at an angle ψ with respect to the vertical axis. An element of mass dm at
a distance ρ from the axis of rotation moves a distance s = ρψ when the wire rotates through
an angle ψ. Let us imagine a homogeneous disk of thickness dz, radius R, volumetric density
of mass δ and mass M = δπR2dz. A mass element dm located at the cylindrical coordinates
(ρ, ϕ, z) can be written as dm = δρdϕdρdz. The average displacement s̄ of all elements of
mass when this disk rotates through an angle ψ is then given by:

s̄ =

∫ ∫

sdm

M
=

∫ 2π
ϕ=0

∫ R
ρ=0 (ρψ · δρdϕdρdz)

δπR2dz
=

2ψ
∫ R
ρ=0 ρ

2dρ

R2
=

2Rψ

3
=
Dψ

3
. (9.10)

That is, the mean displacement is proportional to the diameter D, as stated by Coulomb.
Regarding the third item, it is concluded in the same way that the average arm of the

lever ρ̄ in relation to the vertical axis of rotation is given by:

ρ̄ =

∫ ∫

ρdm

M
=

∫ 2π
ϕ=0

∫ R
ρ=0 (ρ · δρdϕdρdz)
δπR2dz

=
2
∫R
ρ=0 ρ

2dρ

R2
=

2R

3
=
D

3
. (9.11)

Again, this mean lever arm is proportional to the diameter D of the wire, as stated by
Coulomb.

Suppose we have two wires of the same material, of the same length, twisted at the same
angle, but with diameters D1 and D2. In this case, the ratio between the torques τ1 and τ2
exerted by them is given by:

τ1
τ2

=
(

D1

D2

)4

. (9.12)

428Or the mean extension of the wire particles, according to Gillmor, [Gillmor, 1971a, p. 156].
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Chapter 10

Description of a Compass Needle
Suspended by a Silk Thread

Coulomb429

I described in a Supplement to the researches on magnetized needles printed in Volume
XI of the Savans étrangers, on page 215, a compass needle suspended by a silk thread for
the determination of the diurnal variations [of the terrestrial magnetism].430 That presented
today was built according to the same principles; but it has a simpler construction and it is
more convenient in its uses.

Recall that it was proved on page 205 and the following431 of the work just quoted that,
when we take into account the precautions that were indicated in that work, the force of
torsion of a silk thread can only have a negligible influence on the direction of a magnetized
needle suspended by this thread.

It was also proved on page 209 and the following,432 that air resistance has no influence
upon the direction of the needle, or at least has a certain amount of influence that we can
neglect.

Finally it was demonstrated on page 221 and the following of the same Memoir,433 that
when a magnetized lamina434 is suspended horizontally, if we draw an arbitrary line on this
lamina and observe the direction of this line, before and after the inversion of the lamina,435

the direction of the meridian line will divide in two equal parts the angle formed between
the two observed directions.

The first Figure shows in perspective all parts of the new compass.

429[Coulomb, 1788a], with Portuguese translation in [Assis, 2022]. This work was presented in 1785 to the
French Academy of Sciences and published in 1788. It was not included by Potier in the reprint of Coulomb’s
works, [Potier, 1884].
430[Coulomb, 1780, p. 215]. This work was published in Volume IX and not in Volume XI as mentioned

here by Coulomb. It is translated in Chapter 5. See, in particular, Section 5.4 on page 97.
431Corresponding to pages 88 and the following of this English translation.
432Corresponding to pages 91 and the following of this English translation.
433Corresponding to pages 103 and the following of this translation. See, in particular, Article 63 on

page 104.
434In the original: une lame aimantée.
435In this inversion the lamina turns upside down, see Figure 15 on page 105.
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ABCD is a block of stone cut at right angles and utilized to support the compass. This
stone is twenty four inches long [65.0 cm], nine inches wide [24.4 cm] and four to five inches
thick [10.8 to 13.5 cm]. The long side BD is orientated approximately in the direction of
the magnetic meridian of the local where the observations will be made. One fixes in ae
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parallel to the side AB, at ten inches [27.1 cm] from this side AB, a lamina of red copper436

eighteen lines wide [4.1 cm], five inches long [13.5 cm] and two to three lines thick [0.45 to
0.68 cm]. This lamina is embedded and cemented into a notch made in the stone. On this
plate rises perpendicularly a fork df ,437 fixed by its heels da on the first copper plate by
means of the screws that we see in the Figure. On the upper portion of this fork, in f , there
is a suspension clamp438 seen in detail in the second Figure.439

Button a is utilized to turn this clamp. There is a slit in b which holds the suspension
thread. In c we have the ring which tightens the clamp. We place in f , Figure 1, at the
top of the fork, a small horizontal circle with its center aligned with the center of the clamp
hole. This circle divided in degrees will serve, if we wish, to know how much a given angle
of torsion is able to deflect the needle from its magnetic meridian.

Figure 3 presents a second clamp suspended at the silk thread by its upper part a and
which, by its lower part b, seizes the magnetized needle which, in this way, is suspended
sideways.440

436In the original: une lame de cuivre rouge. This expression can also be translated as a lamina of reddish
copper.
437In the original: fourchette. This word can also be translated as bracket or wishbone.
438In the original: pince de suspension. This expression can also be translated as “clasp of suspension”.

See also footnote 340 on page 153.
439This suspension clamp seen in Figure 2 works as a micrometer. This micrometer is represented by button

a. There is a horizontal index connected to it. At the lower part of the micrometer there is a slitted clamp b
on which one fixes the upper end of the vertical thread utilizing ring c which tightens the clamp. When one
turns the micrometer, the upper portion of the thread turns with it and the horizontal index moves around
a scale graduated in degrees. This angular scale is fixed in the laboratory, going from zero degrees up to
360◦. In this way it is possible to measure the torsion angle of the upper part of the thread connected to
the micrometer.
440In the original: suspendue de champ. Consider a parallelepiped with larger side L, second side W and

shorter side T such that L > W > T . It is suspended on the side when the length L and the thickness T
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Figure 1 presents the magnetized needle in hi. It measures six inches [16.2 cm] from h
to k, where its point of suspension is located, and twelve inches [32.5 cm] from this point k
up to its other end i; in such a way that it has a total length of eighteen inches [48.7 cm].
In h we have a mobile ring working as a counterweight to keep the needle in a horizontal
position; a small silver plate is welded horizontally above the needle in i, we draw a line
on this plate along the direction hi, in the middle of the needle thickness. This needle
ought to be of a good steel, well drawn, first quenched to be very hard and then brought
to the consistency of a spring; then magnetized by the double touch method,441 it can be
given other dimensions than those I have just indicated, provided that the strength of the
suspension wire is proportioned to its weight.442 The one I use is ten lines wide [2.26 cm] at
the extremity h, three lines [0.68 cm] at the end i and three quarters of a line [0.17 cm] of
thickness uniformly [along its length].

To observe the variation of this needle,443 one uses, Figure 1, the micrometer lmnpq of
red copper. It is composed of a supporting pad lp; of two uprights lm and pn; of a horizontal
frame nm; and of a cursor s, which carries in its center a microscope444 with two lenses rt.
The focal point of this microscope is placed at twelve inches [32.5 cm] from the suspension
wire fk. The frame mn of the micrometer is represented in detail and seen from above in
Figure 4.

are horizontal, while the width W is vertical.
441See Section 4.6.
442That is, the strength of the suspension thread should increase proportional to the weight of the needle.
443That is, the diurnal change in the orientation of this needle due to the variation of terrestrial magnetism.
444In the original: une lunette microscopique.
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We see that the side ab of this frame is divided on each side, from its middle o, in eight
equal parts, of which the two or three initial [parts] of each side represent degrees, because
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the arc, the sine and the tangent are nearly the same in the first degrees.445 Each one of
these degrees is divided into four parts, which are therefore equal to fifteen minutes.

Each side od and oq of the cursor corresponds to three degrees and a half, and is divided
into fifteen parts, each of which, therefore, equals fourteen minutes, or differs of one minute
from each division of the frame, which forms a Nonius446 which measures the minutes. As
during the diurnal variations the needle rarely moves more than thirty minutes we can,
without perceptible error in observation, take the divisions for degrees. If, however, the
variations were considerable, or if in the variations that the needle would have experienced,
from the beginning of the observations, it had arrived at two or three degrees away from
the first division o, we could, if we wanted greater precision, calculate the angular variations
according to the measures given by the tangent divided here in equal parts.

The microscope has two very thin silk threads crossed at its focal point. It is necessary
to turn this microscope utilized to observe the line of the needle at i, such that this line
appears at the focal point of the microscope, in line with one of the threads. One makes the
cursor (Figure 4) qkpd follow the motions of the needle by means of a screw eg, and of a
bevelled groove on the interior sides of the frame, in which groove the cursor slides.

I will not carry this description further since the proportions of most of the parts of this
compass, modified in implementation, do not alter its function provided that the mobility
of the needle remains the same.

The silk threads do not require any preparation; we put them together by placing several
cocoons in boiling water, unwinding them to the crusade, as usually done in the manufac-
tures, or simply by pressing them between two fingers and fusing them together when they
leave the boiling water. Although the strength of each thread of silk varies a lot, it is rarely
less than 80 grains;447 but, in practice, after joining them together, we can only count on
each carrying 50 grains [2.7 g]. If we wish, we can replace the boiling water, uniting several
silk threads by dipping them in gummed water. Although they become a little more rigid
in this way than with the first procedure, this stiffness does not suffice to sensibly alter the
displacement of the needle.

Before placing our [magnetized] needle in the suspension clamp ab, Figure 3, it is initially
necessary, as we said in the aforementioned Memoir, to suspend in this clamp a lead or copper
lamina, which can turn in the suspension fork, and which has exactly the same weight as
the needle which will replace it after the first suspended body, having stopped naturally
approximately along the magnetic meridian, will indicate that there is no longer any force
of torsion in the suspension.

The fork, Figure 1, will be eighteen inches high [48.7 cm]. This height allows the suspen-
sion wire to be twelve to fifteen inches long [35.5 to 40.6 cm].

All the parts that we have described are those which essentially constitute the compass.
However, the great sensitivity of the needle so suspended, would render any observation
impracticable, if the needle is uncovered and exposed to all air movements in the room
where the observations are made. The box [represented in] Figure 5 seemed very convenient
to us in order to cover the compass.

445Consider an angle θ in radians. We have θ ≈ sin θ ≈ tan θ when θ ≪ 1 radian, that is, when θ ≪ 57.3◦.
446See footnote 237 on page 100.
447That is, a silk thread usually supports at least 80 grains = 4.25 grams without breaking up.
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It is constructed in such a way that, when there is anything that needs to be replaced, we
can disassemble and reassemble it without touching any of the parts of the compass. This
box is formed, Figure 5, of two pieces. The first part AadDBbC is twenty two inches long,
five and a half inches wide and four inches high [59.6 cm, 14.9 cm and 10.8 cm, respectively].
This box is completely open at its bottom, its cover is open in part bd in order to put there
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a glass 1234 through which we should observe the needle. The other end ac of the box is
indented in xy up to zu, approximately nine inches in length [24.3 cm]. The fork df of Figure
4 is located in this slot when one slides this box under the micrometer, in such a way that
the extremity ac, Figure 5, exceeds by one inch [2.7 cm] the extremity h of the needle, Figure
1.

The upper part of the fork is covered by a second box, Figure 5, which is three and a
half inches wide [9.5 cm] in all directions, eighteen to twenty inches high [48.7 to 54.1 cm],
and which by means of the framework cgh, which finishes its lower portion, is connected by
four screws on the cover ab. When the compass is so covered by the box, we block the slot
with two small rulers, then we glue paper on all joints to prevent air from penetrating into
the interior of the box.

We see, as shown in the Memoir already cited, that the needle, suspended in the way we
have chosen, is very sensitive to displacement, it readily responds to the least disturbance,
the smallest vibration starts it oscillating so that precautions must be taken on the part of
the observer. However, we could decrease a great portion of this mobility by the following
means: we weld, Figure 1, under the needle and in its plane, a very light copper or silver
lamina, three or four inches high [8.1 or 10.8 cm], four lines thick [0.057 cm]; its length
might be only eight or ten lines [1.8 or 2.3 cm] at its upper part, where it is fastened to
the needle, but it would increase in its lower part, where it would be three or four inches
long. This lamina would be plunged into a vase full of water, placed below the needle, but
which allows its full freedom of motion: by means of a small tube, we can keep the water in
the vase always at the same level. We saw on the volume of 1784 of the Académie,448 from
experiments that appear decisive, that the cohesion of water against the bodies cannot have
an influence upon their position, when they reach a state of rest. Therefore, it results from
these experiments and from the previous construction, that a copper lamina, plunged into
water, will quickly damp out the oscillations of the needle, without altering the direction
of the [needle relative to the] magnetic meridian. We could weld vertically a second copper
plane, orthogonal to the first one, or to the plane of the needle. These two planes would
stop very quickly in all directions the different motions of the needle. However, although
the previous method should appreciably reduce the problems due to the extreme mobility
of our suspension, we must not neglect any of the other precautions that can facilitate the
observations. This is what has made me decide to set all parts of my compass firmly on a
very heavy stone; [and] to separate the micrometer completely from the suspension fork, so
that slowly turning the micrometer screw would not cause the needle to move. We should
place, when possible, this compass at the ground floor, or at least on a vault of a very solid
building, in such a way that the different parts of the box cannot acquire different degrees of
temperature; otherwise circular air currents will be formed which will move the needle and
put it into oscillation.

Finally, when making an observation, it is essential that one approaches the head of the
compass slowly and, by means of the micrometer screw, carefully bring the focus of the
microscope onto the line of the needle.

If, despite all these precautions, at the moment of making an observation, the needle
moves — movement due to the particular electric state, the position, the temperature of
different bodies or even of the masses of air surrounding the needle — it is necessary, in this
case, to discount the reading since the magnetic force was probably altered by other [kinds
of] forces. Without these perturbations, it would be very easy to determine the true position

448[Coulomb, 1787]. This work is translated in Chapter 7.
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of the needle in oscillation, by measuring by means of the micrometer the total amplitude
of oscillation; the midpoint of this amplitude would yield the real orientation of the needle,
when it stops oscillating.449

After these remarks which inform that the needles are sometimes agitated by forces alien
to magnetism, I proposed, in 1778, to always observe two absolutely similar needles, but
whose magnetic forces were very different, for instance, in the ratio of 4 to 1, which can be
easily determined by the number of oscillations. When the forces alien to magnetism act on
these needles, that one which is more weakly magnetized, will be displaced in the inverse
ratio of the directive force.450

I will not compare this new suspension with that due to caps on pivots,451 of which I
detailed a part of the defects, in 1777, in the IXth volume des Savans étrangers.452,453,454

10.1 Determination of the Magnetic Meridian

The compass used for the determination of the magnetic meridian is built according to the
same principles just described; but its needle which is eighteen inches long [48.7 cm], is of
the same width and thickness throughout this length. It is suspended by its center, as can
be seen on Figure 6.

449Consider the directions of the needle at its two extreme orientations. The straight line that divides this
angle into two equal parts yields the local magnetic meridian.
450That is, the greater the magnetic intensity of the needle, less it will be displaced relative to the magnetic

meridian due to non magnetic forces.
451That is, suspension poising or supporting of an object on a sharp pivot. This is used for the needle in

the ordinary compass. A cavity or inverted cup, which may be made of agate, is attached to the middle of
the needle which has a hole for its reception. The center of gravity of the needle comes below the bottom of
the cup. See footnote 141 on page 58.
452[Coulomb, 1780]. This work is translated in Chapter 5. The defects of pivot suspension are mainly

related to friction.
453[Note by Coulomb] Mr. de Cassini has been utilizing for several years, in order to observe the diurnal

variations, compasses built according to these principles. Every year he presents the results of his observations
and the precautions he has taken to be sure of their exactness. I believed it was necessary to suspend the
publication of this Memoir, until the moment where the work of a so brilliant observer had ensured the
success of the compass just described, and had chosen the best way to utilize it.
454Jean-Dominique Cassini (1748-1845). See also [Licoppe, 1995].
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It must be perfectly prepared and suspended with its side set vertically: along the middle
of its thickness, we draw a line from one extremity to the other, and we observe the two
extremities of this line, by means of the two micrometers, as shown in Figure 6.

As our needle is everywhere of equal and very small thickness, as it is assumed to be
well prepared, that it is suspended on the side, the plane which divides its thickness, seen
vertically by the line drawn on its side, will be very nearly along the magnetic meridian. So
the two focal points of the microscope will be found, after the observation, in this meridian
line. Therefore, by stretching a silver wire under these two foci, after having removed the
needle, and extending this silver wire to a [geographic] meridian line traced in the place of
observation, it will be easy to determine the angle that the extended silver wire will form
with this meridian; and therefore it will be easy to have the angle of the meridian with the
magnetic meridian. Instead of this graphic procedure, we could also utilize advantageously a
quadrant455 BACD, Figure 9, on which the line of the first division will divide into two equal

455In the original: secteur. A quadrant is an instrument that is used to measure angles up to 90◦.
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parts the branch AB; this branch extending beyond the limb of the quadrant of a length
CB of two to three feet [65.0 or 97.4 cm]; we will slide this branch under the microscopes, so
that the line AB aligns with the two foci: the quadrant being placed horizontally by means
of the telescope LV , we will note some point on the horizon, of which the bearing,456 relative
to the place where the observation is made, will be determined.

10.2 Comment

As, in practice, it is rather difficult to obtain a thin steel lamina, which is perfectly straight,
we can, if we wish, use a needle (Figure 7) suspended horizontally in a case A, the profile of
which is shown in Figure 8.

456In the original: gisement. Bearing is the horizontal angle between the direction of an object and that of
true North.
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Two small rings n and s, of silver or of copper, are welded to the ends of the lamina;
one stretches a very fine wire of silk or silver from n to s, whose direction is observed, by
means of the two micrometers, before and after the inversion of the needle: the half of the
difference of the two directions observed, will determine the magnetic meridian.457

457To determine the magnetic meridian, one first observes the direction of the silk thread with the magne-
tized lamina placed as shown in Figure 7 and observes the direction of the silk thread. Then this lamina is
turned upside down. One waits until it is at rest and observes once again the direction of the silk thread.
The straight line drawn along the middle of the two previous directions will indicate the magnetic meridian.
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Chapter 11

First Memoir on Electricity and
Magnetism: Construction and Use of
an Electric Balance Based on the
Property that Filaments of Metal
Produce a Reactive Force in Torsion
Proportional to the Angle of Twist

Coulomb458

Experimental determination of the law according to which the elements of bodies, electri-
fied with the same kind of electricity, are mutually repelled.

In a Memoir presented to the Academy, in 1784,459 I have determined from experiments
the laws governing the force of torsion460 of a filament of metal and I have found that this force
is proportional to the angle of torsion, to the fourth power of the diameter of the suspended
filament and inversely proportional to its length — all multiplied by a constant coefficient
which depends on the nature of the metal and is easily determined by experiment.461

I have shown in the same Memoir that by means of this force of torsion, it was possible
to precisely measure extremely small forces as, for example, one ten thousandths of a grain
(0.005 dyn).462 In the same Memoir I described a first application of this theory, seeking to

458[Coulomb, 1788b] with partial English translation in [Coulomb, 1935a]. There are complete English,
German and Portuguese translations in [Coulomb, 2012c], [Coulomb, 1890b] and [Assis, 2022], respectively.
This work was presented in 1785 to the French Academy of Sciences and published in 1788.
459[Coulomb, 1787]. This Memoir is translated in Chapter 7.
460In the original: force de torsion. This expression can also be translated as “torque” or “torsional

resistance”.
461Coulomb also found that this torsional force does not depend on the tension to which the wire is subjected

due to the supported weight.
4621 grain = 0.05311 g = 5.311×10−5 kg. So this balance achieves an accuracy, in terms of a mass m, of the

order m = (1 grain)/(10 000) = 5.3×10−9 kg. Assuming the acceleration of gravity given by g = 9.81 m/s2,
it follows that this balance achieves an accuracy, in terms of a force F , of the order F = mg = 5.2× 10−8 N ,
or 0.005 dyn, as calculated by Potier.
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evaluate the constant force attributed to adhesion in the formula for the surface friction of
a solid body moving through a fluid.

Today, I set before the eyes of the Academy, an electric balance constructed according to
the same principles. It measures with the greatest precision the state and the electric force
of a body, however weak the degree of electricity.463

11.1 Construction of the Balance

While practice has taught me that, in order to execute several electric experiments in a
convenient way, it is necessary to correct some defaults in the first balance of this kind that
I put to use, still, as this has been up until now the only one which I have employed, I
am going to give its description, noting how its form and dimensions can and ought to be
changed according to the nature of the experiments one plans to carry out. The first Figure
presents the balance in perspective. Here are the details.

463That is, the balance can measure very small forces even with a low electrification of the interacting
bodies.
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On a cylinder of glass ABCD, of 12 inches in diameter (32.48 cm) and 12 inches high,
we place a plate of glass of 13 inches in diameter, which covers the whole vessel of glass.
This cover is pierced with two holes of approximately 20 lines in diameter (4.51 cm), one
in the middle, at f , on which is elevated a tube of glass of 24 inches in height. This tube
is cemented over the hole f , with the cement used in electric apparatus: at the highest
extremity of the tube at h, is placed a torsion micrometer the details of which are shown in
Figure 2.464

The top [of Figure 2], No. 1, bears a knob b, the pointer io, and the clasp of suspension,
q.465 This piece goes into the hole G of part No. 2 [of Figure 2]. Part No. 2 is formed of
a circle ab divided on its edge into 360 degrees, and of a copper tube Φ which fits into the
tube H , [Figure 2,] No. 3, sealed at the interior at its highest extremity of the tube or of
the glass stem fh of Figure 1.

464See footnote 439 on page 193.
465In the original: pince de suspension. This expression can also be translated as clamp or pincer. See also

footnote 340 on page 153.
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The clasp q (Figure 2, No. 1) has approximately the shape of the extremity of a solid
mechanical pencil clamp,466 which can be tightened by means of the annulus q. The clasp
of this pencil clamp holds the end of a filament of very thin silver. The other end of the
filament of silver is fixed (Figure 3) at P , by the clasp of a cylinder Po of copper or of iron,
whose diameter is but a line (0.22 cm), and whose end P is split and forms a clasp which is
tightened by means of the collar Φ.

This small cylinder has a hole in C, in order to allow the needle ag to slide through
(Figure 1). It is necessary that the weight of this small cylinder be of sufficient magnitude in
order to put the filament of silver in tension without breaking it. The needle that one sees
(Figure 1) at ag, suspended horizontally at approximately the midpoint of the height of the
big vase which encloses it, is formed, either of a filament of silk plastered with sealing wax,467

or of a straw likewise covered with Spanish wax, and finished off from q to a, a distance of 18

466In the original: porte-crayon solide. This expression can also be translated as “solid crayon holder” or
“solid ruling pen”. A ruling pen is an instrument for drawing with ink or with other drawing fluids. It
contains ink in a slot between two flexible metal jaws, which are tapered to a point. The line width can be
adjusted by an adjustment screw connecting the jaws.
467In the original: cire d’Espagne. This expression can also be translated as “Spanish wax”. Sealing wax

is a wax material which, after melting, hardens quickly forming a bond that is difficult to separate without
noticeable tampering. It was also used as an electrical insulator.
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lines (4.06 cm), by a cylindrical filament of shellac.468 At the end a of this needle, is a small
ball of pith469 of two to three lines diameter [0.45 to 0.68 cm]. At g, is a small vertical paper
disk coated with turpentine which serves as a counter-weight to ball a and which dampens
the oscillations.

We have said that the cover AC is pierced with a second hole at m. It is in this second
hole that one introduces a small cylinder mΦt, of which the lower part Φt is shellac. At t is a
ball likewise made of pith. Around the vase, at the height of the needle, one scribes a circle
zQ divided into 360 degrees: for simplicity, I have made use of a band of paper divided into
360 degrees, which I glue around the vase, at the height of the needle.

To begin to operate with this instrument, in placing the cover (atop the vase), I position
the hole m approximately at the first division or at point O of the circle zOQ traced on
the vase. I place the pointer oi of the micrometer on point o, at the first division of this
micrometer. I then turn the micrometer within the vertical tube fh until, keeping in view
the vertical filament which suspends the needle and the center of the ball, the needle ag is
directed towards the first division of the circle zOQ.470 I then introduce through the hole
m the other ball t suspended by the filament mΦt such that it touches ball a and that, in
keeping in view the center of the filament of suspension and ball t, we encounter the first
division o of the circle zOQ.471 The balance is now in a state ready for all operations; we
go on to give as an example, the means by which we are able to determine the fundamental
law according to which electrified bodies repel themselves.

11.2 The Fundamental Law of Electricity

The repulsive force of two small globes electrified with the same kind of electricity, is inversely
proportional to the square of the distance between the centers of the two globes.

11.2.1 The Experiment

One electrifies, Figure 4, a small conductor, which is nothing but a pin with a large head,
which is insulated by forcing its point into the end of a rod of Spanish wax.472 One introduces

468In the original: gomme-laque. Shellac is a resin secreted by the female lac bug on trees in the forests of
India and Thailand. It is processed and sold as dry flakes and dissolved in alcohol to make liquid shellac.
Shellac was once used in electrical applications as it possesses good insulation qualities and it seals out
moisture.
469In the original: une petite balle de sureau. This expression can also be translated as elderberry ball, elder

pith ball, elderwood pith ball or elder ball, [Gillmor, 1971a, p. 184] and [Heilbron, 1999, pp. 451 and 471].
The various species of sambacus (sureau) are commonly called elder or elderberry. The pith is the marrow of
the limb of the elderberry. These pith balls were often used in electric pendulums and electroscopes, behaving
as conductors for the usual electrostatic experiments, [Assis, 2010b, p. 173], [Assis, 2010a], [Assis, 2011],
[Assis, 2015b] and [Assis, 2017].
470That is, when the thread is not twisted, the needle is directed toward point O on the graduated scale

zOQ.
471Point C is the center of needle ag, as shown in Figure 3. This point C coincides with the vertical line

passing through the suspension thread. The line passing through C and the center of the fixed ball t passes
through point O on the circle zOQ. Coulomb measures the angles from that point O. A representation of
this situation can be found in Figure 12.1 in Section 12.1 of Chapter 12, page 215.
472Coulomb charged the insulated pin by use of a Leyden jar or an electrostatic machine, [Gillmor, 1971a,

p. 184]. See also Chapter 12 (The Leyden Jar and Capacitors) of the Volume 2 of the book The Exper-
imental and Historical Foundations of Electricity, [Assis, 2018b], [Assis, 2018a] and [Assis, 2019]. See also
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this pin into the hole m, bringing it in contact with ball t, [which is] in contact with ball a.

In retracting the pin, the two balls find themselves electrified with the same kind of
electricity and they repel themselves mutually to a distance that we measure by looking past
the filament of suspension and the center of ball a, the division corresponding to the circle
zOQ. Turning then the pointer of the micrometer in the direction pno, we torque the filament
of suspension lP , and we produce a force proportional to the angle of torsion, which tends
to make ball a approach ball t. We observe, by this means, the distance to which different
angles of torsion bring ball a back toward ball t and in comparing the forces of torsion with
the corresponding distances of the two balls, one determines the law of repulsion.

I will only present here, some tests which are easy to repeat and which will immediately
reveal the law of repulsion.

First Test. Having electrified the two balls with the head of the pin, with the pointer of
the micrometer positioned at o, ball a of the needle is displaced from the ball t by 36 degrees.

Second Test. Having torqued the filament of suspension by means of the knob o of the
micrometer by 126 degrees, the two balls approach each other and stop at 18 degrees distance
the one from the other.

Third Test. Having torqued the filament of suspension by 567 degrees, the two balls
approach until 8 and one-half degrees.473

11.3 Explication and Result of This Experiment

Before the balls are electrified, yet touching, the center of ball a, fixed to the needle, is at a
distance equal to the diameter of the balls from the point where the torsion of the filament
of suspension is null. It is necessary to be warned that the filament of silver lP , 28 inches
long (75.80 cm), which forms the suspension is so fine that the weight of one foot of length
is but 1/16 of a grain (0.01 g per meter).474 In calculating the force required to twist this
filament, in acting at point a elongated some four inches (10.83 cm) from the filament lP
or from the center of suspension, I have found, using the formulas derived in a Memoir on
the laws of the force of torsion of filaments of metal, printed in the volume of the Académie

[Benguigui, 1995].
473I present a detailed discussion of Coulomb’s procedure and measurements in Chapter 12, Section 12.1,

page 215.
474Since 1 grain = 0.05311 g, the mass M of this silver wire was M = 3.319× 10−6 kg. Since 1 foot (pied)

= 32.48 cm, the linear mass density λ of this silver wire is

λ =
3.319× 10−6 kg

3.248× 10−1 m
= 1.022× 10−5 kg/m = 0.010 g/m .

Assuming a volumetric density of mass δ for silver of δ = 10.5 g/cm3 = 10.5×103 kg/m3, then the diameter
D of this cylindrical wire can be obtained by δ = M/(πLD2/4), that is, D = 3.5 × 10−5 m = 0.0035 cm.
This value is the same order of magnitude as the diameter of a single strand of hair.
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for 1784,475 that to torque this filament 360 degrees, requires at point a, in acting with the
lever aP of four inches of length (10.83 cm), a force of 1/340 of a grain.476,477 Thus as the
forces of torsion are, as proved in the Memoir [presented in 1784], proportional to the angles
of torsion, the least repulsive force between the two balls, displaces them sensibly one from
the other.

We find in our first test, where the pointer of the micrometer is at point o, that the balls
are displaced 36 degrees, which produces in the same time a force of torsion of478

36◦ =
1

3400
grain .

In the second test, the distance of the balls is 18 degrees, but as we have torqued the
micrometer 126 degrees, it results that at the distance [between the balls] of 18 degrees, the
repulsive force is 144 degrees:479 thus at half of the first distance, the repulsion of the balls
is quadrupled.480

In the third test, where we have twisted the filament of suspension 567 degrees, the two
balls find themselves no further apart than 8 and one-half degrees. The total torsion, is
consequently, 576 degrees, quadruple the one of the second test, and it is only off by one-
half a degree that the distance of the two balls in this third test was reduced to half of
the distance it was in the second [test].481 It results thus from these three tests, that the
repulsive action of the two balls electrified with the same kind of electricity exert on each
other was the inverse ratio of the square of the distances.482 ,483

475[Coulomb, 1787]. This Memoir is translated in Chapter 7.
476[Note by Potier] 0.153 dyn.
4771 grain = 0.05311 g = 5.311 × 10−5 kg. Then, in terms of a mass m, we have m = (1 grain)/340

= 1.562× 10−7 kg. With g = 9.81 m/s2, it follows that it would be necessary to employ a force F = mg of
F = 1.53× 10−6 N = 0.153 dyn, as calculated by Potier.
With a lever arm aP = 4 inches = 1.083× 10−1 m, the torque τ needed to twist this wire by an angle of

360◦ is τ = 1.66× 10−7 Nm.
478[Note by Potier] 0.0153 dyn.
479That is, the total twist of the wire in this case was 18◦ +126◦ = 144◦, see the Figures in Section 12.1 of

Chapter 12 on page 215.
480That is, to halve the angular distance, from 36◦ to 18◦, it was necessary to quadruple the twist of the

wire, that is, to go from a twist of 36◦ to 4 × 36◦ = 144◦. The torque exerted by the wire is proportional
to its angle of torsion. Therefore, in the second case where the angular separation between the balls has
halved, a torque four times as large is required to keep them at a fixed distance in equilibrium compared to
the initial torque.
481In this last case the angular separation between the two balls was 8.5◦. The total twist of the filament,

on the other hand, is given by its counterclockwise bottom twist of 8.5◦, added with its clockwise top twist
of 567◦. That is, a total twist of 575.5◦ ≈ 576◦. This value is four times the previous twist of 144◦, that
is, 4 × 144◦ = 576◦. On the other hand, the angular separation between the balls has again dropped by
almost half, from 18◦ to 8.5◦ ≈ 9◦. In other words, again it follows that the total angle of torsion of the wire
is inversely proportional to the square of the angular separation between the balls that are repelling each
other.
482[Note by Potier] The repulsion of the two balls, in the first test, is:

0.0153 dyn

cos 18◦
= 0.016 dyn ,

at a distance of 10.83×2 sin18◦ = 6.67 cm. Therefore, the charge on each one of them is 6.67×
√
0.016 = 0.84

absolute units (C.G.S.).
483I present a detailed calculation of the amount of charge on each of the balls in Chapter 12, Section 12.2,

page 217.
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11.4 First Remark

In repeating the preceding tests, we will observe that in making use of a filament of silver,
as thin as the one we have employed (which only requires a torsional force of approximately
24 thousands of a grain to twist it through an angle of 5 degrees),484 that however calm be
the air, and whatever precautions that we can take, we could not answer for the natural
position of the needle when the torsion is zero, to within 2 or 3 degrees. Thus, in order to
have a first test to compare with the following ones, it requires, after having electrified the
two balls, to torque the filament of suspension some 30 to 40 degrees, this which will give a
force of torsion strong enough so that the 2 or 3 degrees of uncertainty in the initial position
of the needle, when the torsion is zero, does not produce any sensible error in the results.
It is necessary furthermore to be warned that the filament of silver, which I used in this
test, is so fine that it breaks with the least disturbance. I have found in the following that
it would be more useful to employ in these tests a filament of suspension of nearly double
the diameter, although its flexibility to torsion be 14 to 15 times smaller than that of the
first. It is necessary to take care, before making use of this filament of silver, over the course
of two or three days, to tension it by a weight which is approximately half this that might
break it. It is necessary still yet to warn the reader, that in using this last filament of silver,
never to torque it beyond 300 degrees, because in exceeding this degree of torsion it begins
to strain-harden and reacts, as we have proven in the Memoir already cited, printed in 1784,
with a force smaller than the one corresponding to the torsion angle.

11.5 Second Remark

The electricity of the two balls diminishes somewhat over the duration of the experiment.
I noticed that, the day where I have made the preceding tests, the electrified balls, finding
themselves repulsed to 30 degrees one from the other, under an angle of torsion of 50 degrees,
they come back toward each other about one degree in three minutes. But as I have only
used two minutes to make the three preceding tests, we can, in these tests, neglect the error
which results from the loss of electricity. If one desires greater precision, as when the air
is humid, and the electricity dissipates rapidly, one ought, by a preliminary observation,
determine the law of diminution of the electric action of the two balls in each minute, and
then, on the basis of this preliminary observation, use it to correct the results of tests that
we wish to make that day.

11.6 Third Remark

The distance of the two balls, when they are displaced one from the other by their reciprocal
repulsive action, is not precisely measured by the angle they make, but by the chord of the
arc which joins their centers. In the same way that the lever at whose extremities the action

484That is, a mass m given by:

m =
1 grain

24 000
=

5.311× 10−5 kg

24 000
= 2.2× 10−9 kg .

With g = 9.81 m/s2 it follows that a force of the order of 2.2 × 10−8 N = 0.002 dyn is needed to rotate it
through an angle of 5◦.
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is exerted, is not measured by half the length of the needle, or by the radius, but by the
sine of the half of the angle formed by the distance of the two balls. These two quantities,
of which one is smaller than the arc and diminishes consequently the distance measured by
this arc, while the other reduces the lever arm, compensate themselves in some way; and in
the tests of this sort with which we are concerned, we can without sensible error, hold to
the evaluation that we have given, if the distance of the two balls does not exceed 25 to 30
degrees; in the other cases, we must make the rigorous calculation.485

11.7 Fourth Remark

As experiment has shown, in a well closed chamber, we can determine with the first filament
of silver, to within 2 or 3 degrees, the position of the needle, when the torsion is null,
this which gives, after the calculation of the forces of torsion, proportional to the angle of
torsion, a force more or less of a 40 thousandth of a grain (0.0013 dyn), the weakest degree
of electricity will be measurable easily with this balance. For this operation, one makes pass,
Figure 5, across a cork of Spanish wax, a small filament of copper cd, terminating at c by
a crochet and in d, by a small ball of gilded pith, and we put the cork A in the hole m of
the balance, Figure 1, in such a way that the center of the ball d, viewed by the suspension
wire, retakes to point o of the circle zOQ.

In approaching then an electrified body of the crochet c, however weak be the electricity
of this body, ball a separates from ball d, giving signs of electricity,486 and the distance of
the two balls measures the force between them, according to the principle of the inverse ratio
of the square of the distances.

485See Section 12.3 of Chapter 12 on page 218.
486These small degrees of electrification are perceived both in the electrified body approaching the hook c,

and in these two balls a and d.

212



But I ought to warn you that, since these first tests, I have had different small electrom-
eters made according to the same principles of the force of torsion, using a filament of silk
for the suspension, such as it leaves the cocoon, or a thread of the goat of Angora.487 One
of these electrometers which has almost the same shape as the electric balance, described in
this Memoir, is much smaller. It is only 5 to 6 inches in diameter [13.5 or 16.2 cm], a stem
of one inch (2.71 cm); the needle is a small filament of shellac of 12 lines of length (2.71 cm),
terminated at a by a small very light disk of tinsel.488

The needle and the tinsel weigh a little more than a quarter of a grain (0.013 g); the
filament of suspension, such as it leaves from the cocoon, is 4 inches long [10.8 cm], having a
flexibility such that in acting with a lever arm of one inch (2.71 cm), it only requires a [force
of a] sixtieth thousands of a grain to twist it an entire circle or 360 degrees.489 In presenting
in this electrometer at the crochet C of Figure 5, an ordinary rod of Spanish wax, electrified
by friction, at a 3 feet distance (0.97 m) from this crochet, the needle is chased to more than
90 degrees. We will describe in more detail in the following this electrometer, when we will
determine the nature and the degree of electricity of different bodies which through rubbing
each other, take on a very weak degree of electricity.490 ,491

487In the original: un poil de chèvre d’Angora. Mohair is a fabric or yarn made from the hair of the Angora
goat.
488In the original: clinquant.
489That is, a mass m given by:

m =
1 grain

60 000
=

5.311× 10−5 kg

60 000
= 8.85× 10−10 kg .

With g = 9.81 m/s2 it takes a force of the order of 8.7× 10−9 N = 0.0009 dyn to twist it an entire circle.
490[Note by Potier] Under the conditions in which Coulomb worked, if we neglect the action of the charges

induced on the glass of the container, which was located around 0.04 m from the center of the balls, the
influence of the distribution of electricity on the surface of the balls is small. Indeed, the reciprocal action
between two equal spheres charged with equal amounts of electricity is given by

e2

c2

(

1− 4
a3

c3

)

,

if a represents their radii, c the distance between their centers, [where e is the total charge on each ball].
This formula gives exact results to an approximation of 2/1000, as long as the distance between the [surfaces
of the] spheres is equal to their radius. In the experiments cited by Coulomb, a/c is always less than 1/6.
491Potier is considering the influence of charge distribution on the surfaces of two electrified conducting

spheres when they are close together. He considers equal spheres of radius a, equally electrified with a
charge e on each sphere, their centers being separated by a distance c. If the charges on the two spheres
were concentrated at their centers, the force between them would be proportional to e2/c2. If c = 6a,
the expression provided by Potier for the force between these conducting spheres would be proportional to
(e2/c2)(1 − 0.0185). That is, the percentage difference between these forces would be on the order of 2%.
However, in Coulomb’s experiments we have c > 6a, so the difference is even smaller. That is, in these
experiments it is not necessary to take into account the redistribution of charges on the conducting spheres,
it is sufficient to consider these charges as being concentrated at the centers of the spheres, as done by
Coulomb.
For a deduction of the formula given by Potier in footnote 490 see, for example, [Maxwell, 1954, Vol. I,

§§171-174, pp. 266-273].
An estimate of the force exerted by the induced charges located on the glass of the container and acting

on the charges located inside the torsion balance, assuming the container to be spherical and made of metal,
was given by Maxwell: [Maxwell, 1954, Vol. I, §215, pp. 327-329].
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Chapter 12

Remarks on Coulomb’s First Memoir

A. K. T. Assis

12.1 Coulomb’s Experimental Procedure

Here I give a detailed discussion of the procedure and measurements that Coulomb presented
in Section 11.2.

In Figure 12.1 (a) we have a top-down view of the needle with center C along the pro-
jection of the suspension thread, ball a and paper disk g that acts as a counterweight and
as a damper for the oscillations. In the situation where the thread is not twisted, the needle
is directed toward point O fixed on the graduated scale of the circle zOQ attached to the
glass container around the needle.

q
qo

a
a

a
C

C
C

gg
g

t t

(b)(a) (c)

OO O

Figure 12.1: (a) Untwisted wire with the needle pointing toward O. (b) Beginning of the experi-
ment with discharged balls a and t. (c) Final equilibrium configuration of the experiment with the
balls electrified with charges of the same sign.

Before starting the experiments, Coulomb displaces ball a a little away from its original
position by placing ball t against it, Figure 12.1 (b). Ball t always stays fixed in the labora-
tory. The straight line passing through C and through the center of the fixed ball t always
is directed toward point O. Coulomb measures the angles from this point O. The horizontal
needle ag can rotate around its center C attached to the vertical suspension thread. The
initial twist of the wire is represented by the angle θo.

Both balls become electrified when an electrified pin touches ball t. By doing so they
acquire charges of the same sign and repel each other. The needle rotates in the horizontal
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plane, counterclockwise, around point C by which it is suspended by the vertical thread.
Ball a moves away from ball t. At equilibrium the thread is twisted at an angle θ, Figure
12.1 (c). The torque exerted on the needle by the electric force of repulsion between the
electrified balls is balanced by the counter-torque exerted by the wire twisted at angle θ.

Figure 12.2 shows the sequence of Coulomb’s experimental tests. Point O indicates from
where Coulomb measures the twist of the lower part of the wire in the graduated circle zOQ
attached to the glass container around the needle. Point S, on the other hand, indicates
from where Coulomb measures the twist of the top of the wire in the small graduated circle
ab attached to the top of the tube from which the wire is suspended. The arrow Co is the
index of the micrometer attached to the top of the wire. I will assume that initially the
straight line Co of the micrometer index is directed toward point S. I am assuming that
initially the straight line through C and through the center of the fixed ball t, pointing to
O, is along the same vertical plane as the straight line Co pointing to S.

j2

j3

f0

f1
f2

f3

O OO O
o

o

o

o

t t tta

C C C
C

a
a

a

(a) (c)(b) (d)

S S S S

Figure 12.2: (a) Beginning of the experiment with discharged balls. (b) Test 1. (c) Test 2. (d)
Test 3.

In Figure 12.2 (a) we have the initial situation with the discharged balls. The thread is
twisted from an initial angle θo = φo. Ball a was 2 to 3 lines in diameter. Let us assume here
two spheres a and t of equal diameters given by D1 = D2 = 2.5 lines = 0.565 cm. When
they are touching each other, this value also represents the distance between their centers.
Coulomb states that the distance between the center of ball a and the center C of the needle
is R = 4 cm. From these values we obtain the initial angle of twist of the thread as given
by θo = φo ≈ 0.565/10.83 = 0.052 rad = 3.0◦.

In the first test the balls are electrified with charges of the same sign, Figure 12.2 (b).
Ball a moves away from ball t until it stops at the position φ1 due to the counterclockwise
twisting of the lower part of the wire. Coulomb measures the angle φ1 of the twist of the
lower part of the wire, this angle representing the total twist of the wire. That is, the angle
θ in Figure 12.1 (b) is given by θ1 = φ1.

Next Coulomb performs the second test in which he twists the micrometer together with
the top of the wire clockwise from an angle ϕ2, Figure 12.2 (c). With this rotation of the
micrometer, ball a approaches t until it stops at angle φ2. Coulomb measures the equilibrium
angles, namely φ2 and ϕ2 on the lower and upper graduated scales, respectively. The total
angle of twist of the wire in Figure 12.1 (b), θ, corresponds here to the sum of these angles,

216



that is, θ2 = φ2 + ϕ2.
Then Coulomb twists clockwise even further the micrometer attached to the top of the

wire, bringing ball a once again closer to ball t, Figure 12.2 (d). The lower part of the wire
gets twisted from an angle φ3, while the upper part of the wire gets twisted from an angle
ϕ3. The total twist of the wire is given by the sum of these angles, θ3 = φ3 + ϕ3.

Coulomb’s three experimental tests are given in Table 12.1 with the angles shown in
Figures 12.1 and 12.2, [Gillmor, 1971a, p. 185].

Test Test Test
No. 1 No. 2 No. 3

Angular separation of the balls = φ = 36◦ 18◦ 8.5◦

Micrometer angle = ϕ = 0◦ 126◦ 567◦

Total wire twist angle = θ = φ+ ϕ = 36◦ 144◦ 575.5◦

Table 12.1: Angles measured by Coulomb.

Blondel and Wolff presented a video showing a reproduction of Coulomb’s balance in
2007.492

12.2 Estimated Value of the Electrical Charge Used by

Coulomb

Here I will estimate the value of the amount of charge on the electrified balls in Coulomb’s
experiment. As seen in Section 11.3 on page 209 and in footnotes 476 and 477, Coulomb
calculated that a force F = 1.53×10−6 N acting on a lever arm of 4 inches = 1.083×10−1 m
was needed to twist his wire at an angle of 360◦. In this first test the wire was twisted 36◦.
Therefore, in this case a force F = 1.53× 10−7 N acting on an arm of length 1.08× 10−1 m
was needed, that is, exerting a torque τ given by the following value:

τ = 1.65× 10−8 Nm . (12.1)

In Figure 12.3 (a) balls a and t are separated by a distance d.
Point C is the center of the needle, which coincides with the vertical projection of the

suspension thread. R is the distance between C and the center of ball a, namely, R =
4 inches = 1.083 × 10−1 m, as given by Coulomb. The angle of separation between the
centers of the two balls is represented by θ, Figure 12.1 (c). In this first test we have
θ = 36◦.

The torque exerted by the force F acting on the center of the sphere a, relative to point
C, is given by

τ = FR cos
36◦

2
= F (0.1083 m)(0.951) = 0.103F . (12.2)

Comparing this equation with Equation (12.1) gives:

F = 1.60× 10−7 N . (12.3)

492[Blondel and Wolff, 2007].
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Figure 12.3: (a) Balls a and t separated by a distance d. (b) Repulsive force F between the
electrified balls and arm b of the lever.

I will assume here two balls of the same material and of the same size equally electrified
with charges q1 = q2 = q. I will also use Coulomb’s force in the International System of
Units expressed by

F =
q1q2
4πεo

1

r2
, (12.4)

in which εo = 8.85× 10−12 C/(V m) is a constant called vacuum permittivity or the permit-
tivity of free space.

The distance d = r between the centers of the two balls is given by d = 2R sin(36◦/2) =
2 · 0.1083 · 0.309 = 0.0669 m. Using this value in Equations (12.3) and (12.4) we obtain

q ≈ 2.8× 10−10 C . (12.5)

This charge is equivalent to a value of 0.85 cm3/2g3/2s−1, that is, 0.85 units of charge in
the C.G.S. system of units, as calculated by Potier in footnote 482 on page 210. See also
[Devons, 1975, p. 40].

12.3 Comparison of the Distance Between the Balls

with the Circular Arc Between Them, Together

with Comparison of the Actual Lever Arm to Half

the Needle’s Length

Here I will discuss Coulomb’s Third Remark, Section 11.6. From his experimental data
Coulomb concluded that the torque τ exerted on the wire due to the repulsion between the
spheres was inversely proportional to the square of the angle of twist of the wire. From
this fact he inferred that the force of repulsion between the electrified spheres was inversely
proportional to the square of the distance between the centers of the spheres. On the
one hand we have torque, torsion angle, and lever arm. On the other hand we have the
force of repulsion between the spheres and the distance between their centers. So it is not
immediately clear how one obtains that the force is inversely proportional to the square
of the distance between the centers of the spheres from the observation that the torque is
inversely proportional to the square of the angle of torsion.
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From Figure 12.3 (a), the arc s is related to the radius R and the angle θ of separation
between the spheres (expressed in radians) by:

θ =
s

R
. (12.6)

The distance d between the balls is given by:

d = 2R sin
θ

2
. (12.7)

If we consider the angle θ ≪ 1 rad, we can expand this function and approximate this
distance by:

d ≈ 2R

(

θ

2
− 1

6

θ3

8

)

= R

(

θ − θ3

24

)

. (12.8)

Combining this Equation (12.8) with Equation (12.6) we get:

d ≈ s

(

1− s2

24R2

)

. (12.9)

Let us assume the force F between the electrified balls to be inversely proportional to the
square of the distance d between their centers, Equation (12.4). In this case we can write

F =
K

d2
, (12.10)

in which K is a constant for each specific experimental situation with a certain electrification
of balls a and t.

In Figure 12.3 (b) we have the force F of repulsion between the spheres along the straight
line joining their centers. The arm b of the lever is related to the radius R and the angle θ
of separation between them (expressed in radians) by:

b = R cos
θ

2
. (12.11)

If we consider angles θ ≪ 1 rad, we can approximate the value of this arm b by:

b ≈ R

(

1− θ2

8

)

. (12.12)

Combining this equation with Equation (12.6) gives:

b ≈ R

(

1− s2

8R2

)

. (12.13)

Using Equation (12.3) we obtain that the torque τ exerted by the force F on the needle
calculated with respect to its center C is given by:

τ = Fb = K
b

d2
. (12.14)

Combining this result with Equations (12.13) and (12.9) we obtain
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τ = K
b

d2
= KR

(

1− s2

8R2

)

1

s2
(

1− s2

24R2

)2 ≈ K

[

R

(

1− s2

8R2

)] [

1

s2

(

1 +
s2

12R2

)]

.

(12.15)
This equation justifies Coulomb’s statement on the Third Remark that the two quantities

he considered compensate themselves in some way, since the lever arm b gets smaller than
R as the angle θ = s/R of the torsion of the wire increases, while 1/s2 gets larger than 1/d2

as the angle of the torsion of the wire increases.
However, this compensation is not complete, not even at second order s/R. That is,

expanding Equation (12.15) to the order s2/R2 gives:

τ ≈ K
R

s2

(

1− s2

24R2

)

. (12.16)

For a torsion angle of θ = 30◦ = 0.524 rad we have θ2/24 = s2/(24R2) = 0.011. Therefore,
Coulomb’s conclusion is justified for angles of this order of magnitude or smaller than this, as
was the case in his experiments. This equation also shows that for torsion angles larger than
some 30◦ or 40◦, we would have to do the calculations and necessary corrections rigorously,
as pointed out by Coulomb.

12.4 Low-Cost Torsion Balance

I would like to point out here that it is possible to do some activities with simple and easily
found materials that resemble some of Coulomb’s original experiments. These experiments
with low-cost material are highly recommended especially in teaching science and physics.

Some activities along these lines were developed by Norberto Ferreira at the University
of São Paulo, USP, in Brazil.493

493See, in particular, [Ferreira, 1978, Section 4.10.4 (Coulomb’s law)]; the activities “Coulomb’s balance”,
“the torsion balance” and “the electrostatic balance” of Project RIPE, [Ferreira, s da] and [Ferreira, s db];
and the activities “double pendulum — determining the electric charge” of [Ferreira and Ramos, 2008, pp.
44-48].

220



Chapter 13

Did Coulomb Experimentally Obtain
the Results He Described in His
Articles?

A. K. T. Assis

13.1 Introductory Remarks

In 1992 Peter Heering published a paper presenting a replication of Coulomb’s setup of the
First Memoir on electricity and magnetism.494 Heering was unable to reproduce Coulomb’s
experimental results.495

In Coulomb’s experiment a ball a at the tip of a horizontal needle which can rotate
around a vertical twisting thread passing through the center of the needle stays at a certain
angle away from another ball t fixed in the laboratory when the two balls become electrified
with charges of the same kind, as illustrated in Coulomb’s Figure 1, see page 205 of this
translation. In particular, in Heering’s reproduction the electrified ball a at the end of the
needle did not reach an equilibrium position in which it would remain stationary after being
repelled by the electrified ball t, despite having a counterweight that damped the needle’s
oscillations. Heering noticed needle oscillations, mentioning that it was impossible to measure
the exact position of the electrified ball a due to these oscillations. He concluded that the
main reason for these oscillations was the electrical charges acquired by the experimenter
himself, and that these charges constantly affected the position of the mobile electrified ball,
causing it to oscillate. Only when he placed a Faraday cage around the torsion balance was
he able to make the electrified ball attain equilibrium positions at rest for different torsions
of the suspension wire. But Coulomb did not use a Faraday cage in his experiment, since
this instrument was not described by Faraday until 1838.496 Heering presented the following
conclusion:497

494This Memoir is translated in Chapter 11.
495[Heering, 1992], [Heering, 1994], [Heering, 1995], [Heering, 2009] and [Heering, 2022].

See also [Dickman, 1993], [Heilbron, 1994], [Chevalier, 1995] and the articles presented in
[Blondel and Dörries (Editors), 1994].
496[Faraday, 1838]. See also Section 8.4 (Faraday Cage) of [Assis, 2018b], [Assis, 2018a] and [Assis, 2019].
497[Heering, 1992, pp. 991 and 993].
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Because of these arguments it seems reasonable to assume that Coulomb did not
get the data he published in his memoir by measurement. [...] From our work
in replicating Coulomb’s experiment it seems quite plausible that Coulomb did not
find the inverse square law by the doubtful measurements from his torsion balance
experiments but by theoretical considerations.

Coulomb, according to Heering, would have already implicitly assumed that the force
between electrified bodies should behave like Newton’s law of gravitation of 1687, that is,
varying inversely with the square of the distance between the bodies. He would then have
presented numerical values in his paper that would fit this law, although these values were
not obtained by the experiments he described.

Heering’s paper had a strong impact and many authors agreed with him, repeating his
arguments. I myself have followed in that vein.498

I have now totally changed my mind after studying Coulomb’s original papers. In this
Section I present several arguments with which I question Heering’s conclusions. I will now
defend the opposite idea, that is, that Coulomb really obtained that the electric force is
inversely proportional to the square of the distance between the electrified bodies from the
experimental measurements he made with his torsion balance. The reasons that made me
change my mind are related to a much deeper knowledge of Coulomb’s original articles, and
to several recent works that have analyzed this controversy. Previously I was not aware of
these recent works.

13.2 Recent Replications of Coulomb’s Experiments

Arriving at Opposite Conclusions

In addition to Heering’s work published in 1992, I am aware of two other replications of
Coulomb’s work: Martinez in 2006, as well as Shech and Hatleback in 2014.499

Shech and Hatleback were unable to reobtain the results presented by Coulomb in his
First Memoir and considered Coulomb’s results to be atypical. Furthermore, they realized
that torsion balance experiments degenerate rapidly when small changes are made in some
experimental parameters.

Martinez, on the other hand, was able to reproduce Coulomb’s experimental results with
his replication of the torsion balance. Martinez did not need to use a Faraday cage around
the torsion balance to obtain results analogous to Coulomb’s. Martinez’s evaluation of this
issue:500

In sum, these results all converge to one conclusion: Coulomb obtained his reported
numbers from experiment. His results were not unusual, they were almost certainly
typical. Therefore, he was justified in his claim that he had experimentally demon-
strated what he confidently called the “Fundamental Law of Electricity”.

498[Assis, 1994, p. 26], [Assis, 1995, p. 20], [Assis, 1998a, p. 26], [Assis, 1999a, p. 33], [Assis, 1999b, p. 18],
[Assis, 2013, p. 29], [Assis, 2014, p. 32], [Assis, 2015a, p. 14], [Assis and Chaib, 2015, p. 21], [Assis, 2018b,
p. 268], [Assis, 2018a, p. 262] and [Assis, 2019, p. 281].
499[Martinez, 2006] and [Shech and Hatleback, 2014]. See also [Blondel and Wolff, 2013e].
500[Martinez, 2006, p. 547].
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Therefore, there is divergence between authors who were able to reproduce Coulomb’s
results by replicating his experiments using materials, equipment, and procedures as close as
possible to Coulomb’s, and authors who were not able to reproduce Coulomb’s experimental
values.

13.3 Faraday Cage Around the Torsion Balance

By reproducing Coulomb’s experiments with his replication of the torsion balance, Heering
observed that the needle with the ball electrified at its tip hardly ever reached a resting state
of equilibrium.501 He concluded that the constant oscillations of the needle were caused by
the electrification of the person performing the experiments. The oscillations ended only
when Heering surrounded the torsion balance with a Faraday cage.

Coulomb did not explicitly use a Faraday cage in his experiment, since this instrument was
only described by Faraday in 1838. Despite this fact, some researchers have hypothesized
that the very glass used by Coulomb in his balance may have behaved as a conductor,
functioning as a Faraday cage.502

This effect may well have happened, although it was not intended by Coulomb. As I
discussed in the book The Experimental and Historical Foundations of Electricity, there are
several types of glass depending on the materials they are made from, the manufacturing
processes, the impurities they acquire over time, the environment in which they are located,
etc. Some of these glasses behave as insulators for the usual electrostatics experiments,
although most of them behave as conductors for these experiments.503

All this shows that the hypothesis presented by Wolff and Blondel that the glass cylinder
around the torsion balance may well have behaved as a conductor in Coulomb’s original
experiments, that is, as a Faraday cage, is reasonable. The glass around Heering’s torsion
balance, on the other hand, may have behaved as an insulator. This hypothesis would justify
the results obtained by Coulomb which could not be replicated by Heering. The latter author
was only able to reproduce results similar to Coulomb’s by placing a Faraday cage around
his balance. Unfortunately, Coulomb’s original torsion balances have not survived to this
day. That is, they no longer exist, and we cannot test the properties of the glass he used.

13.4 Coulomb and External Electrostatic Disturbances

Acting on his Torsion Balances

It should be noted that Coulomb himself was aware at least as early as 1782 about possible
influences exerted by external electric charges disturbing the operation of his torsion balances,
both those used for electrical and magnetic research.504

501[Heering, 1992].
502[Wolff and Blondel, 2009]. See also [Blondel, 1994, pp. 106-107 and 116-117].
503See, in particular, Section 6.3.2 (Bodies which Behave as Conductors and Insulators in the Usual Exper-

iments of Electrostatics) from [Assis, 2010b], [Assis, 2010a], [Assis, 2011], [Assis, 2015b] and [Assis, 2017];
as well as Section 4.3 (Differences between Old and Modern Glasses) from [Assis, 2018b], [Assis, 2018a] and
[Assis, 2019].
504[Gillmor, 1971a, pp. 146-150], [Licoppe, 1995], [Heilbron, 1999, pp. 469-470],

[Heering and Osewold, 2005] and [Martinez, 2006].
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Coulomb began working on magnetism in the 1770s. In particular, he was one of the
winners of the 1777 prize of the Paris Academy of Sciences related to research on the best
method of making compasses and on an explanation of the diurnal variations of terrestrial
magnetism. The needles supported on a pivot, when deviated from their usual orientation by
the variation in the direction of the Earth’s magnetic force, were under the action of frictional
forces generated by the pivot, which produced torques of the same order of magnitude as
those due to the Earth’s magnetism. To reduce these frictional torques so that he could
measure the diurnal variations of the Earth’s magnetism, Coulomb changed the suspension
of the needles. He adopted needles suspended by fine silk threads. This method had already
been adopted by other researchers such as Francesco Lana de Terzi (1631-1687) in 1686,
Lous in 1773 etc.505 The problem is that this instrument became extremely sensitive, being
affected by any disturbance that occurred in the room where the suspended needle was
located. In particular, Coulomb assisted Jean-Dominique Cassini de Thury (1748-1845) with
such a suspension in Cassini’s research into the diurnal variations of terrestrial magnetism.
In 1782 it was noticed that when small electrical discharges occurred around the instrument,
the magnetic needle oscillated simultaneously. To avoid this problem, Coulomb followed
the suggestion of Ettiene François Gattey (1756-1819) to ground the magnetized needle. In
order to ground the needle, he replaced the silk thread suspension with a suspension made
of a thin metal wire, keeping the rest of the instrument grounded.506 It was this metal wire
that he went on to use in his future electric balances.

Because he worked for many years building and developing various torsion balances for
his magnetic and electrical research, Coulomb certainly gained a great deal of knowledge
of how they worked and what needed to be done to obtain valid and reliable experimental
results with them. Moreover, he did not necessarily present all the details of his experimental
procedures and practices in the accounts he presented in his Memoirs.507

13.5 Coulomb’s Experimental Results that Could Not

Be Compared with Previous Theoretical Predic-

tions

There is another argument that strongly suggests that Coulomb did in fact perform the
electrical experiments and measurements he described with his torsion balance. If he had
only obtained that the force between two small electrified bodies was inversely proportional
to the square of the distance between them, it could be argued that he was being influenced
by Newton’s law of universal gravitation.

However, in the Third Memoir published in 1788, Coulomb experimentally studied the
loss of charge by an electrified sphere using his torsion balance.508 From these experiments
he arrived at the following equation:

−dδ
δ

= mdt , (13.1)

505[Gillmor, 1971a, pp. 141-142 and 162-165] and [Heilbron, 1999, pp. 185-192 and 469].
506[Gillmor, 1971a, pp. 146-150], [Heilbron, 1999, pp. 469-470], [Heering and Osewold, 2005] and

[Martinez, 2006].
507[Heilbron, 1994].
508[Coulomb, 1788e]. This Memoir is translated in Chapter 17.
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in which δ represents the surface density of electricity on the sphere (proportional to its total
amount of charge), dδ the loss of electricity in time dt, while m was a constant. Integration
of this equation leads to an exponential decay of electricity on the sphere as a function of
time t:

δ = δ0e
−mt , (13.2)

where δ0 represents the initial surface density of electricity on the sphere.
None of this was previously known. Equations of this type had not been predicted for

electricity by other authors. In Gillmor’s words:509

There were a number of factors unknown to Coulomb that affect charge leakage on
dielectrics.510 Nevertheless, the laws that he determined in the Third Memoir are
exact, especially his exponential law of charge leakage. The work of this memoir
provided him with an accurate law (if not an accurate theory) for use in his Fifth and
Sixth Memoirs, dealing with charge distribution.

In addition, in the Fifth and Sixth Memoirs published in 1789 and 1791, respectively,
he studied the distribution of charge on the surface of electrified conducting spheres in
contact.511 These spheres could have the same radius or different radii. They could also
be of the same or different materials. In particular, he used a proof plane512 to collect
some charge at different points on these spheres and measured this collected charge with
his electric balance. These measurements were certainly much more difficult and delicate
than his experiments of the First Memoir in which he obtained the resultant force between
two electrified spheres. After all, besides the effects now being smaller, there were also the
difficulties involved in collecting charges by the proof plane and introducing this electrified
proof plane into his torsion balance.

The calculations that Coulomb made to compare his experimental results with possible
theoretical values were extremely simple and approximate, since there was not yet in his time
a proper mathematical theory to predict what the distribution of surface charges at different
points of conducting spheres in contact should look like. These detailed calculations were first
made by Siméon Denis Poisson (1781-1840) in 1811-1812 using the electric potential function
introduced by Pierre-Simon de Laplace (1749-1827) around 1783.513 The differences found
between the experimental measurements of Coulomb and the exact theoretical calculations
made by Poisson were only a few percentage points.514

William Thomson (1824-1907), also known as Lord Kelvin, made the following assess-
ment:515

In the papers of Poisson on electricity we find the analytical solution of the prob-
lems that are combined with the most important parts of Coulomb’s experimental

509[Gillmor, 1971a, p. 198].
510[Note by Gillmor] One factor, for example, is the ionization of the air.
511These Memoirs are translated in Chapters 22 and 24.
512See footnote 53 on page 30.
513[Poisson, 1812a], [Poisson, 1812b], [Poisson, 1813] and [Poisson, 1814].
514[Gillmor, 1971a, pp. 202-210], [Potier, 1884, pp. 192-193, 198, 204 and 218-219], [Heilbron, 1999, pp.

494-500] and [Blondel and Wolff, 2011c]. See also footnotes 820, 772 and 778 on pages 361, 339 and 340,
respectively. See, moreover, Sections 23.2, 23.3 and 23.5 on pages 373, 374 and 377, respectively.
515[Thomson, 1845, pp. 209-210], [Heering, 1992] and [Falconer, 2004].
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researches; the correspondence of the results is very satisfactory, and the strength
and beauty of the analysis are placing the theory of electricity next to the theory
of gravitation, through mathematical correspondence at the first place of natural
science.

Blondel expressed herself as follows:516

Among the numerous measurements taken by Coulomb, a certain number of them
could not be compared with numerical results deduced from mathematical laws. This
is the case for the distribution of electricity on the surface of two spheres of different
diameters, brought into contact and then separated. The results are complex and
impossible to predict analytically. It was only when Poisson succeeded in 1811
in carrying out the approximation calculations making it possible to calculate the
theoretical results corresponding to these experiments by Coulomb that their precision
could be evaluated at a few percent.

13.6 Conclusion

In conclusion, today I have no doubt that Coulomb carried out the experiments he described
and that he obtained the experimental results he presented in his works, including those of
his First Memoir.

It is important to present here another example in which the torsion balance played a
crucial role in the precise determination of a fundamental magnitude of nature, namely,
Weber and Kohlrausch’s famous experiment to find the value of the constant c appearing in
Weber’s electrodynamics.517

Before performing this experiment in 1854-1856, Weber and Kohlrausch had no idea of
the order of magnitude of c. It might be, for instance, 105 m/s or 1011 m/s. Moreover, at that
time nobody had any idea that Weber’s constant c might have any relation whatsoever with
light velocity in vacuum. A crucial portion of their experiment involved the determination
of the amount of electricity in two charged balls. To this end they utilized a torsion balance
to measure the force they exerted on one another in Gauss and Weber’s absolute system of
units. In Appendix I of their 1857 paper they presented a detailed description of the torsion
balance utilized in their extremely important and original experiment.518

It is worth while quoting here Kirchner’s words related to this experiment:519

[...] if we are to use the words of Weber and Kohlrausch, we have to formulate the
obtained results in the following way.

The ratio between the mechanical and the magnetic measurement of current intensity
is as 1 : 3.1074× 1011 in the mm-mg-sec system or as 1 : 3.1074 × 1010 in the cgs
system.

516[Blondel, 1994, pp. 110-111] with my emphasis in italics
517[Weber, 1855] with English translation in [Weber, 2021]; [Weber and Kohlrausch, 1856] with Portuguese

translation in [Weber and Kohlrausch, 2008] and English translation in [Weber and Kohlrausch, 2021];
and [Kohlrausch and Weber, 1857] with English translation in [Kohlrausch and Weber, 2021]. See also
[Weber and Kohlrausch, 1968], [Assis, 1992], [Assis, 1994], [Assis, 2014] and [Assis, 2021].
518Appendix I (Description of the Torsion Balance) of [Kohlrausch and Weber, 1857] with English transla-

tion in [Kohlrausch and Weber, 2021].
519[Kirchner, 1956, p. 531] with English translation in [Kirchner, 1957, p. 625].
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Considering that this ratio was then not even known as to its order of magnitude,
that we deal therefore with a real pioneering effort, and if one realizes furthermore
the primitive equipment they had to work with, one has to admire the work by Weber
and Kohlrausch as a masterpiece in the art of experimentation, very few of which
exist in the history of our science.
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Chapter 14

Second Memoir on Electricity and
Magnetism in Which We Determine
the Laws According to Which the
Magnetic Fluid as Also the Electric
Fluid Act Either by Repulsion or by
Attraction

Coulomb520

The electric balance which I presented to the Academy in the month of June 1785,521

measuring with exactness, and in a simple and direct manner, the repulsion of two balls
which have an electricity of the same nature, it was easy to prove, using this balance, that
the repulsive action of two balls charged with the same nature of electricity, and placed at
different distances, was very exactly in inverse proportion to the square of the distances;
but when I wanted to use the same means to determine the attractive force of the two
charged balls of an electricity of different nature, I met, in using this balance to measure the
attraction of two balls, a disadvantage in practice, which does not take place in the operation
to measure the repulsion. The practical difficulty is that when the two balls come closer by
attracting each other, the growing force of attraction, as we will soon see, changing in the
inverse ratio of the square of the distances, often increases in a greater ratio than the force
of torsion which increases only as the angle of torsion; so that it is only after having failed at
many attempts that we succeed in preventing the mutually attractive balls from touching,
unless an insulating obstacle522 is opposed to the needle movement; but as our balance is

520[Coulomb, 1788d], with a complete German translation in [Coulomb, 1890e] and a complete Portuguese
translation in [Assis, 2022]. There is a partial English translation in [Coulomb, 1935b]. This work was
presented in 1785 to the French Academy of Sciences and published in 1788.
521Coulomb’s work describing the electric balance is translated in Chapter 11.
522In the original: obstacle idio-électrique. This expression can also be translated as idio-electric, idio-

electric or dielectric obstacle. It refers to substances that can be electrified by friction. That is, they are
substances that behave as an insulator or bad conductor in the usual electrostatic experiments. For exam-
ple, when you hold a piece of amber in your hand and rub it against a cloth, the amber becomes electrified.
The term “idio” means “own”, “private” or “peculiar”. Originally the term “electric” was introduced by
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often intended to measure actions of less than one thousandth grains,523 the cohesion of the
needle with this obstacle, disturbs the results, and requires trial and error during which some
of the electricity is lost.524

Figure 1, and the following calculation, will show in what consist the difficulties of the
operation, and will show at the same time the limits within which it is necessary to contain
the experiments to ensure their success.

Let aca′ be the natural position of the needle, when the suspension thread is not yet
twisted; a represents the pith ball,525 attached to the needle aa′ of insulating nature; b is
the ball hanging in the hole in the balance.526 If we electrify the two balls, one with the
electricity which we call positive, the other with the electricity which we call negative, they
will attract each other mutually; ball a of the needle tending to approach globe b, will take
the position ΦcΦ′; this position will be such that the torsional reaction force represented by
acΦ, angle whose suspension wire has been twisted, will be equal to the attractive force of
the two balls; and if this attractive force was proportional to the inverse ratio of the square
of the distances, as we found for the repulsive force, in our First Memoir,527 we would have,
by setting ab = a, aΦ = x, D equal to the product of electric mass of the two balls,528 and
the arcs a and x small enough that they can measure the distance of the two balls (otherwise
we should take the chord of this arc for the distance, and the cosine of its half for the lever

Gilbert (1544-1603) to characterize substances that behave like amber, that is, that can be electrified by fric-
tion, [Assis, 2010b, Section 2.8: Gilbert’s Nomenclature: Electric and Non-Electric Bodies], [Assis, 2010a],
[Assis, 2011], [Assis, 2015b] and [Assis, 2017]. See also [Roller and Roller, 1953], [Roller and Roller, 1957],
[Roller, 1959] and [Gillmor, 1971a, p. 194]. A dielectric substance, or an idioelectric substance, is then a
substance that is electric by virtue of its own particular properties, that is, that behaves like an insulator
due to its own nature or chemical composition.
523That is, forces less than 5.2× 10−4N .
524That is, this trial and error procedure lasts for a certain time. During this period of time a portion of

the electrification of the balls is lost to the environment due to the conductivity of the air and the supports.
525See footnote 469 on page 208. In the original: la balle de sureau. This expression can also be translated as

elderberry ball, elder pith ball, elderwood pith ball or elder ball, [Gillmor, 1971a, p. 184] and [Heilbron, 1999,
pp. 451 and 471].
526This ball b remains always at rest relative to the ground.
527This 1st Memoir is translated in Chapter 11.
528In the original: D = le produit de la masse électrique des deux balles. That is, Coulomb is assuming

here that the force is directly proportional to the product of the electric charges on the two balls. He
called the amount of electric charge in each ball its “electric mass”. Certainly this assumption that the
force is proportional to the product of the charges and this denomination “electric mass” were influenced
by Newton’s law of universal gravitation. According to Newton in Book III of his masterpiece Principia,
the gravitational force between two bodies is proportional to the product of their masses, [Newton, 1934],
[Newton, 1999] and [Newton, 2008].
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arm); we would have, based on these assumptions, for the balance between the attraction of
the two balls and the reaction of the torsion, the formula

nx =
D

(a− x)2
,

or

D = nx(a− x)2 .

Whence it follows that when x = a or 0, the value of D will be null, that thus there is a point
Φ between a and b, where the quantity D is a maximum: the calculation gives for this point
x = a/3. By substituting that value of x in the formula that represents D in the equilibrium
case, we will have D = 4na3/27;529 and therefore whenever D is greater than 4na3/27, there
will be no position Φ between a and b, where the needle can remain in equilibrium, and the
balls will necessarily touch each other: but it should be observed that in practice, although
D is smaller than 4na3/27, the balls often join together, because the flexibility of the needle
suspensions allows the needle to oscillate, and that, past a/3, the force of attraction increases
in a greater ratio than the force of torsion; so that when the ball Φ arrives, by the amplitude
of its oscillation, at a distance x, where D is greater than nx · (a−x)2, the two balls continue
approaching each other until they touch.

By conducting myself according to this theory, I succeeded in putting in equilibrium, at
different distances, the attractive force of the two electrified balls, with the force of torsion
of my micrometer; then comparing the different experiments, I concluded that the attractive
force of the two electrified balls, one with the electricity that one calls positive, the other
with that which is called negative, was in inverse proportion to the square of the distances
from the center of these two balls, the same relation already found for the repulsive force.

To confirm this result, I tried, for the case of attraction, another means which, although
less simple and less direct than the first, requires less care and precautions to succeed; it
has, moreover, the apparent advantage of providing experiments made with globes of a very
large diameter, instead of being able to operate in the balance only with small globes; but
this advantage is only apparent, and we will see thereafter, in the various Memoirs which I
will present successively to the Academy, that with balls of two or three lines in diameter
[0.45 or 0.68 cm], and by means of the balance, described in our First Memoir, we can not
only measure the total mass of the electric fluid contained in a body of any shape, but also
the electric density of each part of this body.530

529We have D = nx3 − 2nax2 + na2x. So, dD/dx = 3nx2 − 4nax+ na2. Setting dD/dx = 0 we obtain two
roots, x = a and x = a/3. The first root makes D = 0. The second root makes D = 4na3/27, as stated by
Coulomb.
530That is, Coulomb measures not only the total amount of electric charge on a body, but also the surface

charge density at different points on a conductor.
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14.1 Second Experimental Method to Determine the

Law with which a Sphere One or Two Feet in

Diameter Attracts a Small Body Charged with

Electricity of a Different Sort from Its Own

The method which we shall follow is analogous to that which we have used in the seventh
volume of the Savans Étrangers to determine the magnetic force of a steel lamina in relation
to its length, its thickness, and its width.531 It consists in suspending a needle horizontally,
of which the end only is electrified and which, when brought to a certain distance from a
sphere, electrified with the other sort of electricity,532 is attracted and oscillates because of
the action of the sphere: we determine then by calculation from the number of oscillations
in a given time the attractive force at different distances, just as we determine the force of
gravity by the oscillations of an ordinary pendulum.533

We first consider some observations which have guided us in the experiments which follow.
A fiber of silk, taken from a cocoon, and which can carry up to 80 grains without breaking,534

has a torsional flexibility such that if we suspend a small circular plate, of known weight and
diameter, horizontally and in a vacuum from such a fiber of 3 inches in length (8.12 cm),
we shall find from the period of oscillation of this little plate, using the formulas explained
in a Memoir on the force of torsion printed in the Volume of the Academy for 1784,535 that
when we use a lever [with an arm] of 7 or 8 lines long [1.6 to 1.8 cm] to twist the fiber
about its axis of suspension we shall need to apply, for a complete rotation, usually not more
than the force of a sixty thousandth of a grain (0.0009 dyn);536 and if the suspended fiber
is twice as long there will be needed only [a force of] a hundred and twenty-thousandth of
a grain. Therefore if we suspend a needle horizontally on this fiber, when the needle has
come to rest and the fiber is entirely untwisted, and if by means of any force we set the
needle in oscillations whose amplitude does not depart from the line in which the torsion is
zero by more than 20 or 30 degrees, the force of torsion will have no sensible effect on the
period of the oscillation, even when the force that produces the oscillations is not more than
a hundredth of a grain (0.52 dyn).537 Premising this much, let us see how we proceed to
determine the law of electrical attraction.

We suspend, (Figure 2) a needle lg made of shellac by a silk thread sc 7 to 8 inches long
[18.9 to 21.7 cm] of a single fiber such as is drawn from the cocoon.

531Coulomb is probably referring to the work published in Volume 9 of that periodical which was published
in 1780 and which had received the 1777 prize of the French Academy of Sciences, [Coulomb, 1780] and
[Coulomb, 1890c, Note 6, p. 84]. This work is translated in Chapter 5.
532That is, the tip of the needle and the globe are electrified with charges of opposite sign.
533See Section 16.1 on page 267.
534Potier said here that 80 grains would be equivalent to 0.424 g, [Potier, 1884, p. 120]. That was a lapse

by Potier. As 1 grain = 0.053 g, 80 grains = 4.24 g.
535[Coulomb, 1787] with English translation of Sections I and II in [Coulomb, 2012a] and [Coulomb, 2012b].

This Memoir is translated in Chapter 7.
536That is, a mass m = (1 grain)/(60 000) = 8.85× 10−10 kg. With g = 9.8 m/s2 this mass has a weight

P = mg ≈ 9× 10−9 N = 9× 10−4 dyn. See also footnote 489 on page 213.
537That is, in these cases Coulomb will be able to neglect the force of torsion of the wire compared to the

electric force between the electrified balls. The period of the oscillations of the needle will depend only on
the electric force between the electrified balls, as the force of torsion of the suspension wire can be neglected.
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At the end l we fix perpendicularly to the needle538 a little disk 8 or 10 lines in diameter
(1.8 to 2.2 cm), made very light and cut from a sheet of gilt paper;539 the silk thread is
attached at s to the lower end of a little rod st dried in a furnace and coated with shellac or
with Spanish wax;540 this rod is held at t by a clamp which slides along a ruled rod oE and
can be placed anywhere we desire by means of the screw V .

G is a globe of copper or of cardboard covered with tin. It is carried on four uprights
of glass coated with Spanish wax, and terminated, in order to make the insulation more
perfect, by four rods of Spanish wax three or four inches long [8.1 to 10.8 cm]. The lower
ends of these four uprights are set in a base which is placed on a little movable table that,
as the Figure shows, can be set at the height which is most convenient for the experiment;
the rod Eo may also, by means of the screw E, be set at a convenient height.

When everything is ready we adjust globe G in such a way that its horizontal diameter
Gr is opposite the center of the plate l, which is some inches away from it. We give an

538In the original: l’on fixe perpendiculairement à ce fil. Surely this was an oversight. From Figure 2 we
can see that Coulomb meant perpendicular to the needle lg, [Coulomb, 1890c, Note 7, p. 84].
539The shellac needle lg and the silk thread sc behave as insulators. The gilt paper disk l behaves as a

conductor.
540See footnotes 467 and 468 on page 207.
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electric spark to the sphere from a Leyden jar,541 we then touch the plate l with a conductor
and the action of the electrified sphere on the electric fluid of the unelectrified plate gives
to the plate a charge of the other sort from that of the sphere; so that when the conducting
body is removed the sphere and the plate act on each other by attraction.542

14.1.1 Experiment

The sphere G was a foot in diameter (32.48 cm); the plate l was 7 lines in diameter (1.58
cm); the shellac needle lg was 15 lines long (3.38 cm); the suspension fiber sc was a silk
fiber taken from the cocoon and 8 lines long:543 when the slider was at point o the plate l
touched the sphere at r, and as the slider was moved toward E the plate was removed from
the center of the sphere by the quantity given by the divisions 0, 3, 6, 9, 12 inches [0 to 32.5
cm], and when the sphere was electrified with what is called positive electricity and the plate
with negative electricity by the method which has been described, we had:

Trial 1. The plate l being at 3 inches (8.12 cm) from the surface of the sphere or 9 inches
(24.36 cm) from its center gave 15 oscillations in 20”.544

Trial 2. The plate l distant by 18 inches (48.72 cm) from the center of the sphere gave
15 oscillations in 40”.

Trial 3. The plate l distant by 24 inches (64.97 cm) from the center of the sphere gave
15 oscillations in 60”.

14.1.2 Explanation of This Experiment and Its Result

When all the points of a spherical surface act by an attractive or repulsive force which varies
inversely as the square of the distance on a point placed at any distance from this surface,
it is known that the action is the same as if all the spherical surface were concentrated at
the center of the sphere.545

541See Chapter 12 (The Leyden Jar and Capacitors) of [Assis, 2018b], [Assis, 2018a] and [Assis, 2019].
542That is, the plate and the globe become electrified with charges of opposite sign. Initially the conducting

globe G and the conducting plate l were discharged. The globe was electrified by the spark coming from
a Leyden jar. As a result, the plate l that was insulated from the Earth becomes polarized, with its part
closest to the globe becoming electrified with a charge of sign opposite to the charge on the globe, and with
its part farthest from the globe becoming electrified with a charge of the same sign as the charge of the globe.
When the plate was grounded in the presence of the globe, the charge on the farthest part of the plate was
neutralized. Upon removing the grounding, the plate became electrified with a charge of opposite sign to
the charge on the globe, and there was an attraction between them, see Section 7.5 (Utilizing Polarization
to Charge an Electroscope) of [Assis, 2010b], [Assis, 2010a], [Assis, 2011], [Assis, 2015b] and [Assis, 2017].
543The dimensions in Figure 2 suggest that the silk thread sc was 8 inches long (21.656 cm), rather than

the 8 lines long (1.80 cm) written here. This might be a lapse by Coulomb, since earlier in mentioning Figure
2 he had said that the silk thread sc was 7 or 8 inches long. On the other hand, from Figure 2 it appears
that sc is a little greater than one-half lg. With lg stated as 15 lines, sc = 8 lines seems correct. Note it
appears the globe and its stand are drawn to a different scale since, if they were the same scale, lg would
be greater than the diameter of the globe scale, 1 foot. Note also that in the prior description where sc was
given as 8 inches, the plate diameter was given as 8-10 lines whereas in the experiment it is 7 lines.
544The meaning of each oscillation for Coulomb corresponds to half the modern period of a complete

oscillation, see Sections 6.3 and 9.1 on pages 141 and 187, respectively. So in this first test the modern
round-trip period for each oscillation is given by (2× 20s)/15 = 2.666 s = 2.666 seconds.
545See Section 16.2 on page 268.
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As in our experiment the plate l was only 7 lines in diameter and as in the trials its least
distance from the center of the sphere was 9 inches, we may, without sensible error, suppose
that all the lines which are drawn from the center of the sphere to a point of the plate are
parallel and equal; and in consequence the total action of the plate can be supposed to be
united at its center just as in the case of the sphere; so that for the small oscillations of the
needle, the action which makes the needle oscillate will be a constant quantity for a given
distance and will act along the line which joins the two centers. Therefore if we call the
force ϕ and the time of a certain number of oscillations T we shall have T proportional to
1/
√
ϕ,546 but if d is the distance Gl from the center of the sphere to the center of the plate

and if the attractive forces are proportional to the reciprocal of the square of the distances
or to 1/d2, it follows that T will be proportional to d or to the distance;547 so that when we
make our trials and change the distance, the time of the same number of oscillations ought
to be proportional to the distance from the center of the plate to the center of the sphere:
let us compare this theory with experiment.

Distance between Duration of
centers 15 oscillations

Trial 1 9 inches 20”
Trial 2 18 inches 41”
Trial 3 24 inches 60”

The distances are as the numbers 3, 6, 8.548

The times of the same number of oscillations :: 20, 41, 60.549

By theory they ought to have been :: 20, 40, 54.
Thus in these three trials the difference between theory and experiment is 1/10 for the

last trial compared with the first, and almost nothing for the second trial compared with
the first; but it should be remarked that it took almost four minutes to make the three
trials; that although the electricity held pretty well on the day this experiment was tried,
it nevertheless lost 1/40 of its amount each minute. We shall see, in a Memoir which will
follow the one which I am presenting today, that when the electric density is not very great,
the electric action of two electrified bodies diminishes in a given time exactly as the electric
density or as the intensity of the action; therefore, since our trials lasted four minutes and
since the electric action lost 1/40 each minute from the first to the last trial, the action
arising from the intensity of the electric density independently of the distance should be
diminished by almost a tenth; consequently, to have the corrected time of the 15 oscillations
in the last trial, we must set

√
10 :

√
9 :: 60′′ : the quantity required, which will be found to

be 57 seconds,550 which differs only by 1/20 from the 60 seconds found by experiment.

546See Equation (16.3) in Section 16.1 on page 267.
547I will use α as the proportionality symbol. It was shown in Section 16.1 on page 267 that the force

ϕ which causes small oscillations of a simple pendulum is inversely proportional to the square root of the
period T of oscillation of the pendulum, that is, ϕ α 1/T 2 or T α 1/

√
ϕ. Therefore, if ϕ α 1/d2, we will have

T α
1√
ϕ

α
1

√

(1/d2)
α d .

That is, in this case T will be proportional to the distance d, as Coulomb said.
548That is, the distances are proportional to the numbers 3, 6 and 8.
549That is, times are proportional to the numbers 20, 41 and 60.
550That is, let x be the required quantity. We have to solve the following equation:
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We have thus come, by a method absolutely different from the first,551,552 to a similar
result; we may therefore conclude that the mutual attraction of the electric fluid which is
called positive on the electric fluid which is ordinarily called negative is in the inverse ratio of
the square of the distances; just as we have found in our First Memoir, that the mutual action
of the electric fluid of the same sort is in the inverse ratio of the square of the distance.553,554

14.1.3 First Observation

We feel that it is very easy, by employing the method which precedes, to obtain by means
of the oscillations of the electric needle, the laws of repulsive force in the same way we have
determined that of the attractive force. Indeed, if the plate is made to touch the electric
globe, it will take an electricity of the same nature as that of the globe, and will be repelled;
so that the needle will oscillate under this repulsion, in a position absolutely opposed to the
first,555 and the number of oscillations, in a given time, compared with the distance from
the center of the plate to the center of the globe, will make known the repulsive force, by
the same calculation that we have just followed to obtain the attractive force. However we
must say that experiments on the repulsive force of the electric fluid can be carried out in a
simpler, more exact and more convenient way by means of the balance we described in our
First Memoir, as we shall see in what follows.

14.1.4 Second Observation

If we wanted to use the same method to determine the amount of electricity that is shared
between an electrified globe and a conducting body of any shape, in contact with this globe,
here is how it could be done: after having electrified the globe and determined, in this first

√
10√
9

=
60 s

x
.

From this equation it follows that x = (180 s)/
√
10 = 56.92 s ≈ 57 s.

551In the first method described at the beginning of this paper Coulomb had found the variation of the
force with distance by comparing the torsion angles of the suspension wire for different distances between
the electrified spheres, measuring these angles with the spheres at rest relative to each other.
552[Note by Bucciarelli] But note that Coulomb does not give any experimental data for the first method.

I conjecture his data was not good enough to satisfy any reader and so he felt compelled to develop a second
method.
553[Note by Potier] Coulomb did not provide enough information for us to estimate the charges of the globe

and the gilt paper disk. But it is clear that the experiment can only be successful under these conditions if
the charge on the disk is very small relative to the charge on the globe. Considering the disk as a point, the
attraction of the globe on the disk is given by

eM

d2

[

1 +
e

M

R3

d

(2d2 −R2)

(d2 −R2)2

]

.

The variations of the factor in square brackets will only be negligible if e (the disk charge) is a very small
fraction of M (the globe charge).
554For a deduction of this result see, for example, [Maxwell, 1954, Vol. I, §160, pp. 250-252].
555In the case of Figure 2, if disk l and globe G are electrified with charges of the same sign, then the disk

will be repelled by the globe and the silk thread cs will be twisted. At equilibrium, disk l will be as far away
from G as possible, such that the order of the letters in this case would be Grgcl. The needle could then
oscillate around this new equilibrium position.
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state, its electric action on the plate of the needle set at a given distance by observing its
oscillations, one would immediately touch the globe with the conducting body which must
take up a portion of the electricity of the globe; and by separating this body from the globe,
we would again determine, by the oscillations of the needle, the quantity of electricity which
remains in the globe; and the difference of this quantity with that which the globe had before
contact, will measure that taken by the body put in contact. It is unnecessary to warn [the
reader] that such experiments can only succeed in very dry days, when the insulated bodies
slowly lose their electricity; that it is necessary to take into account this decrease of electricity
in the reduction of the experiments which follow one another; that it is necessary to avoid
the formation of any air current in the room where one operates, and to move any conducting
body at least three feet [97 cm] from the electrified globe, and even from the needle: but
we repeat that when we determine in what follows, by experiment and theory, the manner
in which the electric fluid is distributed in the different parts of the bodies, it will be seen
that all these experiments are more successful when the electric balance is used rather than
when the method of oscillations, which we have just explained, is used.

14.2 Experiments to Determine the Law According to

Which the Magnetic Fluid Acts Whether by At-

traction or by Repulsion

Magnetized bodies, as well as electrified bodies, act on each other by attraction and by
repulsion at finite distances, the magnetic fluid seems to have, if not by its nature, at least
by this property, an analogy with the electric fluid; and by this analogy, it can be presumed
that these two fluids act according to the same laws: all the other attractive or repulsive
phenomena with which Nature presents us; whether in the cohesion of bodies, or in their
elasticity, or in chemical affinities, where the forces of attraction and repulsion appear to act
only over very small distances; it would seem to result, that they do not follow the same
laws as electricity and magnetism. In effect, the theory and calculation of the attraction
and repulsion of the elements of bodies, teach us that whenever the elementary molecules
of bodies attract or repel each other by forces which decrease in the ratio, or in a ratio less
than the cube of the distances, for example, as [linearly] with distance, bodies can act on
each other at finite distances; but that in the case when the action of molecules decreases
in the ratio, or in a greater ratio than the cube of the distances, in this case the bodies can
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only act on each other at infinitely small distances.556 ,557

556[Note by Coulomb] On the attractive and repulsive action of bodies, according to the law of distance.
Figure a represents a very sharp cone or small pyramid, all the parts of which attract point C, according

to the inverse ratio (n+2) of the distances [that is, with the force being inversely proportional to the distance
raised to the power (n+ 2)].

Let x = Cp, the action of the circular zone pm on the point C, will be mdx · x2/x2+n, whose integral will
be m

1−n

(

k + x1−n
)

; to have k, it is necessary to suppose the truncated pyramid, or that the action vanishes

in D when x = CD = A, which gives for the complete integration m
1−n (−A1−n+x1−n), where it is necessary

to notice that when A is equal to 0, if n is greater than 1, [then] A1−n will be equal to 1/0, or infinity; if n
is less than unity, [and still assuming A = 0,] in this case (A1−n) will be equal to 0; or, if you will, the whole
attractive force will be mx1−n/(1− n).
That is, in the case where n is greater than unity, or when the repulsion or attraction diminishes in a

ratio equal to or greater than the cube of the distances, the value of the constant is infinite relative to the
value of the variable that expresses the greater or lesser extent of the cone; and that thus the attraction
or repulsion takes place only in the point of contact, and that [the action] of the distant parts is infinitely
small relative to that [action] of the contact; but in the case where n is less than unity, that is, whenever the
action decreases in a ratio less than the cube of the distances, then the action of the distant parts influences
the total attraction, which is zero for an infinitely small pyramid and proportional to x1−n for the pyramid
whose length is x.
It seems to result from this calculation, that the cohesion, the elasticity and all the chemical affinities

where the elements of the bodies do not appear to have any action except very near the point of contact,
and where the elective attraction appears to depend on the figure of these elements, can act between them
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We may have reason to return to this subject in the continuation of our Memoirs on
electricity.

We employed in this new research two methods to determine by the experiment, by which
law the magnetic fluid acts. The first of these methods, consists of suspending a magnetic
needle, present to it in his magnetic meridian another magnetic needle, suitably placed,
and to determine by calculation and observation, at different distances, with what force the
magnetic fluid of one of the needles, acts on the magnetic fluid of the other. In the second
method, we use a magnetic balance, approximately similar to our electric balance, described
in the First Memoir; but before reporting the details of our experiments, it is necessary to
recall some known properties of magnetized needles, which will be useful to us.

A needle, from 0 to 24 inches in length (0 to 64.97 cm), of good steel, strongly tempered,
magnetized by the method of the double touch, as Mr. Aepinus has described and employed
in accord with his excellent theory of magnetism and electricity,558 acquires a pole at each
end; its magnetic center559 is placed approximately towards its middle.560

In two magnetized needles, the poles of the same name repel each other, and the poles
of a different name attract each other. This attraction or repulsion increases as the distance
where the ends of the needles are presented to the other, decreases.

If a magnetized needle is suspended horizontally, so that it can turn freely around its
center, it will always place itself in the same direction, which is called its magnetic meridian;
this meridian will form an angle with the meridian of the world,561 this angle will vary a
little during the day, according to the hour of the day, by a kind of periodic movement: it
will vary every year, by another movement probably also periodic, but whose duration, for
each point of the Earth, is still unknown to us.

If a needle, thus suspended horizontally, is placed in oscillation, it will be displaced
equally on both sides of its magnetic meridian; and it will always be brought back there,
by a force easy to determine, if we observe the duration of the oscillations, and if we know
the figure and the weight of the needle. See the seventh volume of the Savants étrangers,
Mémoires de l’Académie.562

only in a relation very close to the inverse ratio of the cube of the distances. Perhaps, in addition, all the
chemical affinities depend of two actions, one repulsive, the other attractive, analogous to those which we
find in electricity and magnetism.
557In the German translation of this work by Coulomb, there appears a Note with some further clarification,

[Coulomb, 1890e, Note 9, p. 85]. There it is stated that the case in which the forces decrease according to
the cube of the distances is not immediately solved by the consideration made by Coulomb in this footnote,
because for n = 1 and A = 0 we obtain the indefinite form 00. However, for n = 1 the integration
of the differential expression established by Coulomb, namely, mdx · x2/x3 = mdx/x, leads to the value
m(lnx− lnA). Therefore we see that also in this case, for A = 0, the value of the constant, that is, of − lnA,
is infinitely large in relation to the value of the variable lnx. Therefore the presentation given by Coulomb
in footnote 556 is also correct in this case where n = 1 and A = 0.
558See Section 4.6 and footnote 182 on pages 48 and 73, respectively.
559See footnote 146 on page 59.
560That is, the magnetic center will be approximately in the middle of the needle, at its central point.
561See footnote 126 on page 55. This angle is called the magnetic declination.
562See footnote 531 on page 232.
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14.2.1 Preparation for the Experiments

I took a wire of excellent steel, pulled through the die,563 it was 25 inches in length (67.68
cm), and 11

2
line in diameter (0.33 cm); I magnetized it by the double touch method, its

magnetic center was found approximately at its middle. I then suspended, by means of a silk
thread, such as it emerges from the cocoon, three lines in length,564 a magnetized needle 3
inches long (8.12 cm); and when this needle stopped, I traced its magnetic meridian, which
I extended up to two feet [65 cm] away from the center of suspension. I then raised (Figure
3), perpendiculars on this magnetic meridian.565

563In the original: tiré à la filière. See footnote 389 on page 174.
564Again there might be an oversight here, as described in footnote 543 on page 234. In this case the silk

thread might be 3 inches long (8.12 cm) instead of 3 lines long (0.68 cm), although a suspension thread of 3
lines (0.68 cm) can not be ruled out.
565Those lines that were drawn perpendicular to the magnetic meridian were also horizontal. The magnetic

meridian is represented by the line anB in Figure 3. The magnetized wire that will interact with the needle
an is represented by SN . Its poles or centers of action are represented by the points x and x′. Coulomb
will show that they are not located exactly at the ends of the wire. We can see from Figure 3 that the
distance nx between the North pole of the needle and the South pole of the wire is always smaller than the
distance nx′ between the North pole of the needle and the North pole of the wire. That is, the greatest
interaction between the wire and the needle occurs between their opposite poles. In order for the needle not
to be deflected from its magnetic meridian by the magnetized wire, the net force on its poles must be along
this meridian.
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I placed my steel wire along these perpendiculars, and I slid it along until the needle na
returned to the direction of its magnetic meridian, as it was placed there naturally before
the steel wire was presented to it; and I observed, according as my magnetized wire was
more or less close to the suspended needle, how much the end of this wire was beyond, or
under, the magnetic meridian, when the needle stopped on its meridian.

First Experiment566

566The + sign in the next Table indicates that the end of the wire has passed the magnetic meridian of
the needle. The sign − indicates that the end of the wire is before the magnetic meridian, as illustrated in
Figure 3. These signs were not included by Potier in the reprint of Coulomb’s Memoirs, [Potier, 1884, p.
128]. When Coulomb speaks of the distance from the wire to the end of the needle, we must understand the
shortest distance between the end n of the needle and any point along an infinite straight line passing along
the wire. In the case of Figure 3, this distance is measured along the line anB. It is measured between the
end n of the needle and the intersection of this line anB with the line orthogonal to it passing along the wire
SN .
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Distance of the wire The extremity [of the magnetized wire]
from the tip of the needle exceeds the magnetic meridian of

First trial 1 inch +10 lines (+2.25 cm)
Second trial 2 inches +9 lines (+2.03 cm)
Third trial 4 inches +8 lines (+1.80 cm)
Fourth trial 8 inches −4 lines (−0.90 cm)
Fifth trial 16 inches −42 lines (−9.49 cm)

Second Experiment

A magnetized needle two inches in length [5.4 cm] was suspended horizontally at its
center: free and solicited only by the magnetic force of the globe of the Earth, it made 34
oscillations in 60 seconds. We have again used the same magnetized wire of the previous
experiment, which was 25 inches in length; but, instead of placing it horizontally and per-
pendicular to the magnetic meridian, as earlier, we placed it vertically in this meridian at a
distance of 2 inches (5.4 cm) from the end of the hanging needle.567 The South pole of the
vertical wire matching the North pole of the needle, and then in lowering it vertically, always
at the distance of 2 inches from the end of the needle, we counted the number of oscillations
the needle made in 60 seconds, depending on whether the end of the steel wire was more or
less lowered below the level of the needle: here is the result of this experiment.

The extremity of the wire Number of oscillations in 60 s
First trial at the level of the needle 120
Second trial lowered by 6 lines [1.356 cm] 122
Third trial lowered by 1 inch [2.707 cm] 122
Fourth trial lowered by 2 inches [5.414 cm] 115
Fifth trial lowered by 3 inches [8.121 cm] 112
Sixth trial lowered by 4 inches [10.828 cm] 98

Seventh trial lowered by 8 inches [21.656 cm] 39

Third Experiment

We hung a needle 4 lines long (0.90 cm) instead of the first; the steel wire was placed at
3 inches (8.12 cm) from the end of this needle, vertically, as in the preceding experiment, of
which we followed all the procedures. The free needle being solicited only by the magnetic
force of the Earth makes 53 oscillations in 60”.

The extremity of the steel wire Number of oscillation in 60 s
First trial at the level of the needle 152
Second trial lowered by 1 inch [2.707 cm] 152
Third trial lowered by 2 inches [5.414 cm] 148
Fourth trial lowered by 4 inches [10.828 cm] 120
Fifth trial lowered by 8 inches [21.656 cm] 58

567See footnote 566 for the meaning of this distance between the wire and the extremity of the needle.

242



14.2.2 Explanation and Results of These Three Experiments

The three experiments above prove that the center of action568 of each half of our wire is
placed at a very short distance from the end of this wire; so that in our steel wire, 25 inches in
length, we may, without appreciable error, suppose all the magnetic fluid condensed towards
the end of this wire within 2 or 3 inches of length. Indeed, in the first experiment, the steel
wire is placed horizontally and perpendicularly to the direction of the magnetic meridian
where the suspended needle is located; this needle is solicited by two forces, the magnetic
force of the globe of the Earth, which retains it in the meridian, and the magnetic force of
the different points of the magnetized steel wire; but since in our first experiment, the needle
is found, at all tests, placed on its magnetic meridian, it results that all the magnetic forces
of the steel wire of 25 inches in length, acting on the needle, are in equilibrium with each
other: thus, in the first three trials, where the distances are 1, 2 and 4 inches, the magnetic
forces of the last eight to ten lines of the end of the wire, which lie beyond the meridian, are
in equilibrium with the forces of all the rest of the wire; so that it seems that we can roughly
assume that half of the magnetic fluid with which half of the wire is loaded, is concentrated
towards the last ten lines from its end.569

The second and third experiments give the same result. In these two experiments, the
steel wire is placed vertically in the magnetic meridian of the needle, therefore, the action of
the upper part of the wire being very oblique to the suspended needle, and acting moreover
at a great distance, should only slightly influence the needle oscillations; but we see in these
two experiments, that the greater number of the oscillations of the suspended needle occurs
when the end of the wire was placed a little less than an inch below the level of the suspended
needle: thus the average force of the lower half of the steel wire, had its resultant at 8 or 10
lines above its end, as we have just found it by the first experiment, from which it follows that
in the steel wire 25 inches in length which we employed, and which had been magnetized by
the double touch method, we can, without appreciable error, assume that the magnetic fluid
is concentrated at 10 lines from its end. This first result was necessary before attempting to
determine the law according to which attraction and repulsion take place in relation to the
distance: we will see in another Memoir, that the concentration of the magnetic fluid towards
the end of the needles magnetized by the double touch method, is a necessary consequence
of this way of magnetizing.

568In the original: centre d’action. That is, the magnetic pole.
569In the original (my emphasis in italics): “les forces magnétiques des 8 à 10 dernières lignes de l’extrémité

de l’aiguille, qui dépassent le méridien, sont en équilibre avec les forces de tout le reste de l’aiguille; en sorte
qu’il parâıt que l’on peut à peu près supposer que la moitié du fluide magnétique, dont la moitié de l’aiguille
est chargée, est concentrée vers les dix dernière lignes de son extrémité.” It seems to me that by an oversight
Coulomb wrote about the end of the needle and the rest of the needle, when in fact he was referring to the
end of the wire and the rest of the wire (whose torques on the suspended needle balance each other out).
Due to this oversight and to clarify the meaning of Coulomb’s sentence, I wrote “wire” three times at the
end of this sentence, instead of “needle”.
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14.3 The Magnetic Fluid Acts by Attraction or Re-

pulsion in a Ratio Compounded Directly of the

Density of the Fluid and Inversely of the Square

of the Distance of Its Molecules

The first part of this proposition does not need to be proved;570 let us pass to the second.

We have seen that the magnetic fluid in our steel wire 25 inches long was concentrated
at its ends within a length of 2 or 3 inches; that the center of action of each half of this
wire571 was about 10 lines (2.25 cm) from its ends: therefore, by setting up some inches away
from our steel wire a very short needle, in which, as we shall see in the sequel, the magnetic
fluid may be supposed to be concentrated in 1 or 2 lines [0.226 or 0.452 cm] at its ends, we
may calculate the mutual action of the wire on the needle and of the needle on the wire by
supposing the magnetic fluid in the wire concentrated at a point 10 lines from its ends and
in a needle an inch long [2.7 cm] at a point 1 or 2 lines from its end. These reflections have
directed us in the experiment which follows:

Fourth Experiment

We suspended a steel wire weighing 70 grains (3.72 g) and an inch in length, magnetized
by the method of double touch, by a silk thread 3 lines long572 made of a single brin such as
it comes from a cocoon;573 we allowed it to come to rest in the magnetic meridian, we then
placed vertically in the meridian at different distances a steel wire 25 inches long, in such
a way that its end was always ten lines below the level of the suspended needle;574 in each
trial we changed the distance, and then by oscillating the suspended needle we counted the
number of oscillations which it made in the same number of seconds. The following is the
result of these experiments:

First trial. The free needle oscillating because of the action of the Earth [alone] makes
15 oscillations in 60”.

Second trial. The wire placed at 4 inches [10.83 cm] from the center of the needle, the
needle makes 41 oscillations in 60”.

Third trial. The wire placed 8 inches from the center of the needle, the needle makes 24
oscillations in 60”.

Fourth trial. The wire placed 16 inches from the center of the needle, the needle makes
17 oscillations in 60”.

570That is, Coulomb considers that it is not necessary to prove that the magnetic force between two magnetic
particles is proportional to the product of the quantities of magnetic fluid contained in these two particles.
I discuss this statement by Coulomb in Section 16.6, page 279.
571By a lapse Coulomb wrote here on each half of this needle instead of each half of this wire, namely, de

chaque moitié de cette aiguille. I replaced here needle with wire.
572Again there might be a lapse here, as in footnotes 543 and 564 on pages 234 and 240, respectively. The

silk thread might be 3 inches long (8.12 cm) instead of 3 lines long (0.68 cm), although a silk thread of 3
lines might also work.
573[Note by Bucciarelli] “Brin” (a single silk fiber as obtained from a cocoon) and a “brave” composed of two

brin. See the abstract of an article at https://researchportal.hw.ac.uk/en/publications/mechanical-
properties-of-single-brin-silkworm-silk.
574In this way the lower magnetic pole of the vertical wire was at the same horizontal level as the suspended

needle.
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14.3.1 Explanation of This Experiment and Its Result

When a pendulum is freely suspended and acted on by forces in a given direction, which
make it oscillate, the forces are measured by the inverse ratio of the square of the time of
the same number of oscillations, or, what comes to the same thing, by the direct ratio of the
square of the number of oscillations made in the same time.575

In the preceding experiment, the needle oscillates because of two different forces; the
one is the magnetic force of the Earth, the other is the action of all the points of the
wire on the points of the needle. In our experiment all the forces are in the plane of the
magnetic meridian, and since the needle is suspended horizontally the true force which makes
it oscillate depends on the horizontal components of all these forces.

Now we have seen from the three preceding experiments that since the magnetic fluid is
concentrated at the ends of our wire, it may be supposed to be concentrated at a point 10
lines from the end of the wire. And, since the suspended needle is an inch long, that the
boreal end576 is attracted at a distance of 3 inches and a half [9.47 cm] and that the austral
end is repelled by the lower pole of the wire,577 which is distant from it 41

2
inches [12.18

cm]; it may be supposed without sensible error that the mean distance at which the lower
end of the steel wire exerts its action on the two poles of the needle is 4 inches [10.83 cm].
Consequently, if the action of the magnetic fluid was in the inverse ratio of the square of the
distances, the action of the lower pole of the steel wire on the needle should be proportional
to 1/42, 1/82, 1/162 or to 1, 1/4, 1/16.

Now since the horizontal forces which make the needle oscillate are proportional to the
square of the number of oscillations made in the same time, and since because of the magnetic
force of the Earth alone, the free needle makes 15 oscillations in 60”, this force can be
measured by the square of these 15 oscillations or by 152. In the second trial the combined
forces of the Earth and of the steel wire make the needle perform 41 oscillations in 60”;
therefore, these forces combined are measured by 412, and the force resulting from the
action of the magnetized steel wire alone is consequently measured by the difference of these
two squares; it is thus proportional to 41

2 − 15
2
. We shall then have for the action of the

wire on the needle:

Distance Force depending on the magnetic action
of the steel wire

In the second trial at 4 inches 41
2 − 15

2
= 1456

In the third trial at 8 inches 24
2 − 15

2
= 351

In the fourth trial at 16 inches 17
2 − 15

2
= 64

The second and third trials, in which the distances are as 1 : 2, give very approximately
for the forces the inverse ratio of the square of the distance.578 The fourth trial gives a
number which is a little too small; but it may be remarked that in this fourth trial the

575See Section 16.1 on page 267.
576That is, the end with the North pole. See footnote 127 on page 56.
577In the original we have here “by the lower pole of the needle”, instead of “by the lower pole of the wire”,

(par le pôle inférieur de l’aiguille). However, certainly Coulomb was referring to the lower pole of the wire,
S, which is repelling the austral (or southern) end of the needle.
578That is, the ratio between the squares of the distances is very approximately the ratio between the

numbers of oscillations made at the same time, with these numbers being due only to the interaction between
the wire and the needle (disregarding the influence of the terrestrial globe), namely:
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distance of the lower pole of the steel wire from the center of the needle is 16 inches; and
that the distance of the upper pole from the center of the needle is about

√
162 + 232: thus

if we represent the action of the lower pole by 1/162, the horizontal action of the upper pole
will be 16

(162+232)3/2
; so that the action of the lower pole is to that of the upper pole about

as 100 : 19; from which it follows that since the oscillations of the needle are caused by the
action of these two poles, and since the action of the upper pole is opposed in sense to that
of the lower pole, the square of the oscillations which the action of the lower pole of the
magnetized wire alone would produce is diminished by 19/100 by the opposite action of the
upper end of the same wire; and so to have the action of the lower part of the wire alone, we
must, if we represent the true value of this force by x, set (x − 19x/100) = 64, from which
x = 79. If we substitute this quantity in the result of the fourth trial we shall find

Distance Force
Second trial 4 inches 1456
Third trial 8 inches 351
Fourth trial 16 inches 79

These forces are very approximately as the numbers 16, 4, 1, or are in the inverse ratio of
the square of the distance.579

I have repeated this experiment several times by suspending needles two and three inches
long [5.41 and 8.12 cm] and I have always found that when I have made the necessary
corrections which I have just explained, the action of the magnetic fluid, whether repulsive
or attractive, was inversely as the square of the distances.

14.3.2 First Observation

We can see, that in this experiment, we suppose that our wire is magnetized by the double-
touch method; if one presents alternately at the same distance, its boreal pole and its austral
pole, to the end of a needle magnetized by the method of the double touch, the boreal pole
of the magnetized wire will attract the austral pole of the needle, with exactly the same
force as the austral pole of this wire will repel the austral pole of the needle, and vice versa
for the boreal pole of the needle. This property which, as we shall see later, is a necessary
consequence of the theory of magnetism, will moreover be proved by experiment, using the
magnetic balance, of which we will presently give the description and uses.

(1/4)2

(1/8)2
≈ 1456

351
, that is, 4 ≈ 4.15 .

579Gillmor made the following comment regarding this ratio, [Gillmor, 1971a, p. 190, Note n]:

If 1456 is chosen as unity, the ratios of

1

1456
:

1

351
:
1

79

are as 1 : 4.15 : 18.4. If 79 is chosen as unity, the ratios of 79 : 351 : 1456 are as 1 : 4.4 : 18.4. For
the inverse square law, the exact ratios should be as 1 : 4 : 16.
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14.3.3 Second Observation

Once we accept the law of the inverse ratio of the square of the distances, it would be easy —
in the first experiment, where the magnetized wire is placed horizontal and perpendicular to
the magnetic meridian, and where we find, in the last trial, that it is necessary to move the
end of the wire about 42 lines from the meridian of the needle — to assess if the calculation
[in accord with the inverse square law] would give, for the direction of the resultant of all
the actions of each half of the wire, a line which would pass [through a point] nine or ten
lines from the extremity of this wire. We are going to present the calculation which will
determine this direction according to the last trial of the first experiment, where the needle
is three inches in length, and where the magnetized steel wire, 25 inches in length, is placed
horizontally and perpendicularly to the magnetic meridian, 16 inches away from the tip of
the needle.

Let in Figure 3,580 x, be the point where this resultant passes, for the pole which is placed
closest to the meridian line of the needle; x′, the point at the other end of the wire where one
supposes all the magnetic fluid concentrated: as regards the magnetic fluid of the suspended
needle, although its center of action is at two or three lines from its ends, we can suppose it
[to be] at its extremities, because each pole of the wire acts on the two poles of this needle;
and that if, by this supposition, one makes the pole n of the needle, too close to the pole S
of the steel wire by two or three lines, one makes at the same time the pole a of the needle
too far from the S pole by the same amount; thus the error of the supposition is found to
be almost compensated.

But we find by experiment, that the distance from the end of the wire to the meridian
line of the needle, is in the last trial of 31

2
inches.581 Thus by doing x = Sx = Nx′, distance

from the end of the wire to the center of action, we will have the following formulas, for the
force that the centers of action of the wire exert on each end of the needle, in a direction
perpendicular to the needle.

Action of pole S on pole n:

3.5 + x

[(16)2 + (3.5 + x)2]3/2
.

Action of pole S on pole a:

3.5 + x

[(19)2 + (3.5 + x)2]3/2
.

Action of pole N on pole n:

28.5− x

[(16)2 + (28.5− x)2]3/2
.

Action of pole N on pole a:

28.5− x

[(19)2 + (28.5− x)2]3/2
.

But, since in this [first] experiment, the steel needle lies along it’s magnetic meridian,
and in that each of the preceding forces acting perpendicular to this needle have the same
lever arm tending to rotate it about its point of suspension, it follows that all the forces are
in equilibrium;582 from which we draw the equation:

580This Figure 3 appears on page 241.
581The value of 3.5 inches is equivalent to 42 lines, both of which are equivalent to 9.5 cm.
582That is, the resulting torque to make the needle rotate around the suspension thread is zero.
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3.5 + x

[(16)2 + (3.5 + x)2]3/2
+

3.5 + x

[(19)2 + (3.5 + x)2]3/2

=
28.5− x

[(16)2 + (28.5− x)2]3/2
+

28.5− x

[(19)2 + (28.5− x)2]3/2
.

But, as we have already seen that x must be less than an inch, we can, as a first approxi-
mation, neglect it in the denominator of our equation, the numbers of which are very large,
relative to x, or make x equal to 1/2 inch, which more closely approximates its true value.

Thus, it will result from the calculation of the formula, for the value Sx = x = 56/75
inches, about 9 lines (2.03 cm), as in the first two trials.

By a similar calculation, it will be found that, when the extremity of the steel wire was
8 inches distant from the extremity of the suspended needle, the distance from the point
x to the meridian, was approximately 121

2
lines; but as the experiment then gives 4 lines

of distance from the meridian to the end of the needle, it follows that, in this test, it is
necessary to subtract 4 lines to obtain the distance from the center of action to the end of
the needle.583 So the calculation here again gives 81

2
lines for the distance from the center

of action to the ends of the needle.584

In the third trial, where the distance from the end of the needle to the steel wire is 4
inches, the calculation will give approximately 2 lines for the distance from the center of
action to the meridian: but we find by experiment that, in this trial, the end of the wire
exceeded the meridian, by 8 lines; thus, in this test, the calculation gives the center of action
of the ends of the steel wire, 10 lines from its ends.

Thus, it results from experiment and calculation, that whenever steel wires, 25 inches in
length, act on each other, we can suppose the centers of action, or what amounts to the same
thing, all the magnetic fluid united at 9 or 10 lines from the extremities of these wires, and
calculate, according to this supposition. In very short needles, the center of action is nearer
to the extremities; we shall need in the following to determine the law of this reduction,
relative to the length of the needles, when we give the most advantageous way to magnetize
the needles, and to form artificial magnets.

We will determine at the same time the curve which, in a magnetized steel wire, describes
the density of the magnetic fluid from its extremity to its middle where its magnetic center
is located; but it is easy to foresee in advance, from the preceding experiments, that the
locus of this density cannot be a straight line, as some authors have believed.585

14.4 Second Method of Determining the Law of At-

traction and Repulsion of Magnetic Fluid

After having found by the preceding experiments, that in a needle 25 inches in length,586

and a fortiori in shorter needles, the magnetic fluid can be supposed to be concentrated in
the last two or three inches, towards their extremities, and that in needles 20 to 25 inches

583End of the wire?
584Ends of the wire?
585A discussion of Coulomb’s calculations presented in this Section can be found in Chapter 15.
586In Potier’s edition of Coulomb’s works it appears here, by a typo, 23 inches instead of the 25 inches of

the original text, which corresponds to 67.675 cm, [Potier, 1884, p. 136] and [Coulomb, 1788d, p. 600].

248



the center of action may be assumed [as concentrated at a point] 9 or 10 lines from each
end; it was easy to construct a magnetic balance, according to the same principles which I
used to construct the electric balance, which I described in my First Memoir. But I should
note that the form and dimensions of the magnetic balance that I am going to present, can
and ought to be changed as practice suggests. I only sought, in this first attempt, to give
this balance a simple inexpensive form, and which was however more or less sufficient for
the experiments which I intended to make.

14.5 Description of the Magnetic Balance

I had a square box made, 3 feet on a side (97.45 cm), and 18 inches high (48.73 cm), Figure
4.587

The boards are only fixed together with tenons, mortises and wooden pegs. Nine inches
[24.36 cm] above the bottom, is placed a horizontal circle, of very seasoned wood, or red

587The vertical wire located on the right in Figure 4 is magnetized. It will be used in the experiments to
determine the force law between magnetic poles.
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copper,588 2 feet 10 inches in diameter (92.03 cm), divided in the ordinary way into 360
degrees. On this box is placed a crosspiece AB which carries in its middle a hollow shaft
id, 30 inches in length (81.21 cm), terminated at d, by a torsion micrometer, similar to that
which we have described for the electric balance. The clamp of this micrometer grasps the
end of a yellow copper wire,589 numbered 12 in commerce, whose six feet weighs 5 grains
(0.1365 gram per meter), and whose force we have determined,590 in the Memoir on the
forces of torsion of metal wires, printed in the Volume of the Academy for 1784.591 The
lower part of this wire is grasped by a double clamp,592 having the shape of a ruling pen,593

represented in Figure 5.

This double clamp is split, as shown in the Figure, in almost its entire length, to form a
clamp at its two ends, which open and close by means of two sliders. The lower end grips a
ring of lead or copper; this ring is intended to carry the magnetized steel needle, with which
we wish to experiment.

Before starting the experiments with this balance, it is necessary that, when the torsion is
null, the magnetized needle is placed naturally on its magnetic meridian; this is easily accom-
plished by first placing in the ring suspended from the ruling pen, a red copper wire, of the
same dimensions as the magnetized steel wire, which one intends to submit to experiment;594

then keeping the index of the micrometer fixed on the first division of this micrometer, the
whole micrometer is rotated (whose stem, as we saw for the electric balance, can slip and
rotate atop the hollow shaft id, Figure 4), until the copper needle stops naturally on the
direction of the magnetic meridian, which has been drawn in advance.

The box should be placed on this magnetic meridian, so that the direction of this meridian
is aligned with the divisions 0, 180 of the horizontal circle, which we have said is placed in
the box, 9 inches above its bottom.

After this preparation, we replace the copper needle with the magnetized steel needle,
and we are ready to begin the operations.

588See footnote 436 on page 193.
589See footnote 262 on page 109.
590[Note by Bucciarelli] “Force” here is, I suggest, the force of resistance to rotation, that is, the wire’s

“stiffness”.
591[Coulomb, 1787] with English translation of Sections I and II in [Coulomb, 2012a] and [Coulomb, 2012b].

This Memoir is translated in Chapter 7.
592In the original: double pince. See footnote 340 on page 153.
593In the original: porte-crayon. See footnote 466 on page 207.
594This copper wire is not magnetized.
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We will give here only the experiments and the results which are absolutely necessary
for us to determine the law according to which the magnetic fluid acts, when the magnetic
molecules595 are placed at different distances one from the other.

14.5.1 First Result. The resultant force of all the magnetic forces
which the globe of the Earth exerts on each point of a

magnetized needle, is a constant quantity, the direction
of which, parallel to the magnetic meridian, always passes

through the same point of the needle, in whatever situation
this needle is placed in relation to this meridian

I had already tried to prove this principle in a Memoir on magnetized needles, printed in the
seventh volume of the Savants étrangers;596 but the experiments which I have reported so
far might be subject to some dispute; that which follows is direct, and seems to me decisive.

Experiment

I have suspended horizontally in the balance a magnetized steel wire, 22 inches long
(59.56 cm), and 11

4
line in diameter (0.27 cm). In accord with the setting of our balance,

this needle is positioned in its magnetic direction,597 its northern end corresponding to point
0 of the great circle of 2 feet 10 inches in diameter; the torsion of the wire filament being
zero, and the index of the micrometer being on the point 0, or on the first division of this
micrometer.

By means of the button which carries the index of the micrometer, we twisted the copper
wire of suspension through various angles, which forced the needle to be displaced from its
magnetic meridian: with each operation, we observed the angle from which it was displaced
from the meridian, and the force of torsion which was required to produce this angle, and
we obtained the following results.598

Torsion of the The needle stoped at
suspension thread

First trial 1 circle = 360◦ 10.5◦ from its meridian
Second trial 2 circles 21.25◦ from its meridian
Third trial 3 circles 33◦ from its meridian
Fourth trial 4 circles 46◦ from its meridian
Fifth trial 5 circles 63.5◦ from its meridian
Sixth trial 5.5 circles 85◦ from its meridian

595In the original: molécules aimantaires. See also [Gillmor, 1971a, p. 217].
596See footnote 531 on page 232. In particular, we draw attention to the First Fundamental Principle,

Subsection 5.0.2 on page 56. A discussion and illustration of this first fundamental principle can be found
in Section 6.1.
597That is, along the magnetic meridian.
598I present an illustration of this experiment in Section 16.3 on page 272.
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14.5.2 Result and Explanation of This Experiment

Our magnetic needle is suspended here by a copper wire, numbered 12 in commerce; we saw,
in a Memoir printed in the volume of 1784,599 that, for the same wire of suspension, the force
of torsion is proportional to the angle of torsion; thus, in the first trial, the force of torsion
is 1 circle −101

2
degrees; in the second trial, it is 2 circles −211

4
degrees. If we compare, in

this experiment, the force of torsion with the angle which the needle is displaced from its
meridian for each trial, we will find very exactly that in the successive trials the sines of
the angle formed by the magnetic meridian and the direction of the needle are proportional
to the angle of torsion;600 whence it follows, as we have seen, in the seventh volume of the
Savants étrangers,601 that the force resulting from the magnetic action of the globe of the
Earth, is a constant force directed parallel to the magnetic meridian, and always passing
[through a point lying] at a fixed distance from the extremity of the needle, in whatever
position this needle is placed, relatively to its meridian: here is the calculation comparing
[the results] of the experiment.602

Let A be the angle of torsion of any trial, which will serve as a term of comparison.
B, the angle at which the needle moves away from its meridian on this trial.
A′, the torsion angle found in another trial.
B′, the angle by which the needle moves away from its meridian on this trial; we will

generally have, according to the theory

A : A′ :: sinB : sinB′ .

From where

logA′ = logA + log sinB′ − log sinB .

Take the second trial for comparison term; correcting the angle of torsion, from the angle
the needle moves away from its meridian, this angle will be 699 degrees, and its logarithm
will be

2.8444 ;

the angle B being of 21◦15′, log sinB will be

9.5592 .

By comparing these two quantities, according to the formula, with the angle by which the
needle is displaced from its meridian in the other trials, we will find that:

The 2nd and 3rd Trials compared by the theory,
give for the force of torsion of the 3rd Trial 1052◦

The experiment gives for the force of torsion of the 3rd Trial 1047◦

Difference: 5◦

Error of the experiment: − 1
210

599[Coulomb, 1787] with English translation of Sections I and II in [Coulomb, 2012a] and [Coulomb, 2012b].
This Memoir is translated in Chapter 7.
600I show this proportionality in detail in Section 16.3 on page 272.
601See footnote 531 on page 232.
602A discussion of Coulomb’s calculations presented in this Section can be found in Section 15.2.
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The 2nd and 4th Trials compared by the theory,
give for the force of torsion 1388◦

The experiment gives for the force of torsion of the 4th Triala 1394◦

Difference: −6◦

Error of the experiment: + 1
232

a. For a lapse in the original text,
it appears written here third trial instead of fourth trial.

The 2nd and 5th Trials compared by the theory,
give for the force of torsion 1726◦

The experiment gives for the force of torsion of the 5th Trial 17361
2

◦

Difference: −101
2

◦

Error of the experiment: + 1
169

The 2nd and 6th Trials compared by the theory,
give for the force of torsion 1921◦

The experiment gives for the force of torsion of the 6th Trialb 1895◦

Difference: 66◦

Error of the experiment: − 1
75

b. For a lapse in the original text,
it appears written here fifth trial instead of sixth trial.

We therefore find the greatest agreement between theory and experiment, which proves
at the same time the truth of the theory and the exactness of the method; an accuracy
which can only be attributed to the simplicity of the instrument, for the box and all the
parts which form the balance were executed without much care.

14.5.3 First Observation

This property established in a way that seems to me indisputable, it will be easy, by means
of our balance, to compare immediately and without calculation, the force of different mag-
netized needles,603 either among themselves, or with the moment604 of a weight which would
act at the end of a given lever.605

For this operation, it is only necessary to suspend horizontally in our balance, one after
the other, the different needles we wish to compare in a way such that they lie freely along
the magnetic meridian when the torsion in the suspending wire is nul; one then twists the
wire by means of the micrometer so that the suspended needles take up the same angle with
respect to the magnetic meridian in all tests and we will conclude from this experiment that,
since the angle formed with the magnetic meridian is constant, the moment of the force
which tends to bring the needle back to its meridian due to the magnetic action of the Earth
is proportional to the angle of torsion applied in the experiment.

603In the original: la force de diffèrentes aiguilles aimantées. Coulomb is referring here to the degree of
magnetization of different needles.
604In the original: momentum. This word can also be translated as torque. See footnote 150 on page 60.
605That is, this procedure allows the magnetic moments of different magnetized needles to be compared

with each other. It also allows the magnetic torque exerted by the Earth on a specific compass needle to be
compared with the torque exerted by a given weight acting on a lever at a given distance from its fulcrum.
That is, the magnetic torque exerted by the Earth on the magnetized needle can easily be compared with a
known gravitational torque.
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We shall have occasion, in another Memoir, to return in detail to this subject, as well as
to many others relating to magnetism.

14.6 Use of the Magnetic Balance, to Determine the

Law According to Which the Magnetic Parts Act

on Each Other at Different Distances

We magnetized606 a wire of good steel, pulled through the die,607 24 inches in length (64.97
cm), and 11

2
line in diameter (0.34 cm), we suspended it horizontally in our magnetic balance;

we first sought, with what force the magnetism of the Earth brought this needle back to its
meridian, and we found that by twisting the suspension wire by two circles minus 20 degrees,
the needle stopped at 20 degrees from its magnetic meridian, so that for angles from 20 to
24 degrees and below, the sines being roughly proportional to the arcs, it required a force
of torsion very close to 35 degrees in order to move the needle one degree away from its
magnetic meridian.608

We then placed another magnetized wire of the same dimensions, vertically in the mag-
netic meridian, 11 inches 2 lines (30.22 cm) from the center of suspension of the first needle,
by lowering the end of this wire, approximately one inch below the level of the needle hang-
ing horizontally;609 so that, if the two needles, one suspended horizontally, the other placed
fixedly vertically in the meridian of the first, had touched each other, they would have met
at 1 inch from their extremities; but as it was the North poles, or [the poles] of the same
name of each needle, which were opposite, they mutually repelled each other, and the hori-
zontal needle, suspended in the balance, was repelled from the direction of its meridian, and
stopped only when the repulsive force of poles of the same type610 was in equilibrium with
the directing force611 of the globe of the Earth. Here are the results of the various trials.612

Experiment

First trial. The needle suspended horizontally without twisting the suspension wire, it
was repelled, and stopped at 24 degrees from its magnetic meridian.

Second trial. Having twisted [the upper part of the suspension wire] by three circles, the
needle stopped at 17 degrees from its magnetic meridian.

606In the original text the title of this Section appears as: Usage de la balance magnétique, pour déterminer
la loi suivant laquelle les parties aimantaires agissent l’une sur l’autre à différentes distances. The expres-
sion “the parties aimantaires” (the magnetic parts) was translated in the German version as “the magnetic
particles” (die magnetischen Theilchen), [Coulomb, 1890e, p. 37]. See also [Gillmor, 1971a, pp. 159, 201 and
217] and footnotes 181 and 909 on pages 72 and 419, respectively. By writing “magnetic parts” Coulomb
might be pointing to the areas of the needle where the magnetic fluid is concentrated.
607In the original: tiré à la filière. See footnotes 389 and 563 on pages 174 and 240.
608That is, (720◦ − 20◦)/20 = 35◦.
609This vertical magnetized wire appears on the right side of Figure 4 on page 249. When its lower end is

1 inch below the level of the horizontal needle, the lower magnetic pole of the wire is at the same horizontal
level as the hanging needle.
610In the original text it appeared here “la force de répulsion des pôles opposés”. This was certainly an

oversight, since Coulomb is referring to the force of repulsion between magnetic poles of the same type.
611See footnote 286 on page 127.
612This experimental procedure is illustrated and discussed in detail in Section 16.4 on page 273.
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Third trial. Having twisted [the upper part of the suspension wire] by eight circles, the
needle stopped at 12 degrees from its magnetic meridian.

14.6.1 Explanation and Result of This Experiment

We have said that the needle, free and only subjected to the magnetic action of the globe of
the Earth, was held at 20 degrees from its meridian by a force of torsion of two circles minus
20 degrees; thus, when the needle formed an angle of 20 degrees with its magnetic meridian,
the force tending to take it back towards this meridian was 700◦; and consequently, as in
the first trial it stopped at 24◦ from its meridian, it was drawn back to the meridian with a
force of 840◦;613 but, as by the repulsion of the needles, the suspension thread was twisted
by 24◦, the total repulsion was 864◦.614

In the 2nd trial, the needle stopped at 17◦ from its magnetic meridian; thus, it was brought
back to this meridian by the magnetic action of the Earth,615 with a force of 595◦.616 But
the torsion [of the suspension wire] which held it at this distance was 3 circles + 17◦. Thus,
as this force of torsion acted in the same direction as the magnetic force of the Earth, the
action of the two poles of the needle was measured by 1692◦.617

In the 3rd trial, the needle is only at 12◦ from its magnetic meridian. Thus, the action of
the terrestrial globe is only measured by a force of 420◦.618 But we find in this trial, that to
bring the needle back to this distance of 12◦, it was necessary to twist the suspension thread
by 8 circles + 12◦ = 2890◦. Thus, the repulsive force of the two needles placed 12◦ apart is
measured in this last trial, by a twist of

2892◦ + 420◦ = 3312◦ .

Thus, in our experiments, where the distances are 24, 17, 12, the inverse ratio of the
square of the distances is measured by the numbers 1/576, 1/289, 1/144, which is very close
to the numbers 1/4, 1/2, 1. But the experiments give for the corresponding repulsive forces
864, 1692, 3312, which are also very close, like the numbers 1/4, 1/2, 1.619 Thus, in assuming
that all the magnetic fluid is concentrated at 10 lines from the extremity of our 24 inch long
needles, as we have seen it was permissible in what came before, if results that the repulsive
action of the magnetic fluid is inversely proportional to the square of the distances.

We were able to neglect in this operation, the action of the other poles of the needles;
for, since the action is in inverse proportion to the square of the distances, since the needles
are two feet in length, these other poles always being at a distance at least four times
greater than the first, and acting moreover very obliquely to the length of the needles, their

613Due to a typographical error, in the original text we have here 849◦, [Coulomb, 1788d, p. 608]. Potier
has corrected this error and put the correct value of 840◦, [Potier, 1884, p. 143]. This value is obtained as
follows. It was seen in footnote 608 that a force of torsion of 35◦ is required for every 1◦ the needle moves
away from its magnetic meridian. Since the needle in this trial was 24◦ away, the force of torsion required
to cause this deviation was 24× 35◦ = 840◦.
614The way to obtain this value is detailed in Section 16.4 on page 273.
615In the original: par l’action aimantaire de la Terre.
616That is, 17× 35◦ = 595◦.
617That is, the repulsive action between the North poles of the two magnetized needles was measured by

1692◦. The way to obtain this value is detailed in Section 16.4 on page 273.
618That is, 12× 35◦ = 420◦.
619See Section 16.4 on page 273.
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action cannot alter our result in a very perceptible way.620 But if there were less difference
between the distance of the different poles of the needle than in the preceding experiment,
it would be necessary, in the calculation, to have regard to the reciprocal action of all the
poles, and to the length of the [arm of the] lever on which each of these actions is exercised.
This calculation would have no more difficulty than that which we have made previously to
determine the center of action of the extremities of the needles, or the point, towards these
extremities, in which it is permitted to suppose the magnetic fluid concentrated.

Furthermore, by means of the magnetic balance which we have just described, we can
prove in an indisputable way, that the magnetic fluid in the steel wires magnetized by the
method of the double touch, is concentrated towards the ends of these wires.

Here is the summary of the operation that leads to this result. Having placed in the
magnetic meridian of our balance, a vertical ruler two lines thick (0.451 cm), near the end
of the suspended needle, we slide vertically, along this ruler, the magnetized steel wire, so
that the poles of the same name respond to each other, the ruler being in-between. As the
two extremities, or the two poles, one of the steel wire and the other of the needle, repel
each other, we twist, by means of the micrometer, the wire of suspension, until we have
brought the horizontal needle back in contact with the ruler, so that only the thickness of
the ruler, or two lines of distance, remains between the nearest points of the two needles; but
as the steel wire that we place behind the ruler is vertical, all the points of the two needles
which are four or five lines [0.90 or 1.13 cm] away from the intersection mutually repel each
other with but a very weak force, on account of their distance and the obliqueness of their
action; so that the force of torsion which must be employed to hold the needle suspended
horizontally in contact with the ruler, is proportional to the density of the two or three
lines of length of the magnetic fluid which are close to the points of the two needles, which
are only two lines apart. Thus, by sliding our steel wire vertically along the ruler, we will
present at this small distance of two lines from the needle, all the points of this wire, and
the force of torsion of the suspension [thread] to hold the needle suspended horizontally in
contact with the ruler, will be proportional to the density of the magnetic fluid of the point
of the vertical wire, which, in each trial, will be two lines away from the needle. If this
experiment be attempted, it will be found that if a twist of eight circles is required when
the point of intersection is at two lines from the end of the wire, only two or three circles of
twist are required at one inch, and at most a semicircle of twist at two inches; and that when
the vertical steel wire has its end placed at three inches below the end of the horizontally
hanging needle, the repulsion is almost nil. The same thing will be found for the attraction
of the poles of different name;621 but it is necessary to warn [the reader] that to count on
the result of such an experiment, it is necessary to employ only strongly hardened needles of
excellent steel, and not to give them a too strong degree of magnetism; otherwise, as in this
operation the point of intersection of the two needles is only two lines apart, if the force of
the magnetic fluid is such that the fluid can move into the parts of the needles which adjoin
each other, the results will no longer be comparable. We will see, in another Memoir, that
the coercive force, which prevents the magnetic fluid once concentrated by the operation of

620Heilbron estimated that the influence of the far poles was less than 1% of the action between the near
poles, [Heilbron, 1999, p. 96].
621By an oversight, the attraction of the poles “of the same name” appears in the original text, pour

l’attraction des poles du même nom. We changed the phrase for attraction of the poles of different names,
that is, attraction between the North pole of the suspended needle and the South pole of the vertical wire,
or attraction between the South pole of the suspended needle and the North pole of the vertical wire.
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the double touch, from moving, is a constant quantity, which varies according to the nature
and the hardness of steel; but that, when a point of a needle is magnetized to saturation, this
coercive force, which we can compare to friction in mechanics, balances with the resultant of
all the forces, either repulsive, or attractive of all the magnetic fluid diffused in the needle,
the force of each point being directly proportional to the densities [of magnetic fluids] and
inversely proportional to the square of the distances.

14.7 Summary of the Subjects Contained in This Mem-

oir

From the above research, it will result:

1. The electric action, whether repulsive or attractive, of two electrified spheres, and
therefore of two electrified molecules,622 is in the ratio compounded of the densities
of the electric fluid of the two electrified molecules and inversely as the square of the
distances.623

2. In a needle 20 to 25 inches in length, magnetized by the double-touch method, the
magnetic fluid can be supposed to be concentrated at 10 lines from the ends of the
needle.

3. When a needle is magnetized, in whatever position it is placed on a horizontal plane,
with respect to its magnetic meridian, it is always attracted back to this meridian by
a force, constant and parallel to the meridian, of which the resultant passes always
through the same point of the suspended needle.

4. The attractive and repulsive force of the magnetic fluid, as of the electric fluid, is
exactly in the ratio directly of the densities [of the fluid] and inversely of the square of
the distances between the magnetic molecules.624

622In the original: molécules électriques. That is, between two electrified particles.
623What Coulomb is calling here the “density of the electric fluid” (densités du fluide électrique) can be

understood as the electric charge of each electrified molecule. He is then claiming that the force between two
electrified particles is directly proportional to the product of their electric charges and inversely proportional
to the square of the distance between them. I discuss the first part of this statement in Section 16.5 on
page 276.
624In the original: molécules magnétiques. I discuss the first part of this statement in Section 16.6 on

page 279.
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Chapter 15

Bucciarelli’s Remarks on Coulomb’s
Second Memoir

L. L. Bucciarelli

15.1 Note on Coulomb’s Second Section

In Section 14.2, Coulomb, (after the lengthy footnote 556 on attraction and repulsion of
bodies when the law is other than inverse square), writes that he will use two methods to
determine the law according to which the magnetic fluid acts: The first method observes
the interaction of a suspended magnetized needle of 3 inches in length and a longer (25
inches) magnetized steel wire to first determine the position of the north and south poles
of this wire relative to its ends, then uses these same elements to verify the inverse square
law of attraction by comparing the frequency of oscillations of the suspended needle in the
presence of the wire placed at different distances from the needle. The second method
makes use of a balance, like that used in Coulomb’s experiments of electricity to determine
the law. I consider only the first of four experiments conducted in accord with the first
method.

In this first of four experiments, Coulomb suspends a magnetized needle, an, directed
along the magnetic meridian, and positions a longer wire, SN , perpendicular to the meridian
at five different distances from the north pole of the suspended needle and in the same plane,
sliding it from left to right until the needle returns to the meridian, Figure 15.1.

First Experiment
Distance End displacement

from needle from meridian
1st Trial 1 inch +10 lines
2nd Trial 2 +9
3rd Trial 4 +8
4th Trial 8 −4
5th Trial 16 −42

At this point, he only considers the first three trials of this First Experiment. He follows
with two other experiments with the same objective as this first — to determine the position
of the north and south poles of the magnetized wire relative to its ends; in an Explanation
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Figure 15.1: Figure 3 of Coulomb’s Second Memoir.

and results of these three experiments, Subsection 14.2.2, he claims that they prove that the
center of action of each half of the wire is placed at a very short distance from the end of
the wire, e.g., from the first three trials:

thus, in the first three trials, where the distances [of the wire from the needles] are
1, 2 and 4 inches, the magnetic forces of the last eight to ten lines of the end of
the needle, which lie beyond the meridian, are in equilibrium with the forces of all
the rest of the needle; so that it seems that we can roughly assume that half of the
magnetic fluid with which half of the needle is loaded, is concentrated towards the
last ten lines from its end.

The approximate nature of this result is evident in the data and the Figure: If the wire
went beyond the meridian the same distance in these first three trials, say 9 lines, then, in
the Figure, they would all be positioned identically, as the wire of the second trial.

Coulomb comes back to trials four and five of the first experiment after describing a
fourth experiment in a next Section titled The magnetic fluid acts by attraction or repulsion
in a ratio compounded directly of the density of the fluid and inversely of the square of the
distance of its molecules, Section 14.3. Crucial to his fourth experiment (not discussed here)
is knowing the (approximate) location of the poles relative to the ends of the wire — hence,
why he did the three experiments.
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In a Second Observation following a description of results of the fourth experiment, Sub-
section 14.3.3, Coulomb explains how he will use the data of trial 5 of the first experiment
to test out the inverse square law which he has obtained from the fourth experiment.

Once we accept the law of the inverse ratio of the square of the distances, it would
be easy — in the first experiment, where the magnetized wire is placed horizontal
and perpendicular to the magnetic meridian, and where we find, in the last trial, that
it is necessary to move the end of the wire about 42 lines from the meridian of the
needle — to assess if the calculation [in accord with the inverse square law] would
give, for the direction of the resultant of all the actions of each half of the wire, a
line which would pass [through a point] nine or ten lines from the extremity of this
wire.

In his “calculation” Coulomb lets x = Sx = Nx′ be the distance from the ends of the
wire to either “center of action” and writes four expressions for the horizontal components
of the action of these two centers of action on the needle, components that cause the needle
to rotate off the meridian. I show at Figure 15.2 the horizontal component of the action
of the S pole of the wire on the north pole of the needle which tends to rotate the needle
counterclockwise.

Figure 15.2: Action of the pole S on the pole n. See also Equation (15.2).

In terms of the distance measures shown in this Figure 15.2, this component is
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Coulomb writes out a like expression for the other horizontal component of the action
of pole S on the south pole, s, of the needle — which also tends to rotate the needle
counterclockwise — and expressions for the two horizontal components of the wire’s pole
N on the north and south poles of the needle — both of which tend to rotate the needle
clockwise.

With the wire positioned in trial 5 such that the needle lies along the magnetic meridian,
the resultant moment of all four components about the suspension point at the center of
the needle must be zero. Since all four components have the same lever arm about the
suspension point, this is equivalent to making the sum of all the components vanish. In
Coulomb’s words:

But, since in this [first] experiment, the steel needle lies along it’s magnetic meridian,
and in that each of the preceding forces acting perpendicular to this needle have the
same lever arm tending to rotate it about its point of suspension, it follows that all
the forces are in equilibrium; from which we draw the equation:
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To solve for x, Coulomb notes that, since x is small, as a first approximation, we can
neglect x in the denominator. A better approximation is to take x equal to 1/2 (which,
we note, makes all numerical entries whole numbers). Using this, he obtains for the value
Sx = x = 56/75 (0.747 inch) which is approximately 9 lines.

For the fourth trial of the First Experiment, where the distance of the wire from the
needle is 8 inches, he obtains 8 1/2 lines for the distance from the end of the wire to the
center of action. For the third trial where the distance of the wire from the needle is 4 inches,
he obtains 10 lines. Summarizing in a Table (4th column):

First Experiment
Distance Displacement Distance, wire end to Distance, wire end to Distance end

from needle from meridian center of action center of action to centerb

from calculation from computationa

1st Trial 1 inch +10 lines no calculation .837 inches ∼ 10 lines .835 inch
2nd Trial 2 +9 no calculation .776 inch ∼ 9 lines .774 inch
3rd Trial 4 +8 10 lines (.83 inch) .839 inch ∼ 10 lines .845 inch
4th Trial 8 −4 8 1

2 lines (.71 inch) .650 inch ∼ 8 lines .675 inch
5th Trial 16 −42 9 lines (56/75 inch) .788 inch ∼ 9 1

2 lines 1.04 inch
a. Computation done taking x = 1/2 in the denominator (as did Coulomb).

b. Computation done making no approximation for x in denominator (solution requires iteration).
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The fifth column of the Table shows the results of computation of x for all trials taking,
as did Coulomb, x equal to 1/2 in the denominator of all terms of the equation solved. The
sixth column, results of “exact” solution to the equilibrium equation, no approximation for
x in denominator.

15.2 Note on Coulomb’s Fifth Section

Coulomb’s balance used to study the magnetic force, like the balance used to study the
interaction of electrically charged objects, relies on knowing the torsional properties of an
elastic filament — of a silk thread, a steel wire, etc. He knows, from his exemplary Memoir
of 1784, that the torque of a filament is linearly related to the rotation of one end relative to
the other and that if the filament is sufficiently long, the relative angle of twist can be large;
the relative twist increasing linearly with length for the same torque. (He also knows that
the stiffness of a filament is inversely proportional to its length, but although that knowledge
was no doubt of use in the design and making of the balance, it is not relevant to the conduct
and the analysis of results of the experiment.)

In the experiment of Section 14.5, Subsection 14.5.1, Coulomb suspends a magnetized
steel needle from a copper wire of approximately 0.14 mm diameter625 so that initially, the
needle aligns with the magnetic meridian. He then rotates the micrometer atop the wire to
displace the needle from north-south. To counter the Earth’s restoring force at any displaced
position, he must turn the micrometer until the torque is sufficient to hold the needle in place.
He takes data at 6 positions of the needle. In his words:

By means of the button which carries the index of the micrometer, we twisted the
copper wire of suspension through various angles, which forced the needle to be
displaced from its magnetic meridian: with each operation, we observed the angle
from which it was displaced from the meridian, and the force of torsion which was
required to produce this angle, and we obtained the following results.

Torsion of the The needle stoped at
suspension thread

First trial 1 circle = 360◦ 10.5◦ from its meridian
Second trial 2 circles 21.25◦ from its meridian
Third trial 3 circles 33◦ from its meridian
Fourth trial 4 circles 46◦ from its meridian
Fifth trial 5 circles 63.5◦ from its meridian
Sixth trial 5.5 circles 85◦ from its meridian

From this data, he will show that the resultant force of all the magnetic forces that the
Earth exerts on each point of a magnetized needle is a constant quantity whose direction,
parallel to the magnetic meridian, always passes through the same point of the needle, e.g,
his First Result. In his words:626

625Six feet weighs 5 grains (0.1365 g/m). With density = 8.92 g/cm3 weight per length divided by density
gives the area, then the diameter (keeping track of units). This is similar to AWG gauge copper wire gauge
35. See http://www.nessengr.com/technical-data/bare-copper-wire.
626My emphasis.
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If we compare, in accord with this experiment, the force of torsion with the angle
which the needle is displaced from its meridian for each trial, we will find very exactly
that in the successive trials the sines of the angle formed by the magnetic meridian
and the direction of the needle are proportional to the angle of torsion; whence it
follows, as we have seen [...] that the force resulting from the magnetic action of the
globe of the Earth, is a constant force directed parallel to the magnetic meridian,
and always passing at an equal distance from the extremity of the needle, [...]

Figure 15.3 shows the magnetic needle displaced an angle, φ, from the meridian — ten
and one half degrees in the first trial.

Figure 15.3: The magnetic needle displaced an angle, φ, from the meridian.

For equilibrium of the needle, the torque due to torsion of the suspension wire must
equal the restoring torque due to Earth’s magnetic force. The torque in the suspension wire
required to hold the needle at this angle is proportional to the angle of torsion — in the
first trial, one full circle less φ. The torque tending to return the needle to the meridian is
proportional to the component of the Earth’s force that is perpendicular to the displaced
needle, i.e., proportional to the sinφ.

But this last is only true if “the force resulting from the magnetic action of the globe of
the Earth is a constant and directed parallel to the magnetic meridian, and always passing
at an equal distance [d in the Figure] from the extremity of the needle”. (If d is a constant,
then the moment arm of the component of the Earth’s force is also constant.)

Coulomb proceeds to do the calculation, testing the proportionality of the angle of torsion
to the sin φ. Letting A be the angle of torsion and B be the needle displacement of any trial
(our φ of the Figure), he will determine if the proportionality A : A′ :: sinB : sinB′ holds
where the primed variables are the corresponding values for another trial. As was customary
in times prior to the availability of calculating machinery, Coulomb relies on the addition and
subtraction of logarithms to avoid the error prone operations of multiplication and division;
he writes:

logA′ = logA + log sinB′ − log sinB . (15.3)
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He takes the unprimed values for A and B from the second trial as the reference trial,
computes the right hand side using the observed value for B′ of any other trial, calculates
A′ and compares this with the observed value for the angle of torsion for the other trial.

For the second trial, A, the angle of torsion equals 2 full circles, 720 degrees less the
displacement of the needle, 21.25 degrees. He rounds this up to 699◦. Then logA = 2.8444;
(my calculator gives 2.8445). With B = 21.25◦, he evaluates the log sinB and expresses this
as 9.5592. Evidently this was the custom for writing the log of a number (sinB = 0.3624)
less than 1.0 for we would write log sinB = −0.4408 which is 9.5592− 10.

For the other trial, he considers trials three through six. For the third trial, the needle
displacement is 33◦ hence, log sinB = −0.2639. His proportional relationship in logarithmic
form then gives, (according to my calculation), logA′ = 3.021 which gives A′ = 1050◦.
Coulomb obtains 1052◦.

The measure angle of torsion in trial 3 is three full circles (1800◦) less the needle dis-
placement of 33 degrees so A′ observed is 1800 − 33 = 1047◦, a difference of 5 according to
his calculations. He expresses the error as −1/210.627 If we take 1050◦ as the correct value
for the result of theory, the difference is reduced to 3 and the error to 1/350.

Here are the results of the comparison of trials three through six with the results of the
second trial:

The 2nd and 3rd Trials compared by the theory, give for the force of torsion of the
3rd Trial, 1052◦. The experiment gives for the force of torsion of the 3rd Trial
1047◦. Difference: 5◦. Error of the experiment: − 1

210
.

The 2nd and 4th Trials compared by the theory, give for the force of torsion, 1388◦.
The experiment gives for the force of torsion of the 4th Trial 1394◦. Difference:
−6◦. Error of the experiment: + 1

232
.

The 2nd and 5th Trials compared by the theory, give for the force of torsion, 1726◦.
The experiment gives for the force of torsion of the 5th Trial 17361

2

◦
. Difference:

−101
2

◦
. Error of the experiment: + 1

169
.

The 2nd and 6th Trials compared by the theory, give for the force of torsion, 1921◦.
The experiment gives for the force of torsion of the 6th Trial 1895◦. Difference: 66◦.
Error of the experiment: − 1

75
.

Why did he not consider the first trial either as the reference case or as a trial to compare
with the second trial? Doing the comparison with the second trial gives an angle of torsion
of 351◦. The experimental value is 360 − 10.5 = 349.5◦, a difference of 1.5. The error, is
−1/234 which is not out of line with the error of the other trials. Nor does taking the first
trial as the reference case give appreciably different error values.

627Note that 5 ∗ 210 = 1050 and 1052/5 = 210.4 so Coulomb evidently rounded off the error.
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Chapter 16

Assis’ Remarks on Coulomb’s Second
Memoir

A. K. T. Assis

16.1 Determination of the Force of Gravity by the Os-

cillations of a Simple Pendulum

The period T for the round-trip oscillations in a vertical plane of a simple pendulum with
length ℓ and mass m, for small amplitudes, due only to the gravitational action of the Earth
is given by

T = 2π

√

ℓ

g
, (16.1)

where g is the value of the free-fall acceleration at that location. The body of mass m
experiences a gravitational force F at this location given by F = mg. By Equation (16.1)
we get

F = mg =
4π2ℓm

T 2
. (16.2)

We then see that the gravitational force F acting downwards on the pendulum is inversely
proportional to the square of the period of oscillation T of the pendulum, that is, F is
inversely proportional to T 2. Therefore, this force F is also inversely proportional to the
square of the time tn spent by the pendulum to make the same number n of oscillations,
with tn = nT . That is, F is inversely proportional to t2n:

F = mg =
4π2ℓm

T 2
=

4π2ℓmn2

t2n
. (16.3)

For example, suppose that TA = 1 s for a pendulum A. In a time interval tA = 6 s
this pendulum will make 6 round-trip oscillations. On the other hand, if TB = 3 s for
another pendulum B, then in the same time interval of 6 s this pendulum B will make 2
round-trip oscillations. This pendulum B will perform 6 oscillations in a time interval of
tB = 6 × 3 s = 18 s, that is, at three times the time interval that the pendulum A spends
to perform the same number of 6 oscillations. That is, suppose that TB = 3TA. In this case
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pendulum A will perform in a time interval tA the same number of round-trip oscillations
that pendulum B will perform in a time interval tB such that tB = 3tA.

The frequency f = 1/T represents the number of oscillations per unit time. The number
n of oscillations performed in a time interval tn is then given by n = ftn = tn/T . We have
by Equation (16.3):

F = mg =
4π2ℓm

T 2
= 4π2ℓmf 2 =

4π2ℓm

t2n
n2 . (16.4)

We then see that the gravitational force F is proportional to the square of the number of
oscillations performed by the simple pendulum per unit time, that is, F is proportional to
f 2. This force F is also proportional to the square of the number n of oscillations performed
in a given time interval, that is, F is proportional to n2.

16.2 The Attractive Forces of Spherical Bodies

In Subsection 14.1.2 Coulomb mentioned the following:

When all the points of a spherical surface act by an attractive or repulsive force which
varies inversely as the square of the distance on a point placed at any distance from
this surface, it is known that the action is the same as if all the spherical surface were
concentrated at the center of the sphere.

The point considered here by Coulomb on which the force of the spherical surface is
acting is located outside this surface. This theorem was proved by Newton in the Principia.
In Section 12 of Book I of the Principia, Newton proved two extremely important theorems
related with the force exerted by a spherical shell acting on internal and external point
particles. He supposed forces which vary inversely with the square of the distance between
the interacting particles, as is the case with his gravitational force. In the first theorem
Newton proved the following result:628

Section 12: The attractive forces of spherical bodies.

Proposition 70. Theorem 30: If to every point of a spherical surface there tend
equal centripetal forces decreasing as the square of the distances from these points,
I say, that a corpuscle placed within that surface will not be attracted by those
forces any way.

That is, if a body is placed anywhere inside the spherical shell (not only on its center),
the resultant force exerted by the shell on the body is zero. This situation is represented
in Figure 16.1, in which there is a spherical shell of gravitational mass Mg, radius R and
center C, with a corpuscle of gravitational mass mg located in an arbitrary location inside
the shell, at a distance r < R from the center of the shell.

Newton’s result can be expressed mathematically as follows:

628[Newton, 1934, p. 193] and [Newton, 1990, p. 221]. See also [Assis and Karam, 2018] and Section 1.4
(The Forces Exerted by Spherical Shells) of the book Relational Mechanics and Implementation of Mach’s
Principle with Weber’s Gravitational Force, [Assis, 2014] and [Assis, 2013].
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mgC

Mg

Figure 16.1: The spherical shell exerts no resultant force on a particle located anywhere inside the
shell.

~F = ~0, if r < R . (16.5)

By symmetry it might have been concluded that the net force would be zero if the
corpuscle were located exactly at the center of the shell. If it were not on its center, as
represented in Figure 16.1, the only conclusion that could be drawn based upon arguments
of symmetry, is that the net force acting on the particle must be along the line connecting
it to the center of the shell. No argument of symmetry would lead to the conclusion that
this force must be zero. It is possible to show that this net force is zero only when the
force between the particles is inversely proportional to the square of the distance between
them. If the force between the particles had another behavior (if it varied as the inverse of
the distance or as the inverse of the distance cubed, for instance), then the result given by
equation (16.5) would no longer be valid.

With theorem 31 Newton proved the following result:629

Proposition 71. Theorem 31: The same things supposed as above, I say, that a
corpuscle placed without the spherical surface is attracted towards the centre of
the sphere with a force inversely proportional to the square of its distance from
that centre.

That is, a particle placed outside the spherical shell is attracted as if the shell were
concentrated at its center. This is represented in Figure 16.2, in which there is a spherical
shell of gravitational massMg, radius R and center C, with a corpuscle of gravitational mass
mg located outside it in an arbitrary location, at a distance r > R from the center of the
shell. The net force on this particle is directed towards the center of the shell. Its magnitude
varies inversely as the square of the distance between the corpuscle and the center of the
shell.

Newton’s law of universal gravitation can be written in modern vector notation and in
the International System of Units MKSA as given by:

~F21 = −Gmg1mg2

r2
r̂ = −~F12 . (16.6)

In this equation ~F21 is the force exerted by the gravitational mass mg2 on the gravitational
mass mg1, G is a constant of proportionality, r is the distance between the point bodies, r̂ is

the unit vector pointing from 2 to 1, while ~F12 is the force exerted by mg1 on mg2, Figures
16.3 and 16.4.

629[Newton, 1934, p. 193] and [Newton, 1990, p. 222]. See also [Assis and Karam, 2018] and Section 1.4
(The Forces Exerted by Spherical Shells) of the book Relational Mechanics and Implementation of Mach’s
Principle with Weber’s Gravitational Force, [Assis, 2014] and [Assis, 2013].
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mgC

Mg

F

Figure 16.2: The spherical shell exerts an attractive force on an external corpuscle. The force is
directed towards the center of the shell. Its magnitude is inversely proportional to the square of
the distance between this center and the particle.

r

r^

mg2mg1

Figure 16.3: Two bodies separated by a distance r.

In the International System of Units the constant G, usually called the constant of uni-
versal gravitation, is given by:

G = 6.67× 10−11 m3

kgs2
. (16.7)

Utilizing Equation (16.6) together with Newton’s Proposition 71, Theorem 31 of the
Principia, we obtain that a spherical shell of gravitational mass Mg and radius R exerts a

force ~F on a particle of gravitational mass mg located at a distance r > R from the center
of the shell given by:

~F = −GMgmg

r2
r̂ , if r > R . (16.8)

Here r̂ represents a unit vector pointing radially outwards from the center of the shell towards
the location of mg, that is, pointing from C towards the particle.

Let us now consider the situation when the corpuscle of gravitational mass mg is exactly
over the surface of the spherical shell of radius R and gravitational mass Mg, as in Figure
16.5.

Integration of Newton’s law, Equation (16.6), yields the following net force ~F exerted by
the shell on the particle:

~F = −G
2

Mgmg

R2
r̂ , if r = R . (16.9)

Propositions 70 and 71 of Book I of the Principia are nowadays presented as follows.
Suppose we have a spherical shell of gravitational mass Mg and radius R centered on the
point O, Figure 16.6. Let us suppose a reference frame at rest relative to the spherical shell,

21 F21 F12

Figure 16.4: Force ~F21 exerted by 2 on 1 and force ~F12 exerted by 1 on 2.
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mgC

Mg

F

Figure 16.5: The spherical shell exerts an attractive force on a corpuscle located exactly over the
surface of the shell. This force points towards the center of the shell.

with its origin located at the center of the shell. Let ~r represent the position vector pointing
from the center of the shell towards an arbitrary material point.

R

O

R

O

r1

mg1
Mg

(a) (b)

Mg

mg1

r1

Figure 16.6: Spherical shell.

An element of gravitational mass dmg2 located at ~r2 over the surface of the shell is
given by dmg2 = σg2da2 = σg2R

2dΩ2 = σg2R
2 sin θ2dθ2dϕ2, where σg2 = Mg/4πR

2 is the
surface density of gravitational mass distributed uniformly over the surface of the shell, dΩ2

is the element of spherical angle, θ2 and ϕ2 are the polar and azimuth angles of spherical
coordinates, θ2 varying from 0 to π rad, and ϕ2 varying from 0 to 2π rad. The gravitational
force exerted by this element of gravitational mass on a test particle mg1 located at ~r1 is
given by equation (16.6):

d~F21(~r1) = −Gmg1dmg2

r212
r̂12 , (16.10)

where ~r12 = ~r = ~r1 − ~r2 is the vector pointing from dmg2 to mg1, r12 = |~r12| = r is the
distance between dmg2 and mg1, while r̂12 = ~r12/r12 = r̂ represents the unit vector pointing
from dmg2 to mg1. After integration over the surface of the shell, the net force exerted by
the shell on mg1 is given by (utilizing that r1 ≡ |~r1| and r̂1 ≡ ~r1/r1):

~F (~r1) =











−GMgmg1r̂1/r
2
1 , if r1 > R

−GMgmg1r̂1/(2R
2) , if r1 = R

~0 , if r1 < R











. (16.11)

That is, if the particle is outside the shell, it will be attracted as if the shell were concen-
trated at O. If the particle is anywhere inside the shell, it will not feel any net force exerted
by the shell. And if the particle is located exactly at the surface of the shell, it will be
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attracted towards the center of the shell with a force which is the arithmetic mean between
the values of the force when the particle is slightly outside and slightly inside the shell.

16.3 On the Second Experimental Method Used to

Determine the Law of Interaction for Magnetic

Fluids

The next Figure represents the experimental method discussed in Subsection 14.5.1:

0 0
N

N

S
S

f
j

(a) (b)

Figure 16.7: Coulomb’s experimental procedure.

The dashed line indicates the direction of the magnetic meridian. I present in Figure 16.7
(a) the initial situation of the experiment in which the compass needle SN (or the magnetized
wire SN) is along the magnetic meridian, with its end N pointing towards point 0 on the
graduated circle. This magnetized needle is attached to the bottom of the suspension wire.
The arrow is the pointer of the micrometer attached to the top of the suspension wire. I
assume that initially this arrow also points towards point 0.

The top of the wire is then rotated clockwise through an angle ϕ. It can be seen that
the magnetized needle also rotates clockwise, until it stops at an angle φ in relation to the
magnetic meridian, as shown in Figure 16.7 (b). In this equilibrium situation, the torque
exerted by the torsion ϕ − φ of the suspension wire is balanced by the magnetic torque
exerted by the Earth on the magnetized needle SN . These two torques act in opposite
directions, with the suspension wire tending to rotate the magnetized needle clockwise and
the Earth tending to rotate it counterclockwise.

Coulomb varies the angle ϕ and observes the angle φ acquired by the magnetized needle
for each value of ϕ.

From these experimental results, Coulomb compares in Subsection 14.5.2 the torque ex-
erted by the suspension wire, measured by ϕ−φ, with the angle φ with which the magnetized
needle moves away from its meridian. He concludes from this comparison that the sines of φ
in the successive tests are proportional to the angles of torsion ϕ−φ. I present here a Table
with these values:
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sinφ Angle (ϕ− φ) of torsion
of the suspension wire

First trial sin 10.5◦ = 0.182 360◦ − 10.5◦ = 349.5◦

Second trial sin 21.25◦ = 0.362 720◦ − 21.25◦ = 698.75◦

Third trial sin 33◦ = 0.545 1080◦ − 33◦ = 1047◦

Fourth trial sin 46◦ = 0.719 1440◦ − 46◦ = 1394◦

Fifth trial sin 63.5◦ = 0.895 1800◦ − 63.5◦ = 1736.5◦

Sixth trial sin 85◦ = 0.996 1980◦ − 85◦ = 1895◦

Choosing the values from the first test as a standard of comparison, we obtain the fol-
lowing Table:

sinφ1/ sinφj (ϕ1 − φ1)/(ϕj − φj)
1st and 2nd trials, j = 2 0.182/0.362 = 0.503 349.5/698.75 = 0.500
1st and 3rd trials, j = 3 0.182/0.545 = 0.334 349.5/1047 = 0.334
1st and 4th trials, j = 4 0.182/0.719 = 0.253 349.5/1394 = 0.251
1st and 5th trials, j = 5 0.182/0.895 = 0.203 349.5/1736.5 = 0.201
1st and 6th trials, j = 6 0.182/0.996 = 0.183 349.5/1895 = 0.184

From this Table it can be seen that sinφ is proportional to ϕ−φ, as stated by Coulomb.

16.4 Using the Magnetic Balance to Determine the

Force between the Magnetic Poles

Coulomb’s experimental procedure in Section 14.6 is illustrated in Figure 16.8.

0 0
N

N
S

S

f
j

(a) (b)

Figure 16.8: Using the magnetic balance to determine the magnetic torque exerted by the Earth
on the magnetized needle.

The dashed line indicates the direction of the magnetic meridian. Figure 16.8 (a) presents
the initial situation of the experiment in which the magnetized needle SN (or the magnetized
wire SN), 24 inches long, is in horizontal equilibrium along the meridian with its end N
pointing towards point 0 on the graduated circle. The white circles indicate the positions
of the centers of action of this needle, that is, the location of its magnetic poles, about 1
inch from each end. The center of the magnetized needle is attached to the bottom of the
suspension thread. The arrow is the micrometer pointer attached to the top of the suspension
wire. I assume that initially this arrow is also directed toward point 0.

In Figure 16.8 (b) Coulomb twists the upper part of the suspension wire counterclockwise
at an angle ϕ, causing the magnetized needle to rotate in that direction until it stops at an
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angle φ with respect to the magnetic meridian. The counterclockwise torque due to the
torsion of the suspension wire is proportional to the angle ϕ − φ. At equilibrium, this
torque is balanced by the clockwise magnetic torque exerted by the Earth, which causes
the magnetized needle to tend to return to the magnetic meridian. This magnetic torque
due to the Earth is proportional to the sine of the angle φ. For small angles (that is, with
φ ≪ 1 radian or φ ≪ 57.3◦), we can assume sinφ ≈ φ, with φ expressed in radians.
Coulomb observed that by turning the top of the suspension thread with ϕ = 720◦, the
magnetized needle stopped at an angle of φ = 20◦. The resulting twist of the wire was then
720◦−20◦ = 700◦. He concluded that a resultant torsional force of 700◦/20 = 35◦ is required
to move the horizontal needle 1 degree away from its magnetic meridian. From this force
of torsion, he estimated the torque exerted by terrestrial magnetism when acting on this
magnetized needle.

We now return to the situation in which the suspension wire is not twisted, with the
horizontal magnetized needle pointing along the magnetic meridian, Figure 16.9 (a).

0 00
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(a) (c)(b)

Figure 16.9: Using the magnetic balance to determine the force between two magnetic poles.

A vertical magnetized needle S ′N ′ (or a vertical magnetized wire S ′N ′) is placed along the
magnetic meridian of the horizontal needle, with the poles of the same type close together.
There is a repulsion between these poles that causes the suspension wire to be twisted
until the horizontally suspended needle stops at a new equilibrium situation. In Figure
16.9 (b) we have the North pole N ′ of the vertical magnetized needle represented by the
black ball. This vertical needle is also 24 inches long, as is the horizontally suspended
magnetized needle. The pole N ′ is placed in the same horizontal plane of the suspended
needle, so that if the pole N ′ and the horizontal needle were to touch each other, the poles
of the same name N and N ′ would coincide at the same point. The South pole of the
vertical needle, S ′, is not shown in this Figure. It is about 22 inches above the plane of the
horizontal needle. Because of the repulsion between the North poles of the two needles, the
bottom of the suspension wire is twisted by placing the N ′ pole of the vertical needle in this
position, until the horizontal needle stops at an orientation deviated by an angle φ0 with
respect to the magnetic meridian, Figure 16.9 (b). I am assuming here that this deviation
was counterclockwise. In this situation the repulsive torque between the poles of the same
name tends to rotate the horizontal needle counterclockwise. At equilibrium this torque is
counterbalanced by two other torques that tend to rotate the horizontal needle clockwise,
namely, the torque due to the torsion of the suspension wire and the magnetic torque due
to the action of the Earth on the magnetized needle.

In Figure 16.9 (c) the needle of the micrometer attached to the top of the suspension wire
is rotated clockwise through an angle ϕ, causing the horizontal needle to rotate clockwise,
approaching the magnetic meridian until it stops at an angle φ. In this case the total torsion
of the suspension wire is given by the angle ϕ+ φ.
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The next Table presents the values of these angles in the case of Figure 16.9 (c), according
to the experiments described in Section 14.6:

ϕ φ ϕ+ φ 35× φ α = (ϕ+ φ) + (35× φ)
First trial 0◦ 24◦ 24◦ 840◦ 864◦

Second trial 1080◦ 17◦ 1097◦ 595◦ 1692◦

Third trial 2880◦ 12◦ 2892◦ 420◦ 3312◦

I will represent by the angle α the repulsive torque exerted by the North pole N ′ of the
vertical needle when acting on the horizontal needle. At equilibrium this repulsive torque is
counterbalanced by two other torques acting in the opposite direction, namely, the torque due
to the total torsion of the suspension wire (represented by ϕ+ φ) and the torque due to the
magnetic action of the terrestrial globe on the horizontal needle (represented by 35× φ).630

Coulomb obtains the value of α from the following equation describing equilibrium between
these three torques in Figure 16.9 (c):

α = (ϕ+ φ) + (35× φ) . (16.12)

These values of α are given in the last column of the previous Table.
From the values of φ and α, Coulomb concluded that the repulsion between the North

pole N of the horizontally suspended needle and the pole N ′ of the vertical wire is inversely
proportional to the square of the distance between these poles. To reach this conclusion, he
disregarded the actions of the other poles among themselves, since they are much further
away than the closest poles N and N ′. Furthermore, he estimated the distances between
these poles N and N ′ by the angle φ between them. In the next Table I present (using the
degree as a unit of measurement) the values of φ, 1/φ2 and α:

φ 1/φ2 α
First trial 24 0.00174 864
Second trial 17 0.00346 1692
Third trial 12 0.00694 3312

Choosing the values of the first test as a standard of comparison, we obtain the following
Table:

(1/φ2
1)/(1/φ

2
j) α1/αj

1st trial, j = 1 0.00174/0.00174 = 1 864/864 = 1
1st and 2nd trials, j = 2 0.00174/0.00346 = 0.503 864/1692 = 0.511
1st and 3rd trials, j = 3 0.00174/0.00694 = 0.251 864/3312 = 0.261

The numbers in the second and third columns are very close together, being approxi-
mately given by 1, 1/2 and 1/4.

This proximity between the values in the second and third columns justifies Coulomb’s
conclusion that the forces between the magnetic poles are inversely proportional to the
squares of the distances between these poles.

630Because Coulomb is assuming for these small angles that sinφ ≈ φ. In addition, Coulomb estimated
that a force of torsion represented by 35◦ was required for every 1 degree of displacement of the horizontal
needle from the direction of the magnetic meridian.
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16.5 The Proportionality of Electric Force in Relation

to the Product of Charges: Definition of the Amount

of Charge or Experimental Law?

Nowadays Coulomb’s law is presented saying that the force between two particles electrified
with charges q1 and q2, separated by a distance dmuch greater than their sizes, is proportional
to

q1q2
d2

. (16.13)

Gillmor, Blondel, Wolff and Gliozzi presented very important discussions concerning the
proportionality of the electric force with respect to the product of charges.631 There are
two main possibilities to consider: (a) The amount of electrical charge can be defined by
postulating or assuming this proportionality. (b) This proportionality may come from an
experimental result. These two possibilities are mutually exclusive.

In his First Memoir Coulomb showed experimentally that the force between two small
balls electrified with charges of the same sign was inversely proportional to the square of
the distance between their centers. To obtain this result, he compared the electric force
with the force of torsion of the suspension wire of his balance. In the Second Memoir he
showed that the same law is valid in the attractive case with charges of opposite signs. In
this case he studied the period of oscillation of a small electrified ball placed in front of a
large and stationary electrified ball. At the end of this Second Memoir he then presented
the conclusion of his experiments with the following words, see page 257:

From the foregoing researches the following results: That the action, whether re-
pulsive or attractive between two electrified globes, and consequently between two
electric molecules, is directly proportional to the densities of electric fluid of the two
electrified molecules and inversely proportional to the square of the distances.

That is, the force F between two electrified particles is proportional to the product of the
total amounts of electric fluid in the two particles and inversely proportional to the square
of the distance between them.

Although he said that these results are a consequence of his previous research, at no
point did Coulomb experimentally test the proportionality of the force in relation to the
product of the amounts of charge of the bodies that were interacting. In the next Memoirs
he used this proportionality to interpret various experiments. It seems to have been evident
to Coulomb that the force between two small electrified bodies had to be proportional to the
product of the electric charges of those bodies.

Blondel and Wolff stated that Coulomb in fact implicitly defined the amount of charge
on an electrified particle from the proportionality with respect to the electric force that this
particle exerts on another electrified particle.632 That is, the greater the observed force, the
greater the amount of charge on the particle. Let us assume that in the initial situation an
electrified particle with a certain charge q1 exerts a force F1 on another electrified particle 2.
If the measured force on that same electrified particle 2 doubles or triples, then the amount

631[Gillmor, 1971b], [Gillmor, 1971a, pp. 190-192], [Blondel and Wolff, 2013d] and [Gliozzi, 2022, p. 425].
See also Section 14.1 (electrostatic force or Coulomb force) of [Assis, 2018b], [Assis, 2018a] and [Assis, 2019].
632[Blondel and Wolff, 2013d].
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of charge on the particle that is exerting the force will be, by definition, two or three times
greater than q1.

The analogy with Newton’s law of universal gravitation, according to which the gravita-
tional force between two particles is proportional to the product of their masses and inversely
proportional to the square of the distance between them, underlies all of Coulomb’s work.
This analogy would be represented, for example, by his choice of the expression “electric
mass” to designate what is called today an “electric charge”. As early as the Second Mem-
oir, Coulomb explicitly used that the force was proportional to the product of the charges
by introducing the following expression:633

D equal to the product of the electric mass of the two balls.

As quoted by Peter Heering, the following words by H. G. Hammon show a similar
conclusion:634

Coulomb had not described any experiment to establish the dependence of the force
on the quantities of charge on the spheres. His statement of the charge-dependence
of the force was clearly by analogy with Newton’s law of gravitation. This points
out, perhaps more strongly than any other aspect of the history, the character of
Coulomb’s law as a definition of the quantity of charge. His choice of the simple
product of the quantities of charge is certainly the simplest choice, but it is not the
only possible choice.

Another example of the importance of Newton’s ideas in Coulomb’s work is contained
in Coulomb’s assumption when considering the action of an electrified spherical shell on
another electrified body as if the entire spherical shell were concentrated at its center. See,
for instance, Subsection 14.1.2 and Section 16.2 on pages 234 and 268.

Gliozzi believed that Coulomb’s approach to postulate that the force between two electric
charges is proportional to the product of their charges was the most intuitive one:635

Coulomb assumed, as Aepinus had done before him, the postulate that the force
between two electric charges is proportional to their product. The attempts of some
later scholars to demonstrate this postulate were all illusory; they serve only to con-
fuse the ideas of inexperienced students, though they aimed to clarify, because they
deduced Coulomb’s postulate from other, much less intuitive ones.

Let us quote here some words of Aepinus with this assumption:636

10) Let there be a body A, Fig. I, constituted first in the natural state, that is it
contains the natural quantity of fluid, which we shall call Q; and if we suppose that B
is a particle of either electric or magnetic fluid clinging round the surface of the body,
the particle B will be attracted by the whole body A, but will be repelled by the fluid
with which its pores have been filled. Let us call this attractive force = a, and the
repulsive force which is exercised on B = r, and the force by which the particle B is

633See footnote 528 on page 230 and also [Gillmor, 1971a, p. 191].
634[Heering, 1992, p. 993] and [Heering, 1994, p. 64].
635[Gliozzi, 2022, p. 423].
636[Aepinus, 1979, § 10, pp. 246-247].
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attracted toward the body A will be = a− r. But since the natural state is supposed
to exist, the body A contains precisely as much fluid as its attractive force can retain,
and so the whole action on the particle, or a− r, = 0. Let us suppose that, however
this happens, there is added to the fluid contained in the body a definite quantity of
it, uniformly distributed through the whole body, which is to the natural quantity of
the fluid as α is to Q. Then the repulsion637 of the particle B = (Q+α)r

Q
, but the

attraction is the same as before, so the particle B will be attracted toward the body
A by a force = a− r− αr

Q
. But since a− r = 0, the force which draws the particle B

towards A = −αr
Q
, or the particle B will be repelled from the body A by a force αr

Q
.

Figure 16.10: Figure I of Aepinus’ Essay.

The beginning of § 30 of Aepinus’ work where this assumption is made explicit reads as
follows:638

30) From this we can immediately deduce various noteworthy conclusions. It is clear
first that A = a. To make this evident, let the mass of the body A =M , the natural
quantity of fluid contained in A = Q, and similarly the mass of the body B = m,
and the natural quantity of fluid pertaining to that body = q. Since corporeal actions
always happen in the ratio of the masses, a will be to A, in the composite ratio of
M : m and q : Q, whence is obtained the analogy a : A =Mq : mQ, and A = amQ

Mq
.

According to Gillmor, Blondel and Wolff, it would have been possible for Coulomb to
give an experimental foundation in relation to the proportionality of electric force to the
product of charges. To this end, he would have had to find a way to quantify the concept of
electric charge without using the concept of force. Once this was done, he could then use his
torsion balance to experimentally verify the relationship of force as a function of the amount
of charge on the interacting spheres.

In his Fourth Memoir Coulomb investigates whether or not the distribution of charge
between two conductors depends on their chemical compositions. To do this, he introduces
an electrified copper ball into his electric balance, leaving it in a fixed position relative to the
ground. This ball comes into contact with another initially discharged conducting ball. This
latter ball is at the end of a horizontal insulating needle attached at its center to a vertical
wire that can be twisted. After contact, the two balls repel each other over a large distance.

637[Note by Home in [Aepinus, 1979]] Aepinus here, as elsewhere, makes the unstated assumption that the
force exerted is proportional to the quantity of fluid involved. The assumption is made explicit in § 30 below.
638[Aepinus, 1979, § 30, p. 257].
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He brings the second ball closer to the first ball by a certain distance d by means of the
torsion he can provide to the upper part of the suspension wire. The measure of the total
angle of twist gives him a measure of the repulsive force between the two electrified balls
at this distance d. Let us call this force F1. He then puts a third ball in contact with the
first copper ball. This third ball is initially discharged, conductive, has the same diameter
as the copper ball, but is made of a different material. The electricity from the copper ball
is divided between it and this third ball by the contact between them. Then the third ball is
removed from the balance. Since the copper ball has lost some of its charge, the needle ball
moves closer to it. Coulomb then decreases the twist of the wire until the needle ball and the
copper ball return to the same distance d as before. Again the repulsive force between these
balls is measured by the new angle of torsion. Let us call it F2. He observed that this force
was essentially half the previous force, that is, F2 = F1/2. Since Coulomb is postulating or
assuming the proportionality between the electric force and the amount of charge, he then
concludes that the third ball acquired exactly half the electric fluid of the first copper ball
when it came into contact with it. Since this third ball has the same diameter as the copper
ball, but is made of a different material, this means that the division of charge between two
conducting balls upon contact between them does not depend on the material they are made
of. This experimental result could not be predicted a priori, since it is not something trivial
or obvious because in this experiment balls made of different materials were used. Symmetry
arguments cannot be used in this case.

This procedure could have been reversed to experimentally arrive at the conclusion that
the electric force is proportional to the product of the charges between the interacting bodies.
This would require using the first and the third ball not only of the same size, but also of the
same material (the two balls made of copper, for example). For reasons of symmetry we can
postulate that the electric fluid will divide equally between the two balls when they come
into contact, one of them being initially electrified and the other discharged, since they are
both conductors, have the same shape, the same size, and are made of the same material.
Then, following the same experimental procedure presented in the previous paragraph, we
would conclude that F2 = F1/2. In this case it would come from experiment that, by
assuming the initial force between two charges q1 and q2 being given F1, when dividing only
one of the charges by half, the force exerted between q1/2 and q2 also halves, being given
by F1/2. However, in this case this fact would be established experimentally through the
torsion angles measured on the electric balance.

16.6 The Proportionality of Magnetic Force in Rela-

tion to the Product of Pole Intensities: Definition

of the Amount of Magnetic Fluid or Experimental

Law?

Nowadays Coulomb’s law for magnetostatics is presented as saying that the force between
two magnetic poles with intensities p1 and p2 separated by a distance d is proportional to

p1p2
d2

. (16.14)

Just as in the case of the electric force, we can ask an analogous question. Is this
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proportionality of the force in relation to the product of the pole strengths a definition of
pole intensity or an experimental law?

The title of Section 14.3 of Coulomb’s Second Memoir is as follows:

The Magnetic Fluid Acts by Attraction or Repulsion in a Ratio Composed Directly
of the Density of the Fluid and Inversely of the Square of the Distance Between Its
Molecules.

In other words, Coulomb is stating that the magnetic force between two particles is
proportional to the product of the total amounts of magnetic fluid in the two particles and
inversely proportional to the square of the distance between them.

Immediately following this title, Coulomb stated the following:639

There is no need to prove the first part of this proposition; let us go to the second
part.

Coulomb presented another formulation of this law at the end of the Second Memoir,
namely:640

The following results from previous research: That the attractive and repulsive force
of the magnetic fluid is exactly, as in the case of the electric fluid, directly proportional
to the densities [of the fluid] and inversely proportional to the square of the distances
between the magnetic molecules.

To prove that the force between the magnetic molecules was inversely proportional to
the square of the distance between them, he used long and thin steel needles of cylindrical
shape homogeneously magnetized by the double-touch method. From his experiments he
concluded that in a cylindrical needle having a length of 54 to 68 cm (20 to 25 inches), a
diameter of 0.3 cm (1.5 line), magnetized by the double-touch method, the magnetic fluid
can be supposed to be concentrated at a point located at 2.3 cm (10 lines) from the ends of
the needle.641

He then used these needles on his torsion balance to determine the force between the
magnetic poles of two magnetized needles. With this procedure he experimentally concluded
the second part of the quotation above, namely, that the attractive and repulsive force of the
magnetic fluid is inversely proportional to the square of the distances between these poles.

As seen in the quotes from that Section, Coulomb explicitly mentioned that there would
be no need to prove that the force between the supposed magnetic molecules or particles
was proportional to their fluid densities, that is, to the product of their amounts of magnetic
fluid. He also did not make experiments to show that the force between the poles of two
magnetized needles was proportional to the product of their magnetic pole intensities. He
implies that this proportionality should be accepted without proof, that is, as a postulate
or definition of the amount of pole intensities. As in the case of the electric force discussed
in Section 16.5, it seemed to him that it was evident that the force between two magnetic
particles had to be proportional to the product of their quantities of magnetic fluid. Likewise,
the force between the centers of action of two magnetized needles had to be proportional

639See footnote 570 on page 244.
640See page 257.
641See page 257 of this English translation.
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to the product of their magnetic pole intensities. He used this proportionality to interpret
various experiments. He also used this proportionality to estimate the change in magnetic
fluid density along the length of a magnetized needle.

Gillmor, Blondel, and Wolff also discussed the proportionality of force with respect to
the product of magnetic pole intensities.642 According to these authors, Coulomb would
have considered it unnecessary to prove this proportionality due to the analogy he assumed
between the magnetic force and the Newtonian gravitational force. This is evident from
its magnetic terminology presented in Section 4.5. In particular, the amount of magnetic
fluid in a particle is indicated by the expressions “mass intensity”, “magnetic intensity” and
“mass of magnetic fluid”.643 The term “mass” in this magnetic context is a clear indication
of the influence of Newton’s ideas on Coulomb. Another direct indication that Coulomb was
being influenced by Newton’s gravitational force in the case of magnetism is the following
quote from his 1777 work:644

Therefore, it appears from experiment that it is not the vortices that produce the
different magnetic phenomena and that, to explain these magnetic phenomena, it
is necessary to resort to attractive and repulsive forces of the same nature as those
which we are obliged to use to explain the weight of bodies and celestial physics.

The reaction torque exerted by a metal wire is directly proportional to the angle of
torsion of the wire. Therefore, this angle serves as a measure of the magnetic force. In this
Second Memoir Coulomb used this fact to establish that the force between magnetic poles
was inversely proportional to the square of the distance between the poles. Coulomb could
use an analogous procedure to experimentally test the proportionality of the force in relation
to the product of the magnetic pole intensities, that is, to verify whether or not the force is
proportional to this product.

To this end, he could use the experimental procedure described in Sections 14.6 and
16.4. He could use a long magnetized needle suspended horizontally along the magnetic
meridian by a vertical wire attached to the center of the needle and placed on his torsion
balance. Then he would observe the twist angle φ1 when a first vertical magnetized wire is
placed along the magnetic meridian with the poles of the same name placed close together
and in the same horizontal plane, as illustrated in Figure 16.9. When this vertical wire is
removed, the horizontal needle returns along the magnetic meridian. He could then test
multiple magnetized wires made of the same material as the first wire, also having the same
shape and size as the first wire, all of them being magnetized by the same double-touch
method. Let us call them wires 2, 3, 4, 5, ... By placing them one at a time vertically along
the magnetic meridian of the first horizontal needle, at the same place and height as he had
previously placed the first wire, with the poles of the same name in the same horizontal plane
(for example, with the North pole N of the horizontal needle and with the North pole N ′

of the vertical wire in the same horizontal plane, with these two poles close to each other),
he would check the displacement angles φ2, φ3, φ4, φ5, ..., of the horizontal needle from the
magnetic meridian. He could then define that the vertical wire that displaces the horizontal
needle from the same angle φ1 caused by the first wire, would have the same magnetic pole
intensity as the first wire, since they exert the same action on the horizontal needle when

642[Gillmor, 1971b], [Gillmor, 1971a, pp. 190-192], [Blondel and Wolff, 2013d].
643See footnotes 129, 998 and 1072 on pages 56, 454 and 478, respectively.
644See page 60 of this English translation.
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placed at the same point. Let us assume that the fourth wire exerts the same action on the
needle as the first wire, that is, φ4 = φ1. He could then postulate that by putting the first
and fourth wires together, with the poles of the same type side by side, they would together
have twice the pole strength as the first wire alone. He could then use a procedure similar to
that used in the Second Memoir to verify whether the force exerted by the two North poles
of these two wires together, when acting on the North pole of the horizontal needle, was or
was not twice the value of the force exerted only by the North pole of wire 1 when acting
on the North pole of the horizontal needle. The force in this case would be measured by the
angle of twist of the horizontal needle with respect to its magnetic meridian.

That is, he could initially establish that two magnetic poles have the same intensity when,
being at the same distance from a third magnetic pole, they exert separately the same force
F on this third magnetic pole. He would then postulate that two poles of the same intensity,
when placed side by side, would have twice the intensity of just one of these poles. Then
he would check whether the force exerted by these two poles together, when acting on the
third pole, has or not twice the intensity of the force F exerted by one of these poles when
acting alone on the third pole. In this case, the intensity of the magnetic force would be
estimated by the angle of torsion of his magnetic balance (assuming that in all these cases
the estimation of the magnetic forces is done with the poles always at the same distance, this
distance being much greater than the thickness of the needles). This would be a possibility to
experimentally establish that the force between magnetic poles is proportional to the product
of the magnetic intensities (that is, to establish that the magnetic force is proportional to
the product of the pole strengths).
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Chapter 17

Third Memoir on Electricity and
Magnetism: On the Quantity of
Electricity that an Insulated Body
Loses in a Given Time, Either by
Contact with More or Less Humid
Air, or Along More or Less Insulating
Supports

Coulomb645

When an electrified conducting body is isolated by insulating supports,646 experiment
shows that the electricity of this body decreases and is destroyed rather rapidly. The subject
of this Memoir is to determine the law that this decrease follows: the knowledge of this law
is absolutely necessary in order to be able to submit to calculation the other phenomena of
electricity; because the experiments intended to evaluate these phenomena, not being able to
be carried out at the same moment, cannot be compared with each other, without knowing
the alteration which they experience in the time which elapses from one to the other.

Two causes seem to contribute principally to the loss of electricity in bodies: the first is
that it is probable that there is no perfectly insulating support in nature, that is to say, that
there is no body entirely impenetrable to electricity, when it is carried to a very great degree
of intensity; furthermore, even if such a body existed, the humidity in the air — air being
always humid to some degree — attaches itself to the surface of the insulating body to a
greater or less extent depending upon whether the air is more or less humid and whether the
insulating body by nature has a greater or less affinity with water than do the parts of air;647

645[Coulomb, 1788e], with complete translations into German and Portuguese in [Coulomb, 1890a] and
[Assis, 2022], respectively. This work was presented in 1785 to the French Academy of Sciences and published
in 1788.
646In the original: soutiens idio-électriques. See footnote 522 on page 229. This expression can also be

translated as idio-electric supports or dielectric supports, [Gillmor, 1971a, p. 194].
647In the original: les parties de l’air. This expression was translated in German as the particles of air, die
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as such it often happens that the aqueous parts648 expanded on the surface of the insulating
body, which serves to support an electrified body, are closer together one to another than
they are in the surrounding air; and as these aqueous parts are conductors of electricity, in
this case, when the insulating body which serve to support does not have sufficient length,
the electricity is lost more easily along the surface of the insulating body which serves as
support than by contact with the air.

The second cause is that the electrified body being surrounded by atmospheric air, this
air composed of different elements, is more or less insulating, either by the nature of these
elements, or by their affinity with aqueous molecules; an affinity which varies according to
the degree of heat, so that the air may be regarded as composed of an infinity of elements
partly insulating, partly conducting. But, as a conducting body is always charged with a
part of the electricity of the body which touches it, and so charged with this electricity, it
is repelled by this body; as a result, each molecule of the air which touches an electrified
body, is charged with the electricity of this body more or less rapidly, according to whether
the electric density of the body649 is more or less intense, and whether the air is more or less
charged with humidity or electrically conducting parts: as soon as a molecule of the air is
charged with electricity, it is repelled by the electrified body, and replaced by another which
becomes electrified, and is driven out in turn; each of these molecules carrying away a part
of the electricity of the electrified body which they envelop, the electric density diminishes
more or less rapidly, according to the state of the atmosphere. The explanation we have just
given of how electricity is lost by contact with air, whose infinitely small molecules move
with great facility, is not applicable, as experiment teaches us, to the way the electricity
dissipates along the surfaces of supports which have become imperfect insulators by contact
with humid air; because in this second case, the aqueous parts contract so great a degree of
adherence with the surface of these supports that this adherence is sometimes much greater
than the repulsive action that the electrified body exerts on the aqueous molecule, to which
it has transmitted a part of its electricity; from which it results, and this is confirmed
by experiment, that when the humid molecule, nearest to the electrified body, is charged
with electricity, this electricity passes in part to the following molecule, without displacing
this molecule, and thence from molecule to molecule until a certain distance of the body:
thus the [electric] density of each molecule would diminish according to how far it would
be from the electrified body, because these aqueous molecules being separated by a small
insulating interval,650 it requires a certain degree of force for electricity to pass from one
molecule to another. The resistance which this small insulating interval opposes to the flow
of the electric fluid appears to be able to be represented only by a constant quantity for a
constant interval, and must consequently be proportional to the difference in the action of
two consecutive molecules. We will see presently, that the calculation and the experiments
which determine the law of the density of the electric fluid along the imperfect insulating

Lufttheilchen, [Coulomb, 1890c, p. 44]. This German translation makes sense. At the last paragraph of the
Fourth Memoir Coulomb will talk explicitly about the particules idio-électriques de l’air, see footnote 733
on page 322.
648In the original: les parties aqueuses. This expression was translated in German as aqueous particles or

water particles, die Wassertheilchen, [Coulomb, 1890c, p. 44].
649In the original: la densité électrique du corps. That is, the electric density, or charge per unit area, on

the surface of the body.
650In the original: intervalle idio-électrique. That is, every aqueous particle or molecule that can be

electrified would behave like a conductor. According to Coulomb, these molecules would be separated from
each other by a small insulating interval along the surface of the support.
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supports, agree with the preceding reasoning.
The researches which are to follow must therefore have two objectives; the first, to de-

termine the law according to which the electricity is lost by contact with air; the second, to
determine the law according to which this same electricity is lost along the surface of the
insulating supports: but as in all the experiments which we can make, the conducting bodies
charged with electricity, are always supported by insulating bodies, these experiments must
naturally always present a result composed of the loss of electricity by contact with the air,
and the loss of electricity along the surface of the insulating support, unless we succeed in
supporting the body by an insulating support whose surface is proportionally less charged
with humidity or conducting parts than the molecules of the surrounding air; for then by
greatly diminishing the surface of contact of the electrified body and of its support, the loss
of electricity of the body would be entirely due to contact with the air. According to this
reasoning, I tried several insulating materials to serve as a support for the electrified body,
and I found that when the electric density of the supported body was not significant, a small
cylinder of Spanish wax or shellac,651 half a line in diameter [0.11 cm] and 18 to 20 lines in
length [4.1 to 4.5 cm], was almost always sufficient to perfectly insulate a pith ball652 five
or six lines in diameter [1.1 to 1.4 cm]; I also found that when the air was dry, a very fine
silk thread, passed through boiling Spanish wax, and then formed into a small cylinder at
most a quarter of a line in diameter [0.06 cm], fulfilled the same object, provided that one
made this thread five or six inches long [13.5 to 16.2 cm]. A thread of glass, drawn with an
enameler’s lamp,653 five or six inches in length, only insulates the ball on very dry days, and
when it is charged with a very feeble degree of electricity; it is the same with a hair or a silk
[thread] which is not coated with Spanish wax, or what is still better, with pure shellac.

17.1 First Part: Experiment to Determine the Loss of

Electricity by Contact with Air

I gave, in my First Memoir on electricity, the description of the balance which I use in all
electrical experiments. One can recall, casting our eyes on the Figure of this balance,654

that a horizontal needle formed by a silk thread coated with Spanish wax or even by a
straw terminated by a small cylinder of shellac, carries a small pith ball four or five lines
in diameter [0.90 to 1.1 cm] at its end; and that this needle is suspended horizontally by a
silver wire 28 inches in length (75.80 cm), and that you only need to apply a force of 1/340
grain (0.153 dyn) over a lever arm of 4 inches (10.83 cm) to twist this supporting wire 360◦

about its axis;655 and that the forces of torsion are generally proportional to the angle of
torsion, so that, for example, to twist our thread 36 degrees or to vary the needle by 36◦,
only requires [a force of] 1/3400 of a grain. Furthermore, one ought to recall that the force of
torsion of this suspension thread is measured in a very simple way, by means of a micrometer
placed at the top of the rod of our balance, and that by presenting to the ball of the needle
a second ball of the same size, insulated as that of the needle, their reciprocal action tends

651See footnotes 467 and 468 on page 207.
652In the original: balle de sureau. See footnote 469 on page 208.
653In the original: lampe d’émailleur. Enameler is a person who applies enamel. Vitreous enamel is a

material made by fusing powdered glass to a substrate by firing. The powder melts, flows, and then hardens
to a smooth, durable vitreous coating.
654See Figures 1 and 3 on pages 205 and 207, respectively.
655See footnote 477 on page 210.
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to move them away from each other when they are charged with an electricity of the same
nature; and that by twisting the wire of suspension by means of the micrometer, it is easy
to measure this action, which we have found, in this Memoir, [varies] exactly as the inverse
of the square of the distance [separating] the two balls.

To determine, by means of this same balance, the law according to which an electrified
body loses its electricity in a given time, here is the method which seemed to me the simplest
and most exact.

I suspend from a very fine silk thread, coated with Spanish wax and terminated by a
small cylinder of shellac 18 to 20 lines long (4 to 4.5 cm), a small pith ball similar to that
[supported by] the needle; I introduce it through the hole in the lid of my balance, as I did
in my First Memoir, and place it in the same way.

By means of a large-headed pin which I charge with electricity and which is insulated as
in the First Memoir, I equally electrify the two balls, which is very easy by making them
touch one another; when these balls are electrified, they mutually repel each other and the
needle only stops when the distance of the two balls is such that the force of torsion is equal
to the repulsive force: an example will make the operation better understood than any other
explanation.

I assume the needle ball is driven out 40 degrees; by twisting the suspension wire, I bring
it back to a lesser distance, to 20 degrees for example, which I suppose I obtained by twisting
the suspension wire by 140 degrees. I observe the moment when the ball reaches exactly
20 degrees: as the electricity is lost, the balls will come together a few minutes after this
operation; so, in order to measure [the twist required] to keep the ball at the first distance of
20 degrees I untwist the suspending wire 30 degrees by means of the [micrometer] index and
the force of torsion being diminished by these 30 degrees, the balls are repelled at just over
20 degrees. I wait for the moment when the ball of the needle reaches 20 degrees, and I take
account very exactly of the time elapsed between the two operations; I assume that time is
three minutes; it will result from this operation that at the first observation, the distance of
the balls being 20 [degrees], the repulsive force measured 140 degrees plus 20 degrees; that
three minutes after the repulsive force, at the same distance of 20 degrees, was only 110
degrees plus 20 degrees, that is to say, it was diminished by 30 degrees [in three minutes] or
10 degrees per minute: thus, as the average force between the two observations was measured
by 145 degrees and it decreases by 30 degrees in three minutes or by 10 degrees per minute,
the electric force of the two balls decreased by 10/145 per minute.

It is according to this method656 that I made the first Table which represents the obser-
vations made on May 28, May 29, June 22 and July 2; I chose these four observations among
an infinity of others, because the hygrometer showed considerable differences in degree of
humidity of the air over these four days while the degree of heat was about the same.

17.1.1 Comments on the Following Table

In this Table, the first column represents the instant of time of the observation; the second,
the distance of the two balls; the third, the degree of torsion given by the micrometer; the
fourth, the duration of the time elapsed between two consecutive observations; the fifth, the
loss of electric force in the time between two observations; the sixth, the average force of
repulsion between two consecutive observations, measured by the average torsion, indicated

656An illustration of this method can be found in Figures 19.1 and 19.2 of Section 19.1.
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by the micrometer, and by the distance of two balls; finally, the seventh column indicates
the ratio of the electrical force lost in 1 minute to the total force.657

First Table for determining the quantity of electricity
lost during one minute by contact with the air

Time of Distance Torsion of the Time elapsed Electric force Average force Ratio of the
experiment of the micrometer between two lost between two electric force
(morning) balls consecutive between two observations lost by the

observations observations body during
1 minute,

to the average
force of the body

First experiment on May 28. Hygrometer, 75◦; thermometer, 15.5◦; barometer, 28P 3l

1st test 6h 32m 30s 30 120
5m 45s 20 140 1/40

2nd test 6h 38m 15s 30 100
6m 15s 20 120 1/38

3rd test 6h 44m 30s 30 80
8m 30s 20 100 1/42

4th test 6h 53m 0s 30 60
10m 20 80 1/40

5th test 7h 3m 0s 30 40
14m 20 60 1/42

6th test 7h 17m 0s 30 20

Second experiment on May 29. Hygrometer, 69◦; thermometer, 15.5◦; barometer, 28P 4l

1st test 5h 45m 30s 30 130
7m 30s 20 150 1/56

2nd test 5h 53m 0s 30 110
9m 30s 20 130 1/61

3rd test 6h 2m 30s 30 90
9m 45s 20 110 1/54

4th test 6h 12m 15s 30 70
20m 45s 30 75 1/58

5th test 6h 33m 30s 30 40
18m 20 60 1/54

6th test 6h 51m 0s 30 20

Third experiment on June 22. Hygrometer, 87◦; thermometer, 15.75◦; barometer, 27P 11l

1st test 11h 53m 45s 20 80
3m 20 90 1/13.5

2nd test 11h 56m 45s 20 60
3m 20 70 1/11

3rd test 11h 59m 45s 20 40
5m 15s 20 50 1/13.5

4th test 12h 5m 0s 20 20
11m 15s 25 28 1/13.5

5th test 12h 16m 15s 20 5

Fourth experiment on July 2. Hygrometer, 80◦; thermometer, 15.75◦; barometer, 28P 2l

1st test 7h 43m 40s 20 80
5m 20s 20 90 1/14

2nd test 7h 49m 0s 20 60
8m 20s 20 70 1/19

3rd test 7h 57m 20s 20 40
12m 20 50 1/30

4th test 8h 9m 15s 20 20
8m 15s 10 35 1/19

5th test 8h 17m 30s 20 10

We see, from this seventh column, that the ratio of the electric force lost to the total
force was represented, on the same day or in the same state of the humidity of the air, by a
constant quantity; that this ratio has varied only as the hygrometer has indicated a variation
in the humidity of the air, from which it follows that, for the same air condition, the loss of
electricity is always proportional to the electric density.

The law of the loss of the electric density being determined by the experiments which
precede, it is easy to have by calculation the electric state of the two balls after a given time;

657A detailed example of the calculations related to this Table can be found in Section 19.1.
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let us take for example the first experiment of our Table where we saw that the electric action
of the two balls, whose initial electricity was the same, diminished by 1/41 part each minute.
Since the electric density decreases, as we have just seen, in proportion to the densities, we
have

−
(

dδ

δ

)

= mdt ,

where δ represents the density of each ball;658 but, since this density decreases, as will be
seen in the following Section, by 1/82 per minute, if dt = 1 minute, we will have

m =
(

1

82

)

.

So, in this experiment,

−dδ
δ

=

(

dt

82

)

.

Multiplying by the modulus µ of the logarithmic system,659 we will have

−µdδ
δ

=

(

µdt

82

)

,

whose integral gives

µt

82
= log

(

D

δ

)

,

658Let a sphere of radius r be uniformly electrified with a charge q. The symbol δ can represent either q or
the surface charge density q/(4πr2). If δ0 represents the value of δ at the initial time t = 0, the integration
of this equation gives:

δ = δ0e
−mt . (17.1)

659The modulus of a logarithm is the number by which a logarithm to one base is multiplied to give the
corresponding logarithm to another base. The modulus for converting from a logarithm system with base a
to a logarithm system with base b is the number M = 1/ loga b. To obtain the logarithms of the numbers
x to the base b, if the logarithms of these numbers are known to the base a, it is necessary to multiply the
latter by the modulus: logb x = M loga x.
If we have the logarithm of a number N in base a and we want to obtain its logarithm in base b, we can

use the relation

loga N = loga b · logb N .

The factor loga b is called the modulus of the logarithm system with base a with respect to the system
with base b.
For conversion between natural and decimal logarithms we use

log10 N = log10 e · loge N or logN = 0.4343 lnN .

That is,

µ = log e =
1

ln 10
=

1

2.30258
= 0.4343.
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D representing the initial density of the electric fluid of each ball and, therefore

2µt

82
=

µ

41
t = log

(

D2

δ2

)

;

but the distance being constant, D2 is proportional to the initial action and δ2 is proportional
to the action when the time = t; thus, using ordinary [logarithm] tables, since the modulus
µ = 0.4343, we will have

0.4343

41
t = log

(

D2

δ2

)

.

If we seek, according to this formula, the value of δ in this first experiment, we will find that
at the first trial D2 = 150, and at the sixth trial δ2 = 50; thus,

0.4343

41
t = log

150

50
= log 3 ,

and, consequently,

t =

(

41 log 3

0.4343

)

= 45 minutes .

The first test started at 6h 32m 30s; the sixth test only happened at 7h 17m; which gives
44m 30s, instead of 45 minutes found by experiment.

17.1.2 Second Remark

The ratio given in the seventh column of the Table represents exactly the portion of the force
lost in one minute by the electrified body to the total force, but this ratio is double that of
the loss of the density of each body to the total density; it is easy to convince oneself of this
[fact] by the following considerations.

We have seen, in our first two Memoirs, that when two electrified globes acted one on
the other, their reciprocal action was in the compound ratio of the electric densities and the
inverse of the square of the distances of these two globes. Thus, since in our experiments the
two balls are equal660 and they have at the first moment received an equal dose of electricity,
their reciprocal action, by naming δ the electric density and a the distance of the two balls,
will be proportional to (δ2/a2); therefore the variation of this action during the time dt will
be proportional to661

660The two balls have the same size, the same shape and are made of the same material.
661In the original we have here, [Coulomb, 1788e, p. 620]:

“

(

2δdδ

a2
+ dδ2

)

;

ainsi le rapport de cette variation d’action, à l’action, sera en négligeant (dδ)2 égal à
(

2dδ
δ

)

.”

Potier, [Potier, 1884, p. 155], replaced this equation and this sentence with:

“
2δdδ

a2
,

ainsi le rapport de cette variation d’action à l’action sera égal à (2dδ/δ).”
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(

2δdδ

a2
+ (dδ)2

)

;

so the ratio of this variation of action, to the action, will be, by neglecting (dδ)2, equal

to
(

2dδ
δ

)

. But (dδ/δ) is the ratio of the loss of the density of each ball to its density and,
therefore, it has as a measure half the ratio given by the loss of the action to the action given
in our experiments; thus, on June 28, our Table giving an average of 1/41 for the ratio of
the electric force lost in one minute to the total force, it follows that, on that same day, the
electric density of the balls decreased by 1/82 part per minute.662

By a series of experiments of the same kind, I also found that, although the balls had
very different sizes, that the mass of electricity663 and the electric density of each ball were
very different, the ratio of the force lost in one minute to the total force always remained a
constant amount; so, for example, that, although on June 28 I presented to the needle ball a
ball double in size, and that I gave to this ball an electric density greater or less than that of
the needle, the loss of electric force loss per minute was always 1/41 part of the total force.
If we pay attention, we will see that, if in a given time the density decreases in proportion to
its intensity, the result which the experiment gives is a necessary consequence of the theory;
because the action of the two balls whose size and density are different being represented by
m(Dδ/a2) where m is a constant coefficient depending on the surface of the balls, where D
and δ represent the densities and a the distance, the variation of the repulsive force divided
by this force will have as a measure

(

dD

D

)

+

(

dδ

δ

)

,

quantity which will always be a constant quantity, whatever the value of δ,D andm, provided
that, for the same time interval dt,

dD

D
=
dδ

δ
= a constant quantity.

But a remark provided by experiment, and which seems to me to deserve the greatest
attention, is that, whatever shape an electrified body has and whatever its size, the decrease
in the electric density, relatively to this density, has in any case for measure nearly a constant
quantity when the air is dry and the degree of electricity is not significant.664 I made this
experiment with a globe 1 foot in diameter [32.5 cm], with cylinders of all sizes and lengths;
I have substituted instead of balls, in my electric balance, disks of paper or metal; I even,

662According to footnote 658 on page 288, see Equation (17.1), if an electrified sphere has a charge q0 at
the initial time t = 0, its charge at time t is given by:

q = q0e
−mt . (17.2)

In this specific case Coulomb found m = 1/82 parts per minute. Therefore, after a time interval of 1 minute
has elapsed, the charge on the sphere will be:

q = q0e
−1/82 = q0e

−0.0122 = 0.988q0 . (17.3)

This number means that in 1 minute this sphere will have lost 1.2% of its initial charge.
663In the original: masse d’électricité. That is, the total value of the electric charge on each ball.
664That is, when the body is not highly electrified.
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one very dry day, armed one of the balls with a small copper wire 10 lines long [2.26 cm]
and 1/4 line in diameter [0.0565 cm], and, observing the decrease of the electricity, I found,
the day when I made this experiment, that the electric density decreased in all these bodies,
whatever shapes they had, of 1/100 part per minute: but it is necessary to warn [the reader]
that the bodies of different shapes give this equality of decrease in the electric density only
when this density is diminished to a certain point; that in all angular shapes, when a very
strong electricity is communicated to them, they rapidly lose a portion of this electricity,
according to laws which we will determine when addressing the electricity of the points;665

but when the electricity is diminished to a certain point, then, whatever be the electric
density, its ratio to the decrease during the time interval dt will be a constant quantity.

A second observation that experiment has led me to make is that the nature of the body
has no influence on the law of the decrease of electricity; thus, on June 28, when we see by
our Table that the electricity decreased by 1/82 per minute for pith balls, it decreased by
the same quantity for a copper ball and, what will appear more extraordinary, for a ball of
insulating nature formed with Spanish wax and which had been charged with electricity, by
making it touch a strongly electrified body. We shall have occasion later to return to all
these results, when we shall have determined by experiment and calculation the laws of the
other electrical phenomena.

17.1.3 Third Remark

If we now want to find, according to the Table which represents the decrease of electricity
in one minute, the correspondence between the more or less humid state of the air and this
decrease of electricity, we will form the following small Table:666,667

Hygrometer Amount of water Electricity
a cubic foot lost every
of air holds minute
in solution

On May 29 69 6.197 grains 1/60
On May 28 75 7.205 grains 1/41
On July 2 80 8.045 grains 1/29
On June 22 87 9.221 grains 1/14

In this Table, the first column marks the day on which the experiment was made; the
second, the state of Mr. de Saussure’s hygrometer;668 the third, the quantity of water which
the air holds in solution per cubic foot when the thermometer is between 15 and 16 degrees,
evaluated according to a small table of Chapter X, page 173, of the Hygrometry of Mr. de
Saussure,669 ,670 which expresses for all the degrees of the thermometer the quantity of water

665That is, point discharge or electric discharge by sharp edges.
666[Note by Potier] That is, 9.68 g, 11.28 g, 12.42 g and 14.26 g per cubic meter.
667In the first case, for example, we have a volumetric density of mass given by 6.197 grains per cubic foot,

that is, 6.197× 0.05311 grams per (0.3248 m)3, that is, 9.6 g/m3, as calculated by Potier.
668Horace-Bénédict de Saussure (1740-1799) was a Genevan geologist, meteorologist and physicist. He

devised a hair hygrometer and used it for a series of investigations on atmospheric humidity and evaporation.
669[de Saussure, 1783] with German translation in [de Saussure, 1784].
670By a lapse Coulomb wrote 7.295 grains in the third line of this Table corresponding to the 28th of May.

I corrected this number to the value given by de Saussure, 7.205 grains when the hygrometer reads 75◦,
[de Saussure, 1783, 172].
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which the air holds in solution relatively to the degree marked by the hygrometer of this
author.

If, according to this Table, we seek by calculation to determine a law relating the decrease
of electricity and the quantity of water contained in 1 cubic foot of air, when the thermometer
is between 15 and 16 degrees, [the] level found at the time of the four experiments, by naming
m the power which expresses this ratio and by comparing the first experiment with the three
others, we will have:671

First and second experiment:

60

41
=
(

7.197

6.180

)m

, hence m = 2.76 ;

First and third experiment:

60

29
=
(

8.045

6.180

)m

, hence m = 2.76 ;

First and fourth experiment:

60

14
=
(

9.221

6.180

)m

, hence m = 3.04 ,

and the average quantity gives m = 3.04.
So that it would appear that the decrease of the force or, what amounts to the same

thing, of the electric density, is proportional to the cube of the weight of the water contained
in 1 volume of air.

But this result, depending on several elements, which are perhaps not yet determined
with sufficient certainty, needs to be confirmed by more direct research. It was with this in
view that I had imagined, to complete my work, enclosing electrified bodies in different kinds
of air, giving this air different degrees of density and humidity, then searching in each state
of these airs the law of the decrease of electricity; but I soon realized that this operation
required a lot of time, patience and instruments that I did not have, or which do not even
exist yet, to measure with precision the degree of purity of each air and its degree of humidity:
I have been obliged, with regret, to give up, at least for the moment, a work to which I wish
to be able to return later.

671The numerical values Coulomb is using here for the amount of water that 1 cubic foot of air has in
dissolution do not match the values in the previous Table, [Coulomb, 1890a, p. 86, Note 13]. Using these
values we would obtain in the first and second experiment:

60

41
=

(

7.205

6.197

)m

, hence m =
log(60/41)

log(7.205/6.197)
= 2.53 ;

in the first and third experiment:

60

29
=

(

8.045

6.197

)m

, hence m =
log(60/29)

log(8.045/6.197)
= 2.79 ;

in the first and fourth experiment:

60

14
=

(

9.221

6.197

)m

, hence m =
log(60/14)

log(9.221/6.197)
= 3.66 .

The average of these 3 values gives: 2.99. This value is close to the value that Coulomb will calculate,
namely 3.04.
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17.1.4 Fourth Remark

In the different essays which form the general Table of our experiments, I made sure that the
electricity was lost only by contact with the air and not along the insulating bodies which
formed the supports, by the following method.

The balls contained in the electric balance being supported by a single thread of silk
coated with Spanish wax, terminated by a shellac thread 18 lines long (4.06 cm), I sought the
quantity of electricity which was lost in one minute and which is in the Table of experiments;
I then caused the ball to be touched by four threads absolutely similar to that which served
as support, and I determined in this state the decrease of the electricity in a minute which
I found the same as if there had been only one support: it is clear that, having in this
experiment four supports instead of only one, if a significant part of the electricity had been
lost by the supports, the decrease would have been appreciably greater when the ball was
touched by four threads coated with Spanish wax than when supported by one; and, since
experiment has proved the contrary, it follows that the electricity was lost only by contact
with the air, and not along the insulating bodies which formed the supports.

17.1.5 Fifth Remark

Although the hygrometer of M. de Saussure, which served for the comparison of our exper-
iments, remains at the same degree, as the degree of heat indicated by the thermometer
increases, nonetheless the quantity of water which a fixed volume of air holds in solution
increases with this heat. But, as it appears that the more or less rapid decrease of electricity
depends on the quantity of water or the number of conducting parts which are found in the
same volume of air, it must result that, for the same hygrometric degree, electricity must
be lost more quickly on hot days than on cold days. This is indeed what experiment always
confirms; but it remains to be investigated whether at different degrees of heat the decrease
of electricity depends solely on the quantity of water held in solution in a fixed volume of
air.

Here we lack experiments: we find, in truth, in the excellent essay on hygrometry by
Mr. de Saussure, Chapter X, page 181, a Table which represents the correspondence of the
degrees of his hygrometer with the quantity of water that a cubic foot of air holds in solution
at each degree of the thermometer, but Mr. de Saussure states that he does not answer for
this Table, which he published only to present a model of the results of the experiments he
intends to do next. Thus, all the results that we might draw by comparing, according to
this Table, the electrical loss with the quantity of water held in solution in a cubic foot of
air672 at 1 degree of heat and of the observed hygrometer, would be only hypothetical. We
can only say, in general, it appears that in calculating from this Table the quantity of water
a cubic foot of air holds in solution, that as the degree of heat increases, the electricity is
not lost as quickly as it ought to be lost; that is to say, by admitting as true the Table of
Mr. de Saussure, a cubic foot of air holding, for example, 6 grains of water in solution is
more insulating or less conductive of electricity the higher the heat.

672For a lapse, the following appears in the original: dans un pied cube d’eau, [Coulomb, 1788e, p. 626] and
[Potier, 1884, p. 160].
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17.1.6 Sixth Remark

Before finishing this First Part of my Memoir, I must still warn that, although the ther-
mometer, the hygrometer and even the barometer measure the same degrees on different
days, the decrease of electricity is not always the same: we cannot, it seems to me, explain
these variations by any other cause than by the composition of the air composed of more
or less different insulating elements whose density, the proportions of which vary nearly
continuously, and which have different degrees of affinity with the aqueous vapors. The
only observation which appears to me to suffice, in general, is that when the weather sud-
denly changes, and the hygrometer varies appreciably within a few hours from dampness
to dryness, the loss of electricity relative to its density remains for some time greater than
it should be based on that degree of dryness indicated by the hygrometer, and vice versa,
when the hygrometer suddenly changes from dry to wet. Thus, for example, if in twelve or
fifteen hours the hygrometer passes from wet to dry by 8 or 10 degrees and then settles at
this degree of dryness for several days, it will often be observed that, if the electric density
decreases by 1/50 per minute the first day after this step change in the hygrometer, several
days later, though the dryness indicated by the hygrometer remains the same, the electric
density decreases by only 1/100 parts per minute. Ought not the cause of this phenomenon
be that the aqueous vapors, after having settled for a certain time in the air, contract among
themselves a greater and greater adherence and the hair of the hygrometer only attracts the
aqueous parts which are still free and which have a lower degree of adhesion with air than
the former; from which it would result that, after sudden variations, the hygrometer would
measure only the quantity of the free aqueous parts in the air and not the absolute quantity
of these parts? What would appear to support this conjecture is that the state of electrical
losses almost always settles after a few hours, relative to the hygrometer, when the rapid
variation of dryness or humidity takes place with a violent wind and that it is only with
calm weather that one sometimes experiences the opposite. It could be, however, that this
phenomenon was produced solely by the humidity or the dryness of the bodies which are
near the needle.

This remark, as well as the third, depending, as we have said, on several hygrometric
elements which are still uncertain, the results are only hypothetical and they should not
be confused with the main points regarding this Memoir which have as a basis a suite of
experimental results.

17.2 Second Part: Of the Amount of Electricity that

is Lost Along Imperfect Insulating Supports

We have seen, in the First Part of this Memoir, that when electricity is lost through contact
with air, the momentary decrease of electricity was exactly proportional to the electric density
of the electrified body. We recall that in order for us to conduct the individual experiments
so as to lead to this result, we had to try to isolate the electrified body on a support as
insulating as possible.

To follow the same method it would be necessary, in the current research, to support
the body by insulators whose insulating capacity was so poor673 that the ratio of the loss of

673In the original: soutenir les corps par des isoloirs dont l’idio-électricité fût tellement imparfaite. See
footnote 522 on page 229.
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electricity along the supports to the quantity of electricity that the body lost by contact with
the air was very large. But we feel that the greater this ratio, the more rapidly the electricity
of the electrified body will be lost. And since, in the conduct of the experiments, from the
moment that, in our electric balance, the ball supported by the needle is electrified, the needle
oscillates for a few minutes, and it also oscillates every time we touch at the micrometer, to
increase or decrease the torsion of the wire of suspension, we see that if the electricity were lost
very quickly, with each observation the electricity would be found almost entirely annihilated
before the needle stopped and its position determined in a precise manner:674 this practical
inconvenience therefore obliged us to use supports which had enough insulating forces to be
able, without electrifying the balls each time, to make several consecutive observations; it is
then easy, by calculation, to determine, in these experiments, the part of the electricity lost
by contact with the air, and that lost along the support.

The second Table was formed on the same model as the first, as the titles indicate: but
the ball introduced into the hole of the balance, and which is intended to repel the ball from
the needle, instead of being insulated, as in the experiments of this First Part, by a small
cylinder of shellac 15 to 18 lines in length, is supported by a thread of silk of a single strand
[brin], such as it comes out of the cocoon; this thread is 15 inches in length [40.6 cm].

Second Table for determining the loss of electricity
along imperfect insulating supports

Time of Distance Torsion of the Time elapsed Electric force Average force Ratio of the
experiment of the micrometer between two lost between two electric force

balls consecutive between two observations lost during 1 minute,
observations observations to that remaining

in the body
First experiment on May 28.

1st test 10h 0m 0s 30 150
2m 30s 30 165 1/14

2nd test 10h 2m 30s 30 120
5m 30s 40 130 1/18

3rd test 10h 8m 0s 30 80
5m 20 100 1/25

4th test 10h 13m 0s 30 60
16m 30s 40 70 1/29

5th test 10h 29m 30s 30 20
21m 20 40 1/42

6th test 10h 50m 30s 30 0
16m 30s 10 25 1/41

7th test 11h 7m 0s 30 10
Second experiment on May 29.

1st test 7h 34m 0s 30 150
2m 40s 20 170 1/23

2nd test 7h 36m 40s 30 130
4m 50s 20 150 1/29

3rd test 7h 41m 30s 30 110
6m 50s 20 130 1/44

4th test 7h 48m 20s 30 90
7m 25s 20 110 1/43

5th test 7h 55m 45s 30 70
11m 45s 20 90 1/53

6th test 8h 7m 30s 30 50
17m 30s 20 70 1/61

7th test 8h 25m 0s 30 30
17m 30s 15 50 1/58

8th test 8h 42m 30s 30 15
22m 30s 14 38 1/56

9th test 9h 5m 0s 30 1

674If the electricity is lost very quickly, the needle’s position can not be determined in a precise manner.
Hence sufficient insulating capacity is needed to make a reading.
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The two experiments of this second Table, were made like that of the first, on May 28
and 29. The first Table determines the quantity of electricity which the contact with the air
caused to be lost: thus, by comparing the result of this first Table with that of the second, it
will be easy to determine the quantity of electricity lost at each instant along the supports.

But a very important remark prompted by this second Table is that the decrease of
electricity, when the electric density is initially large,675 is much more rapid than it would
be if produced solely by contact with the air, becomes, when the electric density of the ball
supported by the silk thread is reduced to a certain degree (as in both experiments of the
second Table) precisely the same as when the insulating capacity of the insulator is perfect
— or better said, when the loss of electricity is entirely due to contact with the air as in the
first Table.

It certainly results from this observation, that our silk thread, fifteen inches in length,
insulates perfectly, when the reciprocal action of the two balls is measured in the first exper-
iment of our second Table, by a force of torsion of 40 degrees and below, since in this case
the electrical loss is only 1/42 per minute, the same which had been found for the same day
in the first Table, and which was, as is proved in the First Part of this Memoir, solely due to
contact with air. It also results from this same observation, that in the second experiment
of our second Table, the silk thread fifteen inches in length insulates perfectly, when the
repulsive action of the two balls was 70 degrees and below, since then the loss of the electric
action was only 1/60, as we found it the same day in the first Table. Since the repulsive
forces are measured for a constant distance, by the product of the densities of the two equal
balls,676 now we will seek to uncover the relationship between the initial density, and the
degrees of density of the ball supported by the silk thread, when that silk thread begins to
insulate that ball perfectly.

17.2.1 Determination of the Electric Density of the Ball Sup-

ported by the Silk Thread, When This Thread Begins to
Insulate Perfectly

An application of the calculation developed in the First Part of this Memoir and compared
with the result of the first experiment of our second Table will suffice to show the method
that we must follow in this research. In the first experiment of our second Table which
began at 10 o’clock, we gave an equal quantity of electric fluid to the two balls, since these
balls are equal and care was taken to make them touch after they had been electrified. That
day, the ball supported by the needle being insulated by means of shellac, lost 1/82 part
of its electric fluid per minute, and lost this fluid only by contact with the air. The ball
supported by the silk thread lost its electricity by contact with the air and along its imperfect
insulating support: it is only at about ten hours and forty minutes677 that the thread of silk
began to perfectly insulate this second ball, and then the repulsive action of the two balls

675That is, when the surface charge density on the electrified ball is large.
676That is, as the force is proportional to the product of the charges of the two balls of the same size.
677In the original it is written ten hours and forty minutes, [Coulomb, 1788e, p. 630]. Potier put here

10h 50m, [Potier, 1884, p. 164]. I kept the time written by Coulomb as he obtained this value by averaging
the time of the fifth and sixth tests in the first experiment of the second Table, that is, (10h 29m 30s + 10h
50m 30s)/2 = 10h 40m. It was around this time that the ratio between the electrical force lost per minute
and the initial force reached the value of 1/42 part per minute, that is, the same value as that found in the
first Table in which the loss of electricity occurred only through the air.
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measured 40 degrees, but at 10h, at the beginning of the experiment, the repulsive action of
the two charged balls, each charged with an equal quantity of electric fluid, had for measure
180 degrees [30 + 150 degrees], as indicated by the first test of this experiment: thus the
electric density of each ball was, at 10h, proportional to

√
180, since the action, for a constant

distance, is always proportional to the product of the densities and the densities, at the first
attempt, were equal. But we saw in the First Part of this Memoir that the decrease of
electricity, in contact with air, was expressed by the formula dδ

δ
= −mdt,678 where m, in our

first experiment, = (1/82); this integrated formula gives

log
(

D

δ

)

=
0.4343

82
t ,

where D is the initial density of the ball, δ its density after a time t, and 0.4343 the module
of the decimal logarithmic system of the ordinary tables:679 thus we will have

log δ = logD − 0.4343

82
t ;

therefore, if we seek what has become of the density D, after 40 minutes,680 when the silk
thread begins to insulate perfectly, we find, for the ball of the needle supported by shellac,
and perfectly insulated throughout the experiment, assuming D =

√
180,681

log δ = 1.1276− 0.2648 = 0.8628 .

Thus δ or the density of the ball of the needle, at 10h 40m,682 having been measured at
the beginning of the experiment as

√
180 = 13.4, was measured 40 minutes later, by the

number 7.3;683 but since the action of the two balls is always proportional to the product of
the density, if we assume Z is the density of the ball supported by the silk thread, when this
thread insulates perfectly, or when the action of the two balls measures 40 degrees; we will
have

7.3× z = 40◦ or z = 5.5 ;

678For a lapse in the original text this formula appeared here without the negative sign.
679That is, log to the base 10 of e.
680I put 40 minutes as in the original text, while Potier wrote 50 minutes here, see footnote 677.
681That is, D =

√
180 = 13.416. Therefore, logD = 1.1276. At t = 40 minutes, we have 0.4343 · 40/82 =

0.2119. Coulomb’s calculation would be:

log δ = 1.1276− 0.2119 = 0.9157 .

This gives δ = 100.9157 = 8.2.
For some lapse, although he wrote a time of 40 minutes, he did the following calculations with t = 50

minutes: 0.4343 · 50/82 = 0.2648. With that figure he found:

log δ = 1.1276− 0.2648 = 0.8628 .

This gives δ = 100.8628 = 7.3.
Perhaps for this reason Potier has substituted in Coulomb’s text several times the expression “forty

minutes” for “fifty minutes”.
682Again I followed here Coulomb’s original text, 10h 40m, and not what was written by Potier, 10h 50m,

see footnote 677.
683As log δ = 0.8628, it follows that δ = 100.8628 = 7.3.
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from which we conclude that the electric density of the ball supported by the silk thread
10 inches in length has the value 5.5 when this thread begins to insulate perfectly, the two
balls being 30 degrees apart one from the other. According to this calculation, by comparing
several experiments, I found that a small cylinder of shellac, 18 lines in length [4.1 cm], ceased
to insulate perfectly, only when the ball was charged with an electric density approximately
three times that of our silk thread; that is to say, taking the number 5.5 for the electric
density of the ball, supported by our silk thread 15 inches in length, when it begins to
insulate perfectly, it would be necessary to almost triple this density in order to have a
small cylinder of 18 lines begin to insulate perfectly — and it ceases to insulate when the
density is greater. By this theory, it will be easy to determine by experiment the degree
of insulating capacity desired of the different bodies which are commonly used to insulate
electrified bodies. The attempts that I have made on this subject are not numerous enough
to publish the results yet: we feel moreover that these results vary for the same body with
the heat and the humidity of the air, and that each day gives a different ratio.

After having found that in imperfect insulating supports, there was always a certain
degree of electric density below which these supports insulate perfectly, I sought, by the
methods which I have just explained, the relationship between this electric density and the
length of the supports; and experiment has taught me that the degree of electric density
when a silk [thread], a hair, or any very fine cylindrical body whose insulating capability was
imperfect, begins to insulate [perfectly], was for the same state of the air, proportional to
the [square] root of the length; so that, for example, if a silk thread 1 foot in length begins
to insulate the body perfectly when the density is D, a thread 4 feet in length will begin to
insulate it when its density is 2D.

What experiment teaches us here is found to be in conformity with the theory, supposing,
as we proved in our first two Memoirs, that the action of the electric fluid follows the inverse
ratio of the square of the distances, and that the imperfection in the insulation of the bodies
depends on the insulating distance684 between the conducting molecules which enter into the
composition of the imperfect, insulating support, or which are distributed along its surface;685

that, consequently, in order for the electric fluid to pass from one conducting molecule to
another, it must cross a small insulating space, of size depending upon the nature of the body,
that offers a constant resistance for the given body, because these conducting molecules are
distributed uniformly, at the same distance one from another. These suppositions admitted,
to apply the theory, it will be observed that, in a very fine conducting filament, the electric
fluid would spread uniformly along all its length; if this filament has a certain degree of
insulating capability, and the fluid is distributed according to any law, the action which each
point would experience would only depend on the electric density of the molecule in contact
with this point, and the action of the rest of the filament can be regarded as null. Here is
the proof of these two propositions.

In Figure 1,686 fi represents a filament whose parts act on each other, according to the
inverse ratio of the square of the distances, the curve hMh′ represents the electric density
of each point of the filament; on the length of this thread, I take two portions Pa and Pa′,

684In the original: distance idio-électrique. See footnote 650 on page 284.
685Coulomb is assuming here that there are conductive particles, “molecules”, inside or on the surface of

imperfect insulating supports.
686I have included in this Figure 1 the letter i at the right end of the lower line and the letter h′ at the right

end of the upper curved line. The letters on the upper curve were then, from left to right: hN ′MmNh′, on
the lower line: fa′Ppai. The letters on the right line, from top to bottom: NbN ′a. The point n lies at the
intersection of the horizontal line Mb and the vertical line mp.
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equal, finite, but small enough that, in practice, MNb can be regarded as a triangle.

i

h’

LetMn = Pp = x, bN/MN = a, nm will be = ax,687 and the action that pointM whose
density is D will experience, on the part of the small element dx placed at p, will be

Dax · dx
x2

= Da

(

dx

x

)

;

integrating this quantity and supposing that it vanishes when x = A, we will have, for the
action of the whole part Pp, [the value] Da log(x/A), quantity which will be finite as long
as A is a finite quantity, but which will become infinite when A = 0: from which it follows
that the action experienced by point P depends solely on the increment of the density in the
element that touches point P and that the density of the rest of the line does not influence it;
from which also results that if this action depends on a fluid which can move freely along the
filament, or if this filament is a perfect conductor, the fluid which acts in inverse proportion
to the square of the distances will spread uniformly all along the length of this filament: we
will determine in the continuation the electric density at the end of this filament.

Let us apply the preceding result to the present question: the globe in C (Figure 2) is
supported by means of the silk thread AB, whose insulating capacity is imperfect, that is to
say, each element of which opposes a constant resistance A to the flow of this fluid.688

687These relationships Mn = Pp = x and bN/MN = a leading to the equation nm = ax make no sense
to each other. König, [Coulomb, 1890c, p. 86, Note 14], suggested replacing them with: Mn = Pp = x and
bN/bM = a leading to the equation nm = ax. Even so, the next calculation presented by Coulomb is still
confusing.
688That is, the silk thread being considered here is not a perfect insulator.
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Let A′ be the electric mass of the globe,689 united at its center; let δ be the electric
density at p, we will have for the total action with which point p is repelled by the electric
fluid [the following value:]690

A′δ

(R + x)2
− δdδ

dx
,

quantity equal to the insulating resistance B691 of the filament which we have seen should
be a constant amount. We take dδ negatively because δ decreases as x increases; but we will
prove, in the Memoir which will follow this one, that the action of the small electrified globe
C on point P is incomparably smaller than the action of the element dx multiplied by the
increment of δ; thus we can, without appreciable error, neglect the first term A′δ/(R + x)2,
and the equation will be reduced to

− δdδ

dx
= B ,

which, integrated, gives

K − δ2

2
= Bx .

But, when x = 0, [the magnitude] δ becomes equal to the density D of the globe: thus
we will have the general equation

D2 − δ2 = 2Bx ;

and if, in this equation, we make δ = 0, it will give the length x where the filament begins
to insulate perfectly, and we will then have692

689That is, A′ is the total electric charge of this globe.
690Coulomb did not specify in the next equation what the quantities R and x are. One possibility is that

R is the radius of the globe, while x is the distance Ap.
691In the original: résistance idio-électrique B.
692The next equation should have been written as:

x =
D2

2B
.

This lapse was not noticed by Coulomb and continues in the next equations.
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x =
D2

B
;

thus the lengths of different threads of silk or of any imperfect insulating supports are between
them like the square of the densities, when they begin to insulate perfectly, as we had found
it by experiment; it is easy to see, from the formula, that the curve which represents in our
figure the density of electricity for each point of the silk thread is a parabola whose axis is
BA, whose vertex is at B, point where the density is zero and whose concavity is turned
towards the side of the ball; because, since we have (D2 − δ2) = Bx and AB = (D2/B), we
will have

Bp =

(

D2

B
− x

)

= z or x =

(

D2

B
− z

)

;

substituting this value of x, in our equation, we will have

δ2 = Bz ,

the equation of a parabola, whose vertex is at B, the axis Bp, and whose parameter is B,
quantity which increases with the insulating capacity of the support.693

Reflecting on the theory just presented, it is easy to see that the foregoing formula deter-
mines the disposition of the electric fluid along the imperfect insulating support, assuming
we have communicated, as we have in our experiments, a certain dose of electric fluid to
the globe supported by the silk; because then this fluid communicating itself step by step
along the insulating support will spread up to point B, so that the repulsion of the fluid
is in all the points exactly in balance with the maximum resistance that the coercive force
of the insulating support can oppose to the flow of this fluid. But it should be noted that,
as this maximum of resistance is a coercive and non-active force that can be compared to
the resistance of a friction, any repulsive action of the electric fluid less than the maximum
of this resistance will not disturb the state of stability of this fluid spread according to any
law whatsoever along the support; so that, if the line AD which represents in the attached
Figure the density of the globe remains constant, that we prolong by any quantity BB′ the
axis AB, and that we describe any density curve DB′, provided that all points δdδ

dx
be smaller

than B, the electric fluid spread along the line AB′ will keep its state of stability without
flowing from one point to another; from which one concludes that there is always an infinity
of density curves DB′ which also satisfy the state of stability of the electric fluid spread
along an imperfect insulating support and that the general search of the disposition of the
electric fluid in an imperfect insulating body is an indeterminate problem which, to become
determinate, needs to be subjected to some particular conditions. Thus, in the curve ADB
that we found, in the previous Section, represented by the formula (D2 − δ2) = Bx, we had
the condition that the maximum of the insulating resistance was in all points equal to the
electric repulsion; this curve is moreover the particular case of the general indeterminate
problem where the axis AB is a minimum. Indeed, since in all the other density curves it
is necessary that δdδ

dx
is smaller than B, if in the curve DB we varied a single element, so

that the state of stability was not disturbed by leaving dδ constant, it would necessarily be

693That is, the more insulating the support, the greater the value of B.
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necessary, so that δdδ
dx

was smaller than B, to increase the amount dx and lengthen the axis
of the curve.

It follows again from the theory which we have just explained that, in all the conducting
bodies where the electric fluid spreads freely, the determination of the density of the electric
fluid, for any point whatever, is a determined problem; but that, for imperfect insulating
bodies, the problem is indeterminate, one of its limits being however fixed by the state of the
electric fluid when it is disposed in the imperfect insulating body, so that, at all points, the
action of this fluid is exactly in balance with the maximum resistance which the insulating
coercive force opposes,694 to prevent the fluid from flowing from one point to another.

It is needless to warn [the reader] that, according to the theory and the experiments
which precede, it is necessary in several cases to take many precautions when we want to
obtain the electric force of a small body insulated by an imperfect insulating support, and
that it often happens after several experiments, especially when the first have been made
with a significant degree of electric density, the insulating support is charged with a certain
quantity of electricity, of which it is stripped with difficulty, which then has a significant
influence on the results; that with each experiment, it is necessary at the same time that
one strips of its electricity the body carried on the support, to strip of it, as much as it
is possible, the insulating support itself; that it is necessary to change support at each
experiment, [especially] when the electric density which one communicates [to the body] is
a little strong; that finally it must always be sure that the support has a force of insulating
resistance large enough so that, in all the experiments, the quantity of electricity with which
it will be charged is much smaller than that of the conductor body whose action we want to
determine.

It is easy to see that the preceding theory may be applicable to magnetism; that in a
steel needle, for example, the disposition of the magnetic fluid, for all states of stability, is
an indeterminate problem, which only becomes determined by the conditions to be fulfilled.
Thus, for example, if one asks the best way to magnetize a needle of inclination or declination,
the problem to be solved consists in giving to the magnetic fluid of this needle, among all
the provisions of which it is capable without disturbing its state of stability, that where
the moment695 of the magnetic directing force of the globe of the Earth on this needle is a
maximum.696,697

694In the original: que la force coërcitive idio-électrique oppose.
695In the original: momentum.
696[Note by Potier] Coulomb’s conclusions [related to charge leakage] do not seem justified by more recent

experiments; it would result from these that the loss [of electricity of charged bodies] due to the atmosphere
itself is very low, whatever its degree of humidity.
By remaining in the general conditions where Coulomb placed himself, with weak charges, the law stated

by him can be considered as evident; but the coefficient of loss [of electricity by the charged body] varies
with the shape of the body studied and its position in relation to neighboring bodies. It would therefore be
wrong to apply to a body shielded from all external influence the coefficient measured on the same day in
the balance.
It is also evident that, in Coulomb’s method, the variable way with the hygrometric state in which the

induced charges on the cage [that is, on the glass container around his torsion balance,] are modified with
time plays an important role and that this cause remains, independently of the supports, in the experiments
where Coulomb believed he had eliminated everything that was not loss by air alone.
697Potier did not indicate what these more recent experiments are. Probably he was referring to the

experiments of Biot, Gaugin, Matteucci, Riess and Warburg as quoted by Mascart in his book Treatise on
Static Electricity, in the third Chapter on the loss of electricity by a charged body, [Mascart, 1876, Chapter
3: Déperdition de l’électricité]. In Section 19.2 I discuss the influence of air humidity on the loss of electricity
from a charged body.
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Chapter 18

Essay on Coulomb’s Analysis of
Losses Along an Insulator

L. L. Bucciarelli

In the Second Part: Of the Quantity of Electricity which is Lost Along Imperfect Insu-
lating Supports of his Third Memoir on Electricity and Magnetism, Coulomb constructs an
analysis meant to determine the length of an insulator required to ensure it keeps loss of
charge to a minimum. He has shown that for a given length of the insulating filament, there
is a level of charge below which the filament (of silk, hair or any very fine cylindrical body),
acts as a perfect insulator, at least with respect to losses due to conduction. (Losses to the
surrounding air may still occur.) In a few obscure final paragraphs, he strives to develop
relationships defining how the density of charge along the filament varies with distance and,
in particular, the length required to ensure the filament functions as desired.

First he sets out to prove,698

in a very fine conducting filament, the electric fluid would spread uniformly along all
its length; if this filament has a certain degree of insulating capability, and the fluid
is distributed according to any law, the action which each point would experience
would only depend on the electric density of the molecule in contact with this point,
and the action of the rest of the filament can be regarded as null.

Recall that Coulomb has posited in the opening paragraphs of the Section, that699

...the electricity dissipates along the surfaces of supports which have become imper-
fect insulators by contact with humid air; because in this second case, the aqueous
parts contract so great a degree of adherence with the surface of these supports
that this adherence is sometimes much greater than the repulsive action that the
electrified body exerts on the aqueous molecule, to which it has transmitted a part
of its electricity; from which it results, a result confirmed by experiment, that when
the humid molecule nearest to the electrified body is charged with electricity, this
electricity passes in part to the following molecule, without displacing this molecule,
and thence from molecule to molecule until a certain distance of the body: thus the
[electric] density of each molecule would diminish according to how far it would be

698[Coulomb, 1788e, p. 633] and page 298 of this English translation.
699[Coulomb, 1788e, p. 614] and page 284 of this English translation.
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from the electrified body, because these aqueous molecules being separated by a small
insulating interval, it requires a certain degree of force in order to push electricity from
one molecule to another. (emphasis mine)

So along the insulating support of an electrified body, one has (infinitesimal) aqueous
molecules adhering to the surface of the filament. The aqueous molecule closest to the
electrified body is charged with electricity; if this molecule did not adhere to the filament,
it would be repulsed, sent flying into the air. But the adhesion to the filament is greater
than the repulsive force so instead the electricity, in part, passes to the following molecule
without displacing the molecule but not without resistance due to small insulating intervals
separating the molecules on the surface of the filament. Eventually, at some length along
the imperfect conductor, the electric density of the molecule diminishes to zero; the loss of
charge of the electrified body ceases, the filament functions as a perfect insulator.

Coulomb’s Figure 1 shows an arbitrary distribution of charge density [densité électrique]
along a filament. For our analysis that follows, we have labeled the axes, δ and ξ. Coulomb
considers two finite, equal segments Pa and Pa′ which are so small that one can consider,
practically speaking, MNb as a triangle.700

Coulomb then writes

Let Mn = Pp, bN
MN

= a, nm will be a · x

Something is awry here: the second equality makes a the sine of the angle NMb whereas
the last implies that a is the tangent of the angle NMB. But if angle NMb is small, as it
appears in the figure, then the sine is approximately equal to the tangent. Let us assume
this is the case, that Coulomb was thinking such. He goes on

and then the action that the point M , whose density is D, experiences due to the
small element dx located at p will be

Dax · dx
x2

= Da

(

dx

x

)

.

This is not obvious. We offer the following as conjecture of Coulomb’s thinking: The
“action” that point M experiences due to the element dx at p is given by the inverse square

700Note: The figure presents certain extraneous information: why does Coulomb speak of the equality of
Pa′ and Pa since this relationship enters not into his analysis that follows? Why are two points labeled N ′?
Neither point enters into his analysis.
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law of repulsion of like charge. We interpret point M as a differential element like that at p.
We let δP be the charge density at P so that the charge of point M , that is D = δP · dξ.701

The charge at point p is then, accepting Coulomb’s triangle representation,

(δP +mn) · dξ = (δP + ax) · dξ = D + ax · dξ .

The action is then702

D · (D + ax · dx)
x2

=
D ·D
x2

+
Dax · dx

x2
.

To get rid of the first term in this last expression for “the action that the point M ... ex-
periences due to the small element dx located at p” we posit that it represents the interaction
of any two points as a function of their separation when the charge is uniformly distributed
along the insulator and the fluid able to flow freely along the “imperfect insulator”; it is
the second term that represents the resistance to flow. We conclude the action of the small
element dx at p on M is, as written by Coulomb

Dax · dx
x2

= Da

(

dx

x

)

.

Coulomb continues

integrating this quantity and supposing that it vanishes when x = A, we will have,
for the action of the whole segment Pp (on point M),703

Da · loge
(

x

A

)

.

That is with,

Da ·
∫ (

1

x

)

dx = Da · loge x+ C ,

then if this integral vanishes when x = A and assuming x and C positive, then, C = − logeA
and so the action of the whole segment Pp (on pointM) is as above as deduced by Coulomb.

Note: If we take the “action” of p on P as negative, as like charges repel so the action
on P will be in the direction of negative x. Then we evaluate the integral within the limits
x to A and obtain this same result,

−Da
∫ A

x

(

dx

x

)

= −Da · [logeA− loge x] = +Da · loge
(

x

A

)

.

He writes, having this expression for the quantity of action of the segment Pp upon M

701The product ax is a charge per unit length, which I take as a density; axdx is then the charge of the
element of length dx; D, which Coulomb calls a density, in my view must be a charge.
702Since x = ξ − fP , we can replace dξ with dx.
703Why de l’action de toute la partie Pp? Why not the whole segment Pd?
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this quantity will be a finite quantity as long as A will be a finite quantity but will
become infinite when A = 0; from which it results that the action which the point P
experiences depends uniquely on the increment of the density in the segment which
touches the point P and that the density of the rest of the line has no influence on
it;

This is what he set out to prove. Now it is true that as A approaches zero (and so too
x), this mathematical expression for the action of Pp on M grows infinitely large. What
is not clear is what Coulomb means by “segment”, its physical manifestation, for it too, if
it is a length, must vanish when A (and x) approach 0. Coulomb sees the action not only
vanishing at A but at every point greater than A along the filament. Perhaps he imagines
the charge carrying molecules as discrete infinitesimally small “segments” then the repulsive
action between the first, the one closest to the electrified body, and the electrified body
will be infinitely greater than the action between the (lessor) charged molecules and the
electrified body. Perhaps....

***

Coulomb goes on to determine the length at which imperfect insulator begins to insulate
perfectly. For this he needs another Figure

He writes

Let A′ be the electric mass of the globe concentrated at its center; let δ be the
electric density at p, we will have for the total action with which point p is repelled
by the electric fluid
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A′ · δ
(R + x)2

− δ · dδ
dx

.

He writes that he will prove, in a subsequent Memoir, that the first term is incomparably
smaller than the second and so can be neglected. He identifies the second term in this
expression as B, the insulating resistance of the filament which he “as we have seen, is a
constant” along the filament.

How he constructed this expression is not evident, nor how it is that he can neglect the
first term, the action of the globe, C, on point P (p?), with respect to the second, “the
action of the element dx multiplied by the increment of δ”.

Immediately following the introductory paragraph quoted above he describes the resis-
tance to the flow of the electric fluid.

...because these aqueous molecules being separated by a small insulating interval, it
requires a certain degree of force in order to push electricity passed one molecule to
another.

The resistance that this small insulating interval opposes to the flow of the electric
fluid appears only able to be represented by a constant quantity for a constant in-
terval, and consequently to be proportional to the difference in the action of two
consecutive molecules. (emphasis mine).

While unable to deduce this expression knowing that this resistance is proportional to the
difference in the action of two consecutive molecules, we can at least check the dimensions
of these terms and the variables that appear. A′ is the “electric mass” of the globe which
we take to be its total charge; δ, the “electric density at p”, a point along the insulator, we
take as charge/length. The first term then has dimensions charge2/length3 and, in accord
with Coulomb’s inverse square law of repulsive action (force) between two charged particles,
the first term in the expression then has the dimensions of Force per unit length. A similar
walk through with the entries to the second term, shows that it too has the dimensions
charge2/length3 or, as the first, Force per unit length.

This then is B the (constant) resistive force (per unit length) to the flow of the electric
fluid.

B = −δ · dδ
dx

.

With B a constant, Coulomb integrates this to obtain

D2 − δ2 = 2Bx ,

where D is the density of the globe not A′ the total mass of electricity of the globe.704

He then obtains the length x at which the density d goes to zero, the length at which the
filament begins to insulate perfectly, namely705

x|perfection =
D2

2B
704Recall that Coulomb considers the total mass as concentrated at the center of the globe; hence at a

point, just as δ is the mass density at a point along the filament.
705The notation is mine; also Coulomb erroneously drops the “2” here and in his subsequent analysis.
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which, indeed, has the dimensions of length. This is the principal result of the section.
Coulomb ends with this reflection

Reflecting on the theory just presented, it is easy to see that the foregoing formula
determines the disposition of the electric fluid along the imperfect insulating support,
assuming we have communicated, as we have in our experiments, a certain dose of
electric fluid to the globe supported by the silk; because then this fluid communicat-
ing itself step by step along the insulating support will spread up to point B, (my
x|perfection)706 so that the repulsion of the fluid is in all the points exactly in balance
with the maximum resistance that the coercive force of the insulating support can
oppose to the flow of this fluid. But it should be noted that, as this maximum of
resistance is a coercive and non-active force that can be compared to the resistance
of a friction, any repulsive action of the electric fluid less than the maximum of this
resistance will not disturb the state of stability of this fluid spread according to any
law whatsoever along the support; so that, if the line AD which represents in the
attached Figure the density of the globe remains constant, that we prolong by any
quantity BB′ the axis AB, and that we describe any density curve DB′, provided
that all points δdδdx be smaller than B, the electric fluid spread along the line AB′

will keep its state of stability without flowing from one point to another; from which
one concludes that there is always an infinity of density curves DB′ which also satisfy
the state of stability of the electric fluid spread along an imperfect insulating support
and that the general search of the disposition of the electric fluid in an imperfect
insulating body is an indeterminate problem which, to become determinate, needs to
be subjected to some particular conditions.

***

More could be written in attempting to elucidate this claim of indeterminacy, to figure
out the train of Coulomb’s thought. Let it suffice to say that why this B is a maximum
resistive force remains a mystery.

Indeed, much of these final paragraphs is a mystery. Generally it is the task of the
historian of science, the historian generally, to not dismiss the obscure and focus solely on
what we today consider the “truth” but to try to understand the mysterious within its own
context. We quote Collingwood707

The historian thinks it a wrong way; but wrong ways of thinking are just as much
historical facts as right ones, and, no less than they, determine the situation (always
a thought-situation) in which the man who shares them is placed.

And elsewhere708

The important question concerning any statement contained in an historical source
“is not whether it is true or false, but what it means.” Ignoring this advice leads
to writing “scissors-and-paste” histories where the sources are treated as worthwhile

706This B is a point on the filament, not the B representing the resistive force per unit length.
707[Collingwood, 1993, p. 317].
708[Collingwood, 1993, pp. 260 and 299].
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historical material and admitted into the historian’s narrative only if they are deemed
to be believable by the historian’s own standards of evidence. To understand the past
historically is to understand the “context of thought” of past agents, their frame of
mind... To understand past agents is to understand the way in which they reasoned,
the inferences that they drew, the conceptual connections which they made, the
symbolic significance they attached to certain events.

In this brief essay I have tried to make Coulomb’s obscure analysis, considered by at
least one critic as not making sense, “reasonable” within the context of his own time. This
is a very difficult task if said reasoning appears to not make sense according to our own,
present day understanding of the loss of electricity along a so called insulator — none the
less reasoning that appears suspect even within Coulomb’s own time.

Perhaps it was the tentative nature of his argument and analysis of these last few para-
graphs that hints at, is the source of, its incoherence, its obscurity. Recall that Coulomb
is going to show in a subsequent Memoir that one can neglect the first term relative to the
second in the expression

A′ · δ
(R + x)2

− δ · dδ
dx

.

So his analysis here does not stand on its own. Did he have this argument fully worked out?
Consider too the extraneous information, the excess symbols in Figure 1. Including these

suggests that Coulomb had been concerned with the action of the points to the left of the
point P . This suggests these last few paragraphs were but a first work-out, a trial-run
analysis, one of perhaps several, helpful to Coulomb in constructing a veritable, coherent
picture in his own mind of losses along an insulator.

I leave it for others to do a proper history.
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Chapter 19

Remarks on Coulomb’s Third Memoir

A. K. T. Assis

19.1 Coulomb’s Experimental Method

In Section 17.1 Coulomb presented a numerical example of his experimental method for
determining the loss of electricity of an electrified sphere to its surroundings. The preparation
of this method is illustrated in Figure 19.1.
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Figure 19.1: (a) Untwisted wire with the needle pointing toward O. (b) Beginning of the experi-
ment with discharged balls. (b) Final equilibrium configuration of the experiment with electrified
balls.

In Figure 19.1 (a) we have a top-down view of the needle with center C along the pro-
jection of the suspension thread, ball a and paper disk g which works as a counterweight
and as an oscillation damper. In the situation where the thread is not twisted, the needle
is directed toward point O fixed on the graduated scale of the circle zOQ attached to the
glass container around the needle. This circle zOQ is at the same height as the horizontal
needle and the lower end of the hanging thread. The arrow Co is the micrometer pointer
attached to the top of the torsion wire. Initially it is directed toward the fixed point S on
the graduated scale placed on top of the balance. I am assuming that in the beginning of
the experiment the needle Ca and the indicator Co are along the same vertical plane passing
through COS.
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Before starting the experiments, Coulomb moved ball a slightly away from its original
position by placing ball t against it, Figure 19.1 (b). Ball t is always fixed in the laboratory.
The line passing through C and through the center of the fixed ball t is always directed to
point O. Coulomb measures the angles from that point O. The horizontal needle ag can
rotate around its center C attached to the vertical hanging thread. The initial twist of the
wire is represented by the angle φA.

The two balls are charged when an electrified pin touches ball t, this pin being removed
after contact. As a result, the balls acquire charges of the same sign and repel each other.
The needle rotates counterclockwise in the horizontal plane around point C from which it is
suspended by the vertical thread. Ball a moves away from ball t. At equilibrium the wire is
twisted at an angle φB, Figure 19.1 (c). In Coulomb’s hypothetical example, this angle was
φB = 40◦. The torque exerted on the needle by the electrical force of repulsion between the
electrified balls is balanced by the counter-torque exerted by the wire twisted at angle φB.

Now begins the main part of the experiment to determine the loss of charge of the
electrified balls to the environment around them. This procedure is illustrated in Figure
19.2.
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Figure 19.2: Coulomb’s experimental procedure.

Initially Coulomb twists the micrometer attached to the top of the torsion wire clockwise
through an angle ϕ1. This reduces the initial angle φB represented in Figure 19.1, causing the
electrified balls a and t to approach each other until they reach a specific angular separation
φ1 indicated by the line CF , this angle being φ1 = FCO. In Coulomb’s hypothetical example,
the separation between the balls changed from φB = 40◦ in the situation of Figure 19.1 (c),
to φ1 = 20◦ in the situation of Figure 19.2 (a) when the micrometer has been twisted with
an angle ϕ1 = 140◦. At equilibrium the repulsion between the balls indicated by the angle
φ1 is counterbalanced by the total twist of the wire indicated by φ1 + ϕ1. Coulomb begins
to mark time from that moment of equilibrium.

As time passes, the angle φ1 decreases due to the loss of charge of balls a and t. The
needle Ca no longer points along the line CF . This situation is illustrated in Figure 19.2
(b).

Coulomb then decreases the twist of the upper end of the thread to a value of ϕ2, such
that the needle rotates counterclockwise to an angle slightly greater than φ1. In Coulomb’s
example, this occurred when the micrometer angle decreased 30◦, from ϕ1 = 140◦ to ϕ2 =
140◦ − 30◦ = 110◦, as indicated in Figure 19.2 (c).
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As time passes, the angular separation between balls a and t decreases again due to the
loss of their electricity. At a certain instant, the angular separation between them returns
to the value φ1 previously specified, as indicated in Figure 19.2 (d). Coulomb then observes
the exact moment at which this occurs, measuring the time interval between situations (a)
and (d) of this Figure 19.2.

Coulomb’s conclusions are based on measurements of the angle φ1 of separation between
the balls, on the measurement of the angles ϕ1 and ϕ2 of torsion of the micrometer, as well
as on the measurement of the time interval between the situations of the Figures 19.2 (a)
and (d). The total twist of the wire in case (a) is represented by φ1 + ϕ1, while in case (d)
it is given by φ1 + ϕ2.

Coulomb continued this procedure for other tests, each time decreasing the value of the
angle ϕ and measuring the time intervals between consecutive tests in which the separation
between the balls was always φ1.

I will give here a detailed example of Coulomb’s calculations in the case of the first
and second tests of the first experiment contained in the Table located on page 287. The
first test was performed at 6h 32m 30s and the second at 6h 38m 15s, such that the time
elapsed between these two observations was 5m 45s = 5.75 minutes. The total force in
the first test (indicated by the total angle of twist of the wire) was 30◦ + 120◦ = 150◦.
In the second test it was 30◦ + 100◦ = 130◦. The average force between these two tests
was then (150◦ + 130◦)/2 = 140◦. During those 5.75 minutes there was an average loss
of 150◦ − 130◦ = 20◦. So the average loss per minute was 20◦/5.75 = 3.478◦. Therefore,
the ratio between the average loss per minute and the average force between balls was
3.478◦/140◦ ≈ 1/40, as indicated in the upper value of the seventh column of this Table.

The same procedure was used to obtain the other values in this Table.

Let a sphere of radius r be uniformly electrified with a charge q. The symbol δ used by
Coulomb in this Section can represent both q and the surface charge density q/(4πr2).

In the first experiment Coulomb found that the ratio (dδ/dt)/δ had an essentially constant
value from a total initial twist of the thread given by 30◦ + 120◦ = 150◦, up to a final value
three times smaller, that is, with a final twist given by 30◦ +20◦ = 50◦. On the basis of this
experimental observation he found that

dδ

δ
= −mdt , (19.1)

where δ is the value of charge (or surface charge density) on each ball at time t, and m is a
positive constant (due to the fact that the charge decreases with the passage of time). The
unit of m is the inverse of time, that is, time−1. For example, if time is measured in minutes,
the constant m will be expressed in minute−1. Integrating this equation (using that δ = D
at the initial instant t = 0) yields:

ln
δ

D
= −mt . (19.2)

We then have an exponential decay of the charge on each ball represented by the equation:

δ = De−mt . (19.3)

Coulomb also found that the value of m depends on the humidity of the air.
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19.2 Influence of Air Humidity

In this Third Memoir Coulomb studied the loss of electricity from a charged body. He
distinguished two main causes, that due to the insulating support that prevents the body
from coming into contact with the Earth and that due to the body’s contact with the air
around it.

Water is a conducting substance for electrostatic experiments.709 Moisture in the air can
cause water to bind to the surface of the supports making them more conductive. This factor
is especially relevant in hydrophilic supports. That is, the greater the humidity in the air,
the surfaces of the supports will become more conductive, facilitating the loss of electricity
from the body by the transport of charge by these supports to the Earth. This fact seems
to be well established experimentally.

Another question much more difficult to resolve is whether the conductivity of the air itself
would be affected by its degree of humidity. Coulomb concluded that the loss of electricity
from a charged sphere to air increases with air humidity. However, uncertainties due to
changes in temperature, rapid variations in humidity, as well as the construction method of
the hygrometers that measure this humidity made him state that this whole subject needed
further research.710

This conclusion by Coulomb that the loss of electricity of a body to the air increases
with the humidity of the air seems to be false, but this was only established at the end
of the 19th century.711 The main loss of electricity through the air does not appear to be
due to dust or moisture it may contain, but rather seems to be due to its ionization. This
ionization can increase in a variety of ways (by being near a flame, by natural radioactivity
in the environment, etc.). Many of these factors that increase the ionization of the air are
random phenomena.

However, it should be emphasized that this possible misinterpretation on the part of
Coulomb does not affect the validity of his law of exponential decay of the electrification of
a charged sphere. This law is in agreement with the experimental facts.

709See Section 7.11 (The Conductivity of Water) of [Assis, 2010b], [Assis, 2010a], [Assis, 2011],
[Assis, 2015b] and [Assis, 2017]. See also Section 3.1 (Classifying Substances as Conductors or Insulators
with the Electroscope) from [Assis, 2018b], [Assis, 2018a] and [Assis, 2019].
710See Sections 17.1.5 and 17.1.6, as well as [Gillmor, 1971a, p. 197].
711[Thomson, 1906, pp. 1-9], [Bauer, 1949], [Heilbron, 1999, pp. 297, 336 and 477] and

[Blondel and Wolff, 2011e].
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Chapter 20

Fourth Memoir on Electricity, where
We Demonstrate Two Main
Properties of the Electric Fluid: The
First One, that This Fluid Does Not
Spread in Any Body by Chemical
Affinity or Elective Attraction, but
that It is Shared Between Different
Bodies Brought into Contact
Exclusively by Its Repulsive Action;
the Second One, that in Conducting
Bodies the Fluid, Having Reached a
State of Equilibrium, Is Spread Over
the Surface of the Body and Does Not
Penetrate Its Interior

Coulomb712

712[Coulomb, 1788c], with complete German and Portuguese translations in [Coulomb, 1890d] and
[Assis, 2022], respectively. This work was presented in 1786 to the French Academy of Sciences and published
in 1788.
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20.1 I

We determined in the three previous Memoirs the law of repulsion of the electric fluid of
the same nature, and the law of attraction of two electric fluids of different nature, and we
proved by some very simple and apparently decisive experiments that this action was very
exactly in the inverse ratio of the square of the distances. We also proved, by the same kind
of experiments, that the action, either repulsive or attractive, of the magnetic fluid obeys the
same law. In the Third Memoir we have determined the law according to which the electric
density of an insulated body decreases,713 either by the contact with more or less humid
air, or along the insulating supports714 when they are not of sufficient length; which mainly
depends, as we have seen, from the more or less insulating capacity of these supports, from
their more or less affinity with the aqueous vapors, the state of the air, the density of the
electric fluid of the insulated body, and on the size of this body.

20.2 II

We will utilize here the balance described in our First Memoir, printed in the Volume of
1785.715 The only change we have made is to substitute the paper strip glued around the
cylinder which encloses the needle, and which, divided into degrees, is used to determine the
[angular] distance of the two balls, by a wooden circle placed on four pillars, whose diameter
is about double that of the cylinder: this circle is placed in such a way that its center is
on the plumb line of the thread which suspends the needle, and that the first division of
this circle is on line with the suspension thread and the center of the ball supported by the
needle, when the needle naturally stops, and that the index of the micrometer also aligns
with the first division of the micrometer circle.

We must, however, warn that since the reading of the Memoir which we quote,716 and
which contains the description of this balance, we have built several others of a different
shape: the largest is square, it has thirty-two inches on a side (86.62 cm), twenty inches in
height (54.14 cm), it is closed on the sides by four windows fixed by an insulating coating,
in very light frames of wood heated on the oven, hot coated with a varnish formed of shellac
and turpentine. Above the box is a crosspiece which carries a vertical cylinder of fifteen
inches (40.60 cm) made of glass, surmounted by a micrometer; a circle placed outside this
box is used to measure the [angular] distance between the balls. In this balance, we can
make experiments with electrified globes from four to five inches in diameter [10.8 to 13.5
cm]: in the first balance whose cylinder is only one foot in diameter [32.5 cm], we could only
use globes of at most one inch in diameter [2.7 cm]. But it should be noted that there are
many cases where the small experiments are more decisive than the large ones, because the
attraction or the repulsion of the electric fluid is, for each element, inversely proportional to
the square of the distance, in order that the results be simple, it is almost always necessary
that the distance between the bodies whose reciprocal action we wish to measure be much
larger than the particular dimensions of these bodies.

713That is, the decrease in the electric charge of a body as a function of time.
714In the original: soutiens idio-électriques. See footnote 522 on page 229.
715This Memoir is translated in Chapter 11. See, in particular, Figure 1 on page 205.
716The First Memoir was read in 1785 and published in 1788.
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20.3 III. First Principle. The Electric Fluid Spreads in All

Conducting Bodies According to Their Shape, Without

This Fluid Seeming to Have Affinity or an Elective At-

traction for One Body Preferably to Another

20.3.1 First Experiment

I suspended in the hole of the balance, at the height of the ball of the needle, a small copper
ball of eight lines in diameter (1.804 cm), supported by a small cylinder of shellac. The
center of this ball was placed so that it fell on a line connecting the suspension thread and
the first division of the circle placed outside of the balance. The ball of the needle which
touched against the copper ball, was thus displaced from the position where the torsion is
zero, by the sum of the half-diameters of the two balls in contact.

The two balls were electrified by the process described in the in the First Memoir; the
needle was driven away to about 48 degrees. By means of the micrometer button the suspen-
sion wire was twisted by 120 degrees, in order to bring the ball of the needle back towards
the copper one, and we waited until the needle stopped oscillating; it stopped at 28 degrees:
in this state, I touched immediately the copper ball of eight lines in diameter with a pith
ball,717 exactly of the same size, supported by a small cylinder of shellac. By removing the
pith ball, the needle came closer to the copper ball; and to bring it back to the first distance
of 28 degrees, I was obliged to untwist the thread; so that the micrometer, which before the
contact marked 120 degrees, after the contact marked only 44 degrees.718

20.3.2 Second Experiment

Instead of the copper ball, I suspended in the hole of the balance, by means of a small
cylinder of shellac, an iron disk719 of ten lines in diameter [2.3 cm], the vertical plane of
which passed through the suspension wire of the needle and through the zero point of the
circle located outside the balance which is used to measure the displacement of the balls.
Having then, as in the preceding experiment, electrified the ball of the needle and the iron
plane,720 the ball of the needle was driven away; I twisted the suspension wire to bring the
needle back towards the iron disk, and by means of 110 degrees of twist, the needle stopped
at 30 degrees from this disk. Immediately I made the iron disk touch a small paper disk
which had exactly the same diameter, and after having removed the paper disk, I found that
for the needle to stop at 30 degrees, it was necessary to reduce the torsion to a little less
than 40 degrees.

20.4 IV. Result of These Two Experiments

In the first experiment, the copper ball, before the touch of the pith ball, repels the needle
at 28 degrees, the micrometer marking 120 degrees; so the strength of torsion was then 148

717In the original: balle de sureau. See footnote 469 on page 208.
718A representation of this experiment can be found in Section 21.1.
719In the original: un cercle de fer.
720In the original: le plan de fer.

317



degrees.721 After the ball of elderberry had touched the copper ball, the latter repelled the
needle at 28 degrees, the micrometer marking only 44 degrees; so that the total force of
torsion, equal to the repulsive force of the two balls, was 72 degrees; but there was approxi-
mately a minute interval between the two observations, and the electric force decreased by
one fiftieth per minute on the day of this experiment: thus the total force of torsion would
have been about 731

2

◦
, if the electricity had not diminished by one fiftieth. This quantity

differs only by half a degree, or 1/147 of 74 degrees, half of the first twisting force 148 [de-
grees] which measures electric repulsion before contact; thus, since in both observations, the
distance of the two balls is exactly the same, and that the action is inversely proportional to
the square of the distances and directly proportional to the densities of the electric fluid, it
follows that the elderberry ball took exactly half of the electric fluid of the copper ball; thus
the metal ball did not have an elective affinity or attraction for the electric fluid larger than
that of elderberry.722

In the second experiment, where the iron disk was touched by a paper disk of exactly
the same diameter, the electric fluid was again divided equally between the two disks. These
experiments were carried out with balls of different materials, they were repeated in the large
balance with globes of five or six inches, and the results were always the same.

20.5 V. First Observation

It should be observed that when two equal and similar bodies brought into contact are
perfectly conductive as are all the metals, it takes but an imperceptible moment for the
electricity to be shared equally between the two bodies. But when one of the two bodies is
an imperfect conductor, such as our paper disk, for example, it often takes several seconds
before the paper disk has taken exactly half of the electric fluid of the disk of metal, which
depends not only on the particular conductive quality of the two bodies but also on their
relative areas and the way they are brought into contact. In the previous Memoir, we have
already attempted to explain how the coercive force of the imperfect insulating supports only
allows the electric fluid to spread and penetrate [into the insulating support] to a certain
distance from the electrically charged, conducting body.

20.6 VI. Second Observation

It is still necessary to observe, in repeating the second experiment, to place in contact the
two disks symmetrically, so, for example, that the limb of one does not touch, by forming an
angle, a point on the surface of the other, because then the electric fluid would be divided
in an unequal way between the two disks: in the previous experiment, I touched the limb of
one of the disks by the limb of the other, taking care to hold it in the same plane.

721See Coulomb’s 1784 Memoir Theoretical and Experimental Research on the Force of Torsion translated
in Chapter 7.
722Section 21.2 presents a discussion of Coulomb’s calculations.
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20.7 VII. Second Principle. In a Conducting Body Charged

with Electricity, the Electric Fluid Spreads Over the Sur-

face of the Body, But Does Not Penetrate Inside the Body

The experiments intended to prove this proposition require much more sensitive electrometers
than all those that are in use. Here is the one I utilize: pull, by heating a candle, a shellac
thread about the thickness of strong hair of ten to twelve lines in length [2.26 to 2.71 cm]; one
of its ends was attached to the top of a small headless pin, suspended on a silk thread, such
as a silkworm produces; at the other end of the shellac thread, we fix a small tinsel disk723

about two lines in diameter [0.45 cm]: we suspend this small electrometer in a glass cylinder;
its sensitivity is such that a force of one sixty thousandth of a grain (0.0009 dyn) repels the
needle more than 90 degrees.724 I give this electrometer a weak degree of electricity, of the
nature of that which I want to communicate to the body which will be submitted to test,
and I suspend it in a glass cylinder, to protect it from the air currents; this done, I place a
solid body, of any figure, pierced with several shallow holes, on an insulating, idio-electric
support. The body that I am going to submit to experiments is a solid wooden cylinder,
four inches in diameter (10.83 cm), pierced with several holes four lines in diameter (0.90
cm) and four lines deep.

20.8 VIII. Experiment

I place this cylinder on an insulating support; by means of the Leyden jar, or the metal plate
of an electrophorus,725 I give it one or more electric sparks. I insulate at the end of a small
cylinder of shellac of one line in diameter (0.226 cm), a small disk of gilded paper one line
and a half in diameter (0.338 cm).726

First test. The tinsel [disk] of the electrometer being electrified, I touch the surface of
the electrified cylinder by the small disk of gilded paper, I present it to the electrometer; the
needle of this electrometer is driven out with force.

Second test. But if I introduce the small paper disk in one of the holes of the cylinder, and
make it touch the bottom of one of these holes; then present it to the tinsel [disk] supported

723In the original: cercle de clinquant. See footnote 488 on page 213.
724See footnote 489 on page 213.
725See Chapters 6 (The Electrophorus) and 12 (The Leyden Jar and Capacitors) of [Assis, 2018b],

[Assis, 2018a] and [Assis, 2019].
726This small disk of gilded paper connected to a shellac cylinder is the first example of Coulomb’s famous

proof plane. A detailed description of this instrument can be found in Section 7.2 (Charge Collectors) of the
book The Experimental and Historical Foundations of Electricity, [Assis, 2010b], [Assis, 2010a], [Assis, 2011],
[Assis, 2015b] and [Assis, 2017]; and also in Section 2.6 of Volume 2 of the same book, [Assis, 2018b],
[Assis, 2018a] and [Assis, 2019]. The Figure of this footnote illustrates this proof plane. The shellac cylinder
behaves as an insulator, while the gilded paper disk behaves as a conductor of electricity:

shellac cylinder

gilded paper disc
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at the end of the needle of the electrometer, this needle will not give any sign of electricity.

20.9 IX. Explanation and Result of This Experiment

In the first test, I make the small disk of gilded paper touch the surface of the cylinder; as
this disk is only one eighteenth of a line thick [0.0126 cm], it becomes a part of the surface of
this cylinder, and consequently takes a quantity of electric fluid, equal to that which contains
a part of the surface equal to this small disk.727 In this test, the small disk is charged with
a quantity of electricity which is not only sensitive to our little electrometer, but which can
even be measured exactly by means of our electric balance.

In the second trial, we touch the small disk of gilded paper, at the bottom of one of the
holes in the cylinder, about four lines below the surface, or twenty lines [4.52 cm] from its
axis; carefully removing this small disk, without it touching the edge of the hole, we find, by
presenting it to the needle of the electrometer, either that it gives no sign of electricity, or
that it gives very weak signs of electricity contrary to that of the cylinder:728 it is therefore
clear that in this experiment there is no electric fluid in the interior of the body, even very
near its surface.

The signs of contrary electricity, which are only sometimes seen, are due to the fact
that when the small cylinder of shellac is introduced into the holes, the electric action of
the surface of the electrified body gives, outside this body, to the shellac thread, a small
electricity of a different nature from its own, because this small shellac wire is isolated in
its sphere of activity. The proof that everything happens this way, that this small degree
of electricity exists in the shellac wire, and not in the small disk of gilded paper which was
put in contact with an interior point of the body; is that if we touch this disk,729 we do not
destroy this small electricity, which is always very weak when the shellac is pure, and the air
is not very humid.

20.10 X

This property of the electric fluid to spread on the surface of conducting bodies, and not
to penetrate into the interior of these bodies when this fluid has reached equilibrium, is a
consequence of the law of repulsion of its elements, in inverse proportion to the square of
the distances, a law that we found in our First Memoir: but since it is experiment, not
theory that led us [to this property], we thought we should follow the same procedure in the
presentation of our research; let us see now how theory generalizes the result announced by
experiment.

727This is the correct assumption related to the charge acquired by a proof plane when in contact with an
electrified conductor. Later on Coulomb will arrive at another wrong conclusion, see footnotes 920 and 927
on pages 421 and 423, respectively.
728That is, the gilded paper disk can be neutral, or it can contain a very small amount of electricity, of

opposite sign to that in the cylinder. Moreover, the magnitude of this charge is much smaller than the
magnitude of the charge obtained in the first test.
729That is, when we ground the gilded paper disk by touching it with our finger.
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20.11 XI. Theorem

Whenever a fluid enclosed in a body where it can move freely, acts by repulsion among all
its elementary parts,730 with a force less than the inverse ratio of the cube of distances, such
as, for example, [a force proportional to] the inverse of the fourth power, then the action of
the masses of fluid located at a finite distance from one of these particles is null relative to
the action of points in contact; this is what we have proved in a Note of our Second Memoir
printed in the volume of the Academy, 1785.731 Thus, the fluid which owes its elasticity732 to
this law of repulsion, will spread uniformly throughout the body; but whenever the repulsive
action of the elements of the fluid which produces its elasticity is greater than the inverse of
the cube, such as, for example, we have found for electricity, which is as the inverse square
of the distances; then the action of the masses of the electric fluid placed at a finite distance
from one of the elements of this fluid, not being infinitely small in relation to the elementary
action of the points in contact, all the fluid must be carried to the surface of the body, and
there must be no fluid left in its interior.

20.11.1 Demonstration

In a body of any shape AaB, which I suppose to be filled with fluid whose elementary parts
act on each other in inverse proportion to the square of the distances, I raise at a point a an
infinitely small normal ab; and through point b, I pass a plane perpendicular to this normal,
which divides the body into two parts, one infinitely small daeb, the other finite dAFBeb.

730In the original: parties élémentaires. The word parties can be translated as parts, particles or elements,
[Gillmor, 1971a, pp. 159, 201 and 217]. The word élémentaires can be translated as elementary, fundamental,
primary, essential or basic. This expression was interpreted by Gillmor as “particles”, [Gillmor, 1971a,
penultimate line of p. 201]. The German translation of this expression was Elementartheilchen, that is,
“elementary particles”, [Coulomb, 1890d, pp. 76-77].
731See footnote 556 on page 238.
732In the original: électricitè. As pointed out by König, [Coulomb, 1890c, pp. 87-88, Note 16], this word

was a lapse of Coulomb. It is clear in the sequence of this sentence that Coulomb was referring to the
elasticity of the fluid, that is, to the repulsive force between its particles.
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Thus, by decomposing according to ab, all the forces with which the infinitely small part
dabe acts on point b, it must balance the resultant action, according to ba, of all the mass
of the fluid spread in the body dAFBe. Let us imagine at present on the plane dbe, on the
other side of a, a small cap dce exactly equal to the dae cap, by prolonging ab to c, cb will
be equal to ab. But if the fluid is spread throughout the body, for the law of continuity to
exist, it is necessary, since ac can be decreased to infinity, that the density of the fluid at
point c must be equal to that of point a, or at least differ from it only by an amount that
can be decreased to infinity. Thus, the only small mass of electric fluid contained in the cap
dcbe must balance the one contained in the cap daeb; from which it results that the action
of all the mass of fluid which would be contained in the rest of the body must be null; which
cannot take place when the action of the masses placed at a finite distance from a point of
the fluid, is not infinitely small in relation to the action of an element of the body in contact
with this point, unless the density of these masses is zero. Hence it follows that in the stable
state of the fluid, all this fluid will be carried to the surface of the body, and that there will
be none in the interior.

The first part of the theorem, that the fluid must spread evenly throughout the body,
when the action of elements in contact is infinite relatively to the action of the finite masses
which are at a finite distance from these same elements, needs no demonstration.

20.12 XII

We will see in one of the Memoirs which will follow this one, what is the electric density of
each point of the surface of a body, of a given figure, and what is the state of the insulating
particles of the air733 immediately in contact with these surfaces.

733In the original: particules idio-électriques de l’air. See footnote 522 on page 229.
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Chapter 21

Remarks on Coulomb’s Fourth
Memoir

A. K. T. Assis

21.1 Coulomb’s Experimental Method

Figure 21.1 illustrates Coulomb’s experimental procedure described in Section 20.3.
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Figure 21.1: First part of the experimental procedure.

Figure 21.1 (a) shows a top-down view of the needle with center C along the projection
of the suspension thread, ball a of the needle and paper disk g that works as a counterweight
and as an oscillation damper. In the situation where the thread is not twisted, the needle
points towards the fixed point O on the graduated scale which is on the outside of the
balance. The twist angle φ of the bottom of the wire is measured from this point O. The
micrometer pointer attached to the top of the suspension wire is indicated by the arrow Co.
Initially it points towards the fixed point S on the small graduated circle attached around
the micrometer. I am assuming that initially the needle and the micrometer pointer are in
the same vertical plane.
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Before starting the experiment, Coulomb moves ball a of the needle slightly away from
its original position by placing the copper ball c against it, Figure 21.1 (b). The copper
ball c remains fixed in this position. The line passing through C and through the center of
the copper ball c is always directed toward point O. So in the situation where the balls are
discharged, the bottom of the wire is twisted at an angle φB.

Coulomb then electrifies with charges of the same sign balls a and c that were touching
each other. They repel each other until the needle comes to rest with the wire twisted at an
angle φC , Figure 21.1 (c). In Coulomb’s example this angle was 48◦, which I am illustrating
as having been counterclockwise.

Coulomb then twisted the micrometer clockwise at an angle ϕD, torquing the wire sus-
pension and causing the needle ball a to approach the copper ball c at an angle ϕD, Figure
21.1 (d). In his example φD = 28◦ when ϕD = 120◦.

Now comes the second part of this experiment illustrated in Figure 21.2.

fD fD
fE

jD

jE

jD

o

o

o

a a
a

C CC

Ic cc
s

(a) (c)(b)

S SS
O OO

Figure 21.2: Second part of the experimental procedure.

While the needle ball a was at an angle φD = 28◦ from the copper ball c, Coulomb touched
this copper ball with an elder ball s of the same size as ball c and which was supported by
an insulating cylinder I, Figure 21.2 (a).

Upon removing the elder ball, he observed that the needle ball approached the copper
ball, stopping at an angle φE , Figure 21.2 (b).

Coulomb then backed off the micrometer pointer so that the needle returned to the angle
φD = 28◦. For this to occur, he observed that the top of the wire was twisted (relative to
the bottom) an angle ϕE = 44◦, Figure 21.2 (c).

21.2 Analysis of the Experiment

In Section 20.4 Coulomb analyzed this experiment. In the case of Figure 21.1 (d), the
total repulsion between the needle ball a and the copper ball c was measured by the angle
φD + ϕD = 28◦ + 120◦ = 148◦ which gives the total twist of the suspension wire. In the
situation of Figure 21.2 (c), the repulsion between the same balls was φD+ϕE = 28◦+44◦ =
72◦. Taking into account the loss of charge to the environment during the 1 minute interval
between these two observations (he must have timed the diminishing of the repulsive force
previously), Coulomb calculated that the repulsion between them without this loss would be
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73.5◦. This value differs by only 0.5◦ from the value of 74◦, and this difference is practically
negligible. He then concludes that the force between a and c in the situation of the Figure
21.2 (c) was essentially half the force between a and c in the situation of the Figure 21.1 (d).

The angular distance between balls a and c in Figures 21.1 (d) and 21.2 (c) is the same,
namely, φD = 28◦. Since between these two experiments the copper ball c had been touched
by an elder ball s of the same size that was initially discharged, as illustrated in Figure 21.2
(a), Coulomb concluded that the elder ball acquired exactly half the electric charge that was
on the copper ball c before contact. Since these two balls, despite being the same size, are
made of different materials, he concluded that the copper ball does not possess an affinity
or attraction for the electric charges greater than the affinity or attraction possessed by the
elder ball.

He arrived at the same result in the second experiment in which he used iron and paper
disks of the same size, instead of the copper and elderberry balls. He also obtained the same
result with other materials and with large globes.

21.3 Volta Versus Coulomb

In Coulomb’s Fourth Memoir he concluded that the electric fluid does not spread in any
body by chemical affinity or elective attraction. In particular, he showed with his torsion
balance that the electric fluid spreads in all conducting bodies according to their shape,
without this fluid seeming to have affinity or an elective attraction for one body preferably
to another made of a different substance.

In 1800 Alessandro Volta (1745-1827) described his invention of the electric pile.734 Ac-
cording to Volta’s theory, the seat of the electromotive force in his battery was located in the
junction of two different metals. Volta’s conclusion contrasted with Coulomb’s experiment
presented in this Fourth Memoir. Other scientists believed that the seat of the electromotive
force in Volta’s battery was located at the junction of each metal with the moist conductor
placed between them, being due to chemical reactions. This controversy between the contact
theory of Volta and the chemical theory of the pile lasted for several decades. As it goes
much beyond Coulomb’s works, we limit ourselves here to quoting a few references related
to this important topic.735

734[Volta, 1800a] with English, Italian, Portuguese and Spanish translations in [Volta, 1800b] and
[Volta, 1964], [Volta, 1923], [Magnaghi and Assis, 2008], and [Colombo, 2000], respectively.
735[Dibner, 1964], [Varney and Fisher, 1980], [Blondel, 1982, Chapter I], [Blondel and Chairopoulos, 1995],

[Heilbron, 1999, pp. 491-494] and [Bevilacqua and Giannetto (Editors), 2003].
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Chapter 22

Fifth Memoir on Electricity: The
Manner in which the Electric Fluid is
Divided Between Two Conducting
Bodies Brought into Contact, and the
Distribution of This Fluid on the
Different Parts of the Surface of
These Bodies

Coulomb736

22.1 I

We have seen in our Fourth Memoir on Electricity,737 printed in the Volume of the Academy
of 1786, that the electric fluid spreads equally in all bodies, provided that they were of a
conductive nature: thus a globe of metal being touched by a wooden globe of equal diameter,
the electricity is divided equally between the two globes; the experiment has given this result
in an incontestable way.

We have also seen in the same Memoir that the electric fluid in the state of stability
spreads only over the surface of bodies without penetrating in any sensible way into the
interior of these bodies. Experiment has made this law known, and theory has proved that
it was a consequence of the repulsive or attractive action of the molecules of the fluid in the
inverse ratio of the square of the distances.

We are now going to seek in what ratios the electric fluid is divided between two unequal
bodies of the same shape, or of a different shape, when these two bodies are brought into
contact, and what is the density of this fluid on the different points of the surface of each
of these bodies, density which varies for each point according to the figure of the body.

736[Coulomb, 1789] with Portuguese translation in [Assis, 2022]. This work was presented in 1787 to the
French Academy of Sciences and published in 1789.
737This Memoir is translated in Chapter 20.
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However, as we often made use of a torsion balance larger than that which was described in
our First Memoir to measure the electricity, it is necessary to provide here a description and
illustration [of this balance].738

Figure 1, No. 1, represents this new balance.739

c

The square box AB is formed by four glasses 2 feet long [64.96 cm] by 15 to 16 inches
high [40.61 to 43.31 cm]; it sits on a dried table coated with insulating varnish.740 This box
is covered by several pieces of movable glass with a cut-out at c so that one can insert the
globe a therein supported by a small cylinder ac made of shellac; this cylinder is terminated
by a small cylindrical stick dried in the oven and coated with shellac, which passes through a
hole in the support cd, in which it is stopped by a screw; this support, intended to introduce
globe a into the balance, is seen in more detail in Figure 3.741

738This Memoir is translated in Chapter 11.
739I have highlighted in Figure 1, Number 1, the letter c, the metal thread 78 and the needle 8b. The

horizontal wire 8b is made of shellac and has the gilded paper disk at its extremity b.
740In the original: vernis idio-électrique. See footnote 522 on page 229.
741Coulomb’s support cd of Figure 1 appears in Figure 3 as being represented by the letters bA. It holds

the proof plane bcde. I adapted this image in the Figure of this footnote:
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The frame 1, 2, 3, 5 [of Figure 1, Number 1] is used to support the vertical tube 6, 7.
This tube, 12 to 15 inches in height [32.48 to 40.61 cm], is made of glass; at the end of this
tube at 7 is placed the torsion micrometer which can be seen in detail in Figure 2, Nos. 1
and 2.742

The circle, 3, 4, o [of Figure 1, Number 1], which holds to the frame, forms a half-
circumference having about 4 feet in diameter [130 cm]; it is divided into 90 degrees from
its middle o; its center responds to vertical thread 7, 8, which supports clamp 8, 9; to this
clamp is attached horizontally a shellac thread 8b, terminated at b by a small disk of gilded
paper.

c

I represented in the Figure of this footnote the support by the letters cd. Furthermore, I replaced the
proof plane bcde of Coulomb’s original Figure 3 by globe a which is attached to the cylinder ac coated with
shellac. This cylinder is attached to the support cd by a screw p.
742Figure 2, Number 1, appears on page 332, while Figure 2, Number 2, is located on page 333.
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Figure 1, No. 2, represents a balance of the same kind, but even simpler.743

0

e’

Its base (Figure 1, No. 3) is a wooden frame dried in the oven, in which we see at a and
b two mortises which support the vertical frame.

743I have emphasized in Figure 1, Number 2, the thread fk and the needle ke which has at its end e a
gilded paper disc. I also highlighted point o in the paper band 1o2. Moreover, I added the letter e′ at the
bottom of the glass tube e′f . This letter e′ will be mentioned later, see footnote 746 on page 332.
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A groove 1, 2, 3, 4 has been traced on this frame which must receive the four vertical
glasses which form the box of the torsion balance; 5, 6, 7, 8 represent the interior empty
space within the frame which is closed either with a glass or with a small frame lined with
taffeta coated with insulating varnish.744

Instead of the circle 3, 4, o of Figure 1, No. 1, we stick on one of the glasses (Figure
1, No. 2) a strip of paper 1, 2 divided from its midpoint o to its extremities, into degrees
representing the tangent of a circle which has its center on the plumb line fk.745 The four

744In the original: vernis idio-électrique. See footnote 522 on page 229.
745In the Figure of this footnote we have x = R tanϕ. We want angles of 5◦ marked along the strip of

paper 1o2 of Figure 1, Number 2. So, given R, we can use this formula to calculate the corresponding value
of x. For example, the first mark on both sides of the midpoint o is given by x = R tan 5◦ = 0.0875R. The
fourth markup is given by x = R tan 20◦ = 0.364R:

j
ok

x

R

5
o

5
o

10
o

10
o

15
o

15
o

20
o

20
o

1

2
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glasses which form the box are lined all around with silk ribbons which are glued to them,
and to which other small ribbons have been attached in order to be able to tie these glasses
together and take them apart at will. The glass tube e′f ,746 furnished with a small wooden
collar at e′, is mounted by screws on the crosspiece bc, as well as all the parts of the machine.

Figure 2, No. 1, represents in perspective the different parts of the copper micrometer
placed at the top of the tube.

Figure 2, No. 2, represents a vertical section of this micrometer.747

746In the original: le tuyau de verre ef . Coulomb appears to be referring to Figure 1, Number 2. The
letter e in this Figure indicates the gilded paper disk attached to the tip of the needle ke. In this Figure I
added the letter e′ at the base of the glass tube e′f . Furthermore, the expression Le tuyau de verre ef was
translated as “the glass tube e′f”, instead of “the glass tube ef”, in order to avoid confusion with the letter
e that appears in this Figure indicating the gilded paper disk.
747I have emphasized in Figure 2, Number 2, the numbers 1, 3 and 10.
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1

10

3

It is composed of several parts; in the first place, a copper tube 1, 2, 3, 4 into which
first enters the ring 5, 6 which rests on a washer748 of this tube; this ring has only a simple
division of , answering and divided into 5 degrees.749 The circle 7, 8, which forms the cap
of the micrometer, is divided from 5 to 5 degrees around its entire circumference. In this
cap enters (Figure 2, No. 2) the rod 9, 10 which clamps in 10 the suspension wire 10, 11;
this clamp can turn with fairly strong friction in a ring of the cap and is used to direct the
needle ke almost towards point o (Figure 1, No. 2). When we wish to put the balance in
operation, we observe, by vertically aligning the suspension wire with the plane e of the gold
paper attached, the position of the needle from point o; if it is positioned for example at 5
degrees, then in turning the cap 5 degrees, we will be sure to make the direction of the needle
coincide with point o; we then bring point o (Figure 2, No. 1) of the circle 5, 6 on which we
said that there was a division of of 5 degrees to point o of the cap 7, 8 divided from 5 to
5 degrees; for then the ring 5, 6 and cap 7, 8, being placed (Figure 2, No. 2) a very small
distance apart — a distance just sufficient to ensure they do not touch — can be moved

748[Note by Bucciarelli] In French: bourlet. This is like a “washer” in English, here like a spacer, a buffer
between two moving parts that don’t move frequently or any great distance.
749From Figure 2, Number 1, it can be seen that the lower ring 56 has a central division at point o, in

addition to a division on each side represented by the letter f . The angles fo and of are 5◦. The three
divisions of ring 56 coincide with the three central divisions of the disk 78, and the central division of this
disk is also represented by the letter o.
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independently of each other; thus point o remaining motionless in the circle 5, 6 while cap
7, 8 is turned, the angle of torsion of the suspension thread will be measured by the angle of
rotation of the cap, plus by the [angular] distance from the needle to point o [of the strip of
paper 1o2], when the plane b of this needle (Figure 1, No. 1) will be electrified and repelled
by the equally electrified globe a.750 We use in this balance a copper wire, numbered 12 in
commerce, to suspend the needle. We showed in 1784, in the Mémoires de l’Académie,751

that this kind of wire had a very great degree of elasticity, and it would be preferable to
silver wire in small experiments if it could be drawn so fine.

22.2 II

We have used two methods to determine the way in which the electric fluid is divided between
two bodies brought into contact.

The first consists in placing the electrified body in the electric balance, after having
electrified the small disk of gilded paper placed at the end of the needle with the same kind
of electricity. When we bring the needle, repulsed by the electric action, back to any distance
[we choose] from the electrified body by means of the micrometer of torsion, the angle of
torsion given by the micrometer, plus the [angular] distance of the needle from point o, would
measure the repulsive action that the two bodies exercise one on the other at this distance.
We then bring the electrified body mounted in the balance in contact with the body with
which we want it752 to share its electricity;753 and by untwisting the suspension wire by means
of the micrometer, the needle is brought back to the distance from the body mounted in the
balance observed in the first operation. The angle of torsion measured with the micrometer,
plus the [angular] distance from the needle to point o, will measure the quantity of electricity
which has been left in the body placed in the balance by the body which has been brought
into contact with it. Indeed, the distance is the same between the needle and the electrified
globe in the first and second observations, but the action of each element of the electric fluid
is, as we have proved in the Memoirs which precede, in inverse ratio of the square of the
distances and direct ratio of the densities: thus, as here the distances [between the globe
and the paper disk] are the same in the two operations, the repulsive action measured by
the angle of torsion will be proportional to the quantity of electric fluid.754

In this operation, unless the weather is very dry, consideration must be given to the
quantity of electricity which is lost in the [time] interval between observations.

22.3 III

The preceding method gives us as a whole the ratio of the quantities of electricity shared
between the two bodies;755 but when I want to obtain the electric density at every point of

750That is, the gilded paper disk b and globe a are electrified with charges of the same sign, repelling one
another.
751See [Coulomb, 1787]. This Memoir is translated in Chapter 7.
752That is, the electrified body.
753Let g be the body that was initially discharged and that touched the electrified globe a that is in a fixed

position inside the electric balance. After the contact between a and g, body g is immediately removed from
the balance.
754Section 23.1 presents an illustration of this method.
755That is, this method gives the ratio of the total amounts of charge in the two bodies.
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a conducting body, here is the method I follow.

We use the small balance described in 1785 in the Mémoires de l’Académie756 or better
yet we substitute a very fine silver wire in the balance, Figure 2, No. 1, for the copper wire
which supports the needle ke. The force of torsion of the silver wire I use is only one-thirtieth
that of commercially available number 12 copper wire.

A shellac thread cde (Figure 3) is then drawn by melting a small piece of very pure shellac
with a candle; this shellac thread, about the thickness of a coarse horsehair, forms an angle
at d; we attach in e vertically a disk e of gilded paper.757

After having electrified the disk of the needle by the means described in 1785, we electrify
the body, and then touch the paper disk e, which is supported by the shellac thread and
the clamp bA, to the body at the point on the body whose density we want to obtain. We
then place this small disk in the balance, taking care, in the observations that we want to
compare, to always put it at the same point, which is easy, by setting reference points on the
lid of the balance so as to always put bA in exactly the same place. As the small disk e is
usually only 5 or 6 lines in diameter (1.13 to 1.35 cm) and only 1/18 of a line thick (0.0125

756See [Coulomb, 1788b], [Coulomb, 1788d] and [Coulomb, 1788e]. These Memoirs are translated in Chap-
ters 11, 14 and 17, respectively.
757In the original: un plan e de papier doré. The word “plan” is usually translated as “plane”. The

alternative expression “disk” is being utilized in this translation to make the text easier to understand.
Figure 3 represents another model of Coulomb’s proof plane, see footnote 726 on page 319. It consists of
a small conducting disk (denoted by the letter e) attached to the insulating support bcde. Cylinder bc is
coated with an insulating varnish.
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cm), it merges in contact with the surface it touches; thus, in the contact, it takes either
the [electric] density of the point of the surface which it touches,758 or at least a density
proportional to that of this point; thus, by making it successively touch different points of
the body, and presenting it after each contact with the needle, always bringing the needle
back to the same point,759 we will have the ratio of the densities at the different points
touched.

In the comparison of the observations which succeed one another, consideration must
be given to the loss of electricity by contact with the air; but we easily compensate for this
correction, if we always compare two points by three operations carried out at approximately
equal intervals of time; here is the method I use to compare [the electric densities of] two
points. I first touch one of the points, and I determine its density by placing in the balance
the small paper disk which has touched [one of the points]; I touch in the second operation the
point whose density I want to compare with that of the first, I determine its density; I touch
in the third operation the first point whose density I determined in the first operation; I again
determine its density, which I find less than in the first operation, because the electricity
has been diminished in the interval by contact with the air; but, taking an average quantity
between the two [electric] densities found at the first and at the third observation, I have the
measure of its value at the moment of the second observation, the moment when I determined
the density of the second point that I want to compare to the first.

In this second method, which is, in general, the most convenient, the simplest and perhaps
the most exact for comparing the electric density of the different points of the same or of
different bodies, which moreover requires only small torsion balances, a practical difficulty
sometimes arises which would disturb all the results, if we were not warned of it; it is that
the threads of shellac are not perfectly impenetrable to electricity; they are less so on humid
days than on dry days; and the extent more or less depends on the nature of the shellac:
the less clear is generally more impenetrable to electricity than the other. This first, drawn
in a thread the thickness of a coarse horsehair, must still be tested by making it touch
an electrified body at its point e where we attach (Figure 3) the small disk e; it is then
presented to the needle of the balance equally electrified.760 If the extremity of this [shellac]
thread seems to drive the needle sensibly away, it must be rejected and only shellac threads
should be used which, after having touched an electrified body, have no sensible action on
the needle of the balance. We suspect that the reason for this observation is that, when the
electricity has penetrated the shellac thread, it is then very difficult to get rid of it: thus, in
the comparison of two successive operations where the small disk of gilded paper will first
have touched a strongly electrified point, if in a second operation we cause this disk to touch
a weakly electrified point, the shellac thread will retain a part of the first electricity with
which it will have been penetrated, and the action will be greater than that which would
be due solely to the density imparted in the second contact to the gilded paper disk. Thus
whenever large surfaces can be used to measure the density of the different points of a body,
they should be preferred; we will see several examples of this later in this Memoir.

758See also footnote 727 on page 320.
759That is, with the needle always at the same angle to the center point o.
760That is, the disk attached to the needle of the balance is electrified with a charge of the same sign as

the charge of the electrified body that was touched by the tip of the shellac wire.
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22.4 IV. First Part. Of the Manner in which the Electric

Fluid is Shared Between Two Globes of Different Diam-

eters Placed in Contact

22.4.1 First Experiment

We placed in the large balance (Figure 1, No. 1), whose needle is supported by a copper
wire numbered 12 in commerce, an electrified globe 6 inches 3 lines in circumference (16.92
cm);761 the force of torsion that had to be used to bring the needle back to 30 degrees from
this globe was observed; this first globe was immediately made to touch another globe 24
inches in circumference (64.97 cm)762 and, by bringing the needle back to the same point,763

the force of the torsion was again observed. Here is the result of this experiment:764

First test. The globe placed in the balance repelled the needle to 30 degrees before
contact, with a twisting force of 145◦.765

The same globe, after its contact with the large globe, repelled the needle at 30 degrees
with a twisting force of 12◦.766

Second test. The same globe, before contact, repelled the needle at a distance of 30
degrees with a force of 145◦.

After contact, with a force of 12◦.

Third test. Prior to contact the needle was pushed out 26◦ with a force of 259◦.

After contact, with a force of 21◦.

Fourth test. Prior to contact, the needle was driven 22◦ with a twisting force of 255◦.

After contact, with a force of 21◦.

Fifth test. Before contact, the globe was repelling the needle at 18◦ with a force of 231◦.

After contact, with a force of 19◦.

761That is, its diameter is given by 16.92/π = 5.39 cm.
762That is, its diameter is given by 64.97/π = 20.68 cm.
763That is, separated 30◦ from the first globe.
764Section 23.1 illustrates this experiment.
765This angle of 145◦ measures the total torsion of the suspension wire taking into account the 30◦ deviation

of the needle attached to the bottom of the wire and the angular deviation of the micrometer attached to
the top of the wire.
766This angle of 12◦ also measures the total twist of the wire taking into account the 30◦ deviation of the

needle attached to the bottom of the wire and the deviation of the micrometer attached to the top of the
wire.
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22.4.2 Result of This Experiment

One of the two globes brought into contact had a circumference of 61
4
inches [16.92 cm],

the other 24 inches [64.97 cm]; the ratio of their area is approximately :: 14.8 : 1.0;767 but
each test was carried out in less than 1 minute, and the electricity diminished only 1/40
[part] per minute on the day of this experiment. Now, in order to be able to compare the
quantity of electricity which the small globe has retained after contact with that which it has
lost or, which comes to the same thing, which it has communicated to the large globe due
to the contact, it is necessary to observe, as we have already said before, that in each test
the distance from the center of the globe placed in the balance to the disk of gilded paper
fixed vertically at the end of the needle of the balance is the same in both observations
before and after contact; because then, since the distance is the same in the two consecutive
operations of each test, the action of the globe on a electrified point placed outside of this
globe,768 being measured by the inverse of the square of the distances of their center and
in direct ratio of the quantities of electricity expanded on the surface of the globe, will be
proportional to the quantities of electricity which the globe contains before and after contact.
However, this action being proportional to the angle of torsion, it follows that the quantity
of electricity which the small globe contains before and after contact is proportional to the
angle of torsion.

In the first test, the twisting force for an [angular] distance of 30 degrees between the end
of the needle and the center of the globe is, before contact, 145 degrees; it is reduced to 12
degrees after the contact: thus, to have the quantity of electricity which the large globe has
taken on, it is necessary to subtract 12 degrees from 145 degrees. It will result that in the
contact the globe of 24 inches in circumference has taken on a mass of electricity measured
by 133 degrees and has left on the small globe only a [mass of electricity] measured by 12
degrees: thus the quantities of electricity shared between these two globes are very close ::
11.1 : 1.0.769

By following the same procedure, this ratio will be found almost exactly the same for all
the other tests.

But the surfaces of the two globes placed in contact are in the ratio of 14.8 to 1.0; thus
the two globes placed in contact are not charged with electric fluid in a ratio as great as [the
ratio of] their surfaces. If, according to this experiment, we want to determine the ratio of
the density of the electric fluid which spreads after contact uniformly over the surface of the
two globes, without penetrating into the interior of the two globes, as we have proved in our
Fourth Memoir,770 we must divide the ratio of the surfaces of the two globes by the ratio

767The ratio of their surfaces is equal to the square of the ratio of their radii, or the square of the ratio of
their circumferences. Therefore this ratio is given by

Larger area

Smaller area
=

(

24

6.25

)2

=
14.8

1.0
.

768This portion of the original sentence, sur un point électrique placé en dehors de ce globe, does not appear
in Potier’s edition of Coulomb’s works, [Coulomb, 1789, p. 429] and [Potier, 1884, p. 191].
769That is,

Electricity in the larger globe

Electricity in the smaller globe
=

133

12
=

11.1

1.0
.

770This Memoir is translated in Chapter 20.
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of the quantities of electricity they contain; thus the ratio of the surfaces being :: 14.8: 1.0
and that of the quantities of electric fluid :: 11.1 : 1.0, the mean density of the electric fluid
spread after contact on the surface of the small globe will be to that of the large globe

:: 14.8 : 11.1 .

To prove it, let S be the surface of the large globe, Q the quantity of electric fluid spread
over its surface after contact, D the [surface] density of this fluid.

Let S ′ be the surface of the small globe, Q′ its quantity771 of electric fluid, D′ its [surface]
density, we will have

D′ =
Q′

S ′
and D =

Q

S
;

thus,

D′

D
=
Q′S

S ′Q
.

In our experiment,

Q′

Q
=

1.0

11.1
and

S

S ′
=

14.8

1.0
;

thus

D′

D
=

14.8

11.1
= 1.33 .

We neglect here the amount of electricity lost on each trial from one observation to the
next; it was hardly more than 1/50 [part per minute] the day this experiment was made,
because each observation lasted only fifty seconds and the electricity of the globes did not
quite decrease by 1/40 [part] per minute.772 ,773

22.5 V. Second Experiment

We wanted to compare in this experiment the amount of electricity acquired by a globe
of 111

2
inches in circumference774 (31.13 cm), put in contact with a globe of 61

4
inches in

circumference (16.92 cm), placed in the balance at the same point, before and after contact,
as in the preceding experiment.

First test. The globe of 61
4
inches in circumference electrified and placed in the balance

repels, before contact, the disk of the needle at 27 degrees, with a twisting force of 170◦.
After contact, with a force of 42◦.

Second test. Before contact, it repels the needle at 26 degrees, with a twisting force of
169◦.

After contact, with a force of 41◦.

771In the original: quantité, [Coulomb, 1789, p. 430]. By a lapse of Potier in his edition of the works of
Coulomb, he substituted here the word “quantitè” for “densité” (density), [Potier, 1884, p. 192].
772[Note by Potier] From the tables calculated by Mr. Plana, in volume VII of the second series of the

Mémoires de l’Academie de Turin, result, for the ratio of the densities, 1.31.
773See [Plana, 1845] and [Plana, 1854].
774In the original: de tour.
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22.6 VI. Result of This Experiment

In this experiment, we compare two globes whose surfaces are in the ratio :: 3.36 : 1.775

By calculating the two tests, we find that after contact the mass of the electric fluid of
the large globe is to that of the small one [in the following ratios:]

By the first test :: 3.05 : 1.00 .
By the second test :: 3.12 : 1.00 .

[Total:] 6.17 ,

which gives for the average ratio 3.08 : 1.00.776

Thus, by a calculation similar to that which ends the previous Section, we will find the
[surface] density [of electricity] of the small globe to the density of the large globe :: 3.36 :
3.17 :: 1.06 : 1.777

Thus, in this experiment where the surfaces are approximately in the ratio of 31
3
to 1,

the electric densities differ very little from each other.778,779

22.7 VII

When the globe which we wish to compare is very small relatively to that with which it is
brought into contact, then the quantity of electric fluid which remains in the small globe
after the contact is almost insensible; and, unless the air is very dry, the supports are very
insulating, and the small globe, before contact, has been charged with a large quantity of
electricity, then, using the preceding method, we can only approximately determine the ratios
according to which the electric fluid is divided between the two globes. In this case, here is
the means I used: I electrify the large globe placed (Figure 4) outside the balance, on an
insulating support.

775That is,

Larger area

Smaller area
=

(

11.5

6.25

)2

=
3.38

1.0
.

776That is, the ratio of the total amount of electricity on the large globe to the total amount of electricity
on the small globe is given by 3.08 to 1.
777That is,

Surface density of charge on the smaller globe

Surface density of charge on the larger globe
=

3.36

3.17
=

1.06

1.0
.

778[Note by Potier] The surface ratio (11.5/6.25)2 is given by (1.84)2 = 3.3856; the ratio of the charges
3.085; the ratio of the densities would therefore be 1.10 and not 1.06. Plana’s tables give 1.11.
779See [Plana, 1845] and [Plana, 1854].

340



After having also electrified the disk of the needle,780 I make the small globe touch the
large electrified globe; I present this small globe to the needle of the balance and I bring this
needle closer to the small globe by twisting the very fine and sensitive suspension thread. I
determine in this first observation the [angular] distance of the needle to the small globe and
the force of torsion which retains it at this distance. We then take the small globe out of the
balance, we destroy its electricity by touching it with the finger; it is then made to touch
twenty times in succession, more or less, the large globe, by destroying the electricity of the
small globe after each contact, except at the twentieth, when the small globe is replaced
in the balance, at the same point where it was at the first observation. The needle is then
brought back by twisting the suspension wire at the same [angular] distance from the globe
as in the first observation; we observe this angle of torsion and we reduce the observation by
taking into account, in the result, the quantity of electricity which would have been naturally
lost by the sole contact with the air, from one observation to another.

22.8 VIII. Third Experiment

The 8-inch (21.66 cm) globe, electrified and placed outside of the balance on the insulating
support (Figure 4), was touched by a small globe about 1 inch.781 The surfaces calculated

780That is, after having electrified the gilded paper disk of the needle with an electric charge of the same
sign as the charge with which the great globe was electrified.
781In Section 22.9 it will be clear that Coulomb is referring here to a globe 8 inches in diameter and another

approximately 1 inch in diameter.
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from the most accurate measurements that could be made were approximately [in the ratio]
:: 62 : 1; the needle of the balance was suspended with a silver wire, the twisting force of
which at the same angle was hardly more than the sixtieth part of that of the copper wire
numbered 12 in commerce.

Test. The large globe being electrified after a first contact, the small globe placed in the
balance repelled the needle at a distance of 44 degrees from the center of this globe, with a
force of torsion of 244 degrees.

After twenty contacts, at each of which the electricity had been destroyed, except for the
last, the needle was driven out at 44 degrees with a twisting force of 126 degrees.

Continuing the same experiment, after twenty new contacts, the needle was driven out
at 44 degrees with a force of 66 degrees.

22.8.1 Result of This Experiment

The force of torsion is proportional to the quantity of electric fluid with which the small
globe was charged each time it was presented in the balance, since it was always, at the
time of each observation, placed at the same distance of the needle: this force was initially
244 degrees, which was reduced to 126 degrees after twenty contacts; thus the diminution of
electricity occasioned by these twenty contacts was 244 - 126 = 118.

Thus 118 degrees represent the loss occasioned by the twenty contacts; therefore, to
determine the quantity of electricity that the small globe took in an average contact, it
is necessary to divide 118 by 20, which will give approximately the quantity of electricity
that the small globe took in an average contact, that is to say approximately around the
tenth contact: but, in this case, the force of repulsion measured in the balance had to be
approximately an average between those of the two observations, that is to say, it had to be
equal to

244 + 126

2
= 185 .

Thus the ratio between the quantity of electricity of the large globe and that of the small
one, after one contact, will be

:: 185 :
118

20
= 31.4 ;

but it must be remarked that from one observation to another, in the time necessary for
the twenty contacts, the electricity of the large globe diminished about 1/8 or 4/32; thus,
since we have just found the diminution occasioned by each contact of 1.0

31.4
, it follows that the

diminution 4/32 occasioned by the contact with the air was approximately equivalent to four
contacts; thus, in the reduction of the observations, it is necessary to count on twenty-four
contacts instead of twenty, which will give, for the corrected ratio between the quantities of
electricity of the large globe and the small globe,

185 :
118

24
:: 37.6 : 1.00 .

But, since we have proved that electricity is spread only over the surface of bodies and
that the ratio of the surfaces is :: 62 : 1, it follows from a calculation analogous to that at
the end of Section 22.4 that the [surface] density [of electricity] of the small globe is to that
of the large globe :: 62 : 37.6 :: 1.65 : 1.00.
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22.9 IX

To complete this research, I had the globe 8 inches in diameter [21.66 cm] touched alternately
by a globe 1 inch in diameter [2.71 cm], and by a small globe whose diameter, calculated
from its weight, was only 2 lines [0.45 cm]. By successively placing these two globes in the
balance, I found that the density of the electric fluid on the surface of the globe of 2 lines
in diameter was greater than on the surface of the globe of 1 inch, but that it was not quite
double that on the surface of the globe 8 inches in diameter. In this experiment, the diameter
of the 8-inch globe is to that of 2 lines :: 48 : 1; the surfaces are therefore in the ratio ::
2304 : 1; the densities [of electricity] on the surfaces are [to one another] from small to large
:: 2 : 1; thus this ratio 2 to 1 can be regarded as the limit of the ratio of the average electric
density of two globes which are separated after having brought them into contact.

In the rest of this Memoir, we will see that, when the surface of a globe is touched by
a very small [conducting] disk, this small disk, at the moment of its separation, takes a
quantity of electricity double that of the surface of the globe it has just touched.782 The
gilded paper disk we use for this experiment is only 1/18 of a line thick [0.0126 cm]; it is
easy to perceive, and theory will subsequently demonstrate, the analogy of these two effects.

22.10 X. Remark

We could rigorously calculate the quantity of electricity which is shared at each contact
between the globe 8 inches in diameter and that of 1 inch which we have just determined (in
Section 22.8) by approximation by taking average quantities.

Let A be the quantity of electricity contained on its surface by the globe 8 inches in
diameter, let the globe of 1 inch, at the moment of contact, remove from it a portion A/n,
the quantity of electric fluid which will remain in the large globe after the first contact will
be

(

A− A

n

)

=
n− 1

n
A ;

at the second contact it will be

(

n− 1

n

)2

A ,

and at the twentieth contact it will be

(

n− 1

n

)20

A .

But we have just seen that it was necessary to count on twenty-four contacts instead of twenty,
because of the quantity of electricity lost by the contact with the air from one observation
to another; thus, if we calculate immediately from the first to the third observation, we
must count on twenty-four contacts from the first to the second, and on about twenty-five
[contacts] from the second to the third [observation], because it lasted a little longer than
the first. Thus, from the first until the end of the third observation, it is necessary to count

782This is an erroneous assumption by Coulomb. The small conducting disk acquires the same amount of
electricity as there was in an area equal to that disk on the surface of the globe at the point it just touched.
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on forty-nine contacts, and as we have at the first observation A = 244, which is reduced to
66 at the end of the third observation, we will have the equation

(

n− 1

n

)49

· 244 = 66

or

n

n− 1
=
(

244

66

)1/49

= 1.027 ;

thus

n =
1027

27
= 38.04 .

But it should be noted that the [initial] quantity of electric fluid of the large globe being A,
it has been reduced by the contact to An−1

n
while the little globe took a portion A/n; thus

the quantities of electric fluid shared between the two globes are between them

:: n− 1 : 1 :: 37.04 : 1 ;

and the [ratio of the] surfaces being :: 62 : 1, the density of the electric fluid on the surface
of the small globe will be to the density of the electric fluid on the surface of the large globe

::
62.00

37.04
: 1 ,

[that is,] :: 1.67 : 1. We found by approximation for this ratio [the value] 1.65 : 1, which
does not differ significantly [from the present result].

22.11 XI. General Result

By taking an average value between the results of many performed experiments or by the
preceding method, or by touching the two globes alternately with a small circular disk of 5
lines,783 as we have explained (in Section 22.3), we have formed the following Table, which
represents the way in which the electric fluid is divided between two globes of different
diameters:784

Ratio of Ratio of Ratio of the electric density between
radii surface areas the small and the large globe
1 1 1
2 4 1.08
4 16 1.30
8 64 1.65
∞ ∞ 2.00

It should be observed that this Table only indicates the ratio of the densities of the electric
fluid when, after having separated the two globes, the electric fluid spreads uniformly over
their surface: we are going to see presently that during all the time the globes are in contact,
the electric fluid is far from being spread uniformly [on their surfaces].

783This conducting disk is attached to an insulating handle, and the proof plane is used to collect charges.
It has 5 lines in diameter, that is, 1.13 cm.
784Section 23.2 compares Coulomb’s observations and Poisson’s theoretical calculations made 20 years later.

344



22.12 XII. The Density of the Electric Fluid on the Different

Points of Two Globes in Contact

After having compared two globes of different diameters with each other to determine the
quantity of electricity which they acquire when they are brought into contact, I sought to
determine according to which law the electric fluid is distributed, during the time of contact,
on the different points of the globes; I used here the small electric balance where the needle
is suspended by a very flexible silver wire: this balance is described in my First Memoir
on electricity, printed in the Volume of the Academy for 1784.785 We use, to determine the
electric density of the different points of the globes, a small circular disk of gilded paper e
(Figure 3), 4 to 5 lines in diameter [0.90 to 1.13 cm], supported by a shellac thread cde, fixed
to a cylinder cb of glass or wood dried in the oven and coated with insulating varnish.786

This cylinder enters and is fixed with a screw in the hole b of the clamp Ab, which is placed
on the lid of the balance. The whole operation, when we want to compare [the amount of
electricity contained at] two points, consists in making the plane e touch against the first
point; we then present this disk [e] in the balance to the disk of the needle which we took
care to electrify beforehand;787 the needle is brought back to a given distance from this disk
[e] by twisting the suspension wire; we carefully observe the point where the needle responds
and the angle of torsion of the wire measured by the micrometer plus the [angular] distance
of the needle to point o where the torsion is zero. We then touch the second point that
we want to compare with the same disk e and, by placing it in the balance, we bring the
needle back through the micrometer to the same distance as in the first observation: we take
into account the angle of torsion; we then retouch the first point observed and, by always
bringing the needle back to the same distance, we have the variation of the electricity from
the first to the third experiment. Thus, if we take care to put between each observation the
same duration of time, it suffices, to compare the density of the first point to the second, to
take for the first point an average quantity between the forces of torsion found at the first
and at the third observation; this average quantity will give the density of the first point at
the time of the second observation: thus, by comparing it with the force of torsion found at
the second observation, we will have the ratio of the electric density of the first and second
points.788

22.13 XIII. Fourth Experiment

The two globes are equal and each 8 inches in diameter [21.66 cm]; the point placed at 90
degrees from the contact is compared with the points placed at 30 degrees, 60 degrees and
180 degrees.789

785This Memoir is translated in Chapter 11.
786Coulomb will use the proof plane shown in Figure 3 to collect the electric charge at different points on

the surface of an electrified globe, see footnotes 726 and 757 on pages 319 and 335, respectively.
787Coulomb electrifies the needle disk with a charge of the same sign as that collected by the small paper

disk e of the proof plane in such a way that these two disks repel each other.
788Section 23.3 illustrates this procedure.
789Let two globes with centers C and C′ touch each other at just one point. The angles α indicated by

Coulomb are illustrated in the Figure of this footnote, namely, α = 30◦, 60◦, 90◦ and 180◦:
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First test. The point placed at 30 degrees from the contact of the two globes compared
with the point placed at 90 degrees (Figure 5).790

Having touched one of the globes with the small plane of gilded paper, at 30 degrees
from the contact, the needle was observed at a distance of 20 degrees from the small disk
placed in the balance; the twisting force or repulsive force that drove the needle away was 7
degrees.

Having touched at 90 degrees, everything else, as in the preceding observation, the re-
pulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31◦.

Having touched at 30 degrees, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6◦.
Having touched at 90 degrees, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27◦.

Second test. We compare the point placed at 60 degrees from the contact, with that
which is at 90 degrees; the distance from the needle to the small disk e, when it is placed in
the balance, is always 22 degrees.

Having touched at 60◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21◦.
Having touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23◦.
Having touched at 60◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17◦.
Having touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21◦.

Third test. The point placed at 90 degrees from the contact is compared with that placed
at 180 degrees. The needle and the disk e, placed in the balance, are at 25 degrees from each
other.

C C´

a

790Figure 23.5 of Section 23.3 illustrates the proof plane touching the point placed at 90◦ from the contact
point.
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Having touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20◦.

Having touched at 180◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19◦.

Having touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17◦.

Having touched at 180◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18◦.

Fourth test. When we touch [with the gilded paper disk e] one of the globes at 20 degrees
from the point of contact and below, and then present the small disk e which has touched
[this point of the globe] in the balance, we notice that the action is nil, or at least insensible
on the needle; so that we can in the two globes in contact, regard the electricity as zero from
the point of contact up to 20 degrees from this point.

22.14 XIV. Fifth Experiment

We put two globes in contact, one of which is 8 inches in diameter, and the other 4 inches
[21.66 and 10.83 cm], and we try to determine how the electric fluid is distributed on the
surface of the two globes, by comparing, as in the preceding experiment, the point at 90
degrees from the contact, with all the others.

First test, small globe. By comparing on the small globe the point at 30 degrees from the
contact, with that at 90 degrees, the density at the point 30 [degrees] was almost insensible,
and we cannot evaluate it beyond the eighteenth part of that at 90 degrees.

Second test, small globe. The point placed at 90 degrees is compared with that placed at
60 degrees.

Touched at 60◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18◦.

Touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28◦.

Touched at 60◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18◦.

Touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24◦.

Third test, small globe. We compared the point at 90◦ with that at 180◦.

Touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21◦.

Touched at 180◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28◦.

Touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20◦.

Touched at 180◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26◦.

Fourth test, large globe. Touching the large globe at 30◦ from the contact and at 90◦.

Touched at 30◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16◦.

Touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18◦.

Touched at 30◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14◦.

Touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15◦.

Fifth test, large globe. The density is approximately the same at 90 degrees and at 180
degrees from the point of contact; it is almost insensible up to 6 or 7 degrees from this point.
By touching alternately the point at 90 degrees of the two globes, we find the density of the
small globe greater than that of the large globe in these points, in the ratio of 1.25 to 1.
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22.15 XV. Sixth Experiment

An 8 inch globe and a 2 inch globe were brought into contact.

First test, small globe. Touched at 90◦ and at 180◦.
Touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27◦.
Touched at 180◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35◦.
Touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22◦.
Touched at 180◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29◦.
Touched at 90◦, the repulsive force was . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19◦.

22.16 XVI. Result of the Three Previous Experiments

It will be easy, from these experiments, to determine by calculation the ratio of the densities
at the different points of the globes in contact: let us take for example the fourth experiment,
where the two globes are equal. We find (first test) that at the first observation, the repulsive
force of the point at 30 degrees, is represented by 7 degrees; at the third observation, it is
represented by 6 degrees; thus the average force at the moment of the second observation,
when the density of the point at 90 degrees from the contact was determined, was 6◦30′: but
at the same moment, the density or the repulsive force of the point at 90 degrees from the
contact, was found 31 degrees; thus, dividing 31 degrees by 6 and 1

2

◦
we find, to express the

ratio of the density at 90 degrees, with that at 30 degrees, the number 4.77.
By comparing by the same method the second, third and fourth observation, we will have

for the same ratio [the value of] 4.83.
If we take an average value between these two results, which however differ very little

from each other, we will have for the average ratio [the value of] 4.80.
By the same method we will find, according to the second test, for the average ratio of

the electric density of the points at 60 and at 90 degrees from the point of contact [the value
of] 1.25.

In the third test of the same experiment for the points at 90 degrees and at 180 degrees,
we will find the average ratio of the densities, measured by 0.95.

Thus the density is very small up to 30 degrees; it increases rapidly up to 60 degrees,
little from 60 to 90 degrees, and it is almost uniform from 90 up to 180 degrees.

By the same calculation, it will be found (fifth experiment) that when one of the globes
is only half the diameter of the other, the density is almost zero in the small globe up to 30
degrees.

[We also find] that the point at 90 degrees, compared with that at 60 [degrees], gives for
the average ratio of the densities approximately [the value of] 1.70.

[We also find] that the point at 90◦, compared with that at 180◦, gives for the average
ratio of the densities the quantity 0.75.

So that it increases from 60 to 90 degrees in the ratio of 10 to 17, and from 90 to 180
degrees, in that [ratio] of 75 to 100.

The same calculation will give (sixth experiment), that when two globes are put in contact,
whose diameters are like 4 to 1, the density of the small globe from 90 degrees to 180, increases
in the ratio of 100 to 1.43.791

791Section 23.3 presents a comparison of the values measured by Coulomb with the values calculated by
Poisson.
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22.17 XVII

It results from these three experiments, that the more the two globes are unequal [in size],
the more the density varies on the small globe, from the point of contact up to 180 degrees
from this point, and the more it approaches uniformity on the large globe; increasing rapidly
from the point of contact where it is zero, up to 7 or 8 degrees from this point, being uniform
over the rest of the globe. Thus, for example, when an 8-inch globe was brought into contact
with a 2-inch globe, the density was found to be insensible in the small globe from the point
of contact up to 30 degrees of this point; that at 45 degrees from the point of contact, it
was about a quarter of that at 90 [degrees]; and that from 90 to 180 degrees, it increased in
the ratio of 10 to 14: in the 8-inch globe, on the contrary, the density was zero up to 4 or
5 degrees from the point of contact; it then increased rapidly, and from 30 to 180 degrees
it was almost uniform. We will see in the Second Part of this Memoir, that these results
are indicated by the theory, by calculating the action, either repulsive or attractive of the
electric fluid, according to the law of the inverse ratio of the square of the distances.

22.18 XVIII. Second Part. Theoretical Analysis to De-

termine the Distribution of the Electric Fluid on the

Surface of Two Globes in Contact, and to Determine

Their Average Density, When the Two Globes Being

Separated, They Cease to Act on Each Other

The experiments reported in the First Part of this Memoir, were made before having at-
tempted to calculate, according to the theory, the distribution of the electric fluid on the
surface of the two globes in contact. When I wanted to try to calculate this distribution
according to the law of the inverse ratio of the square of the distances, I saw that I lacked
some facts to which the calculation could be applied directly; I have therefore been obliged
to report in this Second Part, as far as I needed them, the result of several new experiments
made according to the procedures indicated in the First Part

We saw in our Fourth Memoir (Volume of 1786),792 that when a conducting body was
charged with electricity, the electric fluid did not penetrate into the interior of the body, but
that it was distributed only on its surface; from there it results that when we touch a solid
body with a surface of the same shape as the body, whatever thickness this surface has, it
will take on half of the electricity of the body when put in contact at homologous points.793

This last phenomenon had already been observed by several authors, using ordinary
electrometers; we can verify it in an exact manner by placing, on a very dry day, a solid
body in our large balance, on a highly insulating support; if this body is touched, after
having electrified it, by a surface which has exactly the same shape, taking care to put the
two bodies in contact in a homologous position,794 and if we observe, by bringing back the

792This Memoir is translated in Chapter 20.
793Again, Coulomb made an error here, as was pointed out in footnote 782 on page 343, since this surface

will acquire the same amount of electricity as there was in the same size area of the electrified body.
By “homologous points” or “similar points” (in the original: points homologues), Coulomb was referring

to points located on equivalent parts.
794That is, in a similar, homologous or equivalent position.
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needle to the same point, the twist of the micrometer before and after the contact, it will
be found that the surface has taken from the solid body exactly half of its electricity. If
the air were impenetrable to electricity, if the surface of the best polished body was not an
assemblage of small irregularities of molecules and voids which are probably infinitely greater
than the volume of small solids, the electric fluid would only have an infinitely thin thickness
on the body, as the theory indicates. But as there is never in nature a perfect surface nor
air impenetrable to electricity, the electric fluid, in its distribution, forms a layer of a certain
thickness around the body, that we will search to determine in another Memoir; a thickness
which varies according to the density of the electric fluid and according to the state of the
air, but which in general is too small, especially on very dry days, for it to be necessary to
have regard to it in all questions where we seek to determine the distribution of the electric
fluid on the non-angular surfaces.

22.19 XIX

To have a first idea of the way in which the electric fluid is distributed between the different
globes, let us place (Figure 6) three globes in contact in a straight line; the axis Aa passing
through the points of contact, let us suppose that the two globes at the extremities are equal
[in size].

No matter how the electric fluid is distributed between the three globes, since the two
globes A and a are similar and similarly posed, relatively to globe x, it is clear that they will
both contain an equal amount of electric fluid: this electric fluid, as the theory indicates, will
be unevenly spread over the surface of the three-body system; it will be compressed towards
the points of the surface which are near A and a, and null towards the points of contact b
and b′.

But suppose that the electric fluid of each globe is uniformly spread over the surface of
these globes, and that it can only escape through the point of contact; there must, in this
supposition, be a ratio between the density of globes C and C ′ at the extremities and [that]
of globe x at the center, such that there is equilibrium between the action of the electric
fluid of globe C on the point of contact in the direction CB, and of the other two globes C ′
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and x in the opposite direction.
Let R be the radius of globes A and a; let r be the radius of the middle globe, whose center

is at x; let D represent the [surface] density of the electric fluid which we suppose uniformly
spread over the two globes A and a; let δ represent the density of the fluid uniformly spread
over the surface of the middle globe, whose center is at x.795

[In this case,] the action of globe A on the point of contact b which is placed on the
surface of this body, will be equal to D.796

The contrary action of globe a on the same point b, which is distant from its surface by
the quantity 2r, will be equal to797

2DR2 : (R + 2r)2 .

The action of globe x on point b which is on its surface, will be equal to δ.798

Thus, for the electric fluid not to pass from one globe to the other, and for there to be
equilibrium at the point of contact, it is necessary that the action of globe C along Cb must
be equal to the action of the two other globes on point b along the opposite direction; so we
have the formula799

D

[

1− 2R2

(R + 2r)2

]

= δ .

By examining this formula, we find that the density δ of the electric fluid of the central
globe is negative if 2R2/(R+ 2r)2 is greater than unity; that it is zero when this quantity is
equal to unity, that is, δ = 0, when

R + 2r = R
√
2 = 1.41R ,

or when R = 5r;800 finally δ will be positive whenever R is smaller than 5r.
Although this first formula is not based on a rigorous theory, but only approximate, it is

good to see how far it goes from the truth, by comparing it with experiment.

795Let Q be the total amount of charge on the large globe of radius R on the far left with center at C and q
be the total amount of charge on the small globe in the middle with radius r and center at x. Their surface
charge densities D and δ, assuming they are uniformly distributed over each of the globes, are then given
by, respectively: D = Q/(4πR2) and δ = q/(4πr2).
796See Section 23.4 on page 376 for a discussion of the results presented in this Section. See, in particular,

Equations (23.5) and (23.6).
797I will follow here the nomenclature of Section 23.4. In this case the force per unit charge, F/q1, would

be given by:

F

q1
=

kQ

r21
=

kQ

(R + 2r)2
=

D4πkR2

(R + 2r)2
= 2π · 2DkR2

(R+ 2r)2
. (22.1)

Supposing k = 1, we can see once again that Coulomb is not including the constant factor 2π, as mentioned
in Section 23.4.
798Due to a lapse in the original text, it appeared here d instead of δ. Moreover, just like in footnote 796,

the force per unit charge here should be written by Coulomb as being given by 2πδ instead of δ, assuming
k = 1. In this Fifth Memoir Coulomb is not including the factor 2π in all equations, see Section 23.4.
799The coefficient 2π that was neglected in the previous expressions of the actions of the three globes is

irrelevant in the next equation, as it is common to the three components of this equation and can be canceled
out.
800The exact solution of equation R+ 2r = R

√
2R is R = 2r/(

√
2− 1) = 4.828r. Coulomb is approaching

this value to R ≈ 5r.
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22.20 XX. Seventh Experiment

The details into which we have entered in giving an account of the preceding experiments,
indicate sufficiently the corrections and the precautions which must be employed; in order
not to unnecessarily lengthen this Memoir, we will suppress the details of the experiments
in the following, unless we are obliged to perform some new operations not yet indicated.

When I placed (Figure 6) between the two electrified bodies A and a, a small globe whose
diameter was less than the sixth part of the diameters of globes A and a, and that I then
presented this small globe to a very sensitive torsion balance, the little globe gave me no
sign of electricity; however, no matter how small this globe was, I did not find that it had
acquired a negative electricity, as the theory indicated.

22.21 XXI. Explanation of This Experiment

The difference here between experiment and theory comes from the fact that when the inter-
mediate globe is very small, the action of the large globes on each other is very significant;
that at the point of contact, as well as in the parts which are close to this point, the electric
density of the large globes is almost nil: thus, if to determine the action of globe C ′ on
point b, we divide the surface in two parts, one formed of a small circle whose diameter is
approximately b′f ,801 on which the density is nil or very small; the other [part formed] from
the rest of the surface of the globe, where we shall suppose the density uniform and equal
to D, the action of globe a on point b will no longer be measured by

2DR2

(R + 2r)2
,

which represents the entire action of the surface of a globe covered with electric fluid, whose
density would be D; but only by this quantity diminished of the action of the surface, the
diameter of which is b′f , a surface which can be taken for a circular plane, if b′f is not greatly
extended. Now, if we determine (Figure 7) the action of a circular surface BC, all the points
of which act on point a, in the direction Ca, with a force in inverse proportion to the square
of the distances, we will find, by naming CB = R′, Ca = a, D the density of the surface, for
the action of the circle on point a [the following value],802,803

D

[

1− a

(a2 +R′2)1/2

]

.

801Coulomb seems to be referring here to a small circle whose radius is approximately b′f , see Figure 6.
802[Note by Potier] Coulomb neglects here, as above, the factor 2π.
803Section 23.4 on page 376 presents a discussion of this factor 2π. The formula given in the sequence by

Coulomb for the action of an electrified disk of radius R′ acting on an electrified particle placed at a distance
a from the center of the disk, along its axis, assumes that the disk is uniformly electrified with a surface
charge density D that has the same value at all points on the disk.
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Thus the action of globe C ′ on point b, will be

2DR2

(R + 2r)2
−D +

Da

(a2 +R′2)1/2
;

therefore, the equation which expresses the equilibrium of action for point b, will give

D

[

2− 2R2

(R + 2r)2
− a

(a2 +R′2)1/2

]

= δ ,

in the case where the small globe has a very small diameter relatively to those of the ex-
tremities; as a = 2r, if 2r vanishes relatively R, we will have δ very small, and not negative;
thus, no matter how small is globe x, placed between globes A and a, its electricity will be
either null or insensible, but never negative, supposing the two globes A and a positively
electrified; thus theory and experiment agree here.

22.22 XXII. Three Equal Globes in Contact on a Straight

Line

22.22.1 Eighth Experiment

I put804 in contact three equal globes two inches in diameter [5.41 cm], placed in a straight
line, as in (Figure 6); one of these bodies, supported by the clamp (Figure 3), was positioned
successively between the two bodies C and C ′, and at the extremity of these two bodies
which were joined together; at each operation it was placed in the large balance, always
bringing the needle back to the same distance from the globe;805 it was found that when the

804In Coulomb’s original article the Sections henceforth were wrongly numbered. That is, this Section
appeared as Section XXI, as did the previous Section, [Coulomb, 1789, pp. 446 and 447]. I corrected this
numbering, as was done by Potier, [Potier, 1884, pp. 208 and 210].
805The Figure in this footnote presents an illustration of this assembly. Globe a is attached to an insulating

cylinder ac fixed to a support cd. In the left image this globe a is located between globes C and C′ of the
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globe was placed between the two others, it took a quantity of electricity less than that which
it took when it was placed at the extremities in the ratio of 1.00 to 1.34. This result is an
average value of more than twenty operations carried out successively at equal time intervals,
in order to be able to take account of the quantity of electricity lost [to the environment]
from one observation to another.

22.23 XXIII. Explanation of This Experiment

We can use the formula from Section 22.16,

D

[

1− 2R2

(R + 2r)2

]

= δ ,

in which δ represents the [surface] density [of electricity] of the globe placed between the two
others, and D that of the globe at the ends; since R = r, we will have

δ = D
(

1− 2

9

)

=
7

9
D ,

from which

D = 1.29δ ;

but experiment has just given us

D = 1.34δ ,

which differs, as we see, only by one twenty-seventh from the ratio given by the theory. We
see that here the action of globe C (Figure 6) on point b, is very close to

2R2

(R + 2r)2
,

because the action of the small circle b′f , whose density is zero,806 as we have seen in
Section 22.21, is expressed by

same diameter as globe a, while in the right image we have a at the end. Clamp dca is brought to the
balance after each of these contacts in order to measure the amount of charge of globe a:

(a) (b)

c cd d

a aC CC’ C’

806In the original: dont la densité est nulle, [Coulomb, 1789, pp. 448-449] and [Potier, 1884, p. 211].
Probably this was a misprint. The correct expression should had been dont la densité est D, that is, whose
density is D.
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D

[

1− 2R

(4R2 + (b′f)2)1/2

]

,

a quantity that vanishes here, because b′f is much smaller than 2R.

22.24 XXIV

All the preceding theory will be confirmed by an experiment which seems to me to shed light
on this matter.

We have just seen in the preceding Sections; that when two globes were in contact,
whatever the diameter of these two globes, the density at the point of contact and in the
points which adjoin it, was null and not negative, if the two globes are positively electrified.
But from the moment that we separate the two globes, if one of the globes is smaller than
the other, and if the distance of the two globes is not considerable, we will find (Figure 8)
that point a of the small globe, which has been in contact with point A of the large globe,
becomes negative until these two globes are separated at a certain distance at which the
electricity of point a is zero; that the same point a then becomes positive, when we continue
to move the two globes apart.

22.25 XXV. Ninth Experiment

A globe C eleven inches in diameter [29.78 cm] has been insulated (Figure 8); a C ′ globe of
a smaller diameter was also insulated; these globes were electrified and made to touch; the
small globe C ′ was then moved away little by little, and by means of a small lead pellet a,
suspended from a shellac thread, or [by means of] a small circle of gilded paper, as in Figure
3, which was made to touch point a, and which was then presented in the small balance or
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in a small electrometer with very sensitive silk thread, such as it was described in our Fourth
Memoir,807 we determined the nature of the electricity from point a at different distances
Aa.

First test. Globe C being eleven inches in diameter, and globe C ′ eight inches, the two
globes having been positively electrified and brought into contact, point A of the large globe
has always given signs of positive electricity, whatever the distance Aa; but point a of globe
C ′ gave signs of negative electricity up to an inch away; at an inch [2.71 cm], the electricity
of this point a was null, it was positive beyond.808

Second test. Globe C always being eleven inches in diameter, and globe C ′ four inches
[10.83 cm]: up to two inches away, point a of the small globe gave signs of negative electricity;
at two inches, the electricity of this point was nil: the electricity of point A is always positive.

Third test. Globe C always being eleven inches in diameter, when the small globe C ′ was
two inches, one inch and below, the electricity of point a was negative until the small globe
was moved two inches five lines from the large globe [6.54 cm]; at this distance of two inches
five lines it was zero, positive when the distance Aa was more than two inches five lines.

22.26 XXVI. Remark on This Experiment

When a spherical surface, uniformly covered with an electric fluid whose density is D, acts
on a point placed at the surface of the globe, its action on this point is equal to D;809 but
when this same fluid acts on a point placed outside the same surface by the quantity a, its
action on this point, if the radius of the globe is R, will be 2DR2/(R + a)2.810

If we now suppose the small globe C ′ (Figure 8) in contact with the large globe C, if
globe C ′ is very small relatively to globe C, the electric fluid of the large globe will always
remain almost uniformly spread over the large globe, because the small globe will only have
an action on the point of contact and on those which are near it; this is what is easy to
perceive from theory; thus the action of the large globe on the point of contact will still
be quite exactly represented by D: but although the average density of the small globe in
contact is greater than that of the large globe, as there must be equilibrium at the point of
contact when the large and the small globe touch each other, the action of the small globe
on the point of contact, however, has as its measure the quantity D, like the large globe.
But if we separate the small globe from the large one, and if we move it away by a small
amount Aa = a, the action of the small globe on point A of the large globe, will be almost

807This Memoir is translated in Chapter 20.
808That is, when aA < 1 inch, point a was negatively charged; when aA = 1 inch, the electricity at point

a was zero; when aA > 1 inch, point a was positively electrified.
809The force per unit charge acting on a particle located on the surface of an electrified spherical shell is

given by 2πkD. Coulomb is here neglecting the constant factor 2π (assuming k = 1), just as he had done
earlier, see Section 23.4 on page 376 and footnote 796 on page 351.
810Let a spherical shell of radius R have a total charge Q uniformly distributed over it with a surface charge

density D = Q/(4πR2). When acting on an electrified particle with charge q located at a distance R + a
from its center, the force F per unit charge is given by (with k being a constant of proportionality):

F

q
=

kQ

(R+ a)2
=

k(D4πR2)

(R + a)2
= 2πk · 2DR2

(R+ a)2
.

Again Coulomb is neglecting the constant factor 2π, see Section 23.4 on page 376 and footnote 796 on
page 351.
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nil, while the action of the large globe C811 on point a, will be

2R2

(R + a)2
;

thus the action of the small globe on point a remaining D as in the contact, we will have,
to determine the density δ of point a, the equation

2DR2

(R + a)2
+ δ = D or δ = D

[

1− 2R2

(R + a)2

]

;

therefore, if 2R2/(R+ a)2 is greater than 1, δ will be negative; if this quantity is equal to 1,
δ will be zero, it will be positive if 2R2/(R + a)2 is smaller than 1.

We can therefore determine the distance Aa when the density of point a = 0, by making
2R2/(R + a)2 = 1; from which results

(R + a) = R
√
2 = 1.415R and a = 0.415R .

But we have just seen in our experiment, that when a small one-inch globe, for example,
has been brought into contact with our eleven-inch globe, it must be moved two inches five
lines away from globe A, so that the electricity of point a ceases to be negative and is zero,
that it is positive beyond this distance: here R = 5 inches 6 lines = 66 lines, a = 2 inches 5
lines = 29 lines; thus

R = 5 inches and 6 lines = 66 lines [= 14.92 cm] ,

a = 2 inches and 5 lines = 29 lines [= 6.55 cm] ;

thus

a

R
=

29

66
= 0.439 ,

which differs very little, as we see, from what is indicated by the theory.
It is easy to see, from the reflections on which the preceding calculation is based, that

as the two globes approach equality [in size], the distance Aa, where the density of point a
is zero, must decrease, because in this case the action of the small globe on point A, at the
distance Aa, leaves only little density of the electric fluid at point A and the points which are
close to it; thus the action of the large globe A on point a, is then less than 2DR2/(R+ a)2;
it is for the same reason that the electric fluid of the large globe is never negative at A,
whatever the distance Aa.812,813

811For a lapse in the original text, C′ appears here instead of C.
812[Note by Potier] Poisson applied the calculation to the experiment made on the 11-inch and 4-inch globes,

and found that the minimum density on the small sphere was only 0.037 of its average density when it was
2 inches away from the larger [globe].
Mr. Plana calculated the ratio y of the distance where the minimum density is zero to the radius of the

large sphere, as a function of the ratio x of the radii of the two spheres. When x decreases from 1 to 0, y
increases rapidly at first, from 0 up to a maximum equal to 0.54 which it reaches for x = 0.5, then decreases
while tending towards the limit 0.355, which it would reach for x = 0.
813[Poisson, 1812a], [Poisson, 1812b], [Poisson, 1813] and [Poisson, 1814]; [Plana, 1845] and [Plana, 1854].
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22.27 XXVII

It seems that we can conclude from the experiments and observations which precede, that
the electric fluid is almost entirely distributed on the surface of electrified conducting bodies,
and that it does not form a very extended atmosphere around these bodies, as several authors
have thought: this consequence can even be confirmed by an experiment which seems almost
decisive; here it is. If we place a conducting globe in the [electric] balance, electrify it, and
make it touch alternately by two copper wires, of the same thickness and length,814 but one
of which is wrapped over its entire length, except at the end intended to touch the globe,
by a layer of very pure shellac, five or six lines thick [1.13 to 1.36 cm]; it will be found,
by a process and a calculation analogous to those of the Sections of the First Part, that
both copper wires, when placed in contact with the globe at their extremity, take an equal
quantity of electricity.

But it is known that the electric fluid cannot penetrate through a layer of shellac; thus,
when the wire covered with shellac is brought into contact, and presented by its extremity
to the [electrified] globe, the electric fluid can only be distributed on the surface of this
wire; consequently, since, whether the wire is covered with shellac or not, it takes the same
quantity of electricity, half, for example, of that of the globe, it must exert in both cases, on
any point whatever, the point of contact for example, the same action: whence it results that,
whether the copper wire be surrounded by shellac, or not, the electric fluid is distributed
therein in the same manner and in the same quantity .

However, it must be warned that as the air is not a perfect insulator,815 as it is charged
with humid conductive parts, the electric fluid of an electrified body must penetrate more or
less into the layers of air which surround it; but on very dry days, the preceding experiments
prove that this fluid does not penetrate the strata of air to a sufficiently great depth nor
in sufficient quantity to make it necessary to take it into account in the greater part of the
calculations. We will return to this subject in another Memoir intended to determine the
state of an insulating body in contact with an electrified conducting body;816 but we cannot
occupy ourselves with this subject with any hope of success, until we shall have determined
exactly by experiment the manner in which the electric fluid is distributed on surfaces, either
flat or curved, and on bodies of different shapes; this research will form the Second Part of
this Memoir.

22.28 XXVIII. Determination of the Density of the Electric

Fluid, from the Point of Contact, up to 180 [Degrees]

from This Point, in Two Electrified Globes which Touch

Each Other

Let us suppose the two globes (Figure 9) in contact through point A, both electrified and
supported by insulators, such as that of Figure 4.

814These wires are manipulated with an insulating handle to prevent grounding.
815In the original: comme l’air n’est pas d’une parfaite idio-électricitè. That is, as the air is not perfectly

insulating. See footnote 522 on page 229.
816This Memoir was never published.
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Since we demonstrated in our Fourth Memoir, that in conducting bodies, the electric
fluid was only distributed on the surface, and did not penetrate into the interior of these
bodies, we can suppose each globe covered with an infinity of small conducting globules
charged with electricity; thus the electric action of each of these globules on the point of the
globe where it is in contact, will be counterbalanced by the action of all the other globules
which cover the two bodies.

If D were the [surface] density [of electric fluid] of the large globe whose center is at C,
and if this density were uniformly spread over the whole globe, its action on a point m of
the small globe C ′, would be expressed by817

2D
(

Ca

Cm

)2

,

and this action decomposed in the direction mB, radius of the small globe, will be

2D(CA)2mB

(Cm)3
.

If the density of the electric fluid were likewise uniformly spread over the small globe, and
equal to D′, its action on point m would be D′. Thus, if we put in contact with the small
globe whose center is C ′, a small globule m which is charged with electricity, the electric
density of this small globule must be such that at its point of contact there is equilibrium
between the action of the small globe C ′ acting along C ′m, and that of globe C acting along
Bm, joined to that of the globule m acting in the same direction, so if δ is the average
density of the small globule in m, we will have

817Throughout this Section Coulomb will continue to neglect the factor 2π in the expressions of the actions
exerted by electrified spherical shells, see Section 23.4 on page 376.
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D′ = δ +
2D(CA)2mB

(Cm)3
or δ = D′ − 2DCA2mB

(Cm)3
.

If we make, to have this equation in an analytical form, CA = R, C ′A = r, AP = x,818 the
two similar triangles CC ′B, C ′pm will give

C ′m

C ′p
=
CC ′

BC ′
.

Thus

Bm = BC ′ − C ′A = R− R + r

r
x ,

(Cm)2 = R2 + 2(R + r)x ;

by substituting, in the formula, the values of Bm and Cm, it becomes

δ = D′ −
2DR2

(

R− R+r
r
x
)

[R2 + 2(R + r)x]3/2
.

If in this equation we make the angle AC ′m = α, we will have

x = r(1− cosα) ,

and, consequently,

δ = D′ − 2DR2[R− (R + r)(1− cosα)]

[R2 + 2(R + r)r(1− cosα)]3/2
.

22.29 XXIX

If the two globes are equal, then D = D′, R = r, and the previous formula reduces to

δ = D

[

1 +
2− 4 cosα

(5− 4 cosα)3/2

]

.

We determined in the First Part of this Memoir (fourth experiment, Sections 22.13 and
22.15), the electric density of two equal globes in contact; from 30 degrees of the point of
contact up to 180 degrees of this point; so we can compare our formula with this experiment
and its result.

1. If we calculate the density δ according to our formula, we will find it negative up to
around 23 degrees. Experiment gives it insensitive up to this point; we have given the
reason for this difference, Section 22.20;

818By AP = x Coulomb seems to be referring to the distance between points A and p shown in Figure 9.
If this is the case, then we should have here Ap = x.
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2. If we calculate for a point at 30 degrees from the contact of the two globes, we will
find δ = 0.23D.

3. At 60 degrees from the point of contact, δ = D;

4. At 90 degrees from the point of contact, δ = 1.18D;

5. At 180 degrees from the point of contact, δ = 1.22D.

To have the quantity δ according to the experiment, we compared (Section 22.15) the
density of the point at 90 degrees from the contact with that of all the other points; thus
the same comparison must be made in the results given by the theory; experiment has given
us, Section 22.15:

The density of the electric fluid at 90 degrees from the point of contact, is to that at 30
degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :: 4.80 : 1.00.

If we make the same comparison according to our formula, we will find it . :: 5.13 : 1.00.
The point at 90 degrees, compared to that at 60 degrees, experiment gives the [ratio of

the] densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :: 1.25 : 1.00.
Theoretical calculation [gives] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :: 1.18 : 1.00.
The point at 90 degrees, compared to that at 180 degrees, experiment gives the [ratio of

the] densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :: 0.95 : 1.00.
Theory [gives] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :: 0.97 : 1.00.
We find here a conformity between the results of the experiment and those of the theory,

which we could hardly hope for.819,820

22.30 XXX. Tenth Experiment

To make the comparison of theory and experiment more direct and easier in determining the
quantity of electricity acquired by two globes of different diameters brought into contact,
here is the result of some new experiments which I thought useful to add to the preceding
ones.

I put in contact (Figure 9) two globes of different diameters, I electrified them; I then
touched point A′ at 180 degrees from the point of contact, with a small circle of gilded paper,
5 lines in diameter (1.13 cm), insulated, as shown in Figure 3, by a shellac thread: I presented
this little [paper] disk in the balance with a very fine silver wire; I then separated the two
globes C and C ′, and I touched the large globe C with the same disk. I again presented this
little disk in the balance; the comparison of the force with which the needle was driven in
the first and second observations, gave the ratio of the densities, of point A′ when the two
globes are in contact, and of the average density on the large globe C, when these globes are
separated.

819[Note by Potier] Poisson gives, for these three ratios, 5.86; 1.34; 0.88.
820[Poisson, 1812b, p. 76]. The percentage differences between Coulomb’s experimental values and Poisson’s

theoretical values are given by:

5.86− 4.80

5.86
· 100% = 18.1% ,

1.34− 1.25

1.34
· 100% = 6.7% and

0.88− 0.95

0.88
· 100% = −8.0% .

That is, there is a very reasonable agreement between these values.
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I formed, according to the different results that this experiment gave me, a Table for
two globes of different diameters: in this table, R is the radius of the large globe, r that of
the small one; D is the average [electric] density of the large globe separated from the small
globe; δ is the density of point A′, end of the axis of the small globe in contact with the large
globe.821

If R/r = we will have δ/D =
1 1.27
2 1.55
4 2.35
8 3.18
∞ 4.00

22.31 XXXI. Remarks on the Previous Experiment

If we want to determine, according to the theory, the quantity δ for point A′, it is necessary,
to have a first approximation, to suppose the electric fluid of each globe uniformly spread
over this globe; by naming δ the density of point A′ or of a small globule placed at A′, D the
average density of the large globe C, D′ that of the small globe; we will have the equation

δ = D′ +
2DR2

(R + 2r)2
.

In this equation, the average density D′ of the small globe is necessarily greater than
the density D of the large globe, as is easy to see from theory. But suppose as a first
approximation D = D′, we will form, according to the formula

δ = D

[

1 +
2R2

(R + 2r)2

]

,

which expresses the value of the density at point A′, compared with the average density of
the large globe, the following Table:

If R/r = we will have, according to the formula, δ/D =
1 1.22
2 1.50
4 1.89
8 2.28
∞ 3.00

Comparison of this result with that provided by the experiment in the previous Section,
shows that it is only when R is greater than 2r, that the theory and the calculation begin
to differ, the theory giving an approximate value, when R is greater than 2r, less than that
provided by experiment. But if we notice that in our Table, calculated according to the
formula, we have assumed the density D′ of the small globe, equal to that of the large globe,

821Let Q be the electric charge on the large globe of radius R. When this globe is far away from the small
globe, its surface density of electricity is given by D = Q/(4πR2). The magnitude δ, on the other hand, is
the surface charge density at point A′ in Figure 9 measured while the two globes are in contact. Section 23.5
presents a comparison between the experimental results of Coulomb and the theoretical values of Poisson.
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and that by the action of the large globe, the fluid of the small globe must be concentrated
at point A′ of the small globe;822 that however this fluid by its action in inverse proportion
to the square of the distances, must balance at the point of contact with the action of the
fluid spread almost uniformly over the large globe; it will be seen that the average density
of the electric fluid must be greater on the small globe than on the large one; that thus D′

is greater than D, and consequently that the result given in the Table by the calculation,
requires a correction which increases the value of δ, which is in accordance with experiment.
We will find in the Sections that follow methods to get closer to the true value of δ.

22.32 XXXII. Determination by Approximation of the Ratio

According to Which Electricity is Shared Between Two

Globes of Different Diameters Placed in Contact

22.32.1 First Example: When R = ∞r

As we can determine only by approximation the manner in which the electric fluid divides
between two globes, it will be easier to grasp the spirit of the methods which we have followed,
by applying them to particular examples, than by generalizing them. In this example, one
of the globes is infinitely large relative to the other; but according to this supposition, it is
easy to conceive that the formula which we used (Section 22.26) to determine the density at
all the points of the small globe, must approach the truth; for supposing the small globe at
a very short distance from the large globe, the electric fluid with which the large globe will
be charged will be carried on the small globe until there is equilibrium at all the points of
the surface between the action of the large globe and the action of all the electrified points
on the surface of the small globe: the action of the small globe on the large globe being
proportional to the average density multiplied by its surface, will be infinitely small for any
point other than the point of contact; thus the action of the large globe on each point of
the small one will be about the same for any other point than the point of contact, as if
all the electric fluid of the large globe were [concentrated] at its center C. Let us now take
D′ for the average density of the small globe, a quantity which must be variable when we
seek the action of the small globe on each of the points of its surface, but which we can
suppose constant in a first approximation, provided that we determine its value according
to the conditions of equilibrium at the point of contact: since we suppose in this example
the radius r very small relatively to R, the formula

δ = D′ −
2DR2

[

R− (R+r)x
r

]

[R2 + 2(R + r)x]3/2
,

reduces to

δ = D′ − 2D(r − x)

r
.

Now it is necessary that the action exerted by all the fluid of the large globe on the point
of contact A (Figure 9), in the direction CA, is equal to the action on the same point of

822In the original text we have “petit globe” (small globe), [Coulomb, 1789, p. 458], while by a mistake
Potier replaced this expression with “gros globe” (large globe), [Potier, 1884, p. 220].
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all the fluid spread on the surface of the small globe: but as according to our formula, δ
represents (Figure 9) the density of the fluid on point m; and the density δ is the same for
all the points of the surface area mm, perpendicular to the axis Ap, the action of this zone,
decomposed along the direction pA, will be on point A [given by:]

δdx

2
√
2r
√
x
=

dx

2
√
2r
√
x

(

D′ − 2D +
2Dx

r

)

.

Taking for D′ the average density of the small globe on each point of its surface, and sup-
posing it constant, the integral of this quantity will give for the action of the small globe on
point A,

1

2
√
2r

[

(2D′ − 4D)
√
x+

4

3
D
x3/2

r

]

,

a quantity which must vanish when x = 0, and be completed when x = 2r, which will give
for the entire action of the small globe on the point of contact A [the following value:]

D′ − 2

3
D .

But it should be noted that in the contact of the two globes, the electric fluid being in a
state of stability, there must be equilibrium at the point of contact between the action of the
small and the action of the large globe. As the density of the large globe is almost uniform
on all the points of its surface, the action of the large globe on the point of contact A, will
be D; so we have the equation

D′ − 2

3
D = D or D′ = 1.67D ,

quantity smaller than that which was found by the experiment which gave us (Section 22.11),
when R = ∞r, D′ = 2D. Before looking for a more approximate value ofD′, let us determine
by approximation the density in A′, extremity of the axis. To achieve this, it should be noted
that since D′ represents the action exerted by the electric fluid on any point of its surface,
this quantity D′ cannot be constant, as we have just assumed for a first approximation, but
it must vary increasing from the point of contact A, to the end of the axis in A′. In the point
of contact, this action of the small globe must balance the action of the large globe; thus
it must be equivalent to D; at point A′, it must be determined by the action of the entire
surface of the small globe on this point. To have an approximate action of the small globe
on this point, it must be calculated according to the density δ = D′ − 2D− 2Dx

r
; by making

[see Figure 9]:

A′q = z = (2r − x) ,

the action of the small zone µµ on point A′ will be

δdz

2
√
2r
√
z
=

dz

2
√
2r
√
z

(

D′ + 2D − 2Dz

r

)

,

which integrated and completed will give, for the entire action of the small globe on point A,
[the value] D′ + 2

3
D. Let us put in the place of D′ its approximate value, which we have just
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found, 1.666D, and we will have for the approximate action of the small globe on point A,
[the value] 2.33D; thus the action of the small globe on all the points of its surface, increases
from point A to point A′, so that at the point of contact A, it is equal to D, and at the
extremity of the axis in A′,823 it is 2.33D.

To obtain the density of the electric fluid at point A′ in accord with the quantity of action
that the small globe exerts on this point, it is necessary to suppose that we touch with a
small insulated [proof] plane alternately point A′ and a point of the large globe C. It is clear
that at point A′ the density of the small globules must be such that there is equilibrium
between the action of a small globule at A′ and that of the two globes; thus, by naming δ
the density of the small globule, we must have

δ = 2D + 2.33D = 4.33D ;

the experiment did indeed seem to indicate to us (Section 22.30) that when r was infinitely
smaller than R, the density of the small globe at the extremity of its axis in A′, was a little
greater than 4D, D expressing the average density of the large globe.

Let us return to determine more exactly the average density D′ of the small globe, which
we found by a first approximation, equal to 1.67D, and which experiment (Section 22.11)
has taught us be equal to 2D.

Since the action of the small globe on each point of its surface increases from point A to
point A′; since at point A, it is approximately equal to D or the average quantity D′/1.67;
[and] since at point A′, it is 2.33D′/1.67, when we wanted to determine the value of δ, we
had to make D′ variable, instead of making it constant. Thus, assuming that the action of
the small globe is represented by

D′

(

a+
bx

2r

)

,

this action must be such that when x = 0,

D′a =
D′

1.67
,

and that, when x = 2r,

D′
(

1.00

1.67
+ b

)

=
2.33D

1.67
or b =

1.33

1.67
;

which will give, for the approximate density δ of each point m of the small globe, [the
following value:]

δ = D′a− 2D +
bD′ + 4D

2r
x ;

and the action of a small surface area mm, on the point of contact A, will be824

823For a lapse in the original text we have there A instead of A′.
824The following equation appears in the original text:

Dx

2
√
2r
√
x

[

(D′a− 2D) +

(

D′ + 4D

2r

)

x

]

.

I replaced Dx in the first numerator with dx. In the last numerator I put bD′ instead of D′.
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dx

2
√
2r
√
x

[

(D′a− 2D) +

(

bD′ + 4D

2r

)

x

]

,

of which the integral [is given by:]825

1

2
√
2r

[

2x1/2(D′a− 2D) +
2

3
x3/2

(

bD′ + 4D

2r

)]

,

quantity which must vanish when x = 0, and be completed when x = 2r. Thus the entire
action of the small globe on the point of contact A, will be

D′a− 2D +
bD′ + 4D

3
;

but as the action of the small globe must balance at the point of contact, with the action of
the large globe which is equal to D, density of the fluid of this large globe, we will have

D′

(

a+
b

3

)

=
5

3
D or D′ = 1.93D .

To obtain now the average density of the electric fluid of the small globe, when, by
removing it from contact with the large globe, it will spread uniformly over the surface of
this small globe, it is necessary to have the quantity of electric fluid spread over the small
globe, and divide it by the surface of this globe; so we have to reconsider the equation

δ = D′a− 2D + (bD′ + 4D)
x

2r
,

multiply it by dxr, which expresses the elementary surface of the globe, integrate this quan-
tity for the entire surface, which will give

(D′a− 2D)2r2 + (bD′ + 4D)
r2

2
,

and divide by the area of the small globe 2r2,826 which will give for the average density [the
following value:]

D′

(

2a+ b

2

)

,

from which

D′ = 1.93D ,

a quantity, as we see, which differs from 2.00D found by experiment only by an amount too
small to be appreciated in researches of this kind.

825The following equation appears in the original text:

dx

2
√
2r

[

2x1/2(D′a− 2D) +
2

3
x3/2

(

bD′ + 4D

2r

)]

.

I replaced in the first numerator dx with 1.
826The area of the small globe of radius r is given by 4πr2. In this Section Coulomb is not including the

factor 2π in all formulas, see Section 23.4 on page 376. See also footnotes 796, 802 and 817 on pages 351,
352 and 359, respectively.
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22.33 XXXIII. Second Approximation Method

We are going to use here an approximation method different from the previous one, but
which can be applied to all values of R/r.

Let D (Figure 9) be the average [surface] density [of electricity] of the large globe; D′

the average action of the small globe on each point of its surface that we want to determine.
We have seen that when the two globes were in contact, the density was zero at the point
of contact; if we now determine it for two other points [on the surface of the small globe],
one at 90 degrees from the point of contact, the other at 180 degrees from this point, we will
find, always naming R the radius of the large globe and r the radius of the small globe, that
the density δ of the small globe at point E at 90 degrees from the contact is, according to
our formula (Section 22.28),

δ = D′ +
2DR2r

[(R + r)2 + r2]3/2
,

and that the density δ at A′, extremity of the axis, is

D′ +
2DR2

(R + 2r)2
.

Thus if we suppose the density δ which increases from point A to point A′, represented by

D′

[

ax

2r
+

bx2

(2r)2

]

, 827

this quantity must be 0 when x = 0, it must be [given by]

D′ +
2DR2r

[(R + r)2 + r2]3/2

when x = r, and it must be [given by]

D′ +
2DR2r

(R + 2r)2

when x = 2r.
Let us make, to simplify the calculation,

2R2r

[(R + r)2 + r2]3/2
= A ,

and

2R2

(R + 2r)2
= B .

We will determine a and b by the two equations

827As defined earlier by Coulomb, see footnote 818 on page 360, the magnitude x is defined by x = AP ,
with points A and P (or A and p) shown in Figure 9.
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D′

(

a

2
+
b

4

)

= D′ + AD ,

and

D′(a+ b) = D′ +BD ,

from which will result

a = 3 + (4A− B)
D

D′
,

and

b = −2 + 2(B − 2A)
D

D′
.

To determine D′, consider the equation

δ = D′

[

a
x

2r
+ b

x2

(2r)2

]

,

and we will have, for the surface action of a zone mm on the contact point A,

D′dx

2
√
2r
√
x

[

ax

2r
+

bx2

(2r)2

]

,

which, integrated and completed, will give for the entire action of the small globe on the
point of contact A, the quantity

D′

(

a

3
+
b

5

)

,

which must be equal to the action of the large globe on the same point of contact. If this
globe is much larger than the small one, its action will be approximately equal to D; thus
in this case, we will have, to determine the ratio D′/D, the equation

D

D′
=
a

3
+
b

5
.

22.34 XXXIV

To obtain the average density of the fluid spread uniformly on the small globe after the
contact, it is necessary to divide the quantity of electricity of the small globe by its surface,
which will give for this density,

∫

δdxr

2r2
.

By substituting, in place of δ, its value, and performing the operation, we will find

D′

(

a

2
+
b

3

)

,

which expresses the average density, that is to say, the density of the electric fluid, when,
after the contact, the small globe will be separated from the large globe, and the large globe
ceasing to act on the small globe, the electric fluid will spread uniformly over the surface of
the small globe.
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22.35 XXXV. Second Example: R = 4r

Let us apply the preceding formulas to an example whose results we obtained by the exper-
iments reported, in the form of a Table, at Section 22.11: by supposing the action of the
large globe on the point of contact = D.828

As [we are now assuming] R = 4r, we find

A = 0.24 and B = 0.89 ;

thus

a = 3.00 + 0.07
D

D′
and b = −2.00 + 0.82

D

D′
;

from which results

D′

D
= 1.36 .

Substituting now the values of a, b and D, in the formula D′(a/2+ b/3), which expresses
the average density, we will find this density equal to 1.42D, which is a little greater than the
quantity 1.30, which was given, Section 22.11, by the experiments; but it should be noted
that we have supposed the action D of the large globe C equal to its average density, as if
the electric fluid were spread uniformly over this globe: but as it is a little repelled by the
action of the small globe, its action on the point of contact will be smaller than its average
density. Thus, in the comparison of the average density of the small and the large globe,
we must have had, according to this observation, a ratio a little smaller than that which we
have just found, which, as we see, conforms to experiment.

To have, according to the average density D′, the density of point A′ at the extremity of
the axis of a small globe, it is necessary, as we have already said, that the action of a small
globule which we would place in A′, would balance at its point of contact the action of the
two globes C and C ′, which would give

δ = 1.42D + 0.89D = 2.31D ,

a quantity that we have found by experiment, Section 22.30, [as given by] 2.35D, which is
not significantly different from this [value].

If we wanted to obtain something more precise, it would be necessary to employ for the
large globe a calculation similar to that one which we made for the small globe, to determine
in this way the action on the point of contact A, and to equate the two actions.

828See Section 23.4 on page 376.
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Chapter 23

Remarks on Coulomb’s Fifth Memoir

A. K. T. Assis

23.1 Experimental Method to Determine the Division

of Charges Between Two Conducting Globes of

Different Sizes when They Touch One Another

In Section 22.2 of this Memoir, Coulomb electrifies a conducting globe a of radius Ra with a
charge q, this globe being supported by the insulator I, as illustrated in Figure 23.1 (a). A
second conducting globe g of radius Rg, also insulated from the Earth, is initially discharged
and far away from globe a. He then brings the two globes into contact, Figure 23.1 (b). After
moving the globes apart, globe a is left with a charge q1 and globe g with a charge q2, Figure
23.1 (c). Coulomb has two goals in this experiment. The first is to obtain the ratio q2/q1 as
a function of R2/R1. The second is to obtain the ratio between the surface charge densities
as a function of the ratio between the radii, that is, to determine [q2/(4πR

2
2)]/[q1/(4πR

2
1)] as

a function of R2/R1.

a a a
q 0 q1 q2

g g g

I I II I I

(a) (b) (c)

Figure 23.1: Overview of the experiment.

Figure 23.2 illustrates qualitatively Coulomb’s procedure. He uses the large electric
balance shown in Figure 1, Number 1, located on page 328. Point o in Figure 23.1 indicates
from where he measures the twist of the lower part of the suspension wire attached to the
needle 8b. Point S is the point on the micrometer from where he measures the twist of the
upper part of the wire, this micrometer being located at point 7 shown in Figure 1, Number
1. I am assuming that the wire 78 and points o and S are initially in the same vertical plane
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when the wire is not twisted. The needle 8b is an insulator having a gilded paper disk b at
its end. This conducting disk b is attached vertically to the needle. The arrow of Figure 23.2
indicates the micrometer orientation.

o

8 8 88

S

a aab
b

b

b

o oo
S S S

fc

fb

fd
jd

(a) (b) (c) (d)

Figure 23.2: Preparation of the experiment.

In Figure 23.2 (a) the wire is untwisted. In (b) I am assuming that the conducting globe
a has slightly displaced the paper disk b, causing the needle to be displaced by an angle φb

with respect to its natural orientation. In this initial situation, globe a and the paper disk b
are discharged. In (c) they are electrified with charges of the same sign, causing a repulsion
between them. At equilibrium the needle 8b is then rotated clockwise through an angle φc

due to this repulsion, Figure 23.2 (c). In Figure 23.2 (d) Coulomb rotates the micrometer
attached to the top of the suspension wire counterclockwise through an angle ϕd such that
the angular separation between the electrified globe a and the electrified paper disk b has a
value φd which he had chosen previously. The total twist of the suspension wire is given by
ϕd + φd.

In this situation, the electrified globe a is touched by another conducting globe g, initially
discharged, which is manipulated by the insulating handle I, as illustrated in Figure 23.3
(a). After globe g is removed from the balance, globe a and the needle are separated by an
angle φe smaller than φd, while the micrometer remains twisted at an angle ϕd, Figure 23.3
(b). Coulomb then untwists the micrometer clockwise until globe a and the needle 8b are
separated by the previously specified angle φd, as indicated in Figure 23.3 (c). This angle
φd of Figure 23.3 (c) has the same value as the angular separation φd of Figure 23.2 (d). I
will assume that at this moment the micrometer is twisted at an angle ϕe with respect to
the line 8S, Figure 23.3 (c). The total twist of the suspension wire in this case is given by
φd + ϕe.

Sometimes the micrometer has to be untwisted in a clockwise direction even going beyond
the line 8S, as indicated in Figure 23.4 (c). This occurs when there is very little charge left
on globe a, such that, to bring the needle back to the separation φd of Figure 23.2 (d), it is
necessary to greatly untwist the micrometer. The micrometer twist ϕe in this case is to the
right of the 8S line. The total twist of the suspension wire in this case of Figure 23.4 (c) is
given by φd − ϕe, where we are only assuming here the positive magnitude of ϕe, regardless
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jd

(a) (c)(b)

Figure 23.3: Final part of the first experiment.

of whether the micrometer is twisted clockwise or counterclockwise with respect to the line
8S.

8 88

a aa
g

I

b b
b

o oo
S SS

fd

fd

fe

jd

je

jd

(a) (c)(b)

Figure 23.4: Final part of the first experiment when the micrometer pointer crosses the straight
line 8S.

23.2 Comparison of Coulomb’s Experiment with the

Theoretical Calculation of Poisson

I present in the next Table the experimental results of Coulomb given in Section 22.11
compared with Poisson’s calculations published more than 20 years after Coulomb presented
his measurements.829 Let Q be the total amount of charge or electricity in a conducting
globe of radius R, its surface charge density D is then given by D = Q/(4πR2). Initially
we had globe a (or globe 1) with a charge q and globe g (or globe 2) was discharged. After
contact and separation, globe a was left with charge Q1 and globe 2 with charge Q2. Suppose
we have globes 1 and 2 of radii R1 and R2 with R2 ≥ R1. After they have been brought

829[Poisson, 1812b, pp. 60-62], [Potier, 1884, p. 198] and [Gillmor, 1971a, p. 203].
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into contact and separated, their charges are Q1 and Q2, respectively. The ratio of their
radii is given by R2/R1, the ratio of their areas (or between their surfaces) is given by
(4πR2

2)/(4πR
2
1) = R2

2/R
2
1. The ratio between the surface charge densities of the smaller

globe to the larger globe is given by

D1

D2
=
Q1/(4πR

2
1)

Q2/(4πR2
2)

=
Q1/R

2
1

Q2/R2
2

=
Q1R

2
2

Q2R2
1

. (23.1)

With R2 > R1 Coulomb experimentally obtained Q2 > Q1 and D2 < D1. The last
column of this Table shows the percentage difference between the value Vc calculated by
Poisson and the value Vm measured by Coulomb, that is, [(Vc − Vm)/Vc] · 100%.

Ratio between the globes Ratio between the electric densities
of the small and large globes,

that is, D1/D2 = (Q1R
2
2)/(Q2R

2
1)

Radii Surfaces Observed Calculated Percentage
R2/R1 (R2/R1)

2 by Coulomb by Poisson difference
1 1 1 1 0%
2 4 1.08 1.16 + 7%
4 16 1.30 1.32 + 1%
8 64 1.65 1.44 −15%
∞ ∞ 2.00 π2/6 = 1.65 < −21%

Coulomb obtained the last line of this Table as a limiting case of Section 22.9 in which a
globe 8 inches in diameter came into contact with another globe having 2 lines in diameter
(that is, (1/6)th of an inch), such that the ratio of their radii was 48/1 and the ratio of their
surfaces was 2304/1. The value 2 for the ratio between their surface charge densities is then
an upper bound for the case where the ratio between their radii or between their surfaces
tends to infinity.

It is amazing that Coulomb’s measurements only deviate by a few percentage points from
Poisson’s theoretical values that were only calculated 20 years after Coulomb. Coulomb could
not have made these exact theoretical calculations with the mathematical tools available to
him. Therefore, he could not predict in advance the values he came to obtain experimentally.
The small percentage differences between his measured values and the theoretical results
of Poisson show the precision of his measurements and his manual dexterity, especially
considering the difficulty and delicacy of these experiments. See also the discussion presented
in Section 13.5.

23.3 Experimental Method for Determining the Sur-

face Charge Distribution on Two Electrified Glo-

bes While They Are in Contact

In Section 22.12 Coulomb experimentally determined the surface charge density at different
points of two electrified globes while they were in contact. He initially considered two
conducting globes of the same radius insulated from the Earth. To determine the amount of
charge at different points on any given globe, he used his proof plane shown in Figure 3 on
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e

d
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d

b

b

A

A

(a) (b)

Figure 23.5: Two conducting globes of the same size, electrified, in contact and supported by
insulating supports I. Conducting disk e of the proof plane placed at 90◦ from the point of contact.
(a) Side view. (b) Top view.

page 335. Figure 23.5 illustrates placing the conducting disk e of the proof plane at a point
on one of the globes located at 90◦ from the point of contact between the electrified globes.

In Coulomb’s experiments we have two conducting globes with radii R1 and R2, with
the ratio between their radii given by R2/R1. They are in contact, electrified and insulated
from the Earth. In the fourth experiment, Section 22.13, we had R2/R1 = 1. In the fifth
experiment, Section 22.14, we had R2/R1 = 2. In the sixth experiment, Section 22.15, we
had R2/R1 = 4.

Coulomb measured the surface charge density (that is, charge per unit area) of a point on
the smaller globe located at a certain angular separation θ from the point of contact. That
is, he measured the surface density Dθ always on the smaller globe, Dθ being the amount of
charge per unit area as a function of the angle θ, where this angle is measured relative to
the point of contact. In particular, he made measurements at 30◦, 60◦, 90◦, and 180◦ from
the point of contact, Figure 23.6. In his calculations he normalized these measurements by
the surface charge density at a point on that same small globe located at 90◦ from the point
of contact.

C

I I

C´

30
o

60
o 90

o

180
o

Figure 23.6: Two conducting globes of different sizes in contact, electrified and insulated from the
ground. Coulomb compared the surface charge densities on the small globe at the points located
at 30◦, 60◦, 90◦, and 180◦ from the point of contact.
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The next Table compares Coulomb’s measurements presented in Section 22.16 with Pois-
son’s theoretical calculations made 20 years later.830 The last column of this Table shows the
percentage difference between the value Vc calculated by Poisson and the value Vm measured
by Coulomb, that is, [(Vc − Vm)/Vc] · 100%.

Ratio between Angular distance Ratio between the electric densities
the radii between the of the observed point and

observed point and the point located at 90◦

the contact point from the contact, that is, Dθ/D90◦

R2/R1 θ Observed Calculated Percentage
by Coulomb by Poisson difference

1 30◦ 1/4.80 = 0.21 1/5.857 = 0.171 −22.8%
1 60◦ 1.25 = 0.80 1/1.342 = 0.746 −7.2%
1 90◦ 1 1 0%
1 180◦ 1/0.95 = 1.05 1/0.877 = 1.14 +7.9%
2 60◦ 1/1.70 = 0.59 1/1.80 = 0.556 −6.1%
2 90◦ 1 1 0%
2 180◦ 1/0.75 = 1.33 1/0.741 = 1.35 +1.5%
4 90◦ 1 1 0%
4 180◦ 1/0.70 = 1.43 1/0.599 = 1.67 +14.4%

Once more there is a very good agreement between Coulomb’s experimental measure-
ments and Poisson’s theoretical calculations, mainly taking into account the extremely small
values of the electric forces acting on this experiment. Furthermore, no one before Coulomb
had tried to estimate these quantities. Precise theoretical calculations came only 20 years
after his measurements with the publication of Poisson’s work. See also the discussion pre-
sented in Section 13.5.

23.4 The Attractive Forces of Electrified Spherical Shells

Let F be the force between two point charges q1 and q2 separated by a distance x. Nowadays
this force F is written as

F = k
q1q2
x2

, (23.2)

where k is a constant of proportionality. In the International System of Units we have
k = 1/(4πε0), where ε0 = 8.85 × 10−12 F/m = 8.85 × 10−12 C/(V m) is a constant called
vacuum permittivity. In the CGS system we have k = 1 dimensionless.

A spherical shell of radius R evenly electrified with a total charge Q has a surface charge
density D given by

D =
Q

4πR2
. (23.3)

Following Newton in the Principia, we can calculate, according to Section 16.2 on
page 268, the force F exerted by this spherical shell evenly electrified on a point charge

830[Poisson, 1812b, pp. 76-80] and [Potier, 1884, p. 204].
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q1 located at a distance r1 from the center of the shell. This force is directed along the line
joining q1 to the center of the shell and is given by:

F =











0 , if r1 < R
kq1Q/(2R

2) = kq14πDR
2/(2R2) = 2πkq1D , if r1 = R

kq1Q/(r
2
1) = kq14πDR

2/(r21) = 4πkq1DR
2/(r21) , if r1 > R











. (23.4)

The force per unit charge is then given by

F

q1
=











0 , if r1 < R
2πkD , if r1 = R
4πkDR2/(r21) , if r1 > R











. (23.5)

In Section 22.19 of this Fifth Memoir, Coulomb mentions an electrified spherical shell
acting on an electrified point located at the surface or outside the shell. Let R be the radius
of the shell and r1 the distance of the test particle from the center of the shell. In this case
the action of the shell, according to Coulomb, is measured by











0 , if r1 < R
D , if r1 = R
2DR2/(r21) , if r1 > R











. (23.6)

By comparing Equations (23.5) and (23.6) we can see that Coulomb does not consider the
factor 2πk in his equations. For instance, the force per unit charge when particle q1 is located
on the surface should be given for 2πkD, instead of Coulomb’s expression D. Likewise, the
force per unit charge when particle q1 is located at a distance r1 > R from the center of the
shell should be given by 4πkDR2/r21, instead of Coulomb’s expression 2DR2/r21.

In any event, it can be said that these forces are proportional to the surface charge density
D of the spherical shell. Since the measures that Coulomb obtained in the First Part of this
work were only ratios of densities, it is irrelevant whether we consider the factor 2πk in all
expressions or if we neglect this constant factor.

In the Fifth Memoir Coulomb does not include this factor 2π, but it will appear in his
Sixth Memoir. This factor 2π will be included by Coulomb in his Sixth Memoir when he will
express the action of the spherical shell as given by (see footnote 849 on page 383, together
with Section 25.2 on page 446):











0 , if r1 < R
2πD , if r1 = R
4πDR2/(r21) , if r1 > R











. (23.7)

23.5 Experimental Method for Determining the Dis-

tribution of Charges of Two Electrified Globes

While They Are in Contact and After They Have

Been Separated

In the tenth experiment of Section 22.30 Coulomb placed two conducting globes C ′ and C
in contact while they were electrified and insulated from the Earth, Figure 23.7.
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aA´
A

C´ C

Figure 23.7: Two conducting globes with centers located at C ′ and C. The insulated globes touch
one another at point A.

Let R be the radius of the large globe and r the radius of the small globe. Coulomb
measured the surface charge density δ at point A′ at the end of the smaller globe while they
were in contact. He then separated the two electrified globes and measured the average
surface charge density D of the large globe. If this large globe is electrified with a total
charge Q, this surface density is given by D = Q/(4πR2). He then compared these two
charge densities.

In the next Table I present Coulomb’s experimental results compared with Poisson’s
theoretical calculations.831 The last column of this Table shows the percentage difference
between the value Vc calculated by Poisson and the value Vm measured by Coulomb, that is,
[(Vc − Vm)/Vc] · 100%.

R/r δ/D observed δ/D calculated Percentage
by Coulomb by Poisson difference

1 1.27 1.32 +3.8%
2 1.55 1.83 +15.3%
4 2.35 2.48 +5.2%
8 3.18 3.09 −2.9%
∞ > 4.00 4.27 < 6.3%

Once more there is a very good agreement between the values measured by Coulomb
and the theoretical values calculated with great precision by Poisson 20 years after these
experiments. See also the discussion presented in Section 13.5.

831[Poisson, 1812b, p. 66], [Potier, 1884, p. 219], [Gillmor, 1971a, p. 204] and [Heilbron, 1999, p. 497].
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Chapter 24

Sixth Memoir on Electricity:
Continuation of the Researches on the
Distribution of the Electric Fluid
Between Several Conducting Bodies.
Determination of the Electric Density
in the Different Points of the Surface
of These Bodies

Coulomb832

24.1 I

In our Fifth Memoir,833 of which this is a continuation, we tried to determine the manner
in which the electric fluid is shared between two globes of different diameters brought into
contact, and between three globes of the same diameter. At the same time we have deter-
mined by experiment, as well as by theory, the electric density834 of each point of the surface
of these globes when they are in contact. We are now going to seek:835

1. How electricity is distributed between any number of equal globes placed (in contact)
in such a manner that all centers are on a straight line.

2. How the electric fluid is distributed on the different parts of an electrified cylinder.

3. How it is distributed between a large globe and a line of small globes in contact with
this large globe.

832[Coulomb, 1791] with Portuguese translation in [Assis, 2022]. This work was presented in 1788 to the
French Academy of Sciences and published in 1791.
833This Memoir is translated in Chapter 22.
834That is, the amount of charge per unit area.
835Always assuming electrified conducting bodies in contact and insulated from the Earth.
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4. In what ratio the electric fluid is divided between a large globe and cylinders of different
diameters and of different lengths, brought successively into contact with the globe.

24.2 II. Determination of the Distribution of the Electric Fluid

of Six Equal Globes in Contact

I have formed a line of six globes two inches in diameter [5.4 cm], which can be separated
at will, one of which, C, Figure 1, is supported by a small shellac cylinder,836 and can be
placed either in the electric balance or in the row of globes.

b´´́

After having, according to the methods indicated in the Volume of 1787, pages 421 and
following,837 electrified the small paper disk at the end of the needle of the balance, I electrify
the six globes838 which are placed, Figure 1, on insulating supports:839 I then alternately
place the C globe first and second in line, and at each trial I present it in the balance to the
needle that I have taken care to bring back to the same distance from the center of globe
C: I then do the same operation by placing the globe [C] alternately first and the third in
the line; by these two operations, I determine the ratios between the quantities of electricity

836See footnote 468 on page 208.
837See [Coulomb, 1789]. This Memoir is translated in Chapter 22.
838The six globes are electrified with a charge of the same sign as the charge on the needle of the electric

balance.
839In the original: supports idio-électriques. See footnote 522 on page 229.
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which the first, the second and the third globe in the line contain.

24.2.1 First Experiment. Globe C Placed First in Line, Compared with

the Same Globe Placed Second in Line

In each test, when globe C, after having been removed from the line, was placed in the
balance, the needle was brought back, by the force of torsion [of the suspension wire], to 30
degrees from the center of globe C.840

First trial. Globe C placed in 2, or the second in line, and then presented in the [electric]
balance, repelled the needle, which was brought back to 30 degrees from the center of this
globe, by a force of torsion, everything included,841 of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44◦.

Second trial. Placed first in line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64◦.

Third trial. Placed second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40◦.

Fourth trial. Placed first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54◦.
Fifth trial. Placed second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34◦.

24.2.2 Second Experiment. Globe C Placed First in Line, Compared

with the Same Globe Placed Third in Line

First trial. Globe C placed third in line; the remainder as in the preceding experiment, the
force of torsion is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81◦.

Second trial. Placed first in line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111◦.

Third trial. Placed third . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61◦.

Fourth trial. Placed first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85◦.

Fifth trial. Placed third . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51◦.

24.3 III. Result of the Two Preceding Experiments

The five trials in each experiment were made at approximately equal time intervals, so that
by taking an average between the first and the third trial, for example, this average could be
compared with the second trial; the difference between the result given by the experiment
between the first and third test, arises from the loss of electricity which is occasioned in this
interval of time by the contact with the air, as we have already observed in the previous
Memoirs.

In the first experiment, by taking an average value between the first and the third test
compared to the second, it will be found that the quantity of electricity which the first globe
contains, is to that which the second globe contains

:: 64 : 42 or :: 1.52 : 1.00 .842

840Section 25.1 illustrates Coulomb’s experimental procedure.
841That is, taking into account the torsion of the needle attached to the lower part of the suspension wire

and also the torsion of the micrometer attached to the upper part of the suspension wire, see Section 25.1.
842Let Q1 and Q2 be the total amounts of electricity contained in the first and second globes, respectively,

where the first globe is the one at the far right of the row of six globes and the second globe is the one
immediately next this one. Coulomb found that:
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An average between the second and fourth test, compared to the third, will give this
ratio :: 1.47 : 1.00.

An average between the third and fifth test, compared to the fourth, will give this ratio
:: 1.46 : 1.00.

Thus, taking an average value between these three results, we will find that in our row
of six globes, the quantity of electricity of the first globe is to that of the second as 1.48 is
to 1.00.

A similar calculation between the first and the third globe, will give, according to the
tests of the second experiment, that the quantity of electricity which the first globe contains
in the line of the six globes, is to that which the third globe contains :: 1.56 : 1.00. So that
the mass of the electric fluid843 diminishes by nearly a third from the first to the second
globe, and only by a fifteenth from the second to the third.

24.4 IV. Application of the Theory to This Experiment

It must be remembered in all the Sections of this Memoir, theory requires:

1. That the electric fluid acts in inverse proportion to the square of the distances of its
parts.

2. That it is distributed on the surface of the bodies, but that it does not penetrate at
least in a sensible way into the interior of the bodies.

We have proved the first proposition in our First Memoir, Volume of 1785; the second
in the Fourth Memoir, printed in 1786.844 It can be confirmed by a new experiment which
appears decisive: here is what it consists of. We insulate a conducting body that we electrify;
we then make an envelope cut into two parts which leaves a little clearance between it and the
body.845 Whether or not this envelope has the same shape as the body has little importance
for the success of the experiment. If one electrifies the body, which is placed on an insulator,
and if one covers it with the two parts of the envelope, supported by two insulating rods, upon
withdrawing the two enveloping halves, we will find, by means of our small silk-suspension
electrometers, that all electricity of the body has passed to the envelopes and that the body
either retains none of it or retains only an imperceptible part.846

These two propositions being admitted, in order to determine by approximation the
average quantity of electricity which each globe contains in our row of six globes, I assume,

Q1

Q2
=

64

42
=

1.52

1.00
.

843In the original: la masse du fluide électrique. That is, the amount of electric charge contained in the
globe.
844These Memoirs are translated in Chapters 11 and 20, respectively.
845This envelope is made of a conducting material and must touch the electrified body inside it in at least

one point during the experiment.
846This experiment is sometimes referred to as the Cavendish hemisphere experiment. Although Henri

Cavendish (1731-1810) did a similar experiment in 1771, before Coulomb, his manuscripts were only pub-
lished by Maxwell in 1879, [Cavendish, 1879], [Gillmor, 1971a, pp. 206-210], [Blondel and Wolff, 2008a],
[Blondel and Wolff, 2009] and [Falconer, 2017]. Coulomb, therefore, was the first to make known this very
important experiment.
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for a first approximation, that the electric mass of each of the globes is spread uniformly
over the surface of these globes,847 but that it is different for each globe, so that the electric
action of all the globes on each point of contact is in equilibrium. In this supposition, the
action of a spherical surface, all the points of which have the same density D,848 acting on a
point of the surface whose electric mass would be µ, would be represented by 2πDµ, being
2π the ratio of the circumference to the radius.849

But if the same spherical surface whose radius is R, acts on a point distant from the
surface by the quantity a, the action on this point will be represented by

4πDµR2 : (R + a)2 .850

Thus, by calculating in our experiment, Figure 1, the action of the six globes on the
points of contact a and a′,851 we will have, by naming δ1 the average [surface] density of the
electric fluid on globe 1; δ2 the average density on globe 2; δ3 that on globe 3, the following
two equations:852

First equation, equilibrium at [point] a:

δ1 = δ2 +
2δ3
32

+
2δ3
52

+
2δ2
72

+
2δ1
92

.

847That is, Coulomb is assuming that the total electric charge of each globe is evenly distributed over its
surface.
848D is the surface density of electricity, that is, the amount of charge per unit area.
849In the original, [Coulomb, 1791, p. 621]:

Dans cette supposition, l’action d’une surface sphérique, dont tous les points ont la même densité
D, agissant sur un point de la surface dont la masse électrique seroit µ, seroit représentée par ΠDµ;
Π étant le rapport de la circonférence au rayon.

Coulomb was one of the authors who during the 18th century defined Π or π as the ratio of the circum-
ference of a circle to its radius, that is, with Π = π = 6.28318.... To make Coulomb’s text intelligible to
the modern reader and following Potier’s procedure, [Potier, 1884, p. 233], Coulomb’s symbols Π or π were
replaced with 2π, emphasizing the modern definition of π as the ratio of the circumference to the diameter,
that is, with π = 3.14159... I present a discussion of this expression 2πDµ in Sections 23.4 and 25.2 on
pages 376 and 446, respectively.
850See Section 23.4 on page 376. See also footnotes 796 and 797.
851From Figure 1, point a is located in the contact between globe 1 of the right end and globe 2, point a′

is the point of contact between globes 2 and 3, while point a′′ is the point of contact between globe 3 and
globe C.
852These equations can be obtained using the results of Section 23.4 noting further that, by symmetry,

δ4 = δ3, δ5 = δ2 and δ6 = δ1, as shown in the Figure of this footnote in which point a is the point of contact
between globes 1 and 2, point a′ is the point of contact between globes 2 and 3, while point a′′ is the point
of contact between globes 3 and 4:

123456

a´´ a´ a

d1d1 d2d2 d3d3

That is, the force to the left exerted by globe 1 on a charge µ located at point a, contact between globes
1 and 2, is balanced by the force to the right exerted by globes 2 to 6 acting on the same charge µ.
On the other hand, the force to the left exerted by globes 1 and 2 on a charge µ located at point a′,

contact between globes 2 and 3, is balanced by the force to the right exerted by globes 3 to 6 acting on the
same charge µ.
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Second equation, equilibrium at a′:

2

32
δ1 = −δ2 + δ3 +

2δ3
32

+
2δ2
52

+
2δ1
72

,

which are reduced to,
first equation:

0.98δ1 = 1.04δ2 + 0.29δ3 ,

second equation:

0.18δ1 = −0.92δ2 + 1.22δ3 ;

from which we derive δ1 = 1.33δ2 and δ1 = 1.42δ3.
We found by experiment, δ1 = 1.48δ2 and δ2 = 1.56δ3; thus the experiment gives the

ratio of the average density of the electric fluid of the first globe to the two others, of a tenth
or so greater than the theory. We had already obtained this result in the previous Memoir,
for three equal globes placed in a straight line.853

It is easy to see to what the difference of the results between the calculation which we
have just given and the experiment is in large part due; in the preceding calculation we have
assumed that the electric density is uniformly spread over each globe; but in reality this
density is nil, or at least insensible at all the points of contact of the globes, as we have
proved, volume of 1787, page 437 and the following.854 In globe 2, Figure 1, as well as in all
the others, except the first and the last in the row, the electric density increases from the
point of contact to [point] d2, placed towards the top of the equator, where it is a maximum.
In the first and the last globe of the row, this density increases from the point of contact to
point b, the opposite pole:855 the dotted lines in our Figure give the approximate shape of
the curve of the densities.

If we now seek to determine the equilibrium at point a, assuming that all the mass of the
electric fluid of globe 2 is gathered at point d2 or at the equator,

856 and that [all the mass of
electric fluid] of globe 1 is an average quantity between that gathered at point d1 and that
gathered at point b; where 4πδr2 is the quantity of electric fluid spread over the surface of
each globe, 2π being the ratio of the circumference to the radius, the radius of the globe
being r, and δ the average [surface] density of the electric fluid, or that which would exist
if the electric fluid of each globe spread uniformly over the surface of this globe, we would
have

4πδ2
23/2

= 1.40π · δ2

for the action of the electric fluid of globe 2 on point a, assuming that all this fluid would be
concentrated at the equator; this action evaluated in the direction of the axis a1. The other

853See Sections 22.22 and 22.23.
854[Coulomb, 1789, page 437 and the following]. See Section 22.12.
855This point b mentioned by Coulomb was not represented in his original Figure. I indicated this point in

Figure 1.
The passage from here on to the end of this Section was not included in Potier’s reprint of Coulomb’s

works, [Potier, 1884].
856That is, Coulomb will assume that the entire electric charge of globe 2 is distributed along the equator

line of globe 2, with the equator plane being orthogonal to the line passing through the centers of the aligned
globes.
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globes distant from the point of contact on which the equilibrium of action is calculated,
may, without sensible error, be supposed to act as if the mass of their electric fluid were at
the center of each globe.

As for globe 1, whose action we want to obtain relatively to point a, its average density
being δ1, if the mass of its fluid were concentrated at the point of the equator d1, its action
would be equal to 1.40πδ1; if it were concentrated at point b, it would be 1.00πδ1: taking the
average between these two quantities, it will be 1.20πδ1. We can now form two equations, in
accord with this new supposition; the first, which expresses the equilibrium at point a, the
second, which expresses the equilibrium at point a′.

First equation:

0.60δ1 = 0.70δ2 + 0.22δ3 + 0.08δ3 + 0.04δ2 + 0.02δ1 ;

second equation:

0.22δ1 = −0.70δ2 + 0.70δ3 + 0.22δ3 + 0.08δ2 + 0.04δ1 ;

which reduced give
(

58

74
+

18

62

)

δ1 =
(

30

74
+

92

62

)

δ3 ,

from which δ3 = 1.75δ1, [while] experiment has given us δ3 = 1.56δ1. Thus, in accord with
our new assumption, calculation gives δ3 about one-eighth larger than the experiment: in our
first assumption of the electric fluid uniformly spread over each globe, we found δ3 = 1.42δ1;
but, as we have proved in our preceding Memoir, the electric fluid is distributed over the
surface of the globes, as an average shape of those following from our two suppositions, the
density being zero at the point of contact, and the mass of the fluid not wholly collected
at the equator; thus, the ratio given by experiment should be approximately an average
quantity between the results of the calculation of our two suppositions. We have, by the
first supposition of the fluid uniformly spread over the surface of each globe δ3 = 1.42δ1,
by the second supposition of the fluid concentrated at the equator δ3 = 1.75δ1, which gives
for the mean quantity δ3 = 1.58δ1: experiment gives 1.56. The correction indicated by the
calculation of this Section, will easily apply to all the theory of this Memoir.

24.5 V. Third Experiment. Of the Manner in Which the

Electric Fluid is Distributed Between Twelve Equal Globes

of Two Inches in Diameter, Placed in Contact on the

Same Line

The details into which we have entered in explaining the preceding experiment suffice, I
believe, to make clear the procedures which must be followed; so as not to unnecessarily
enlarge this Memoir, we will report only the results for all similar experiments. In a [straight]
line, formed by twelve globes 2 inches in diameter [5.4 cm], we found that the quantity of
electric fluid which the first globe contains, is to that which the second contains :: 1.50: 1.00;
by comparing the first globe with the sixth or with that in the middle, we have found that
the quantity of electric fluid which the first globe takes on, is to that which the sixth takes
on :: 1.70: 1.00.
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24.6 VI. Fourth Experiment. Distribution of the Electric

Fluid Between Twenty-four Globes 2 Inches in Diameter,

Placed in Contact on the Same Line

By always comparing by the same method the first globe with the second, I found that the
quantity of electricity which the first globe contained, was to that which the second contained
:: 1.56: 1.00; by comparing the first and the twelfth, or that of the middle, I found that the
quantity of electricity which the first globe of the line contained, was to that of the middle
globe :: 1.75: 1.00.

24.6.1 Result of the Last Two Experiments

It results from these two experiments that, whatever the number of globes placed in contact
on a straight line, the average density varies considerably from the first to the second globe,
but that it then varies very slowly from the second to that of the middle: in the fourth
experiment, we had a line formed by 24 globes. The average density from the first to the
second globe has diminished in the ratio of 1.56 to 1.00; but, from the second to the twelfth,
it only varied in the ratio of 1.75 to 1.56.857

If we want to apply the above methods of approximation here, we will first take the line
formed by twelve globes, by naming δ1 the average density of the first globe, δ2 that of the
second, δ3 that of the third, δ4 that of the fourth, etc. we will have for the first equation
which expresses the equilibrium at point a:

δ1 = δ2 +
2

32
δ3 +

2

52
δ4 +

2

72
δ5 +

2

92
δ6 +

2δ6
112

+
2δ5
132

+
2δ4
152

+
2δ3
172

+
2δ2
192

+
2δ1
212

.

But since the densities, from the second globe to that in the middle, vary slowly, since
moreover the coefficients decrease according to a very convergent series, as we move away
from δ2; we can, without great error, suppose δ3, δ4 = δ2;

858 then by summing the series,
we will have very approximately δ1 = 1.41δ2; a quantity smaller by about one tenth than
δ1 = 1.55δ2 which experiment has given as a difference produced, as we have explained,
Section 24.3, by the fluid condensed at the last globe at the extremity of the axis; whereas
in the others, it is at the equator that the maximum of condensation takes place.

To determine now the quantity of electricity which the sixth globe acquires, relatively to
the first, I form, according to the method of Section 24.4, a Table of five equations which
expresses the state of equilibrium at all points of contact.

Here are these five equations.
At point a:

−δ1 + δ2 +
2

32
δ3 +

2

52
δ4 +

2

72
δ5 +

2

92
δ6 +

2

112
δ6 +

2

132
δ5 +

2

152
δ4 +

2

172
δ3 +

2

192
δ2 +

2

212
δ1 = 0 .

At point a1:

− 2

32
δ1 − δ2 + δ3 +

2

32
δ4 +

2

52
δ5 +

2

72
δ6 +

2

92
δ6 +

2

112
δ5 +

2

132
δ4 +

2

152
δ3 +

2

172
δ2 +

2

192
δ1 = 0 .

857The passage from here on to the end of this Section was not included in Potier’s reprint of Coulomb’s
works, [Potier, 1884].
858That is δ3 = δ2 and δ4 = δ2. I believe that Coulomb will also assume δ5 = δ2 and δ6 = δ2 in order to

sum the series. A few paragraphs later he writes he can take the “intermediate densities as equal”.
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At point a2:

− 2

52
δ1 −

2

32
δ2 − δ3 + δ4 +

2

32
δ5 +

2

52
δ6 +

2

72
δ6 +

2

92
δ5 +

2

112
δ4 +

2

132
δ3 +

2

152
δ2 +

2

172
δ1 = 0 .

At point a3:

− 2

72
δ1 +

2

52
δ2 −

2

32
δ3 − δ4 + δ5 +

2

32
δ6 +

2

52
δ6 +

2

72
δ5 +

2

92
δ4 +

2

112
δ3 +

2

132
δ2 +

2

152
δ1 = 0 .

At point a4:

− 2

92
δ1 −

2

72
δ2 −

2

52
δ3 −

2

32
δ4 − δ5 + δ6 +

2

32
δ6 +

2

52
δ5 +

2

72
δ4 +

2

92
δ3 +

2

112
δ2 +

2

132
δ1 = 0 .

These five equations in terms of six unknowns being of the first degree, it is easy by
ordinary methods to reduce them to a single one, which will represent the ratio of the
average density of two globes taken at will in our line formed by 12 globes placed in contact;
but, as we do not need much greater precision here than that provided by experiment, we
will notice that the densities of the different globes do not vary considerably, except from
the first to the second globe; thus we can take the intermediate densities as equal, when
we introduce them into the calculation where they enter only as small fractions; thus, to
have the ratio of the density of one of the globes of the line with the first, it is necessary to
make sure to combine the equations, so that the coefficient of the density which we want to
evaluate, is much greater than the others; but, if I add together the five preceding equations,
I will have

0 = −1.38δ1 − 0.33δ2 − 0.07δ3 + 0.07δ4 + 0.33δ5 + 1.36δ6 + 0.38δ6 + 0.16δ5 + 0.10δ4

+ 0.07δ3 + 0.05δ2 + 0.04δ1 .

In this equation, we see that only the coefficients of δ1 and δ6 are considerable: we know
moreover that the density varies little, except from the first to the second globe; thus we
can suppose the average electric density, nearly the same in the terms whose coefficients are
fractions from the second to the sixth globe; it will result from this supposition 1.34δ1 =
2.16δ6, from which δ1 = 1.54δ6.

Experiment gave δ1 = 1.70δ6; so that the ratio of the quantity of the electric fluid of the
first globe is, relatively to that of the middle globe, about a tenth larger by experiment than
by calculation: a result consistent with everything we have found previously.

24.7 VII. Fifth Experiment. Distribution of the Electric

Fluid on the Surface of a Cylinder

To suspend the needle of the electric balance in this experiment, we used a wire of gilded
silver, whose force of torsion, under the same angle of torsion, was only a twentieth part
of that of the thinnest copper wire, numbered 12 in commerce, used in the previous four
experiments.

We placed, Figure 2, No. 3, a cylinder 2 inches in diameter [5.4 cm] and 30 inches in
length [81.2 cm], terminated by two hemispheres, on an insulating support.

387



This electrified cylinder was made to touch a small disk of gilded paper, supported
by a shellac thread which was then introduced into the [electric] balance according to the
procedures already indicated in our Fifth Memoir, volume of 1787, Plate 1, Figure 3.859 It
resulted from this experiment, by touching alternately a point taken in the middle of the
surface of the cylinder and a point taken at the end, that the density in the middle of the
cylinder was to that at the end, as 1.00 : 2.30.

By comparing a point in the middle of the cylinder with a point 2 inches from the end,
the [ratio of the] electric density in the middle of the cylinder to that at 2 inches from the
end was found to be 1.00 : 1.25.

By comparing the middle point with a point on the great circle of the hemisphere which
terminates the cylinder or at point e, at 1 inch from its end, the [ratio of] the densities was
found to be 1:00 : 1.80.

24.7.1 Result of This Experiment

It results from this experiment, that within the two last inches at the end of the cylinder,
the electric density is much more considerable than towards the middle of the cylinder; but
that it varies little from the middle of the cylinder to [a point located at] two inches from
its extremity.

24.8 VIII. Theory of the Distribution of the Electric Fluid on

the Surface of an Insulated Cylinder

When a body is charged with electric fluid, and this fluid is in equilibrium, it is necessary
that in dividing the body into two parts, and by calculating the action of these two parts on
any point, this action being evaluated in the same direction, there is equilibrium [between
the opposite actions]. Thus it suffices, to have the conditions of equilibrium of the electric
fluid on the surface of a cylinder, to calculate the conditions of equilibrium relative to the
axis of this cylinder.860

859This conducting disk of gilded paper suspended by an insulating shellac thread is a proof plane. See the
representation of the proof plane in Figure 3 of the Fifth Memoir, page 335.
860The passage from here on to the end of Section 24.9 was not included in Potier’s reprint of Coulomb’s

works, [Potier, 1884].
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24.8.1 First Example. Cylinder Two Inches in Diameter and Six Inches

in Length

The cylinder, Figure 2, No. 1, is 2 inches in diameter and 6 inches in length [5.414 and
16.242 cm, respectively].

It is divided at points 1 and 2 by planes perpendicular to the axis, into three equal
parts;861 it is terminated by a hemisphere at both ends. We assume that the average density
on the surface of part dae is δ1; that the one on the part degf is δ2: that of the part fgb will
be the same as that of dae.

But the action of the hemisphere kaL on point 1, in the direction a1, is 2πδ1(1− 1/
√
2),

the radius of the cylinder being unity,862 and 2π the ratio of the circumference to the radius;
the portion of the cylinder dkLe, whose length is equal to the radius, has for action on
point 1 in the direction a1, the quantity 2πδ1(1 − 1/

√
2): the action of the portion degf ,

which has 2 inches of length on the same point 1 in the opposite direction, is equal to
2πδ2(1 − 1/

√
5) = 1.10πδ2; the action of the portion fbg, on the same point 1, in the same

direction, can without perceptible error be calculated as if it were united in the middle of
2b or at 3 inches from point 1; thus its action on point 1 is very close to 0.44δ1, from which
results, to express the equilibrium at point 1 of all the actions evaluated along the direction
of the axis, the equation

0.59δ1 = 0.55δ2 + 0.22δ1 ,

from which results δ1 = 1.49δ2.

24.8.2 Second Example. Cylinder Two Inches in Diameter and Twelve
Inches in Length

If the cylinder, Figure 2, No. 2, was 12 inches long [32.5 cm] and ended in a hemisphere at
each end, to have an approximate value of the average density of its different parts, we would
divide it into 6 equal parts of 2 inches each in length, and we would seek the equilibrium
conditions in the direction of the axis for point 1 and for point 2.

861That is, it is divided into three parts of the same length, although their shapes are different.
862That is, radius = 1 inch = 2.707 cm.
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Let δ1 be the average density on the part of the surface that responds to [portion] a1;
δ2 the average density over the surface that responds to [portion] 12; δ3 on the surface that
answers to [portion] 23; we will have, according to what is explained in the previous Section,
the following two equations.

For the equilibrium at point 1, first equation:

0.59δ1 = 0.55δ2 + 0.22δ3 + 0.08δ3 + 0.04δ2 + 0.02δ1 .

For the equilibrium at point 2, second equation:

0.22δ1 = −0.55δ2 + 0.55δ3 + 0.22δ3 + 0.08δ2 + 0.04δ1 .

These two equations reduce to, first equation:

0.57δ1 = 0.59δ2 + 0.30δ3 ,

second equation:

0.18δ1 = −0.47δ2 + 0.77δ3 ,

from which results δ1 = 1.60δ3 and δ1 = 1.55δ2; slightly larger ratios, but still very close to
those we found, Sections 24.2 and 24.3, for six equal globes placed in contact on a straight
line. We feel indeed, according to the observations which we made, Section 24.4, in the
theory of the distribution of the electric fluid on six globes in contact and in straight line,
that the density being almost null at the points of contact of the globes and at the parts
which adjoin, the average distribution of the electric fluid on each globe must be nearly the
same as [the distribution] on a continuous cylinder which would be 12 inches in length, and
terminated by two hemispheres.

24.9 IX. Second Approximation Method to Determine by The-

ory, the Distribution of the Electric Fluid Along the Sur-

face of a Cylinder Terminated by Two Hemispheres

From the two examples which precede, and from the theory which we have given of the
distribution of the electric fluid on a [straight] line formed by twelve globes of 2 inches in
contact, it is easy, by dividing a cylinder into a number of parts each [with a length] equal to
its diameter, to determine the average density of each of these parts; but when the cylinder
has a great length, the following method is sufficient, and greatly simplifies the calculation.
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I take as an example a cylinder 30 inches long [81.2 cm] and 2 inches in diameter, Figure
2, No. 3.863 To have a first approximation, I will divide this cylinder into three unequal
parts; the first formed from the hemisphere ebf , whose density is δ1; the second, of the
cylindrical portion ee′ff ′, having 2 inches of length, whose density is δ2; the third from d′ to
a, extremity of the axis of the cylinder whose density is δ3. It is now necessary to calculate
the action of these three parts on points d and d′ in the direction of the axis. In this way we
will derive the two [following] approximate equations.

First equation for the equilibrium at point d:

δ1
2

= δ2

(

1− 1√
5

)

+ δ3

(

1√
5
− 1

29

)

.

Second equation for the equilibrium at point d′:

δ1
(

21
2

)2 = −δ2
(

1− 1√
5

)

+ δ3

(

1− 1

27

)

.

The derivation of these two equations is based on the fact that the action of the hemi-
spherical surface ebf , on point d, which is at its center, is equal to πδ1; and on the fact that
the action of a portion of the cylindrical surface, whose density D is uniform, acting in the
direction of the axis, is equal to

2πDr

(

1

(r2 + a2)1/2
− 1

(r2 + x2)1/2

)

,

in which a is the distance from the point where the cylinder begins, to the point on which it
acts; x is the distance from the point where the cylinder ends, to the point on which it acts;
r is the radius of the cylinder; 2π is the ratio of the circumference to the radius.864

Applying this formula to our example, we derive the two preceding equations, from which
results δ1 = 2.09δ3 and δ2 = 1.14δ3.

Thus, by this approximate calculation, we find that the average density of the electric
fluid on the surface of the hemisphere which terminates the cylinder, is twice the average
density on the surface of the cylinder. If we compare this result with the last experiment,
Section 24.7, we found by this experiment, that the density at the extremity of the axis of the
cylinder or at the pole of the hemisphere which terminates it, is to the density in the middle
of the cylinder :: 2.30 : 1.00; we also found, in the same Section, that the density on the
great circle of this hemisphere is to that in the middle of the cylinder :: 1.80 : 1.00. Thus,
taking an average between these two values, one of which represents the greatest density
of the hemisphere, and the other the smallest, this density decreasing from the pole of the
hemisphere to the equator, we will have the ratio of the average density of the hemisphere
to the average density on the cylinder, as [given by:]

2.30 + 1.80

2
: 1.00 :: 2.05 : 1.00 ,

863See page 388.
864In the original, [Coulomb, 1791, p. 633], Coulomb mentions here that π represents “le rapport de

la circonférence au rayon”, that is, the ratio of the circumference to the radius, a magnitude equal to
6.28318.... As I stated in footnote 849 and in Section 25.2, I am replacing Coulomb’s symbols Π or π with
2π, further emphasizing the modern definition of π as the ratio of the circumference to the diameter, that
is, π = 3.14159....
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[that is,] almost exactly the same quantity given to us by theory; which must be the case,
since the density varies very little from the middle of the cylinder to 2 or 3 inches from its
extremity. We will give in the rest of this Memoir approximate methods, to determine in a
sufficiently exact manner in practice, the laws of the variation of the electric density along
the surface of a cylinder.

24.10 X. Of the Manner in Which the Electric Fluid is Dis-

tributed Between a Certain Number of Equal Globes

Placed in Contact on the Same Line Terminated by a

Globe of a Larger Diameter

The experiments in this Section run like the previous ones; we put on insulators the row of
the small globes of 2 inches of diameter, as well as the globe of 8 inches [of diameter]. One of
these little globes is placed at different locations on the line, and alternately in the [electric]
balance.

24.11 XI. Sixth Experiment. Distribution of the Electric

Fluid Between Three globes in Contact, One Having 8

Inches in Diameter, and the Two Other 2 Inches in

Diameter

In following, Figure 3, in this experiment the procedures of the preceding Sections, I found
that by placing only two globes, 1 and 2, of 2 inches in diameter, the centers of which were
placed in [straight] line with that of globe C of 8 inches in diameter, the quantity of electricity
of globe 2, the farthest from the large globe, was to that of globe 1 in contact with globe C
:: 2.54: 1.00.

24.12 XII. Theory of This Experiment

If we analyze this experiment supposing,865 as in the preceding Sections, that the mass of
the electric fluid of each globe is spread uniformly over the surface of this globe; and if we
represent by D the average density of the electric fluid on the surface of the large globe C, by
R the radius of this globe; and if δ1 represents the density of the electric fluid of the surface

865The text of this entire Section was not included in Potier’s reprint of Coulomb’s works, [Potier, 1884].
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of the small globe r in contact with the large globe; and if δ2 represents the electric density
on the surface of globe 2, whose radius is r, we will have the following two equations:866

For the contact at point a, first equation:

D = δ1 + 0.22δ2 .

For the contact at point a1, second equation:

2DR2

(R + 2r)2
= −δ1 + δ2 .

And since in our experiment globe C has a diameter of 8 inches,867 and the two others only
2 inches, we will have, according to these two equations,

δ2 = 1.55D , δ1 = 0.67D and δ2 = 2.35δ1 .

We have just found by experiment δ2 = 2.54δ1, a quantity a little larger than that
found by theory; which ought to effectively take place, as we said before, by virtue of the
condensation of the electric fluid around point a′, extremity of the axis of the small globe
which terminates the row.

24.13 XIII. Seventh Experiment. One 8-Inch Globe, and

Four 2-Inch Globes in Contact

We put, Figure 3, four globes 2 inches in diameter, [namely,] 1, 2 , 3 , 4, in contact with
globe C, 8 inches in diameter, and we looked for the ratio of the quantities of electricity
taken up by a 2-inch globe placed successively at 1 and 4.868 By an average result between
six alternate observations, we found that by placing 4 small 2-inch globes in a row in contact
with globe C, the quantity of electric fluid taken up by a small 2-inch globe placed at the
end of the line at 4, was to that of globe 1, immediately in contact with the 8-inch globe C,
as 3.40 : 1.00.

866This situation is represented in the Figure of this footnote in which point a is the point of contact
between globes C and 1, while point a1 is the point of contact between globes 1 and 2:

1 2C

D

a a1

d1 d2

867By an oversight in the original text it appeared here “radius” instead of “diameter”. I have corrected
that error.
868This situation is represented in the Figure of this footnote in which point a is the point of contact

between globes C and 1, point a1 is the point of contact between globes 1 and 2, point a2 is the point of
contact between globes 2 and 3, while a3 is the point of contact between globes 3 and 4:
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24.14 XIV. Result and Theory of the Seventh Experiment

To calculate by theory the seventh experiment,869 where we put four 2-inch globes in contact
with an 8-inch globe, we will construct, according to the methods which we have already
explained, four equations which will express the state of equilibrium at points a, a1, a2 and
a3. As in the previous Section, let D be the average density of the electric fluid on the surface
of the large globe C, whose radius is R; δ1 the average density on the surface of globe 1; δ2
that on globe 2; δ3 that on globe 3; δ4 that on globe 4, as in our experiment R = 4r: we will
have the four [following] equations.

First equation. Equilibrium at point a gives:

D = δ1 + 0.22δ2 + 0.08δ3 + 0.04δ4 .

Second equation. Equilibrium at point a1 [gives:]

0.89D = −δ1 + δ2 + 0.22δ3 + 0.08δ4 .

Third equation. Equilibrium at point a2 [gives:]

0.50D = −0.22δ1 − δ2 + δ3 + 0.22δ4 .

Fourth equation. Equilibrium at point a3 [gives:]

0.32D = −0.08δ1 − 0.22δ2 − δ3 + δ4 .

To solve these four equations, add the first to the fourth, and the second to the third, we
will have;
first and fourth equations:

1.32D = 0.92δ1 − 0.92δ3 + 1.04δ4 ;

second and third equations:

1.39D = −1.22δ1 + 1.22δ3 + 0.30δ4 .

It is clear that in this operation, the coefficient of δ2 disappears in the two results, and
that in each equation, δ1 and δ3 have the same coefficient; thus, dividing the first result by
0.92, the second by 1.22 and adding one to the other, we will have870

1 32 4C

D

a a1 a2
a3

d1 d3d2 d4

869The text of this entire Section was not included in Potier’s reprint of Coulomb’s works, [Potier, 1884].
870In the original text this equation appeared as follows:

(

1.32

0.92
+

1.39

1.22

)

D =

(

1.04

0.92
+

0.30

1.22
δ4

)

.
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(

1.32

0.92
+

1.39

1.22

)

D =
(

1.04

0.92
+

0.30

1.22

)

δ4 ;

from which we obtain δ4 = 1.88D.
If we substitute this value of δ4 in the first three equations, and we continue the operation

to determine the values of δ3, δ2, δ1, we will find δ1 = 0.60D; δ2 = 1.06D; δ3 = 1.28D;
δ4 = 1.88D; from which results

δ4
δ1

=
1.88

0.60
= 3.13 ;

but we found by experiment δ4 = 3.40δ1; thus the ratio given by our theory is, as we see, less
than about a tenth of that provided by experiment; which is in conformity with all that we
have found previously, and with the reflections from which we saw that it would be necessary
to correct our theory.

24.14.1 Remark

If we add together the densities of the four small globes, and take a quarter of this sum, we
will have the average density of the four small globes, assuming that the sum of the densities
is evenly distributed over the four globes. This average density would be equal to

0.60D + 1.06D + 1.28D + 1.88D

4
= 1.205D .

24.15 XV. Eighth Experiment

To confirm the above theory, I tried to determine in a direct way by experiment, the ratio
between the [electric] density of the large globe C of 8 inches in diameter, and that of the
small globe 4 which terminates the line in the previous assumption of five globes in contact.
Here is the procedure I followed in this comparison.

I first determined, as in the previous experiment, the density of globe 4 placed at the
end of the line; I then separated globe C from the row of the four small globes, without
destroying its electricity; and I made the large globe touch globe 4 which I then presented
in the electric balance, to determine in a direct way the quantity of electricity that this
globe 4 acquired by an immediate contact with the large globe. According to this process,
I found that globe 4 placed at the end of the line of small globes, acquired a quantity of
electricity which was to that which it acquired when we put it alone in immediate contact
with the insulated globe C, :: 1.60 : 1.00. We find this ratio by theory :: 1.88 : 1.00;
but the theory, as we have seen in the supposition of the uniform density on the surface of
each globe, necessarily gives too small (a value), and according to the reflections and the
experiments which precede, the corrected theory would have given very approximately this
ratio as :: 2.00 : 1.00. To evaluate the result of the experiment, we must now remember, as
we have seen in the previous Memoir, that a 2-inch globe placed in contact with an 8-inch
globe takes on an average density, larger than that of the 8-inch globe, in the ratio of 1.30
to 1.00. Thus, to have the true ratio between the density of globe 4 placed last in the line,
and that of globe C,871 it is necessary to multiply 1.60D, which represents the density that

871In the original text, C′ appeared here instead of C.
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globe 4 has taken on, in touching globe C, by 1.30, and we will find by experiment, between
the average density of the small globe 4 placed the last in the line, and between the average
density of the surface of the globe of 8 inches, the ratio as 2.08 : 1.00, almost exactly the
same as just given by the corrected theory.

24.16 XVI. Ninth Experiment. A Globe 8 Inches in

Diameter, Placed in Contact with a Line of 24 Small

Globes, Each 2 Inches in Diameter, Forming a Length

of 48 Inches

In this experiment, the different globes which form the line are compared to the twenty-
fourth, that is to say, to the one which ends the line.

Twenty-fourth compared to the twenty-third.

By comparing the last to the penultimate, that is, the twenty-fourth globe of 2 inches to
the twenty-third, it was found by an average between six tests, that the quantity of electricity,
or the average density of the electric fluid on the surface of the twenty-fourth globe, was to
that of the twenty-third, as 1.49 : 1.00.

Twenty-fourth compared to the twelfth.

By comparing the twenty-fourth globe with the twelfth or with that placed in the middle
of the line, the average density of the twenty-fourth to that of the twelfth globe was found
to be 1.70 : 1.00.

Twenty-fourth compared to the second.

By comparing the twenty-fourth with the second, it was found that the average quantity
of electricity of the twenty-fourth globe was to that of the second, as 2.10 : 1.00.872

Twenty-fourth compared to the first.

By comparing the twenty-fourth globe with that immediately in contact with the 8-inch
globe, the average amount of electricity of the twenty-fourth globe with that of the first was
found to be 3.72 : 1.00.

The twenty-fourth globe compared to the 8-inch globe.

Finally, comparing by the corrected method, explained in the preceding Section, the
average density of the electricity of the twenty-fourth 2-inch globe with that of the 8-inch
globe, we found this ratio, to be 2.16 : 1.00, which differs, as we see, only very little from
that which we had found in the preceding Section, for the fourth globe which terminated a
line formed by 4 globes of 2 inches in contact with an 8-inch globe.

872In the original text, Coulomb wrote 2.10 : 10.
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24.17 XVII. Application of Analysis to the Preceding Exper-

iments

I have formed a Table of 24 equations which represent,873 according to the method of the
preceding Sections, the state of equilibrium at all the points of contact: this Table will be
found at the end of this Memoir.874 The reduction of the 24 equations to [an equation
with] two unknowns, requires only patience, and presents no difficulty; but as the length
of the calculation could tire most physicists, it is easy to construct different methods of
approximation to shorten it; here are a few.

873The text of this entire Section was not included in Potier’s reprint of Coulomb’s works, [Potier, 1884].
874We included this Table at this point of the text. Moreover, to facilitate the visualization of this Table,

its 24 equations are presented separately in Section 25.3, page 447.
At the top left of the first line of this Table we have the following:
“Action of the large globe on the different points of contact. The average density of the large globe is D;

its radius R, the radius of the small globe is r.”
At the top right of the first line of this Table we have the following:
“Table of 24 equations intended to determine the average electric density of 24 small globes, the centers

placed in a straight line, the small globe 1 in contact with a large globe. In this Table, the numbers at the top
of each column indicate the position of the small globe; so that, for example, at the eighth vertical column,
third horizontal line, we find the quantity 2

112 which is supposed to be multiplied by δ8, or by the average
density of the eighth small globe, counting from the large globe.”
In the second row of the first column we have “First equation. D =”. In the third row of the first column

we have “Second equation. 2DR2

(R+2r)2 =”. Etc.
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If we take the twenty-fourth equation from our Table, we will notice, from experiment
and from the preceding theoretical observations, that the difference in the average electric
density between the twenty-third and the twenty-fourth globe, is significant, but that the
variation in density of the globes then decreases very slowly from the twenty-third to the
twenty-second globe, and consecutively from the twenty-second to the twenty-first; it will be
noticed moreover that in this twenty-fourth equation, the coefficients decrease very rapidly.
Thus we can without great error suppose in this twenty-fourth equation, that the average
density of all the small globes, from the twenty-third to the first, is equal, and from this will
result875

δ24 = δ23

(

1 +
2

32
+

2

52
+

2

72
+ etc. +

2

452

)

+ 0.013D .

875Using also R = 4r such that

2DR2

(R + 46r)2
=

2D · 42
502

= 0.0128D ≈ 0.013D .
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As D is smaller than δ23, we can neglect 0.013D and we will have:876

δ24 = δ23

(

1 +
2

32
+

2

52
+ etc. +

2

452

)

= 1.44δ23 ,

[while] experiment has given us in the preceding Section, δ24 = 1.49δ23, which differs, as we
see, very little from the result provided by the theory; but it must be remarked, that here
the errors of the supposition on which we base our calculations, mutually compensate each
other; we make the average density of the twenty-fourth globe smaller than it really is, as
we have seen Section 24.4, but we also make the density of the twenty-third globe too small,
since the same density is assumed from the twenty third to the first globe, instead of always
decreasing.

If we want to obtain in an approximate way the values of the densities δ1δ2δ3 relatively
to D, we will assume in the first four equations, that the densities are equal from δ4 to δ24,
and in this case the first four equations of the Table will reduce to, Figure 3:

876[Note by Coulomb] To have in an approximate manner the value of this very convergent series, we can
make use of a known method, very simple, sufficient in practice.
We see that the consecutive terms having the same numerator, the denominators follow the progression of

the square of the odd numbers; thus, if we take one of the terms of the progression at the distance m from
another term, such as, for example, that 1/72, this sum integrated as forming an ordinary curved line, would
give for its differential 2dm/(7 + 2m)2, and for the integral k − 1

7+2m ; where k = 1/7, because this quantity
must vanish when m = 0. Thus, if the consecutive terms of the series differed little from each other, this
integral would represent quite exactly the sum of the series. But it should be noted, to correct this value,
that, if, Figure 4, c1, c2, etc., cm, represent the curve that we have just integrated, whose base 1m is divided
into parts equal to unity; and if we build on the divisions of this base, each term of the series, these terms
will be represented by the parallelograms 12c1b1, 23c2b2, etc.; thus each term of the series will differ from
the corresponding term in the differential of the surface of the curve of a small triangle c1b1c2; and if each
element c1c2, c2c3, etc. can be taken for a straight line, it is easy to see that the sum of the series differs
from the integral of the curve, by an amount equal to the sum of all the small triangles c1b1c2, c2b2c3, etc.
plus the last term of the series, represented in the Figure by the right-angled parallelogram m(m+1) · cmbm.

But the sum of these small triangles, plus half of the last term or the small parallelogram cmbm ·m(m+1),
is equal to half of the first term or of the rectangular parallelogram c1b112; thus the sum of the terms which
form the series, is equal to the integral of the curve, plus half of the first term, plus half of the last; so in
our example:

1 +
2

32
+

2

52
+

2

72
+ etc.+

2

452
= 1 +

2

32
+

2

52
+

(

1

7
− 1

45

)

+
1

72
+

1

452
= 1.44 .
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For the contact point a:

D = δ1 + 0.22δ2 + 0.08δ3 + 0.14δ4 .

For the contact point a1:

0.89D = −δ1 + δ2 + 0.22δ3 + 0.22δ4 .

For the contact point a2:

0.50D = −0.22δ1 − δ2 + δ3 + 0.44δ4 .

For the contact point a3:

0.32D = −0.08δ1 − 0.22δ2 − δ3 + 1.44δ4 .

Let us do for these four equations the same operations as we did for Section 24.15, and
we will have

δ1 = 0.54D; δ2 = 0.92D; δ3 = 1.04D; δ4 = 1.14D .

The values δ2, δ3 and δ4 which differ little from each other, suggest that, without much error,
we could assume equal densities from δ4 up to δ24, since the coefficients decrease according
to a very convergent series; it is however clear that δ4, found by this operation, is a little too
large, since the densities increase877 from δ4 to δ24, while according to our supposition they
are equal.

The densities δ1, δ2, δ3, δ4, being determined relative to D, according to the preceding
equations, if we substitute their values in the fifth, sixth, seventh and eighth equations of
our Table, and suppose in these four equations all the other densities equal [to one another],
from δ8 to δ24, we will be able, by following the same process, to determine, by means of
these four new equations, the approximate densities of δ5, δ6, δ7, δ8; we shall then succeed,
by the same method, in determining by approximation the values of δ9, δ10, δ11, δ12, etc. If
in accord with these values thus determined, we wanted to obtain values of δ1, δ2, δ3, δ4,
to a better approximation than that obtained by the first operation, we would substitute in
the first four equations, the values which we would have found for δ5, δ6, δ7, etc. and the
first four equations combined together, would then give us in a very approximate manner
the values of δ1, δ2, δ3, etc., taking care to introduce into them the corrections indicated at
the beginning of this Memoir.

24.18 XVIII. Of the Manner in Which the Electric Fluid is

Distributed Between a Globe and Cylinders of Different

Lengths, but of the Same Diameter

24.18.1 Tenth Experiment

We electrified a globe 8 inches in diameter [21.7 cm], and brought it into contact with a ball 9
lines in diameter [2.0 cm], insulated and supported by a shellac thread which we introduced
as usual into the [electric] balance; the needle was driven out at 28 degrees, with a force of
torsion, all included,878 of 154 degrees.

877For a lapse in the original text it appeared here “decrease” instead of “increase”. I fixed this error.
878That is, taking into account the torsion of the needle attached to the bottom of the suspension wire and

also the torsion of the micrometer attached to the top of the suspension wire.
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This 8-inch globe was immediately touched by a cylinder 2 inches in diameter [5.4 cm]
and 30 inches long [81.2 cm], and on withdrawing the cylinder, the globe was touched by the
small ball (measuring) 9 lines in diameter which has been introduced again into the balance;
the needle was driven the same distance as the first time with a force, all included, of 68
degrees.

24.19 XIX. Result of This Experiment

The 8-inch globe before the contact of the cylinder, has a quantity of electricity which we
find represented by 154 degrees; but it must be remarked that in the [time] interval of the
observations, the quantity of electricity diminished by one fortieth by contact with the air;
thus to compare the first observation with the second, it is necessary to reduce the quantity
of electricity of the first observation to 150 degrees. But we find that by the contact of the
cylinder these 150 degrees are reduced to 68 degrees; thus, by contact, the cylinder has taken
82 degrees of the electric mass of the globe, and has left it with only 68 degrees, so that the
quantity of the electric fluid of the cylinder to that of the globe, is after this division, :: 82 :
68, [that is,] :: 1.21 : 1.00.

To obtain now the ratio of the average densities of the electric fluid spread on the surface
of the cylinder to the density of the electric fluid on the surface of the globe, it will be
noticed that the globe being 8 inches in diameter, and the cylinder 2 inches in diameter and
30 inches in length, the surface of the cylinder is to that of the globe, :: 60 : 64; thus the
average densities of the electric fluid spread only on the surface of the bodies, being equal
to the quantity of this fluid divided by the surface, the average density of this fluid on the
surface of the cylinder, will be to that on the surface of the globe,

::
1.21

60
:
1.00

64
,

[that is,] :: 1.29 : 1.00.
Taking the mean of many other experiments, we obtain this ratio :: 1.30 : 1.00.

24.20 XX. Eleventh Experiment

We have determined by the same method the quantity of electricity taken by a cylinder
which was only half or even a third of the length of the first; and it was found, by following
the methods of the preceding experiment, that the mean density of a cylinder 15 inches [40.6
cm], and even ten inches in length [27.1 cm], was to the mean density of the same fluid on
the 8-inch globe, in approximately the same ratio as we have just found for the 8-inch globe
when it shares its electric fluid with a cylinder 30 inches in length.

It is only necessary to note that, when the globe is very large relative to the cylinder, and
this cylinder is very short in length, then the average density of the small cylinder, relative
to that of the globe, will be much less than when the cylinder will have a great length; thus,
for example, when I placed a small cylinder 5 or 6 lines in length [1.13 to 1.36 cm] and 2
lines in diameter [0.45 cm] in contact with an 8 inch globe, the average density of the electric
fluid on the surface of this cylinder was to that of the globe approximately in the ratio of 2
to 1; but if I put a cylinder 2 lines in diameter and more than 6 inches in length [16.2 cm] in
contact with this same globe, the average density of the cylinder was to that of the 8-inch
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globe, approximately :: 8 : 1 We will see in what follows that the theory agrees with this
result.

24.21 XXI. Remark

It is easy to perceive that the theory ought to give approximately the results which have been
furnished to us by the experiments which precede; for, if we suppose that we successively
put our 8-inch globe in contact with a 30-inch cylinder, and then with a 15-inch cylinder, by
electrifying this globe each time, so that after the contact with the two cylinders, it preserves
in both cases the same quantity of electricity, it will be necessary, since there is equilibrium,
that the quantity of electricity and its distribution on the cylinder of 15 inches, are such,
that its action on the point of contact with the globe, be the same [action] as that of the
30-inch cylinder; but as the action is inversely proportional to the square of the distances in
the 30-inch cylinder, all the parts placed beyond 15 inches are at a sufficiently considerable
distance from the point of contact, so that their action is only a very small quantity, relative
to the action of the first 15 inches near the contact. Thus, to preserve equilibrium in the
two suppositions, the quantity of the electric fluid of the large globe being supposed the
same, it is necessary that the fluid over the first 15 inches produce, in both cases, nearly the
same action; thus, the electric fluid there must be in approximately the same quantity, and
distributed nearly in the same way. Consequently, the ratio of the average density between
the globe and the cylinders must be nearly the same in the two cases.

24.22 XXII. Of the Manner in which the Electric Fluid is

Divided Between an Electrified Globe and Cylinders of

Different Diameters, but of the Same Length

As the experiments intended for this Section are carried out by exactly the same methods
as those which precede, I will report here only the results.

The globe, 8 inches in diameter, placed on insulating supports, being electrified, this
globe was touched by three different cylinders thirty inches in length.

The first cylinder is 2 inches in diameter [5.414 cm]; the second cylinder is 1 inch in
diameter [2.707 cm]; the third cylinder is only 2 lines in diameter [0.452 cm].

We first determine the quantity of electricity on the globe before it has been touched by
a cylinder; we then determine the quantity of electricity after it has been touched by this
cylinder; the difference of these two quantities of electricity, gives that which the cylinder
takes up in contact, which, compared with that which remains in the globe, gives the ratio
between the quantity of electricity of the globe and the average quantity of electricity of the
cylinder after contact: but as the electric fluid is distributed, as we have proved, only on the
surface of bodies, we will have the density of this fluid, by dividing the quantity [of electric
fluid] by the surface of the body. By following this method of reduction, it has resulted
from many experiments, that the average density on the surface of an 8-inch globe being
represented by the number 1.00.

That of a cylinder two inches in diameter and 30 inches in length would be represented
by 1.30.

That of a cylinder one inch in diameter by 2.00.
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That of a cylinder 2 lines in diameter by 9.00.
In these results, the cylinder 2 lines in diameter having only the twelfth part of the

diameter of the first, the average density of the electric fluid which covers the surface is 7
to 8 times greater than that of the cylinder two inches in diameter; whence it follows that
this increase in density does not exactly follow the ratio of the diameters of the cylinders,
but a smaller ratio. In practice, it seemed to me that one would have in a sufficiently exact
manner the densities of different cylinders, put in contact with a globe whose electric density
would be a constant quantity, supposing them to be in inverse ratio of the power 4/5 of the
diameter of the cylinders; power which varies and seems to approach unity, when we compare
cylinders whose diameter is very small relative to that of the globe, and which is smaller
than unity, as the diameters of the cylinder increase relatively to that of the globe. We have
just found that the electric density of a globe whose diameter is 4 times greater than that of
a cylinder being represented by D, the average density of the cylinder is equal to 1.30D; but
we find by experiments analogous to those of which we have just reported the result, that
when the diameter of the globe is only twice as large as that of the cylinder, the average
density of the cylinder will be equal to 0.85D: if finally the diameter of the globe is equal to
that of the cylinder, we will find the average electric density of the cylinder equal to 0.60D.

24.23 XXIII. First Remark

Reasoning, independently of any calculation, suggests the preceding result; that is, according
to this reasoning, we perceive that the average density of two cylinders of different diameters,
should not follow exactly the inverse [ratio] of the diameters, but a ratio a little smaller.

Let us take two cylinders equal in length, whose diameters are [to one another] as 2 :
1, and put them successively in contact with an electrified globe; suppose that the original
quantity of electricity of this globe was such that after contact it retained in both cases the
same quantity of electricity: if one divides the cylinders into a great number of parts equal
in length, then in order that equilibrium holds at the points of contact of the globe and the
cylinders, it is necessary that each corresponding part of the same length in the two cylinders
experience the same electric force in order that equilibrium exists with the globe since the
action of the globe is the same in the two cases. But it should be noted that the two cylinders
being in contact with the globe at the extremity of their axes, the electric fluid spread over
the surface of the two cylinders will act, in the parts which border the globe, more directly
on the point of the axis in contact with the globe in a cylinder of a small diameter, than in a
cylinder of a large diameter; thus it will not be necessary for equilibrium, [to have] precisely
the same quantity of electric fluid on the surface of a cylinder of a small diameter, as on the
surface of a cylinder of a larger diameter; thus the density on the surface of the globe being
supposed the same after the contact of the two cylinders, the average density of the electric
fluid on the surface of the small cylinder, will not be to that of a larger cylinder exactly in
inverse ratio of the diameter of the cylinders, and the variation of this ratio will be all the
greater, as the diameter of the cylinder will be greater relatively to that of the globe.

24.24 XXIV. Second Remark

A very interesting observation presents itself here, it is that of the action of points, or cylin-
ders of a very small diameter applied at their extremity to an electrified body. Experiment
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teaches that a body thus equipped with a point rapidly loses the greater part of its electricity.
The above results explain this phenomenon.

We find, in fact, by experiment, that a cylinder two lines in diameter and 30 inches in
length, placed in contact with an 8-inch globe, is surrounded by an electric fluid whose aver-
age density is 9 times greater than that of the globe. But we have seen before, Section 24.7,
fourth experiment, that when a cylinder is electrified and terminated by a hemisphere of the
same diameter as the cylinder, the density of the electric fluid at the end of the axis of the
cylinder was to that on the middle of the cylinder, :: 2.30 : 1.00. This ratio should even be
greater, as reasoning and experiment indicate, when this cylinder is very long and one of its
extremities is in contact with a large globe; thus supposing the cylinder 2 lines in diameter,
rounded at its extremity into a hemisphere, the electric density at the extremity of the axis
of this cylinder, would be to that on the surface of the globe, 8 inches, as nine times 2.30 is
to 1.00, [that is,] as 20.7 is to 1.0: but as air is a body of imperfect insulating capacity,879

whose moving parts only resist the communication and penetration of the electric fluid as
long as it is only brought to a very small degree of density,880 it results that by touching the
end of our cylinder of 2 lines in diameter, with the globe of 8 inches charged with electricity,
the electric fluid must escape by the end of the cylinder more rapidly, as the electric density
strengthens; and this electric density being still very great at the extremity of the cylinder,
while it will be almost imperceptible on the surface of the globe, the globe must be stripped
very quickly of almost all its electricity.881 This in no way contradicts the law which we
found in our Third Memoir, which gave us the successive decrease of the density of the small
globes proportional to the density,882 because, as we said at the time, this law takes place

879That is, as the air is an imperfect insulator.
880That is, to the extent that electricity or electric charge has a very small density.
881Coulomb is trying to explain the power of points on electrified bodies. The modern explanation of the

electric discharge through the ends of electrified conductors is more complex. This high surface charge density
that occurs at the ends of the conductors causes, in the vicinity of these ends, an ionization of the air. It is
these charges produced by the ionization of the air that are set in motion. It should be emphasized here that
the electric discharges in the air are not due to the stripping of electrons from the electrodes, as is sometimes
erroneously claimed. For electrons to be emitted from metallic surfaces kept at low temperatures, forces per
unit charge of the order of 108 V/m are required. This force per unit charge is much greater than the value of
3× 106 V/m needed to ionize air at atmospheric pressure, when electric discharge occurs. That is, the force
per unit charge needed to ionize air is much smaller than the force per unit charge needed to remove electrons
from cold electrodes. More details on the power or action of points can be found in Section B.9 (Discovery of
the Power of Points) of the book The Experimental and Historical Foundations of Electricity, [Assis, 2010b],
[Assis, 2010a], [Assis, 2011], [Assis, 2015b] and [Assis, 2017]; together with Chapter 9 (The Power of Points)
and Section 11.7 (Gray, Franklin, the Power of Points and the Electric Nature of Lightning) of Volume 2 of
the same book, [Assis, 2018b], [Assis, 2018a] and [Assis, 2019]. See also [Gray, 1732, p. 42] with Portuguese
translation in [Boss et al., 2012, Chapter 7], [Savelyev, 1989, p. 249], [Ferreira and Maury, 1991, pp. 60-62],
[Ferreira, s da, pp. 39-40], [Gaspar, 2003, pp. 239-243], [Blondel and Wolff, 2008b], [Laburú et al., 2008],
[Silveira, 2010], [Silveira, 2011], [Blondel and Wolff, 2011d], [Silveira, 2016] and [Silveira, 2018].
882Let a sphere of radius r be electrified in time t with a charge q. In the Third Memoir, translated in

Chapter 17, Coulomb studied the charge leakage of this sphere as a function of time when placed in the air.
He found the following equation (see also Chapter 19):

dδ

δ
= −mdt , (24.1)

where δ can represent the value of the charge q or else the electric surface density of the sphere, q/(4πr2),
with m being a positive constant. That is, the variation of δ as a function of time is proportional to δ, as
mentioned here by Coulomb. The integration of this equation leads to an exponential decrease of δ as a
function of time t.
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only when the electric density is insignificant.

24.25 XXV. Of the Manner in Which the Electric Fluid is

Divided Between Globes of Different Diameters, and the

Same Cylinder

By following the same methods as in the preceding Sections in these experiments and in
their reduction, it will be found that, when the globes are of a diameter much larger than
that of the cylinder, as for example eight times and beyond, the electric densities of the
different globes in contact with the cylinder being supposed equal to the same quantity D,
the densities of the electric fluid which will envelop the cylinder will be like the diameter
of the globes; so, for example, that if we take our 8-inch globe in contact with a one-inch
cylinder, we saw in Section 24.12, that the density of the globe being D, that of the cylinder
was about 2D: but if instead of an 8-inch globe we put in contact with the same cylinder
a globe whose diameter would be 24 inches, and whose density of the electric fluid spread
over the surface of this globe, would be, as in the first case, equal to D, the average electric
density of the electric fluid which would surround the cylinder, would be approximately equal
to 6D.

24.26 XXVI. Result of the Previous Experiments

If, according to the preceding experiments, we want to obtain the ratio between the electric
density of the fluid spread over the surface of a globe and that of a cylinder of any diameter
in contact at its extremity with this globe, it will suffice to observe that since for the same
globe and different cylinders, according to Section 24.22, the electric densities of the different
cylinders will be in inverse ratio of the power 4/5 of the diameters of the cylinder; power
which comes very close to unity, when the globe has a diameter much larger than that of
the cylinder, for different globes and the same cylinder, if the diameter of the globes is
much larger than that of the cylinder, the density of the cylinder will follow the ratio of the
diameter of the globes: assuming D the density of the globe, R its radius, δ the average
density of the cylinder, r its radius, we will generally have

δ =
mDR

r4/5
,

or δ = mDR/r when R is much larger than r. In this equation, m is a constant coefficient,
which can easily be determined by experiment.

If indeed we observe that when we put; Section 24.22,883 a globe 4 inches in radius in
contact with a cylinder 30 inches in length and 2 lines in diameter, we had for the average
density of the electric fluid which surrounds the cylinder δ = 9D; we will see that in this
example our equation δ = mDR/r, by substituting the number 48 instead of R/r, will give
δ = 48mD = 9D; from which results m = 9/48.

883For a lapse in the original text we have here Section 33 instead of 22.
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24.27 XXVII. Application of This Result to the Electric Kite

When in stormy weather we raise a kite, the string884 of which is conductive or braided with
a metal wire, we know that at the moment of the passage of a cloud charged with electric
fluid in the region where the kite is, if the lower end of the string is insulated, or attached to
an insulating body, the string of the kite throws electric sparks in all directions, and these
sparks carry with the greatest violence and the greatest danger to all conducting bodies
which are close to this string: it is easy to see that this phenomenon results necessarily from
the experiments which precede and from the formula which we drew from it.885

Suppose, to serve as an example, that the cloud charged with electric fluid has the form
of a globe of a thousand feet in radius [345 m]; that the kite string has a radius of one line;886

that δ is the average density on the surface of the string: [in this case,] the equation

δ =
mDR

r

will give here887

δ =
9

48
1000 · 122D = 27000D .

But we have seen, Section 24.7, fourth experiment; that the electric density, at the extremity
of an electrified cylinder, terminated in a hemisphere, was to the average density of the
cylinder, :: 2.30 : 1.00. Thus the electric density at the end of the string, would be equal to
62000D, or sixty-two thousand times greater than the electric density of the fluid which is

884In the original: corde. This word can be translated as string, cord, rope, line or thread.
885This experiment is due to Benjamin Franklin, see footnote 80 on page 36. Coulomb here imagines a kite

attached to a conducting wire C with the lower end of the wire attached to an insulator I, as illustrated in
this footnote:

I

C

He will model the situation in which the kite is immersed in an electrified cloud as being analogous to
the situation in which a long, thin conducting cylinder is in contact at its upper end with a large electrified
conducting globe.
For a discussion of the electric kite and lightning rods, see Chapter 11 (Electric Discharges in Air) of Volume

2 of the book The Experimental and Historical Foundations of Electricity, [Assis, 2018b], [Assis, 2018a] and
[Assis, 2019], along with the references cited there.
8861 line = 0.226 cm. Coulomb is assuming the cloud to be a large conducting sphere in contact with the

string holding the kite, assuming this string to be a long, thin conducting cylinder insulated at its lower end.
887We have 1 foot = 12 inches = 144 lines = 122 lines. Therefore D/r = (1000 feet)/(1 line) = 1000 · 122.
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supposed to envelop the cloud. It must therefore necessarily happen, as it actually happens,
that the electric fluid condensed at this degree of density along the string of the kite, sparks
on all sides, especially towards the end of this string or towards its lower attachment, and
carries itself with violence at distances often of several feet to all conducting bodies which
are near it.

24.28 XXVIII. Theoretical Determination of the Density of

the Different Points and of the Average Density of a

Cylinder Brought into Contact at Its Extremity with a

Globe of a Larger Diameter than This Cylinder

24.28.1 Cylinders of Different Diameters and of the Same Length

The simplest approximate way to determine the ratio between the electric density of the
surface of the globe and that of the cylinder,888 when the cylinder is very long, is to divide
the whole length of the cylinder into parts equal to its diameter, and to look at each part as
a small globe of the same diameter, to seek, as we did before, Section 24.17, the conditions
of equilibrium at all the points of contact. Here are two other approximation methods.

24.29 XXIX. First Method. First Example. Cylinder 30

Inches Long, 2 Inches in Diameter, in Contact at Its

End with a Globe 8 Inches in Diameter

If I want to determine the mean density or the density of the electric fluid at the middle
of a cylinder 2 inches in diameter and 30 inches in length, in contact at its end with a
globe 8 inches in diameter, I will suppose this cylinder terminated by two hemispheres, and
divided into fifteen parts equal to the diameter of the cylinder; I will calculate the action at
each division, as if the line were formed of fifteen small globes, each 2 inches in diameter.
According to this supposition, the first fifteen equations of our Table889 would give us the
density of each small globe in the line: but if we want to obtain the approximate average
electric density, we must determine this density towards the middle of the cylinder or towards
the eighth globe. To simplify the calculation, we must observe that, according to our Table,
if we add together the first eight equations, the coefficient of δ8 will be greater than the
coefficient of the terms which are far from it; that, moreover, the variation of the density
from one globe to another towards the middle of the line is not significant. If, according to
these reflections, we combine the first eight equations together, we will have for all the terms
that follow δ7, the following series:890

888Sections 28 to 38 were not included in Potier’s reprint of Coulomb’s works, [Potier, 1884].
889See footnote 874 on page 397 for the case of 24 small globes in contact with one large globe. In the

current case of 15 small globes in contact with a large globe we would have an analogous Table with 15
equations, the terms of each equation going up to δ15.
890According to footnote 876 on page 399, Coulomb replaced the equation
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δ8

(

1 +
2

32
+

2

52
+

2

72
+ etc. +

2

152

)

= δ8

(

1.30 +
1

7
− 1

15
+

1

72
+

1

152

)

,

δ9

(

2

32
+

2

52
+

2

72
+ etc. +

2

172

)

= δ9

(

0.30 +
1

7
− 1

17
+

1

72
+

1

172

)

,

δ10

(

2

52
+

2

72
+ etc. +

2

192

)

= δ10

(

0.08 +
1

7
− 1

19
+

1
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+

1

192

)

,

δ11

(

2
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+ etc. +

2
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)

= δ11

(

1

7
− 1

21
+

1

72
+

1

212

)

,

δ12

(

2

92
+ etc. +

2

232

)

= δ12

(

1

9
− 1

23
+

1

92
+

1

232

)

,

δ13

(

2

112
+ etc. +

2

252

)

= δ13

(

1

11
− 1

25
+

1

112
+

1

252

)

,

δ14

(

2

132
+ etc. +

2

272

)

= δ14

(

1
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− 1
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+

1

132
+

1
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)

,

δ15

(

2

152
+ etc. +

2

292

)

= δ15

(

1

15
− 1

29
+

1

152
+

1

292

)

.

All the first terms of this equation represent the sum of the coefficients of the first eight
equations of the Table; the second term on the right represents each series which forms
these coefficients, summed according to the method which we explained in the Note of the
Section 24.15.891

As the variation of the density of the small globes which are close to globe δ8 is not
significant and the coefficients decrease rapidly as we move away from δ8, we can, by ap-
proximation, consider all densities from δ8 to δ15 equal to one another, which will give the
final equation for the sum of our series,

by

1

7
− 1

45
+

1

72
+

1

452
.

Here he will use the same approximation, that is, he will replace the following equation

2

m2
+

2

(m+ 2)2
+ ...+

2

n2

by

1

m
− 1

n
+

1

m2
+

1

n2
.

891See footnote 876 on page 399.
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δ8

(

1.68 +
3

7
+
∫ (

1

7
+

1

9
+ etc. +

1

15

)

−
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1

15
+

1
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+ etc. +
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)

+
3
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1
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1
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292

)

+
1

152

)

.

We will sum the series by approximation, either by taking average values, which we will
multiply by the number of terms, or by following, as we are going to do, the method that
we have given, in the Note of Section 24.15, which will give

∫ (

1

7
+

1

9
+ etc. +

1

15

)

=
1

2µ
log

(

15

7

)

+
1

14
+

1

30
,

where µ is the modulus of the logarithmic system:892 by the same method

(

1

15
+

1

17
+ etc. +

1

29

)

=
1

2µ
log

29

15
+

1

30
+

1

58
.

In addition, we will have

∫ (

1

72
+

1

92
+ etc. +

1

292

)

=
1

7
− 1

29
+

1

72
+

1

292
.

Thus, by combining all these values, and making µ equal to 0.434, module of the logarithmic
system of the ordinary tables, the sum of all the coefficients of the first eight equations of
our Table, from δ8 to δ15, will give 2.40δ8.

To complete the equation, you must add together all the terms which, in the first eight
equations, precede δ8, from δ7 to δ1. We will notice, by examining the Table, that if all the
densities were equal from δ7 up to δ1, all these terms would mutually cancel each other, the
positive coefficient of δ7 being equal to the negative coefficient of δ1, and so on alternately:
we will notice moreover, that except for the coefficients of δ7 and of δ1, the others are very
small; that moreover the variation of the density from one globe to another only increases
rapidly from the first globe whose density is δ1, to the second globe whose density is δ2. Thus
we can, without great error, suppose that all the terms between δ7 and δ1 mutually cancel
each other, and the very approximate value of the sum of all the terms which precede δ8 in
the first eight equations, will be represented by

(δ7 − δ1)
(

2

32
+

2

52
+ etc. +

2

132

)

= 0.40 (δ7 − δ1) ;

but, from the above observations, δ7 can be taken for δ8. We found, Section 24.14, by
approximation, δ1 = 0.52D.

Thus, by taking the sum of the first eight equations of our Table, we will have in an
approximate way the equation

D

(

1 +
2R2

(R + 2r)2
+

2R2

(R + 4r)2
+ etc. +

2R2

(R + 14r)2

)

+ 0.21D = 2.80δ8 .

892See footnote 659 on page 288.
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As in our experiments and in the assumption of this example, R = 4r, it will not take very
long to calculate exactly the sum of the first term; but if we determine it by the approximation
method of Section 24.14, which is sufficient, we will have in our example,

D
(

1 +
16

6
− 16

18
+

16

62
+

16

182

)

+ 0.21D = 3.48D = 2.80δ8 ;

whence finally results δ8 = 1.24D, a quantity which we have found, by experiments, equal
to 1.30D; thus theory and experiment differ from each other only by quantities too small for
the approximate operations which precede to be able to evaluate them.

24.30 XXX. Second Example. Cylinder Thirty Inches

Long, Two Lines in Diameter, in Contact at Its End

with an Eight Inch Globe

If I now want to compare a cylinder 30 inches long and 2 lines in diameter, with a globe 8
inches [in diameter], instead of the cylinder I can suppose a line formed of 180 small globes 2
lines in diameter, in contact at its end with this globe. Thus, by following, according to this
supposition, the method of the example which precedes, I will form a Table of 180 equations
analogous to that of this example; and by taking the sum of the first 91 equations, I will
have for all the terms which follow δ91, the quantity

δ91

(

1.68 +
3

7
+

3

72
+

1

181
+
∫ (

1

7
+

1

9
+ etc. +

1

181

)

−
∫ (

1

101
+

1

183
+ etc. +

1

359

)

+
∫ (

1

72
+

1

92
+ etc. +

1

3592

))

.

By taking the sums of the series, according to the method explained in the Note of the
Section 24.17, this quantity will be reduced to 3.70δ91.

If we now calculate the sum of the terms preceding δ91, in the same member of the
equation, we will find it equal to 0.46(δ90−δ1), conforming to the observations of the preceding
Section: but δ90 can be taken equal to δ91, and δ3 can be without significant error for our
operation, calculated according to the first two equations which will form the Table: assuming
the densities equal from δ2 to δ180, these first two equations would be:

First equation:

D = δ1 +
(

2

32
+

2

52
+ etc. +

2

3592

)

δ2 = δ1 + 0.46δ2 .

Second equation:

1.84D = −δ1 +
(

1 +
2

32
+

2

52
+ etc. +

2

3572

)

δ2 = −δ1 + 1.46δ2 ;

from which results δ2 = 48D and δ1 = 0.32D. Thus 0.46δ1 = 0.15D. Therefore, the second
member of the sum of the first 91 equations, would be equal to (3.70 + 0.46)δ91 = 0.15D.

It remains to calculate the sum of the first member formed from the addition of the first
91 terms which express the action of the large globe; this sum, from what we have said in
the preceding Section, will be represented by the formula,
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D

(

1 + (48)2
(

2

(48 + 2)2
+

2

(48 + 4)2
+ etc. +

2

2182

))

,

a quantity equal to, according to the approximation method of the Note of Section 24.14:

D
(

1 + (48)2
(

1

50
− 1

228
+

1

502
+

1

2282

))

= 38.18D .

Thus by comparing this term with the second member, we will have (38.18+0.15)D = 4.16δ91,
from which finally results δ91 = 9.21D.

We have found, Section 24.24, that by placing a globe 8 inches in diameter in contact
with a cylinder 2 lines in diameter and 30 inches in length, if the density of the globe, after
contact, was D, the average density of the cylinder was, according to the experiment, equal
to 9.00D. Thus, the experiment in this example agrees with the theory as well as can be
expected in investigations of this kind: we have found the same agreement in the preceding
example between theory and experiment, although the cylinder is twelve times larger than
in the present experiment; thus the truth of the two results is confirmed one by the other.

24.31 XXXI. Cylinders of Different Lengths in Contact with

the Same Globe

We found in Section 24.24, that by theory we obtained the average density of a 30 inches
long line of fifteen small globes, each globe 2 inches in diameter, in contact with a globe
of 8 inches, equal to 1.24D, where D expresses the density of the surface of the globe after
contact; but we found, in the Remark of Section 24.14,893 that by putting only four globes
of 2 inches in diameter in contact with the same globe of 8 inches in diameter, the density
of the surface of the globe being D, the average density for the line of the four globes,
was by theory, equal to 1.21D; thus the theory teaches us, that whatever the length of a
cylinder or of a line formed by small globes of the same diameter as this cylinder, the average
density is approximately equal; a result consistent with that given by the tenth and eleventh
experiments.

24.32 XXXII. Remark

We only need to note that when the cylinders are very short in length, and are of a very small
diameter relatively to that of the large globe, then the small cylinder takes on an average
density much smaller than that which a cylinder of the same diameter but of greater length
would take on. To be convinced of this truth, let us calculate the density of two small globes
of only 2 lines in diameter each, forming a length of 4 lines in contact at its extremity with
a globe 8 inches in diameter,894 this supposition would yield the two equations:

First equation:

D = δ1 + 0.22δ2 .

893See Subsection 24.14.1.
894This situation is represented in the Figure of footnote 866 on page 393.
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Second equation:

1.84D = −δ1 + δ2 .

It results from these two equations, δ1 = 0.48D and δ2 = 2.36D; thus the average density
of the system of 4 lines in length, formed by the two small globes of 2 lines each in diameter,
would be equal to (0.48 + 2.36)D/2 = 1.42D, a quantity that we found at Section 24.30,
equal to 9.21D for a line of the same diameter, but 30 inches in length.

24.33 XXXIII. Remark

This theory, confirmed by experiment,895 according to the methods which we have explained
previously, accounts for an electrical result known for a long time. We know that when an
electrified globe is armed with a needle or a tip, it rapidly loses its electricity, but much
less rapidly when this needle is very short. Here is the explanation of this phenomenon; the
coercive force that the air opposes to the flow of the electric fluid being limited, the greater
the density of this fluid, the faster the fluid will flow. Thus, in our example, when the needle
is 30 inches long and 2 lines in diameter, its average density is equal to 9.21D: but it is only
equal to 1.42D, when the cylinder has 4 lines of length; thus the electric fluid must escape
with much more rapidity through the first needle than through the second.

24.34 XXXIV. Second Approximation Method for Deter-

mining the Variation of the Electric Density Along the

Surface of a Cylinder in Contact at Its End with a Globe

It is easy, from the preceding observations, to find various ways of approaching, by calcu-
lation, the variation of the electric density along the surface of a cylinder. As an example,
imagine our cylinder, Figure 7, two inches in diameter and 30 inches in length, and suppose
it, as in this Figure, to be in contact at its end with a globe 8 inches [in diameter].896

895By a lapse in the original text, this Section came out with the same number as the previous Section,
namely, 32.
896In the image of this footnote I present another reproduction of Figure 7. It is clearer than the original

Figure 7 that I placed in the middle of the text, but points n, g, k, i on the globe do not appear. Furthermore,
points a and a′ were inverted in the Figure of this footnote in relation to Coulomb’s original Figure 7:
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According to all that we have said in this Memoir and in the one that precedes, it is easy
to see that the density of the electric fluid is zero in the circle of contact a′a of the cylinder
and the globe;897 that for the globe, the electric density increases from the point a to the
opposite pole f ′ where its maximum is located, that the increase of this density, which is
rapid for the first 25 to 30 degrees, starting from point a, slows down considerably afterward,
so that the increase in the electric density is almost imperceptible from the point n of the
equator898 to the pole f ′: on the cylindrical surface, the density is zero or at least insensible

897I placed below Figure 7 appearing in the middle of the text, another representation of the image in which
I indicated more clearly the letters mentioned by Coulomb.
898In the original: depuis le point µ de l’équateur. I replaced in this sentence the letter µ with n, according
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at point a; it then increases rapidly over the first two or three inches, then less rapidly as
one approaches the middle of the cylinder, where the maximum of this increase is found; the
variation of the increase in density then grows rather slowly up to two or three inches from
the end, but very rapidly over these last two inches. The distance, Figure 7, from the dotted
line to the globe and the cylinder, roughly indicates the locus of the electric density: taking
the circle fkf ′, and the line aa5 for axis, the ordinates ki, ng, f ′ϕ; a1m1, a2m2, a3m3, etc.
will represent the densities.

If we now divide the cylinder, Figure 7, into any number of equal or unequal parts, such as
f1; 12, 2M , etc., taking care to make the parts very short where the variation of the density
must be considerable, it will be easy to form in the place of the curve am1m2m3m4m5

a polygon, by joining points a, m1, m2, m3 etc. by straight lines. In this polygon the
densities will increase from one point to another, following a straight line, and the polygon
will have as many sides as the cylinder has divisions; thus seeking at each division the state
of equilibrium on the axis between the action of all the portions of the cylinder, and the
action of the globe which terminates it, we shall have as many equations as the polygon
has sides. It will consequently be possible, and even easy, as we shall see, to determine,
relative to the axis, the inclination of each side of the polygon, and consequently to have the
approximate variation of the density.

24.35 XXXV

Here are the principles of the calculation for each part of the cylinder: a portion (Figure 6)
BP of a cylindrical surface acting on a point b of its axis, following the inverse of the square
of the distances, the density at point Q being Qd = δ, and then increasing along the line
dM , we ask for the action of this surface on point b.

Let bB = a; bp = x; Bp = x− a, ϕm
Bp

= n; let R be the radius of the globe, r the radius

of the cylinder and the ratio of the circumference to the radius equal to 2π;899 we will have
for the action of the zone of [the] elementary surface which corresponds to pp′, this action
evaluated in the direction of the axis, the quantity900

to Coulomb’s original Figure 7, where the symbol µ does not appear at the equator of the sphere, there
appearing point n.
899In the original, [Coulomb, 1791, p. 665]: “le rapport de la circonférence au rayon égal π”. Again I am

replacing Coulomb’s symbols Π or π with 2π, further emphasizing the modern definition of π as the ratio
of circumference to diameter, that is, π = 3.14159.... See also footnotes 849 and 864 on pages 383 and 391,
respectively. And this also applies to the factor 2π in what follows on the next page.
900That is, the next equation represents the force exerted by the section pp′ of the cylinder, with a length

dx, when acting on a electrified particle located at point b.
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[δ + n(x− a)]
2πrxdx

(r2 + x2)1/2
=

(δ − na)2πrxdx

(r2 + x2)1/2
+

2πrx2dx

(r2 + x2)1/2

= (δ − na)
2πrxdx

(r2 + x2)1/2
+

2πrx2dx

(r2 + x2)1/2
− 2πrdx

(r2 + x2)1/2
+

2πrdx

(r2 + x2)1/2
,

whose integral taken so that it vanishes when x = a, will give, µ being the logarithmic
modulus;901

2πrδ

[

1

(r2 + a2)1/2
− 1

(r2 + x2)1/2

]

+ 2πrn

[

a− x

(r2 + x2)1/2

]

+
n2πr

µ
log

x+ (r2 + x2)1/2

a + (r2 + a2)1/2
.

24.36 XXXVI

Supposing now that I first want to determine the variation in density about the middle of my
cylinder, which in our example is 2 inches in diameter and 30 inches in length; if, Figure 7, I
pass a line dm3d

′ parallel to the axis through point m3, which I assume is in the middle of my
cylinder, it will be easy to see from all the preceding observations, that the variation of the
density towards the middle a3 follows roughly a straight line up to a considerable distance
from this point; and that as the action of the distant points diminish like the inverse ratio
of the square of the distances, only a small error results from the supposition that the line
which expresses the density, extends in a straight line to the extremities of the cylinder.

From this reflection, it will be easy to apply the formula to our example, noticing that
here a = 0, and that half the length of the cylinder represented by x is much greater than
r; thus we will have for the value of the action of half the cylinder Mg on point M , the
quantity

2πrδ
(

1

r
− 1

x

)

− 2πrn+
n2πr

µ
log

2x

r
.

To have the opposite action of the other half of the cylinder Mf , the quantity n must be
negative, since the density decreases from a3 to a, which will give902

2πrδ
(

1

r
− 1

x

)

+ 2πrn− n2πr

µ
log

2x

r
;

thus the action of the whole cylinder in the direction Mf will give

4nπr

µ
log

2x

r
− 4nπr ;

a quantity which must be equal to the action of globe C, which, since x is half the length of
the cylinder, will be 4πDR2/(R + x)2; from which finally results the equation

901See footnote 659 on page 288.
902In the original text the next equation appeared as follows:

2πrδ

(

1

r
− 1

x

)

+ 2πrn− n2πr

µ
log 2x .
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4πDR2

(R + x)2
= 4nπr log

2x

r
− 4nπr ,

which will express the variation nr of the density in the middle of the cylinder, over a length
equal to the radius. In our example, the diameter of the cylinder is 2 inches, its length 30
inches; the radius of the globe is 4 inches: thus R = 4r = 1, x = 15, from which results
n = 0.018D; that is to say, over an inch of length, the electric density increases about the
middle of the cylinder, by one fiftieth part of that of the globe.

If we take as a second example the cylinder with a radius of one line [0.226 cm], and
30 inches in length [81.21 cm], the average density of which we have determined by our
experiments, then R = 48r, x = 180r, which gives n = 0.09D; that is, in a cylinder whose
diameter would be twelve times smaller than the preceding one, the density over a length of
one line would increase, in the middle of the cylinder, by 1/1000, and over 12 lines of length;
it would therefore increase six times more for the cylinder 2 lines in diameter than for the
cylinder 2 inches in diameter.

Finally, if we take for the radius of the cylinder a hundredth of a line,903 we will find that
over an inch of length, the density increases fifty times more than on a cylinder of one line of
radius, and consequently three hundred times more than on a cylinder 2 inches in diameter.

If the cylinders had a much greater length than in the example which precedes, then
the variations of the density in the middle of the two cylinders, for the same length of an
inch, would be in a ratio closer to the inverse of the diameters of the two cylinders; thus, for
example, if the length of the cylinders were 300 inches [812.1 cm], our formula would give
us in the middle of the cylinders, the variation of the density of the cylinder with a radius
of one line to that of the cylinder with a radius of one inch, approximately :: 8 : 1; a ratio
which was :: 6 : 1, when the length of the cylinders was only 30 inches.

24.37 XXXVII

If we want, according to the method of the two preceding Sections, to determine in an
approximate manner the variations of the density for the different points of our cylinder aa5,
Figure 7, we must divide this cylinder into different parts, and suppose that in each part the
variation of the density follows a straight line. In order not to deviate in this supposition
much from the truth, it is necessary that the first part aa1 be very short. Thus the cylinder
being 2 inches in diameter, I would make this first part aa1, 2 inches in length; I would make
the second [part] a1a2, 4 inches in length, the third [part] a2a3, 9 inches; which brings me
to the middle of the cylinder. I take for the variation of the density, from the middle a3 of
the cylinder to its extremity a5, the one that I just described; I then seek the conditions of
equilibrium of these four parts of the cylinder relatively to the point of contact f , and to
points 1 and 2 of the axis of the cylinder, which furnishes three equations which, combined
together, determine the variation of the densities at each division of the cylinder, the density
curve considered as a polygon; and as the density of the electric fluid is zero at the meeting
point of the globe and the cylinder, it will be easy to conclude from this in an approximate
manner the electric density at all the points of the surface of the cylinder. A fairly detailed
application of this method will be found at the end of this Memoir.

903That is, r = (1 line)/100 = 0.00226 cm.
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24.38 XXXVIII. Theoretical Determination of the Ratio of

the Average Electric Densities of Two Cylinders of a

Very Small Diameter, of a Very Great Length, in Con-

tact at Their Extremities with a Large Globe

If we looked for the variation in the middle of two cylinders, the length of which would be
2a, which we suppose of a different diameter, but very small, relatively to that of the globe,
we would have according to the preceding formulas, Section 24.36:904

2DR2

(R + a)2
= 2nr

(

log
2a

r
− 1

)

;

but it should be noted that, for any cylinder of the same length, but of another diameter,
there would be in this formula only the quantities n and r which would vary, the diameter
of the globe R, as well as half the length a of the cylinders, being assumed to be the same;
from which it follows that if n1 represents the variation of the density in the middle of the
cylinder whose radius is r1, and if n2 represents the variation of the density in the middle of
the cylinder whose radius is r2, the lengths of the two cylinders being the same, we will have

n1r1 = n2r2 , or
r1
r2

=
n2

n1
;

that is, the variations of the densities in the middle of the two cylinders will be between
them like the inverse of the radii.

It is now easy to perceive that this same proportion must take place, if we divide the
two cylinders equal in length, into a number of reciprocally equal parts, and compare in the
two cylinders the parts corresponding each to each. Indeed, we conceive according to the
principles on which all the preceding calculations are based, that if in one of the cylinders
we have for the expression of the variation at any distance a′ of the globe, the formula

2DR2

(R + a′)2
= n1r1A

′ ,

A′ being a function of a′, we will have, by taking a point at equal distance from the globe
in the second cylinder, whose length is divided into a number of parts equal to those of the
first, the formula

2DR2

(R + a′)2
= n2r2A

′ ,

the quantity A′ being the same, since the distance a and the number of divisions are the
same; thus for each corresponding point, [the ratio] n1r1

n2r2
will be the same quantity; thus

the variations of the density for points at equal distance from the globe, will be in the two

904In the original text the next equation appeared as:

2DR2

(R+ a)2
= 2nr

(

log 2a

µ
− 1

)

.
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cylinders in inverse ratio of the radius of the cylinders,905 and consequently the sum of these
variations or the average densities of two cylinders of a very small diameter in contact with
a large globe, are inversely proportional to the radii, as experiment has taught us.

24.39 XXXIX. Of Two Conducting Bodies Placed at a Suf-

ficiently Great Distance from Each Other, so that the

Electricity Cannot Be Communicated Through the Layer

of Air which Separates Them

In the preceding Sections, we have determined the manner in which the electric fluid is
distributed between two conducting bodies in contact; we are now going to seek the electric
state of the different parts of a [conducting] non-electrified body presented to an electrified
body at a sufficiently great distance, so that the electricity of the electrified body cannot be
communicated to the non-electrified body through the layer of air that separates them. It
has been known for a long time that in this arrangement the non-electrified body, if insulated
[electrically from the ground], will give, by the sole influence of the electrified body, signs
of electricity contrary to that of the electrified body, in the neighboring parts of this body,
and signs of the same nature as the electrified body in the parts which are furthest removed
from it. We also know that if the non-electrified body presented to an electrified body is not
insulated [from the Earth], it will give on all points of its surface signs of electricity contrary
to that of the electrified body.906

The evaluation of the electric state of the different parts of a non-electrified body, insu-
lated or not, but presented at some distance from an electrified body, is the subject of this
last Part of my Memoir.

24.40 XL. Of the Two Types of Electricity

Whatever may be the cause of electricity, all its phenomena will be explained, and the
calculation will be found to conform to the results of experiments, assuming two electric
fluids, the parts of the same fluid907 repelling each other in inverse proportion to the square
of the distances, and attracting the parts of the other fluid in the same inverse ratio of
the square of the distances. This law was found by experiment for electric attraction and
repulsion, in the First and Second Memoirs on Electricity, volume of the Academy of 1785;908

according to this supposition, the two fluids in the conducting bodies always tend to unite
until there is equilibrium, that is to say, until by their meeting, the attractive and repulsive
forces compensate each other. It is the state in which all bodies are found in their natural
state; but if by any operation whatsoever, a superabundant quantity of one of the electric
fluids is passed into an insulated conducting body, it will be electrified, that is to say, it will

905In the original text, by a lapse, we have here “seront dans les deux cylindres en rayon inverse du rayon
des cylindres”. I replaced“in inverse radius” by “in inverse ratio”.
906See Chapter 7 (Differences betweeen Conductors and Insulators) of the book The Experimental

and Historical Foundations of Electricity, [Assis, 2010b], [Assis, 2010a], [Assis, 2011], [Assis, 2015b] and
[Assis, 2017].
907In the original: les parties du même fluide.
908These Memoirs are translated in Chapters 11 and 14, respectively.
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repel the electric parts of the same nature,909 and will attract the electric parts of another
nature than the superabundant fluid with which it is charged. If the electrified conducting
body is brought into contact with another insulated conducting body, it will share with it
the superabundant electric fluid in the proportions indicated in this Memoir and those which
precede; but if it is made to communicate with a non-insulated body,910 it will lose in an
instant all its electricity, since it will share it with the globe of the Earth, whose dimensions
relatively to it are infinite.

Mr. Aepinus has supposed in the theory of electricity,911 that there was only one electric
fluid, whose parts mutually repelled each other and were attracted by the parts of bodies with
the same force as they repelled each other. But to explain the state of bodies in their natural
situation, as well as the repulsion in the two kinds of electricity, it is necessary to suppose
that the molecules of bodies repel each other with the same force as they attract electric
molecules,912 and that these electric molecules repel each other.913 It is easy to perceive that
the supposition of Mr. Aepinus gives, as regards the calculation, the same results as that of
the two fluids. I prefer that of the two fluids which has already been proposed by several
physicists, because it seems to me contradictory to admit at the same time in the parts of
the bodies, an attractive force in inverse ratio to the square of the distances demonstrated
by universal gravity,914 and a repulsive force in the same inverse ratio of the square of the
distances; a force which would necessarily be infinitely large, relatively to the attractive
action from which gravity results.

The supposition of the two fluids is, moreover, in conformity with all the modern discov-
eries of chemists and physicists, who have made us acquainted with different gases whose
mixture in certain proportions suddenly and completely destroys their elasticity; an effect
which cannot take place without something equivalent to a repulsion between the parts of
the same gas which constitutes their elastic state, and to an attraction between the parts of
the different gases which makes them suddenly lose their elasticity.

As these two explanations have only a greater or lesser degree of probability, I warn,
in order to protect the theory that will follow from any systematic dispute, that in the
supposition of the two electric fluids, I have no other intention than to present with the
fewest possible elements the results of the calculation and of the experiment, and not to
indicate the true causes of electricity.915 I will refer to the end of my work on electricity, the
examination of the principal systems to which electric phenomena have given rise.

909In the original: il repulssera les parties électriques de la même nature. According to Gillmor, the word
“parties” can be translated as “parts”, “elements”, “elementary parts” or “particles”, [Gillmor, 1971a, pp.
159, 201 and 217]. See also footnotes 181, 395, 606 and 907 on pages 72, 176, 254 and 418, respectively.
910That is, if it is grounded when it comes into contact directly with the Earth, or with a conducting body

connected to the Earth.
911See footnote 182 on page 73. See also [Aepinus, 1759] with English translation in [Aepinus, 1979].
912In the original: les molécules électriques.
913Two neutral bodies neither attract nor repel each other. Two positively charged bodies repel each other,

just as two negatively charged bodies repel each other. To explain the non-existence of force in the first
case, as well as the repulsion in the last two cases, Aepinus had to make these assumptions pointed out by
Coulomb. In particular, Aepinus had to assume the existence of a repulsion between the material parts of
two bodies, that is, between the molecules of two bodies.
914In the original: par la pesanteur universelle. That is, by the law of universal gravitation proposed by

Isaac Newton in his book Principia, see footnotes 15 and 528 on pages 21 and 230, respectively.
915[Note by Bucciarelli] To claim that “two explanations have only a greater or lesser degree of probability”

(of being true?) is a very friendly way of acknowledging a rival’s theory. His claim that he does not intend
to provide “the true causes of electricity” is reminiscent of Newton’s claim — he makes no hypothesis about
the true cause of universal gravitation.
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24.41 XLI

In the Memoirs which precede,916 as well as in the research which will follow, I have often
caused different points of an electrified body to be touched by a small circular disk of insulated
gilded paper,917 which I then place in the [electric] balance to determine its action on the
needle: in the results, I assumed that the electric [surface] density of the points touched was
proportional to that which the small plane took in contact with the body. To know if this
supposition can be admitted, it is necessary to determine according to what ratio the electric
fluid is divided between a body and a small disk which touches it.

24.42 XLII. Experiment. Distribution of a Single Elec-

tric Fluid Between a Globe and a Disk of Very Small

Thickness, Which Touches the Globe Tangentially at the

Center of the Disk

I placed a globe 8 inches in diameter [21.656 cm] on an insulator described in the preceding
Memoirs; I electrified it positively, as well as the needle of the balance.918 By means of a
small globe one inch in diameter [2.707 cm], with which I touched the large globe, and which
I introduced into the balance, I determined the electric density of the 8-inch globe, which
I found to be 144 degrees. I made the globe touch an insulated disk 16 inches in diameter
[43.312 cm] and a quarter of a line thick [0.0565 cm], I immediately withdrew the disk; and
by means of my little globe one inch in diameter, I again determined the electric density
which remained at the 8-inch globe, I found it equal to 47 degrees.

24.43 XLIII. Explanation and Result of This Experiment

The original density of the electric fluid, or, what comes to the same thing, the quantity of
the electric fluid diffused over the surface of the globe, was, before the contact of the disk,
represented by 144 degrees. By contact with the disk, it was reduced to 47 degrees; thus in
the division between the globe and the disk, the globe retains 47 parts, and the disk takes
97 parts; thus the quantity of fluid is divided between the disk and the globe, so that the
quantity of the disk is double that of the globe. If we now calculate the surface of the globe
8 inches in diameter, we will find it equal to one of the two surfaces of the disk 16 inches
in diameter;919 thus, as this disk has two surfaces, it appears by this experiment that the
electric fluid is distributed between the disk and the globe in proportion to the surfaces.

I have found by a very large number of experiments made with disks smaller than the
preceding, that this result always took place; that is to say, whatever the diameter of the

916There is a numbering fault in the original article, with the Sections from the current Section onwards
being numbered with an additional unit. That is, in the original text the present Section is numbered XLII
instead of XLI and so on. To alleviate this problem, I decided to call the Experiment that follows it as
Section XLII, since this Experiment does not appear as a numbered Section in Coulomb’s article. Thus
Sections XLIII onwards are in accordance with the original numbering.
917That is, by a proof plane, see footnotes 53 and 726 on pages 30 and 319, respectively.
918That is, the needle was also positively electrified.
919That is, the area of the 4-inch-radius globe, AG = 4π42 = 64π square inches, is equal to the area of one

of the faces of the 8-inch-radius disk, AD = π82 = 64π square inches.
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globe and that of the disk, whenever the disk was brought into contact tangentially with
the globe, it shared the electricity of the globe in the ratio of the sum of the extent of the
two surfaces of the disk to that of the globe. Experiment has always given this result in a
very exact manner, when the disk brought into contact with the globe was of a very small
diameter, relatively to that of the globe; so that, when one touches, for example, the globe
8 inches in diameter [21.656 cm], with a small insulated disk 6 lines in diameter [1.356 cm],
it takes on each of its surfaces an electric density equal to that of the surface of the globe,
that is to say, this small disk of 6 lines in diameter is charged with a quantity of electricity
double that of the portion of the surface of the globe which it has touched.920

24.44 XLIV. Theory of This Experiment

The result of this experiment is easy to explain theoretically, at least, when the touching disk
is of a small diameter relative to that of the touched globe; this is the only case I consider
here, because it is the only one that I will need in the experiments that will follow.

Let us place, Figure 8, a small disk b at a distance ab from the electrified globe C, small
enough so that the interposed layer of air cannot prevent the electric fluid from passing from
globe C to the small disk b.

This disk being very small, the action of the globe on point b in the direction ab, will be
equal to 2DR2 : (R+ ab)2, D being supposed to represent the electric density of the surface
of the globe, and R its radius.921 As [the distance] ab is supposed to be very small relatively
to the radius R of the globe, the action of the globe on point b is very nearly equal to 2D;

920Later on Potier will point out that this assumption is wrong, see footnotes 927 and 969 on pages 423 and
441. A small proof plane acquires, on the surface it has touched, essentially the same amount of electricity
as the amount of electricity that was contained in an area equal in size to the disk of the proof plane.
See also footnote 53 on page 30, and [Gillmor, 1971a, pp. 200-210], [Heilbron, 1999, pp. 495-496] and
[Blondel and Wolff, 2011c].
921See Section 23.4 on page 376 and footnote 796 on page 351. Coulomb is leaving out the 2π factor here.
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but the action of a disk, whose radius is R′ on a point at a distance a from the center of this
disk, is equal to922

δ

(

1− a

(R′2 + a2)1/2

)

;

and if a is an infinitely small quantity, this action will reduce to δ, δ being the electric density
of all the points of the disk. Thus, as there must be equilibrium at point b in the direction
ba, between the action of the disk and that of the globe, we will have the equation 2D = δ;
that is to say, that the density of the disk, or that the quantity of electricity which will pass
to the disk at the moment that it is separated from the globe, will be double the quantity
of electricity contained in a portion of the surface of the globe equal to this disk, which is
found to be very much in accordance with the experiment.923 ,924

24.45 XLV. General Remark on the Theory of the Preceding

Section, and on the Experiment from Which It Results

The result which we have just found by experiment and by theory, for a small disk placed in
contact with a globe, is general for all bodies terminated by a curved, convex surface of any
shape whatsoever. Whatever may be the shape of the body, experiment teaches that a small
disk placed in contact with these surfaces always takes, at the moment it is withdrawn from
contact, a quantity of electricity double that of the portion of surface touched. Experiment
gives again this same double ratio, by making a very small disk touch a large electrified
plane.

This general result of the experiments for a small disk placed in contact with a conducting
body, terminated by a surface of any figure whatever, could, as we shall see, have been
foreseen by simple reasoning; but in this Memoir, as well as in the preceding ones, all the
phenomena have been revealed by experiment before attempting to apply calculation to
them. This is indeed what the theory indicates.

Instead of globe C, Figure 8, suppose for a body of any shape, that the small surface
represented by faf ′, has been touched by the disk ebe′;925 we seek, after the small disk ebe′

has been separated from faf ′, its electric density, or the quantity of electric fluid which
it contains relative to that which the equal portion of surface faf ′ contains. Let us take
two points ϕ and ϕ′ at an infinitely small distance from point a and from the surface faf ′,
one inside the other outside the body C, let δ be the electric density of the plane ff ′;926

922In this expression Coulomb is assuming a uniformly electrified disk. This can only happen if it is an
insulator. On the other hand, the disk of Coulomb’s proof plane must be made of a conducting material so
that it can collect the charges from the point where it touches. A charged conducting disk is not uniformly
electrified on its surface. Therefore, the theoretical formula used by Coulomb could not be applied to draw
conclusions about the experiments he carried out with his proof plane.
923[Note by Potier] Coulomb has again suppressed the 2π factor in the previous formulas.
924See Section 23.4 on page 376. See also footnotes 796 and 802 on pages 351 and 352.
925Due to an error in the original text, ebe appeared here. Potier corrected it to ebe′.
926In the original: plan ff ′. This expression can be translated by disk ff ′ or by plane ff ′. Probably

Coulomb is referring here to the small spherical cap faf ′. He will then consider the force exerted by this
small, uniformly electrified spherical cap acting on an electrified particle located at point ϕ which is to the
left of point a in Figure 8, and acting on an electrified particle located at point ϕ′ which is on the right side
of point a, the distances ϕa and aϕ′ being equal. Moreover, he will assume that these distances ϕa and aϕ′

are infinitely small compared to the diameter ff ′ of the small cap.
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the action of this small circular plane ff ′, decomposed along the direction aϕ, and acting
on point ϕ as well as on point ϕ′, will be by calculation equal to δ, [with the distance] ϕa
being assumed to be infinitely small relatively to ff ′: but the action of ff ′ on point ϕ must
balance the action of the entire surface fkf ′; thus the action of all this surface on point
ϕ will also be equal to δ. This action of the entire surface fkf ′, will be the same on one
point ϕ′ placed outside the body, since [the distance] ϕϕ′ is assumed to be infinitely small;
so point ϕ′ experiencing at the same time the action of the body fkf ′ and that of the plane
ff ′, it will experience a repulsion equal to 2δ. Thus, if we suppose that the small disk ee′ is
sufficiently close to point a so that the electricity can pass from the body to this small disk,
through the layer of air which separates them; and if we take a point between a and b at an
infinitely small distance of b, the action of the small circular surface be′ on this point in the
direction ba, will be, by naming D the electric [surface] density of the disk ebe′, equal to D;
thus by naming δ the density of the small plane ff ′, we will have for the action of the entire
surface of the body fafk on point b, the quantity 2δ, which must balance the action D of
the disk ee′ on the same point; thus we will generally have 2δ = D, that is to say, that the
quantity of electricity of the small disk ee′, whatever the shape of the surface of the body
fkf ′a , will be equal to a quantity of electricity twice that of the surface portion faf ′, with
which the small disk ee′ will have been brought into contact. Thus the theory is found to
have a perfect agreement with the experiment.927 ,928

24.46 XLVI

As in the experiments which precede and in those which will follow, we principally determined
the density of each point of the bodies by making them touch a small disk; it is clear,
according to the experiments and the theory which we have just explained, that by comparing
for the same distance the actions of our small disk on the electrified needle of our balance,
after this small disk has been successively put in contact with different points of the surface
of the body, we determine very exactly the ratio of the electric densities of two points
successively touched.

We will now move on to the search for the conditions of equilibrium of bodies which
act on each other; these bodies being separated by an interval large enough to prevent the
transfer of electric fluid from one to the other, through the layer of air which separates them.

24.47 XLVII. Experiment. Two Small Globes, Figure 9,

Insulated and Not Electrified, Are Placed at Any Dis-

tance from the Large Electrified Globe C

We insulate, Figure 9, an electrified globe C 8 inches in diameter [21.656 cm].

927[Note by Potier] This whole theory is absolutely inadmissible. Coulomb does not take into account that
when the disk and the globe touch, there is no electricity at the point of contact, a fact which was however
well known to him, as we have seen previously. It is regrettable that he did not give the details of the
experiments to which he alludes at the end of Section 24.43, which misled him. The thinner the disk, or
proof plane, the better it presses against the body, and the closer the electric density, during contact, to that
of the surface for which it is substituted.
928See also footnotes 920 and 969 on pages 421 and 441.
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Two small [conducting] globes, each 2 inches in diameter [5.414 cm], are also insulated:
one [small globe] a′ is mounted on an insulating support formed of a glass cylinder, coated
and surmounted by four arms of shellac; the other small globe a is carried by a vertical
support, such that it can be introduced into the electric balance. We have described this
support in the previous Memoirs. Having positively electrified the needle of the balance, as
well as globe C,929 the small globe a presented in the balance at the same distance from the
needle, attracted the needle, after having been placed at a, exactly with the same force as it
repelled it, when it was placed at a′.930

24.47.1 Result of This Experiment

It is easy to see that this result agrees perfectly with the principle explained in Section 24.41;
for in our ninth Figure, globe C being positively electrified, part of the positive fluid of globe
a passes into globe a′; and vice versa, some of the negative fluid from globe a′ passes into
globe a. But, as each of the globes acquires a portion of fluid equal to that of which the other
is stripped and as the quantity of the two fluids necessary for saturation, that is to say, for
there to be no electric action, subsists in both bodies, and as these fluids are only displaced,
it follows that the attractive action of globe a, relatively to the needle of the balance, must
be exactly equal to the repulsive action of the body a′.

929That is, globe C is also positively electrified.
930I prepared the image of this footnote to illustrate the situation in which the small globe carried by a

vertical support that can be inserted into the electric balance is placed at the right end of the row of 3 globes.
Assuming that globe C is positively electrified, if we introduce the small globe from the far right into the
electric balance, it will repel the positively electrified needle of the balance:
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24.48 XLVIII. Experiment. Comparison, Figure 9, of the

Average Electric Density of the Globe Placed at a′, and
That of the Surface of Globe C

This experiment is intended to determine, in accord with the ninth Figure,931 the quantity
of excessive positive electric fluid in the little globe a′, etc., for a given distance R1.

To perform this experiment, globe C being 8 inches in diameter,932 globes a and a′ two
inches [in diameter], the first globe a being placed two inches from globe C, I have presented
the last globe a′ in the balance, and I determined its repulsive action, which I found to be
21 degrees for a given distance.933 I then caused globe C to touch globe a′, and introducing
it again into the balance, I determined the action of globe a′ which, because the distance
was the same as in the first operation,934 was proportional to the quantity of electricity with
which the small globe a′ was charged during the contact with globe C.935 I found that the
needle was repelled, in this second experiment, with a force of 66 degrees.

24.49 XLIX. Result and Theory of This Experiment

The quantity of electric fluid, being proportional to its action when we compare the actions
at equal distances — we let (Figure 9) δ be the mean density of the electric fluid spread over
the surface of the first globe a, — an electricity which will be negative in our experiments

R

931Point R does not appear in the original Figure 9. I introduced this point in this Figure according to
Figure 10.
932In the original text, C′ appeared here instead of C. Potier fixed this error.
933That is, there was a total twist of 21◦ of the suspension wire for a certain angular distance between

globe a′ and the needle of the torsion balance electrified with a charge of the same sign as globe a′.
934That is, in both cases there was the same angular distance between globe a′ and the needle of the

balance.
935In the original text, C′ appeared here instead of C. Potier fixed this error.
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when the globe C is supposed electrified positively — and we let δ′ be the positive electric
density of globe a′ which, in our Figure and in our experiment, is found to be electrified
positively with the same quantity with which the globe a is electrified negatively.

If we look for the action of the three globes C, a, a′, on the point of contact b of the
two small globes, the point where there must be equilibrium, we will find that if the electric
fluids were spread uniformly over the surface of the three globes, we would have for the
equilibrium of action at point b, the [following] equation936

2D · (CR)2
(Cb)2

= −δ + δ′ ;

but, as the quantity of natural positive electric fluid, of which globe a is stripped, is equal
to the quantity of the superabundant fluid of globe a′,937 it follows that the sum of the
quantities of fluid of the two globes is equal to 0: so we have δ′ + δ = 0; thus, substituting
in the first equation the value of δ, we will have

2D · (CR)2
(Cb)2

= 2δ′ .

It must now be remarked that, in the first equation, we have supposed that the fluid was
uniformly spread over the surface of each globe, whereas these fluids, as we have seen at
the beginning of this Memoir, have no action or are united to saturation at the point of
contact b, and are separated and brought to their greatest degree of density at points 1 and
2. We have found in the same Section, that the corrected action of globe a, on point b, was
measured by 0.60δ′, and not by δ′; it is the same for body a′,938 so our corrected equation939

will give us:

2D(CR)2

(Cb)2
= 1.20δ′ .

In our experiment, CR = 4 inches, R1 = 2 inches, the radius of globe a = 1 inch;940 thus
we will have 0.50D = 1.20δ′, hence D = 2.40δ′.

We have found in our experiment, that the average density of the small globe a′ being
measured by 21 degrees, that of the same small globe, when it touched C,941 was measured
by 66 degrees: but we have seen in our Fifth Memoir, volume of 1787, page 437,942 that when

936See Section 23.4 on page 376. See also footnote 796 on page 351. In this equation CR indicates the
radius of globe C and Cb indicates the distance between the center C of the large globe and point b of Figure
9.
937For a lapse in the original text, a appeared here instead of a′.
938In the original text, a appeared here instead of a′.
939[Note by Potier] Here is how Coulomb arrives at this approximate result: If a mass M of electricity

is spread uniformly on [the surface of] a sphere, the force exerted on a point of this surface is M
2R2 ; if it

is concentrated on the great circle of which this point is the pole, the action is M
2R2

√
2
, and finally, if it is

concentrated at the opposite pole, [the action is given by] M
4R2 . These quantities are [to one another] like 1,

1/
√
2 and 1/2, and Coulomb admits that the real distribution produces an average force between 1/

√
2 and

1/2 of the force resulting from a uniform distribution; he takes 0.60 as a rough average between 0.50 and
0.707.
940We then have Cb = CR+R1 + 1b = 4 + 2 + 2 = 8 inches.
941In the original text, a appeared here instead of C.
942See the Table in Section 22.11 on page 344.
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a globe one inch in radius touched a globe 4 inches in radius, the average density on the
surface of the one inch globe, was to that of the 4-inch globe, approximately as 1.30 : 1.00;
thus the average density of the small globe, after contact, being represented by 66 degrees,
that of the large globe would be represented by 51 degrees: but it should be noted that by
the division of electricity between the large globe and the small globe, at the moment of
contact, the large globe loses roughly 1/12 of its electric fluid, that it loses moreover in the
[time] interval of the observations about 1/20; thus the density of globe C, before contact,
was roughly measured by 57 degrees. Now we had found by experiment the average density
of globe a′ placed as in the Figure, measured by 21 degrees; thus the average density of the
positive electric fluid of the surface of globe C,943 is to that on the surface of globe a′ placed
as in the ninth Figure, :: 57 : 21 :: 2.70 : 1.00; thus, from experiment, we have δ′ = 2.70D,
a quantity we have just found equal to 2.40D by theory; therefore theory and experiment
differ little from each other, and the errors can only be attributed to the imperfection of the
operations.

24.50 L. Fourth Experiment. Comparison, Figure 10,

of the Electric Densities of Four Small Non-electrified

Globes, 2 Inches in Diameter, Placed on an Insulator,

2 Inches Away from an Electrified Globe C ′, 5 Inches

in Diameter

Figure 10 shows the position of the globes. We compared, according to the processes indi-
cated in the previous experiment, the average density of the negative electricity of globe a1
with the positive density of globe a4, and that of globe a4 with that of globe C; globe C
being positively electrified.

We found, in naming δ1 the average density of globe a1, δ4 the average density of globe
a4, D that of the large globe C, that

D = −1.50δ1 = 2.20δ4 .

943In the original text, C′ appeared here instead of C. Potier corrected this error.
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24.50.1 Theory of This Experiment

From944 all that we have said in the preceding Sections, it is easy to see that in naming δ1,
the [average] density of globe a1, δ2 the average density of globe a2, δ3 the average density of
globe a3, δ4 the average density of globe a4, D that of globe C, R and r the radii of globes
C and a′, again making the distance R1 = a, we will have the three equations corrected
according to the Section 24.4 of this Memoir:

For the contact point 2:945

2DR2

(R + a+ 2r)2
= −0.60δ1 + 0.70δ2 + 0.22δ3 + 0.08δ4 .

For the contact point 3:

2DR2

(R + a + 4r)2
= −0.22δ1 − 0.70δ2 + 0.70δ3 + 0.22δ4 .

For the contact point 4:

2DR2

(R + a + 6r)2
= −0.08δ1 − 0.22δ2 − 0.70δ3 + 0.60δ4 .

To obtain a fourth equation, it should be noted that the four small globes being originally
in their natural state, their electric fluid is only disturbed by the influence of the action of
the large globe, and that the sum of the electric fluids of the four small globes, is neither
increased nor decreased; thus we will have the sum of the densities equal to zero for the four
small globes; so we will have

Fourth equation:

δ1 + δ2 + δ3 + δ4 = 0 .

By means of these four equations, we can make three of the four unknowns δ1, δ2, δ3,
δ4, disappear at will, and we will compare the fourth [density] with the density D of globe
C: this calculation applied to our experiment will give D = −1.53δ1. Experiment gave us
D = −1.550δ1; calculation will give D = 2.12δ4; experiment gave us D = 2.2040δ4. Theory
and experiment again agree here as well as can be hoped for in operations of this kind.

We will not extend the experiments and calculations which precede, to a greater number
of small globes placed in contact, and whose centers would make the same [straight] line with
the center of a large globe; it is easy to apply the different methods of approximation that
we have already presented to this case; but we believe it necessary to develop in considerable
detail the manner in which the electric fluid appears to manifest itself with different degrees
of density in the different parts of an uninsulated, or what amounts to the same, an insulated
cylinder but of an infinite length, presenting one of its ends at a given distance from a large
electrified globe, the extension of the axis of the [conducting] cylinder passing through the
center of the globe. We feel that this research should have an immediate relationship with
the theory of lightning rods.

944This Subsection was not included in Potier’s reprint of Coulomb’s works, [Potier, 1884].
945See Figure 10.
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24.51 LI. Result of Experiments Intended to Determine the

Electric State of the Different Parts of the Surface of an

Uninsulated Cylinder, of Very Great Length, Presented

at One of Its Ends to a Large Electrified, Insulated Globe

In the results which are about to be presented, I will not enter into the details of the
experiments, except insofar as these details are sufficiently different from those which precede,
so as to require a particular explanation.

We know, and it follows from the preceding researches, that when we present an uninsu-
lated cylinder at a great enough distance from an electrified globe so that the electric fluid
of the globe is unable to pass into the [conducting] cylinder, the surface of the cylinder gives
signs of electricity contrary to that of the globe, and that the electric density of each point
of the cylinder, or what comes to the same thing, the action of each of these points is all the
greater, as the point of the cylinder is closer to the electrified globe: the object of this Part
of my Memoir is to determine:

1. For the same cylinder placed at different distances from the same electrified globe, the
electric density at the end of the cylinder closest to the globe and the law which this
density follows; to compare this density, supposing it to be proportional to its degree of
action, with that of the electrified globe, which is likewise supposed to be proportional
to its degree of action.

2. By placing uninsulated cylinders of different diameters, at the same distance from an
electrified globe, to determine according to what ratio the density at the extremity of
the cylinder increases or decreases, relatively to the diameters of these cylinders.

3. According to which law the density of the different points of the same cylinder placed
at a given distance from an electrified globe, decreases relatively to the distance of
these points from the center of the electrified globe.

4. Finally according to what law the density of the surface of the cylinders increases
relatively to the diameter of different globes, the electric density of the globes being
the same.

24.52 LII. First Result. An Uninsulated Cylinder Placed

at Different Distances from an Electrified Globe

If we place the same cylinder, not insulated, or, which comes to the same thing, insulated,
but of infinite length, so that the axis of the cylinder is in the direction of the center of the
electrified globe, we will find by experiment, by varying the distance from the center of the
globe to the end of the cylinder nearest to this globe, that the electric density of this end
will be in a ratio a little below the power 3/2 of the inverse ratio of the distance from this
extremity to the center of the globe. The experiment which gave this result was made in two
ways; either by touching with a small insulated disk the extremity of the cylinder, and then
placing this small disk in the electric balance as usual; or by making the end of the cylinder
touch a small globe of the same diameter as the cylinder, which is then introduced into the
balance.
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24.53 LIII. Second Result. Electric Densities at the Ex-

tremity of Two Insulated Cylinders of Different Diame-

ters, Placed Alternately at the Same Distance from the

Center of an Electrified Globe

By successively placing two cylinders of different diameters at the same distance from the
same electrified globe, it was found that the electric densities at the ends of the two cylinders
were approximately in inverse proportion to the diameters of the two cylinders, provided,
however, that the diameters of the cylinders were much smaller than the diameter of the
globe.

24.54 LIV. Third Result. Ratio of the Electric Densities

at Different Points of the Surface of the Same Cylin-

der of a Great Length, and Not Insulated, According to

Whether These Points Are More or Less Distant from

the End of the Cylinder, Or from the Center of the Elec-

trified Globe

By placing a cylinder at a given distance from an electrified globe, we find that the electric
density at different points on the surface of this cylinder is in inverse proportion to the square
of the distance of these points from the center of the electrified globe.

This law is not followed towards the end of the cylinder which is close to the globe over
a length equal to four or five diameters of the cylinder; we find by experiment that in this
part the electric density increases as it approaches the end of the cylinder in a ratio much
greater than the inverse square of the distances; and if, as in all the experiments we have
made, the cylinder is terminated as in the eleventh Figure, by a hemisphere, we will find that
the density at the extremity of the axis a, the nearest point of globe C, is approximately
double that of point f , which is only distant from point a, at the end of the cylinder, by a
quantity af 946 equal to the diameter of the cylinder, whatever be the distance Aa.

946In the original text, ae appeared here. I replaced it with af since there is no point e in Figure 11.
Moreover, Coulomb will later mention that point f is away from point a by a distance equal to the diameter
of the cylinder.
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24.55 LV. Fourth Result. The Same Non-Insulated Cylin-

der, Placed at the Same Distance from the Center of

Two Electrified Globes of Different Diameters

Supposing the electric density of two globes the same, it will be found by experiment that
the density of the points of the cylinder placed at the same distance from the center of the
two globes, will be like the square of the radii of these globes. The theory would give a
priori the result that the experiment has just given; for the action of a spherical surface on
any point placed outside the sphere is the same as if this surface were united at the center
of the sphere;947 thus its action on all the points placed outside the surface, will be in direct
proportion to the extent of the surface multiplied by the electric density, and in inverse
proportion to the square of the distance to the point on which the action is exerted. Now,
as the cylinder is the same, and each point of the cylinder on which the action is evaluated,
is supposed to be at the same distance from the center of the two globes; it follows that
the electric densities of the same point of the cylinder placed at the same distance from the
center of the two electrified globes, must always be in direct ratio composed of the electric
density of the surface of the globes, and of the square of the radii of the globes.

24.56 LVI. Formula Derived from the Previous Results

In order to be able, according to the preceding results, to give a formula which immediately
describes the electric state of the different points of an uninsulated cylinder, or touched at
point G by an uninsulated body, as at Figure 11, at a very great distance from point a, we
see that this ratio must be determined by experiment for a particular case, in order to obtain
a constant coefficient. Among the different experiments which served to fix the four results
which precede, I am going to choose one which will give me this coefficient.

24.56.1 Experiment

I insulated, Figure 11, globe C of 8 inches in diameter [21.656 cm]; I electrified it; I placed
a cylinder aG, one inch in diameter [2.707 cm], on an insulator at 21

2
inches away [6.7675

947See Section 16.2 on page 268.
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cm]: this cylinder was terminated by a hemisphere bab. As usual, I touched alternatively
point a of the hemisphere and any point of globe C with a small insulated disk. Having
electrified the needle of the balance with the same electricity as the globe,948 the needle was
attracted by the small disk when it touched [point] a, the end of the cylinder, and repelled
when it touched the globe. By measuring the forces for the same distance,949 I found that
the attractive force of the small disk, when it had touched point a, was to the repulsive force
of the same disk, when it had touched the globe, as 4.00 : 1.00.

When by the same method I compared point a with point f , placed at a distance of one
inch from the end of the cylinder, I found that the electric density of point a was to that
of point f , as 2.5 : 1.0; whence it is easy to conclude that the negative electric density one
inch from the end of the cylinder will be to the positive electric density of the surface of the
globe, approximately as 16 : 10.

24.57 LVII

Now bringing together the four preceding results, we find by experiment that the electric
densities of the hemisphere which terminates different cylinders presented to an electrified
globe, are of a nature contrary to that of the globe, are directly proportional to the density
on the surface of the globe and to the square of the diameter of this globe, and inversely
proportional to the radius of the cylinder and to the power 3/2 of the distance ca, Figure
11,950 from the center of the globe to the end of the cylinder.

Thus, if D is the density of the positive electric fluid, spread over the surface of a globe,
of which R is the radius; and if r is the radius of the cylinder; and if a is the distance between
the center of the globe and the end of the cylinder,951 ,952 we will have the [following] formula
to express δ, the negative electric density at the end of the cylinder:

δ = − mDR2

r(R + a)3/2
,

we will determine the value of the constant m, according to the experiment of the preceding
Section. In this experiment R = 4 inches; r = 1

2
inch; a = 2.5 inches, δ was found equal to

4D: substituting these quantities in the formula, we will have

m = 2.07
√
1 inch ,

and the general formula will be

δ = 2.07DR2 : r(R + a)3/2 ,

in which the values of a; of r, and of R must be given in inches.

948That is, Coulomb electrified globe C and the needle of his electric balance with electricities of the same
sign.
949That is, when there was the same distance between the disk of the proof plane and the needle of the

electric balance.
950Due to an error in the original text, Figure 4 appeared here instead of Figure 11.
951[Note by Potier] It is obviously the distance between the sphere and the cylinder that Coulomb designates

by a.
952That is, a is the distance between point A on the surface of globe C and point a at the end of the

cylinder that is closest to the globe, as indicated in Figure 11, such that the distance Ca is given by R+ a.
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24.58 LVIII. Application of the Previous Formula to an Ex-

ample Analogous to Lightning Rods

Suppose that a cloud charged of electric fluid has the shape of a globe a thousand feet in
radius [325 m], and passes 500 feet above the end of a cylinder one inch in diameter;953 in
this example R = 1000 feet; a = 500 feet; r = 1

2
inch. These values substituted in the

formula give

δ =
2.07 · 122 · (1000)2

1
2
(1500)3/2123/2

= 278D ;

that is to say, that the electric density at the end of the cylinder, of a nature contrary to
that of the cloud, will be 278 times greater than that of the surface of the cloud.

But as experiment has shown us, that in our formula (R+a) was raised to a power smaller
than 3/2, the density δ must be greater than 278D. To be convinced of this, it suffices to
suppose that in the formula (R + a) is raised to the power of 1; for this case we will have
m = 1.23, and the formula will give

δ = 1.23DR2 : r(R + a) ,

which, applied to our example, would give δ = 19680D; so that a small variation in the
power of (R + a) would give a very large variation in the value of δ.

It follows from this observation that δ is greater than 278D; but we do not know by how
much, for as the experiments from which we have drawn the four results which precede, had
as their limit globes of a foot in diameter and below, and cylinders from 4 lines up to 2 inches
in diameter; and for greater ease in the calculations, we have supposed that the results were
represented by a formula of a single term, which seemed to me to give values sufficiently
approximate within the limits of the experiments. It may be, however, that this formula
might not be extended to limits very distant from those within which the experiments are

953Coulomb imagines here a lightning rod consisting of a grounded vertical conductor close to an electrified
cloud. He will model the lightning rod by the configuration of Figure 11 rotated by 90◦ in which a grounded
cylindrical conductor has its upper end close to a large electrified globe, the cloud being modeled by this
globe, as illustrated in this footnote:
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contained; this will be easy to verify by the methods of theoretical approximations which
will end this Memoir, and which will indicate to us in accordance with experiment, that
the density at the end of the cylinder is greater for large globes which act on the end of an
uninsulated cylinder of a small diameter, than that given by the formula, and that therefore
in our example the density at the end of the cylinder one inch in diameter, shown at 500
feet of an electrified globe of 1000 feet radius, is greater than 278 times the electric density
of the surface of that globe.

24.59 LIX. Application of the Previous Result to the Effect

of Lightning Rods

From this it follows that the cloud, as well as the layer of very imperfectly insulating air
interposed,954 interposed between the cloud and the end of the cylinder, being composed of
moving parts, those parts which are close to the end of the cylinder, must rush into it with
very great rapidity, lose their electricity there, charge themselves with a strong electricity of
a nature contrary to that of the cloud, then rush towards the cloud while fleeing the end of
the cylinder, and so destroy the electricity of the parts of the cloud which they encounter.
But as the diameter of the cylinder is very small, its action, although very great relative
to the points which border the surface of the hemisphere which terminates it, is very small
relative to the points which are 30 or 40 feet from the extremity of this cylinder. Thus, it
must happen that the extremity of the cylinder will strip the parts of the cloud which adjoin
it, without electric explosion,955 and that all the bodies which will be below the extremity
of this cylinder, at a not considerable distance from the cylinder, will be preserved from the
explosion of the cloud.956

24.60 LX. Theoretical Calculation Intended to Determine

by Approximation the Electric State of an Uninsulated

Cylinder, the Axis of Which Passes Through the Cen-

ter of an Electrified and Insulated Globe, Placed at a

Distance from This Cylinder, Large Enough so that the

Electricity of the Globe Cannot Discharge Through the

Layer of Air that Separates Them

The different methods of approximation which we have used in the different Sections which
precede can be employed here: we will give some examples of them.957

954In the original: le nuage, ainsi que la couche d’air, très imparfaitement idio-électrique. That is, the
cloud and the layer of air are imperfect insulators.
955That is, without a large electric discharge in the form of lightning.
956That is, they will not suffer the consequences of lightning or electric discharge.
957Sections 60 and 61 were not included in Potier’s reprint of Coulomb’s works, [Potier, 1884].
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24.60.1 First Example

Let us start by applying these methods to the experiment detailed in Section 24.56. In this
experiment, Figure 11, an electrified globe C, 4 inches in radius, is placed at 21

2
inches from

the hemispherical extremity a of a cylinder one inch in diameter and 30 inches in length.
This cylinder is touched at its extremity G furthest from the globe, by a [conducting] body
which communicates with the Earth.

I suppose that in Figure 11, mm1m2m3m4m5 represents the curve of the electric densities
of the different corresponding points of the surface of the cylinder. I seek according to the
method explained, Section 24.36 of this Memoir, the variations of the density of these various
points, by supposing that this variation follows a straight line. I notice first that the action
of the globe being in inverse proportion to the square of the distance to the points on which
it acts, and the distance CG being significant, we can suppose the density null or at least
very small, at point G, where the cylinder is touched by an undefined [conducting] body.
According to this supposition, if we look for the variation nr in the middle of the cylinder,
which is 30 inches in length or sixty times its radius r, we will have, Section 24.37 and
following:958

2D · 42
(21.5)2

= 2nr

(

1

µ
log 60− 1

)

= 2nr(3.09) ,

from which results nr = 0.0112D. In this equation, nr represents the variation or increase in
density over a length equal to the radius of the cylinder. But as we assume the variation at
point G to be zero, the average variation over a length of size, from point m4, middle of the
cylinder, to point G, will be 0.0056; thus the density at point m4 would be equal to 0.168D.

Now to determine the variation at point b2 of the surface of the cylinder, a point which
we assume to be 5 inches away from the extremity a, we mark off a length b2b3 of 5 inches
on the other side of b2; this leaves a length b3b4 of 5 inches from b3 to the middle of the
cylinder. As the variation at point m4 was found for the length of radius r equal to 0.0112D,
the increase in density, from m4 to m3, would be by a first approximation for the length,
of ten radii, equal to 0.112D, which, added to the density found for m4, will give for the
density in m3 the quantity 0.28D.

If the density that we have just found for point b3 were uniform up to the extremity G,
we would have the action of the portion of the cylinder b3m5 on point F , represented by

0.28D
(

1

10
− 1

50

)

= 0.023D ,

a quantity a little too large, because the density decreases from b3 to m5. But as we have
just assumed a constant instead of increasing variation, from the middle b4 to point b3, the
two errors in opposite directions tend to compensate each other. Now if we seek the action of
the portion of the cylinder ab3 on point F placed 5 inches away from the end of the cylinder,
assuming the variation in a straight line over all this length ab3, and equal to n′r for the

958To arrive at this numerical result, Coulomb used that log 60 = 1.778 and that µ = 0.4343, see footnote 659
on page 288. Therefore, (1/µ) log 60− 1 = 3.09. By a lapse in the original text the next equation appeared
as follows:

2D · 42
(21.5)2

= 2nr

(

log
60

µ
− 1

)

= 2nr(3.09) .
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length of one radius of the cylinder; we will have, because the portion b3m5 of the cylinder
acts in the same direction as globe C, the electricity of the globe and of the cylinder being
of a contrary nature, the [following] equation

2D42

(11.5)2
+ 0.023D = 2n′r

(

log 20

µ
− 1

)

,

from which results n′r = 0.082D.

Thus, taking this average variation for that which extends from point b or from one inch,
counting from the extremity a to 10 inches, that is to say, over a length of 18 radii, we will
have for the increase, from point m3 to one inch from the end, the quantity 1.476D, which,
being added to 0.28D, density at 10 inches from point a, will give for the density, at one inch
from the end of the cylinder, the quantity 1.72D. Experiment has given us, Section 24.56,
the density of this cylinder measured one inch from its extremity a, equal to approximately
1.6D, which differs little from that given by the theory.

The variations of the different points of the cylinder being given by the preceding ap-
proximation, we can determine them again by a second approximation which will bring us
very near to their true value. I suppose that we want to obtain in Figure 4,959 the variation
of the densities at point i, located mid-way between b2 and b3, I calculate according to the
given formulas, Section 24.36 and following, the action that the middle portion of the cylin-
der b2a, whose density, as well as its variation, are approximately known by the preceding
approximation, exerts on the point of the axis which responds to i. I do the same operation
for the cylinder portions b3b4 and b4m5. According to the actions obtained from this calcu-
lation, as well as according to the action of globe C; I form an equation analogous to those
which precede; this equation gives me the variation nr of the average density between points
b2 and b3. I perform the same operations for any other point of the cylinder, and I thus
determine by a second approximation the variations at all the points of the surface, from
which I obtain the electric density of the cylinder for each point of its surface. We could,
by a third approximation, following the same method, come even closer to the truth, if we
believed it necessary; but this precision does not appear to ever be useful to the practice in
electric research.

24.61 LXI. Second Example

I suppose, Figure 12, that C is a globe of a thousand feet in radius [325 m],960 that the
density of the electric fluid spread over the surface of this globe is D; that the extremity a
of the cylinder am is placed at 500 feet from this globe; that this cylinder of one inch radius
and 60 feet of length [19.5 m] from a to m′′, is inserted at point m′′ perpendicularly to an
indefinite plane surface Ho of a conducting body.

959This Figure 4 appears on footnote 876 on page 399.
960In the original text, C′ appeared here instead of C.
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According to all that we have said, the uninsulated cylinder am′′ will give throughout its
length signs of electricity contrary to that of globe C.961 Its electricity will be zero at point
m′′, where it joins the surface Ho, and this surface will itself be electrified with a kind of
electricity contrary to that of the globe in the parts which border the globe; so that to have
the variation of the density on any point q of the cylinder, it is necessary to determine this
variation, according to the action of each part aq and qm′′ of the cylinder on point q, and
according to the action of globe C of the surface Ho on the same point q. If we did not take
into account the action of the surface Ho, and if we calculated the variation in the middle q
of the cylinder am′′ at 30 feet from its extremity, according to the method of the previous
Section, we would find for this variation over the length of one radius, nr = 0.0766D. Thus,
if the variation were constant over the whole length of the cylinder, which is 60 feet or 720r
in length, we would have the density at two or three inches from the end of the cylinder,
equal to 55D; but as the variation increases as one approaches the end a of the cylinder,
the density at 2 or 3 inches from this end, will be much greater than that which we have
just found. Calculating the variation for the different points of the cylinder, according to
the methods given in the last four Sections of the previous Memoir,962 I have found that the
density five or six inches from the extremity a, would be by a first approximation, equal to
more than 120D, and that it would be equal to more than 300D on the hemisphere which
ends the cylinder.

961In the original text, C′ appeared here instead of C.
962This Fifth Memoir is translated in Chapter 22.
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But it should be noted that we have not yet considered the action of the surface OH ,
whose electricity is of a nature contrary to that of globe C, and which unites with that of
the globe, for pushing point q or any other point of the cylinder from q towards C; it must
consequently increase the variation of the density for all the points of the cylinder; thus
the density of each point of the cylinder must be even greater than that determined by the
preceding calculation.963

Let us therefore seek the electric density of the surface HO, at a certain distance from an
electrified globe C. Once we obtain the evaluation of this density, according to experiment
and theory, it will be easy to determine the action of the surface HO on any point of the
cylinder; and by uniting this action with that of the cylinder and the globe on the same
point, to calculate in a fairly precise manner the electric density of the different parts of the
surface of the cylinder.

24.62 LXII. Electric State of a Non-Insulated Plane, Placed,

Figure 13, at a Distance AB from an Electrified Globe,

Great Enough for the Electricity Not to Be Communi-

cated from the Globe to the Plane, Through the Layer

of Air Which Separates Them

Figure 13 shows the arrangement of globe C and of the [conducting] plane Bt presented to
it: globe C is insulated and electrified; the plane B is sustained vertically by an insulating
support efg.

963Coulomb is now introducing an additional element compared to Figure 11, namely, a conducting plane.
His objective again is to study a vertical lightning rod having its lower end grounded and its upper end
close to an electrified cloud. He will now discuss not only the influence of the electrified globe on the
conducting cylinder next to it, but also the influence of the ground electrification on the cylinder, this
ground electrification also being caused by the electrified globe. He will consider the situation in Figure 12
rotated 90◦ to be similar to the case he wants to study, as illustrated in this footnote:
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This disk [Bt] is pierced at B towards its center [with a hole] two inches in diameter,
where a small disk of the same diameter as this hole is introduced. This small disk can then
be placed in the electric balance.964 I will give here only the detail of one experiment, and
the general result of the others.

24.62.1 Experiment

Disk tB, Figure 13, was 16 inches in diameter [43.312 cm]; globe C was 8 inches in diameter;
the center B of this disk was placed 4 inches from the surface of globe C; one touched with
the finger at t the disk Bt, and by withdrawing the small circle B, one introduced it into
the electric balance, whose needle was electrified with the same nature of electricity as globe

964The small conducting disk B in the center of the large conducting disk Bt is supported by an insulating
handle Bald attached to a support. This set constitutes a proof plane, see footnotes 53, 726 and 757 on
pages 30, 319 and 335, respectively. This proof plane can be taken inside the electric balance to analyze the
sign and value of the electric charge collected by the small disk B.
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C. This needle was attracted with a force which was measured by means of our torsion
micrometer; we immediately touched globe C, with the same little disk B, which, presented
in the balance, repelled the needle; this action was determined and compared for the same
distance965 with the first [action]. The result of this experiment was that the repulsive action
of the small disk after having touched the globe, was four times greater than the attractive
action of the same small disk, after having been placed at B in the center of the large disk
Bt not insulated.

By a series of experiments analogous to the preceding one, by varying the distance CB,
and by comparing the electric densities of point B, relative to this distance BC, I have found
that the electric densities of point B, of a nature contrary to those of globe C, were exactly
between them, in inverse proportion to the square of the distances from point B to the center
of globe C.

24.63 LXIII. Result of This Experiment

It is easy to submit the results of the experiment to the calculation. Let D be the electric
density of the surface of the globe, δ that of the plane in the parts which border point B:
the action of a surface whose uniform density is δ acting in inverse ratio of the square of the
distances, will be for a point at an infinitely small distance from this plane, equal to δ, that
of a spherical surface acting at a distance a from the center of the sphere, if D is the density
of the surface and R its radius, will be equal to 2DR2/a2;966 thus, if we put in equation the
action of globe C and that of disk B,967 the electric densities of the globe and of the plane
being of a contrary nature, we will have

(

2DR2

a2
+ δ

)

= 0 or − δ =
2DR2

a2
;

in the experiment of the preceding Section R = 4 inches, a = 8 inches; thus −δ = D/2,
a quantity which we seemed to find equal to D/4 by our experiment. But it must be
remembered, as we proved above, Figure 8, that when the small disk B touches the globe, it
takes up a quantity of electricity double that of the surface touched; whence it follows that
the quantity of electricity of the small disk B, after having touched the globe, is double that
of the surface: thus as in introducing the small disk B into the hole of the large disk Bt,968

we only take a density equal to that of the disk, it follows that experiment, as well as theory,
give δ = −D/2.

The same formula teaches us that the density δ of the center B of disk Bt, must follow
the direct compound ratio of the electric density of the large globe and its surface, and the
inverse ratio of the square of the distance BC between the middle of the disk and the center

965That is, for the same distance between the proof plane disk and the needle of the electric balance.
966See Section 23.4 on page 376.
967In the original text, D appeared here instead of B.
968In the original text, BI appeared here instead of Bt.
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of the globe; which is very exactly consistent with experiment.969 ,970

24.64 LXIV. Remark

In the experiment whose theory we have just given in the previous Section, there is a curious
observation, it is that when the plane Bt (Figure 13) is touched at t,971 globe C being
electrified, only the surface of the disk which is on the side of the globe gives signs of
electricity: the opposite surface remains in its natural state;972 it is easy to prove this by
experiment, by touching these two surfaces alternately with a small insulated disk973 which
is then presented to a very sensitive electrometer. When this small disk touches the large
disk on a surface on the side of the globe, it gives signs of strong electricity; when the small
disk touches it on the opposite side, he gives no sign of electricity.

This phenomenon is easy to explain by the considerations which we have made use of in
the various Memoirs which precede, to prove that the electric fluid is distributed only on the
surface of bodies. We will come back to this in the Memoir which will follow this one, and
which will complete the work we have undertaken on electricity.974 ,975 Its object will be to
determine the manner in which the electric fluid is distributed and penetrates the surface of
insulating bodies, as well as on conducting bodies which touch them or are near them.

969[Note by Potier] We know the rigorous solution of this question when the plane is indefinite; if a is the
radius of the sphere and d the distance from the center [of the sphere] to the plane, by setting k =

√
d2 − a2

and r = d−k
a , we find that, to charge the sphere at potential 1, we must give it a charge

2k

n=∞
∑

n=1

rn

1− r2n
;

the total negative charge of the plane is equal to it in absolute value, and the maximum density on this plane
is

−k

2πa2

n=∞
∑

n=1

rn

1− r2n

(

1
d
a − r 1−r2n−2

1−r2n

)2

,

r tends to zero as d/a increases: if we could limit ourselves to the first term of the series, the ratio

∑n=∞
n=1

rn

1−r2n

∑n=∞
n=1

rn

1−r2n

(

1
d

a
−r 1−r2n−2

1−r2n

)2

of the mean density of the sphere to the maximum density of the plane would reduce to a2/d2, as Coulomb
approximately verified. In the particular case where d = 2a, this ratio is really equal to 3.71, and not to
4; the deviation is of the same order as the deviations between Coulomb’s observations and the results of
Poisson’s calculations; this experiment even shows that the charge of the proof plane is indeed that of the
surface on which it is applied, and not the double.
970See also footnotes 727, 758, 782, 793, 920 and 927 on pages 320, 336, 343, 349, 421 and 423, respectively.
971That is, when disk Bt is touched at t by a grounded conductor, as indicated in Figure 13 by the finger

of the person.
972That is, the opposite surface becomes neutral or electrically discharged.
973That is, with a proof plane.
974[Note by Potier] This Memoir was never published and Biot makes no reference to it.
975See Potier’s Introduction to the reprint of Coulomb’s Memoirs presented in Chapter 3.
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24.65 LXV

Let us now return976 to our second example, Section 24.61, in which C, Figure 12, is a 1000-
foot globe,977 placed 500 feet away from the end of a cylinder, whose length is 60 feet and
radius one inch. In this example, since the plane Ho is 1560 feet from the center of globe C,
its density D′ will be represented by

D′ =
2D · (1000)2

(1560)2
= 0.822D ,

D being the density of the surface of the globe. If we want to determine the variation of [the
electric surface density of] the cylinder by the preceding methods of approximation, we will
find that the action of globe C on point q placed in the middle of the cylinder, will be equal
to978

2D · (1000)2
(1530)2

= 0.854D ;

the action of the plane Ho on the same point q, assuming the radius of this disk to be very
large relative to the distance m′′q,979 will be, as we have just found, equal to D′ = 0.822D,
action which pushes point q toward globe C while globe C ′ attracts the same point; thus the
combined action of the globe and the plane Ho solicits point q in the direction qC ′ with a
force equal to (0.822 + 0.854)D.

But we have seen, in the preceding Sections, that if the variation of the densities of the
cylinder am′′, Figure 11,980 followed a straight line, the action of the whole cylinder on a
point placed in its middle would be equal to

2nr

(

log l
r

µ
− 1

)

,

where nr represents the variation of the density over a length equal to the radius r of the
cylinder, l is the length of the cylinder, µ the modulus of the logarithmic system;981 thus,
in our example, as r is equal to one inch, and as the length of the cylinder is sixty feet or
720r, we will have for the action of the cylinder on the point placed in the middle at q, the
quantity 2 · 5.58 · nr, action that operates on point q from q to m′′; thus the equilibrium of
this point will give

(0.822 + 0.854)D = 2nr · 5.58 or nr =
0.838

5.58
D = 0.15D ,

976This last Section 65 was not included in Potier’s reprint of Coulomb’s works, [Potier, 1884].
977That is, with a radius of 1000 feet = 3.25× 102 m.
978In the original text this equation appeared as follows:

2D · (1000)2
(1530)2

D = 0.854D .

979That is, assuming the surface Ho to be a conducting disk that has a radius much greater than the
distance m′′q between the center m′′ of the disk and the center q of the cylinder aqm′′.
980In the original text “Figure 5” appeared here. However, there is no Figure 5 in the original images

relating to this article.
981See footnote 659 on page 288.
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about twice the amount we found when we neglected the action of the surface Ho.
If I now want to have the variation at point ϕ, which I suppose is 5 feet from the

extremity a of the cylinder am′′, I would find that the action of the plane Ho on point
ϕ is approximately equal to D′ or 0.822D, the distance m′′ϕ being very small relative to
the electrified extent of the plane Ho: the action of the globe on point ϕ will be equal to
2D(1000)2/(1505)2. To obtain now the action of the cylinder on point ϕ, I will suppose the
cylinder divided into two parts; the first ap, being 10 feet long; the second pm, being 55
feet in length. If the variation of the density found in the middle of the cylinder, equal to
0.15D, were extended to point p, 10 feet from the extremity a, we would have at this point
the density δ equal to 600× 0.15D = 90D.

Thus, if we wanted to calculate the action of the portion pm′′ of the cylinder on point ϕ,
the electric density being at p equal to δ, and decreasing by the quantity nr, over a length of
the radius, we would have, as an expression for this action, by naming ϕp = a and ϕm′′ = x,
according to the Sections which precede, the formula

δ
(

r

a
− r

x

)

+ nr
(

a− x

x

)

+
nr

µ
log

(

x

a

)

.

It is necessary in this formula to substitute in place of δ, its value 90D, in place of a, its
value 60r, in place of x, the quantity 660, and instead of nr, its value 0.15D; from which will
result for the action of this part mp of the cylinder, the quantity 1.14D. If we now assume
that the average variation over the last ten feet is n′r, we will have at point p, the middle of
these last ten feet, for the action in the direction ap, of the last ten feet of the cylinder, the
quantity

2n′r

(

log 120

µ
− 1

)

= 7.58n′r .

Thus, by combining the action of the globe with that of the surfaceHo and that of the portion
of the cylinder pm′′, which act in the same direction, we will have for the equilibrium at point
ϕ, at 5 feet from end a, the equation

2D(1000)2

(1505)2
+ 0.82D + 1.14D = 7.58n′r ;

from which

n′r =
1.42

3.79
D = 0.37D .

Thus the variation at 5 feet from the extremity a would be, by this approximation, equal
to 0.37; from which one would conclude that the average variation between a point taken in
the middle of the cylinder where this variation is equal to 0.15D, and a point 5 feet from the
end where it is equal to 0.37D, will be 0.26. Thus the increase in density, from the middle of
the cylinder to five feet from the end, will be over twenty-five feet or 300r in length, equal to
0.26× 300D = 78D. The variation from point q, at the middle of the cylinder, to point m′′,
is not quite equal to 0.15D which we found for the variation at the middle of the cylinder;
but taking this value as a first approximation, we will have for the increase in density, from
point m′′ to the middle q of the cylinder or over 360r of length, the quantity 54D which will
represent the density in the middle of the cylinder; thus by joining to it 68D, an increase of
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density which we have just found from the middle of the cylinder to point ϕ, placed 5 feet
from the extremity a of the cylinder, we will have the density at this point ϕ equal to 132D.

If, following the above method, I looked for the variation at 2 feet or 24r distance from
the end a of the cylinder, I would find it for the length of one radius, equal to 1.07D; I
would then find the variation, over a length of one radius taken 6 inches from point a by the
same method of approximation, equal to 5D, or five times the density of the globe; and by
concluding, according to these variations, the density at 2 or 3 inches from the extremity a
of the cylinder, we would find it of more than 200D.

If we now wanted to determine the electric density at the extremity a which terminates
the cylinder, it would be easy to see, as experiment proves, that this density is at least twice
as great as that of point b, which would only be apart from it by approximately a length equal
to the half-diameter of the cylinder or to the radius of the hemisphere which terminates it.
To prove it, suppose that from point b, which meets the equator of the hemisphere, to point
m′′, the density of the cylinder is uniform and equal to δ; that the density of the surface of
the hemisphere ab is equal to δ′; we will find by a very easy calculation, that the action of the
surface of the hemisphere ab on its center e in the direction am′′, is equal to δ′/2; it will be
found that the action of the surface of the cylinder bm′′ on point e in the same direction, is
equal to δ. Thus, by uniting with this action, that of the sphere C982 and that of the surface
Ho, they must balance the action of the hemisphere ab, from which results the equation

δ′

2
= δ +

2D(1000)2

(1500)
+ 0.82D ;

and as δ is much larger than D, it follows that δ′ or that the electric density on the surface
of the hemisphere which terminates at a the cylinder, is more than double that from the
surface of this same cylinder at one inch from its extremity. This result is consistent with
what experiment has given us, Section 24.55.

The calculations of this Section, though very imperfect, are sufficient in practice to ana-
lyze nearly all practical subjects relative to electricity, where it might be necessary to employ
analysis. But the values given by this first approximation can be corrected and brought closer
to the truth as much as desired by the preceding approximation, as we said at the end of
Section 24.60, by viewing the curve of densities as a polygon, whose inclination of the sides
would be defined relative to the axis of the cylinder: the calculation of the action of the
different parts of the surface of the cylinder on a point of its axis, would be done by the
methods explained in Section 24.35 and following, and would give the variation at the mid-
dle of a part of the cylinder, part that could be considered more or less large, depending on
whether the point whose [density] variation we wanted to determine, would be more or less
close to the extremity a.

982In the original text, C′ appeared here instead of C.
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Chapter 25

Remarks on Coulomb’s Sixth Memoir

A. K. T. Assis

25.1 Coulomb’s Experimental Procedure

In the experiment of Section 24.2 Coulomb uses his electric balance to estimate the amount of
charge contained in an electrified globe C. In Figure 25.1 (a) we have the initial configuration
of the experiment. This Figure represents the top-down view of the electric balance. The
suspension wire has its projection at point a, which is the center of the horizontal needle
attached to the lower end of the wire. There is a conducting disk b at the end of the insulating
needle ab, and this disk will be electrified with a charge of the same sign as the charge on
globe C. When the wire is not twisted, the needle is directed toward point o attached to
the bottom of the balance. The arrow indicates the micrometer attached to the top of the
suspension wire. Initially it is directed toward point S fixed at the top of the balance. I
am assuming that when the wire is not twisted, points a, o, and S are in the same vertical
plane.

o

C C

S

a a a

b

b

b

oo
S S

fc

fdjd

(a) (b) (c )

Figure 25.1: (a) Initial orientation of the needle ab and the micrometer indicator attached to the
lower and upper parts of the suspension wire, respectively. (b) The electrified disk b of the needle
is repelled clockwise by globe C electrified with a charge of the same sign. (c) By twisting the
micrometer counterclockwise, disk b is brought closer to globe C.

Coulomb then introduces globe C into the balance, with the globe and the disk b of the
needle being electrified with charges of the same sign. He puts the center of globe C in the
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position where the center of the disk b was initially located. I am going to assume here that
needle b was repelled clockwise. At equilibrium it is away from C by an angle φc, Figure
25.1 (b). In this situation the electric repulsion between C and b is balanced by the twisting
force of the lower part of the suspension wire.

Coulomb turns the micrometer attached to the top of the suspension wire counterclock-
wise by an angle ϕd until C and b are separated by a pre-defined angle φd, Figure 25.1 (c).
In this situation the total twist of the suspension wire is measured by φd + ϕd.

Coulomb will estimate the amount of charges from different globes by always bringing
them to the same angular distance φd from the disk of the needle, for example, with φd = 30◦.
The force of repulsion between globe C and disk d of the needle is proportional to the product
of their charges and inversely proportional to the square of the distance between their centers.
This force is balanced by the total twist of the suspension wire. As the distance between
C and b is always the same in all experiments, the amount of charge on globe C can be
estimated by the total twist of the wire measured by φd + ϕd.

25.2 The Force Acting on a Charge Placed Exactly on

the Surface of a Uniformly Electrified Spherical

Shell

In Section 24.4 of this Sixth Memoir Coulomb mentioned the force exerted by a spherical
shell of radius R uniformly electrified with a surface charge density D983 when acting on a
point with charge µ located exactly on the surface. Coulomb then stated the following:984

Dans cette supposition, l’action d’une surface sphérique, dont tous les points ont la
même densité D, agissant sur un point de la surface dont la masse électrique seroit
µ, seroit représentée par ΠDµ; Π étant le rapport de la circonférence au rayon.

Historically the letter π (or Π) was introduced to indicate the perimeter or circumference
of a circle. During the 18th century, some authors began to use the letter π to represent the
ratio of the circumference to the radius (that is, with π = 6.28318...). Among these authors
was Coulomb as can be seen from this sentence.985 Other authors started to use the letter
π to represent the ratio of the circumference to the diameter (that is, with π = 3.14159...).
This confusion regarding the meaning of the symbol π persisted during Coulomb’s time.
From the 19th century onwards, the letter π was adopted by most authors to represent only
the ratio of the circumference of a circle to its diameter, that is, π = 3.14159.... In this
English translation, the letter π has its modern meaning as the ratio of the circumference of
a circle to its diameter, that is, with its value given by π = 3.14159....

Therefore, to make Coulomb’s text understandable for a modern audience, the expression
ΠDµ in the translation of the above sentence was replaced with 2πDµ, as had been done by
Potier.986 The translation adopted for this sentence was as follows, see the page 383:

In this supposition, the action of a spherical surface, all the points of which have
the same density D, acting on a point of the surface whose electric mass would be

983D is the surface density of electricity, that is, the amount of charge per unit area.
984[Coulomb, 1791, p. 621], see also footnote 849 on page 383.
985See also footnotes 864 and 899 on pages 391 and 414, respectively.
986[Potier, 1884, p. 233].
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µ, would be represented by 2πDµ, being 2π the ratio of the circumference to the
radius.

What Coulomb is calling “action” here can be understood as “force” or “force per unit
charge” in the usual Newtonian sense.

In this sentence Coulomb is including the factor 2π in the force exerted by a uniformly
electrified spherical shell acting on an electrified particle located on that surface, see Sec-
tion 23.4 on page 376. See also footnote 796 on page 351. In the Fifth Memoir he had left
out this factor 2π.

Some authors have presented a discussion of Coulomb’s work connected to the force acting
on an electrified particle placed exactly on the surface of a uniformly electrified spherical
shell.987 There is also a recent discussion of the exact calculation of this force by means of
analytical integrations.988

25.3 Set of 24 Equations

In Section 24.16 Coulomb performed the ninth experiment in which an 8-inch-diameter globe
was placed in contact with a line of 24 small globes, 2-inch in diameter each, with the centers
of all of them located along a straight line. These 24 small globes formed a length of 48
inches, as illustrated in Figure 25.2. The vertical lines in this Figure indicate the points of
contact between two globes. Point a indicates the contact between the large globe and the
first small globe. Point a8, for example, indicates the point of contact between the eighth
and the ninth small globe.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
a a1 a2 a3

a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23

Figure 25.2: Large globe C, 8 inches in diameter, in contact with a line of 24 small globes, each 2
inches in diameter.

On page 398 of Section 24.17, the original Table was presented containing a set of 24 equa-
tions that describe the electrostatic equilibrium of this system of electrified globes according
to Coulomb.

At the top left of the first line of this Table we have the following:
“Action of the large globe on the different points of contact. The average density of the

large globe is D; its radius R, the radius of the small globe is r.”
At the top right of the first line of this Table we have the following:
“Table of 24 equations intended to determine the average electric density of 24 small

globes, the centers placed in a straight line, the small globe 1 in contact with a large globe. In
this Table, the numbers at the top of each column indicate the position of the small globe;
so, for example, that at the eighth vertical column, third horizontal line, we find the quantity
2

112
which is supposed to be multiplied by δ8, or by the average density of the eighth small

globe, counting from the large globe.”

987[Potier, 1884, p . ix] and footnote 59 on page 30 of this English translation. See also [Heilbron, 1999,
pp. 494-496].
988[Lima, 2018] and [Lima, 2020].

447



In the second row of the first column we have “First equation. D =”. In the third row
of the first column we have “Second equation. 2DR2

(R+2r)2
=”. Etc.

I present this Table here in the form of 24 equations to make clear what Coulomb had
in mind. They can be obtained by following the procedure of Sections 23.4 and 24.4.

First equation, equilibrium at point a:

D = +δ1 +
2δ2
32

+
2δ3
52

+
2δ4
72

+
2δ5
92

+
2δ6
112

+
2δ7
132

+
2δ8
152

+
2δ9
172

+
2δ10
192

+
2δ11
212

+
2δ12
232

+
2δ13
252

+
2δ14
272

+
2δ15
292

+
2δ16
312

+
2δ17
332

+
2δ18
352

+
2δ19
372

+
2δ20
392

+
2δ21
412

+
2δ22
432

+
2δ23
452

+
2δ24
472

. (25.1)

Second equation, equilibrium at point a1:

2DR2

(R + 2r)2
= −δ1 + δ2 +

2δ3
32

+
2δ4
52

+
2δ5
72

+
2δ6
92

+
2δ7
112

+
2δ8
132

+
2δ9
152

+
2δ10
172

+
2δ11
192

+
2δ12
212

+
2δ13
232

+
2δ14
252

+
2δ15
272

+
2δ16
292

+
2δ17
312

+
2δ18
332

+
2δ19
352

+
2δ20
372

+
2δ21
392

+
2δ22
412

+
2δ23
432

+
2δ24
452

. (25.2)

Third equation, equilibrium at point a2:

2DR2

(R + 4r)2
= −2δ1

32
− δ2 + δ3 +

2δ4
32

+
2δ5
52

+
2δ6
72

+
2δ7
92

+
2δ8
112

+
2δ9
132

+
2δ10
152

+
2δ11
172

+
2δ12
192

+
2δ13
212

+
2δ14
232

+
2δ15
252

+
2δ16
272

+
2δ17
292

+
2δ18
312

+
2δ19
332

+
2δ20
352

+
2δ21
372

+
2δ22
392

+
2δ23
412

+
2δ24
432

. (25.3)

Fourth equation, equilibrium at point a3:

2DR2

(R + 6r)2
= −2δ1

52
− 2δ2

32
− δ3 + δ4 +

2δ5
32

+
2δ6
52

+
2δ7
72

+
2δ8
92

+
2δ9
112

+
2δ10
132

+
2δ11
152

+
2δ12
172

+
2δ13
192

+
2δ14
212

+
2δ15
232

+
2δ16
252

+
2δ17
272

+
2δ18
292

+
2δ19
312

+
2δ20
332

+
2δ21
352

+
2δ22
372

+
2δ23
392

+
2δ24
412

. (25.4)

Fifth equation, equilibrium at point a4:

2DR2

(R + 8r)2
= −2δ1

72
− 2δ2

52
− 2δ3

32
− δ4 + δ5 +

2δ6
32

+
2δ7
52

+
2δ8
72

+
2δ9
92

+
2δ10
112

+
2δ11
132

+
2δ12
152

+
2δ13
172

+
2δ14
192

+
2δ15
212

+
2δ16
232

+
2δ17
252

+
2δ18
272

+
2δ19
292

+
2δ20
312

+
2δ21
332

+
2δ22
352

+
2δ23
372

+
2δ24
392

. (25.5)

Sixth equation, equilibrium at point a5:

2DR2

(R + 10r)2
= −2δ1

92
− 2δ2

72
− 2δ3

52
− 2δ4

32
− δ5 + δ6 +

2δ7
32

+
2δ8
52

+
2δ9
72

+
2δ10
92

+
2δ11
112

+
2δ12
132
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+
2δ13
152

+
2δ14
172

+
2δ15
192

+
2δ16
212

+
2δ17
232

+
2δ18
252

+
2δ19
272

+
2δ20
292

+
2δ21
312

+
2δ22
332

+
2δ23
352

+
2δ24
372

. (25.6)

Seventh equation, equilibrium at point a6:

2DR2

(R + 12r)2
= −2δ1

112
− 2δ2

92
− 2δ3

72
− 2δ4

52
− 2δ5

32
− δ6 + δ7 +

2δ8
32

+
2δ9
52

+
2δ10
72

+
2δ11
92

+
2δ12
112

+
2δ13
132

+
2δ14
152

+
2δ15
172

+
2δ16
192

+
2δ17
212

+
2δ18
232

+
2δ19
252

+
2δ20
272

+
2δ21
292

+
2δ22
312

+
2δ23
332

+
2δ24
352

. (25.7)

Eighth equation, equilibrium at point a7:

2DR2

(R + 14r)2
= −2δ1

132
− 2δ2

112
− 2δ3

92
− 2δ4

72
− 2δ5

52
− 2δ6

32
− δ7 + δ8 +

2δ9
32

+
2δ10
52

+
2δ11
72

+
2δ12
92

+
2δ13
112

+
2δ14
132

+
2δ15
152

+
2δ16
172

+
2δ17
192

+
2δ18
212

+
2δ19
232

+
2δ20
252

+
2δ21
272

+
2δ22
292

+
2δ23
312

+
2δ24
332

. (25.8)

Ninth equation, equilibrium at point a8:

2DR2

(R + 16r)2
= −2δ1

152
− 2δ2

132
− 2δ3

112
− 2δ4

92
− 2δ5

72
− 2δ6

52
− 2δ7

32
− δ8 + δ9 +

2δ10
32

+
2δ11
52

+
2δ12
72

+
2δ13
92

+
2δ14
112

+
2δ15
132

+
2δ16
152

+
2δ17
172

+
2δ18
192

+
2δ19
212

+
2δ20
232

+
2δ21
252

+
2δ22
272

+
2δ23
292

+
2δ24
312

. (25.9)

Tenth equation, equilibrium at point a9:

2DR2

(R + 18r)2
= −2δ1

172
− 2δ2

152
− 2δ3

132
− 2δ4

112
− 2δ5

92
− 2δ6

72
− 2δ7

52
− 2δ8

32
− δ9 + δ10 +

2δ11
32

+
2δ12
52

+
2δ13
72

+
2δ14
92

+
2δ15
112

+
2δ16
132

+
2δ17
152

+
2δ18
172

+
2δ19
192

+
2δ20
212

+
2δ21
232

+
2δ22
252

+
2δ23
272

+
2δ24
292

. (25.10)

Eleventh equation, equilibrium at point a10:

2DR2

(R + 20r)2
= −2δ1

192
− 2δ2

172
− 2δ3

152
− 2δ4

132
− 2δ5

112
− 2δ6

92
− 2δ7

72
− 2δ8

52
− 2δ9

32
− δ10 + δ11 +

2δ12
32

+
2δ13
52

+
2δ14
72

+
2δ15
92

+
2δ16
112

+
2δ17
132

+
2δ18
152

+
2δ19
172

+
2δ20
192

+
2δ21
212

+
2δ22
232

+
2δ23
252

+
2δ24
272

. (25.11)

Twelfth equation, equilibrium at point a11:

2DR2

(R + 22r)2
= −2δ1

212
− 2δ2

192
− 2δ3

172
− 2δ4

152
− 2δ5

132
− 2δ6

112
− 2δ7

92
− 2δ8

72
− 2δ9

52
− 2δ10

32
− δ11 + δ12
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+
2δ13
32

+
2δ14
52

+
2δ15
72

+
2δ16
92

+
2δ17
112

+
2δ18
132

+
2δ19
152

+
2δ20
172

+
2δ21
192

+
2δ22
212

+
2δ23
232

+
2δ24
252

. (25.12)

Thirteenth equation, equilibrium at point a12:

2DR2

(R + 24r)2
= −2δ1

232
− 2δ2

212
− 2δ3

192
− 2δ4

172
− 2δ5

152
− 2δ6

132
− 2δ7

112
− 2δ8

92
− 2δ9

72
− 2δ10

52
− 2δ11

32
− δ12

+ δ13+
2δ14
32

+
2δ15
52

+
2δ16
72

+
2δ17
92

+
2δ18
112

+
2δ19
132

+
2δ20
152

+
2δ21
172

+
2δ22
192

+
2δ23
212

+
2δ24
232

. (25.13)

Fourteenth equation, equilibrium at point a13:

2DR2

(D + 26r)2
= −2δ1

252
− 2δ2

232
− 2δ3

212
− 2δ4

192
− 2δ5

172
− 2δ6

152
− 2δ7

132
− 2δ8

112
− 2δ9

92
− 2δ10

72
− 2δ11

52
− 2δ12

32

− δ13 + δ14 +
2δ15
32

+
2δ16
52

+
2δ17
72

+
2δ18
92

+
2δ19
112

+
2δ20
132

+
2δ21
152

+
2δ22
172

+
2δ23
192

+
2δ24
212

. (25.14)

Fifteenth equation, equilibrium at point a14:

2DR2

(R + 28r)2
= −2δ1

272
− 2δ2

252
− 2δ3

232
− 2δ4

212
− 2δ5

192
− 2δ6

172
− 2δ7

152
− 2δ8

132
− 2δ9

112
− 2δ10

92
− 2δ11

72
− 2δ12

52

− 2δ13
32

− δ14 + δ15 +
2δ16
32

+
2δ17
52

+
2δ18
72

+
2δ19
92

+
2δ20
112

+
2δ21
132

+
2δ22
152

+
2δ23
172

+
2δ24
192

. (25.15)

Sixteenth equation, equilibrium at point a15:

2DR2

(R + 40r)2
= −2δ1

292
− 2δ2

272
− 2δ3

252
− 2δ4

232
− 2δ5

212
− 2δ6

192
− 2δ7

172
− 2δ8

152
− 2δ9

132
− 2δ10

112
− 2δ11

92
− 2δ12

72

− 2δ13
52

− 2δ14
32

− δ15 + δ16 +
2δ17
32

+
2δ18
52

+
2δ19
72

+
2δ20
92

+
2δ21
112

+
2δ22
132

+
2δ23
152

+
2δ24
172

. (25.16)

Seventeenth equation, equilibrium at point a16:

2DR2

(R + 32r)2
= −2δ1

312
− 2δ2

292
− 2δ3

272
− 2δ4

252
− 2δ5

232
− 2δ6

212
− 2δ7

192
− 2δ8

172
− 2δ9

152
− 2δ10

132
− 2δ11

112
− 2δ12

92

− 2δ13
72

− 2δ14
52

− 2δ15
32

− δ16 + δ17 +
2δ18
32

+
2δ19
52

+
2δ20
72

+
2δ21
92

+
2δ22
112

+
2δ23
132

+
2δ24
152

. (25.17)

Eighteenth equation, equilibrium at point a17:

2DR2

(R + 34r)2
= −2δ1

332
− 2δ2

312
− 2δ3

292
− 2δ4

272
− 2δ5

252
− 2δ6

232
− 2δ7

212
− 2δ8

192
− 2δ9

172
− 2δ10

152
− 2δ11

132
− 2δ12

112
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− 2δ13
92

− 2δ14
72

− 2δ15
52

− 2δ16
32

− δ17 + δ18 +
2δ19
32

+
2δ20
52

+
2δ21
72

+
2δ22
92

+
2δ23
112

+
2δ24
132

. (25.18)

Nineteenth equation, equilibrium at point a18:

2DR2

(R + 36r)2
= −2δ1

352
− 2δ2

332
− 2δ3

312
− 2δ4

292
− 2δ5

272
− 2δ6

252
− 2δ7

232
− 2δ8

212
− 2δ9

192
− 2δ10

172
− 2δ11

152
− 2δ12

132

− 2δ13
112

− 2δ14
92

− 2δ15
72

− 2δ16
52

− 2δ17
32

− δ18 + δ19 +
2δ20
32

+
2δ21
52

+
2δ22
72

+
2δ23
92

+
2δ24
112

. (25.19)

Twentieth equation, equilibrium at point a19:

2DR2

(R + 38r)2
= −2δ1

372
− 2δ2

352
− 2δ3

332
− 2δ4

312
− 2δ5

292
− 2δ6

272
− 2δ7

252
− 2δ8

232
− 2δ9

212
− 2δ10

192
− 2δ11

172
− 2δ12

152

− 2δ13
132

− 2δ14
112

− 2δ15
92

− 2δ16
72

− 2δ17
52

− 2δ18
32

− δ19 + δ20 +
2δ21
32

+
2δ22
52

+
2δ23
72

+
2δ24
92

. (25.20)

Twenty-first equation, equilibrium at point a20:

2DR2

(R + 40r)2
= −2δ1

392
− 2δ2

372
− 2δ3

352
− 2δ4

332
− 2δ5

312
− 2δ6

292
− 2δ7

272
− 2δ8

252
− 2δ9

232
− 2δ10

212
− 2δ11

192
− 2δ12

172

− 2δ13
152

− 2δ14
132

− 2δ15
112

− 2δ16
92

− 2δ17
72

− 2δ18
52

− 2δ19
32

− δ20 + δ21 +
2δ22
32

+
2δ23
52

+
2δ24
72

. (25.21)

Twenty-second equation, equilibrium at point a21:

2DR2

(R + 42r)2
= −2δ1

412
− 2δ2

392
− 2δ3

372
− 2δ4

352
− 2δ5

332
− 2δ6

312
− 2δ7

292
− 2δ8

272
− 2δ9

252
− 2δ10

232
− 2δ11

212
− 2δ12

192

− 2δ13
172

− 2δ14
152

− 2δ15
132

− 2δ16
112

− 2δ17
92

− 2δ18
72

− 2δ19
52

− 2δ20
32

− δ21 + δ22 +
2δ23
32

+
2δ24
52

. (25.22)

Twenty-third equation, equilibrium at point a22:

2DR2

(R + 44r)2
= −2δ1

432
− 2δ2

412
− 2δ3

392
− 2δ4

372
− 2δ5

352
− 2δ6

332
− 2δ7

312
− 2δ8

292
− 2δ9

272
− 2δ10

252
− 2δ11

232
− 2δ12

212

− 2δ13
192

− 2δ14
172

− 2δ15
152

− 2δ16
132

− 2δ17
112

− 2δ18
92

− 2δ19
72

− 2δ20
52

− 2δ21
32

− δ22 + δ23 +
2δ24
32

. (25.23)

Twenty-fourth equation, equilibrium at point a23:

2DR2

(R + 46r)2
= −2δ1

452
− 2δ2

432
− 2δ3

412
− 2δ4

392
− 2δ5

372
− 2δ6

352
− 2δ7

332
− 2δ8

312
− 2δ9

292
− 2δ10

272
− 2δ11

252
− 2δ12

232

− 2δ13
212

− 2δ14
192

− 2δ15
172

− 2δ16
152

− 2δ17
132

− 2δ18
112

− 2δ19
92

− 2δ20
72

− 2δ21
52

− 2δ22
32

− δ23 + δ24 . (25.24)
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Chapter 26

Seventh Memoir on Electricity and
Magnetism: On Magnetism

Coulomb989

26.1 I

In the six Memoirs which precede, printed successively since 1784 in the volumes of the
Academy, I had mainly in view to submit to calculation the different phenomena of electricity.
The thesis that I am presenting today aims to determine, by experiment and by theoretical
analysis, the laws of magnetism.

It is necessary, for the operations that follow, to recall some results that I have already
given, either in a Memoir on magnetic needles, printed in the ninth volume of the Savants
étrangers,990 or in a Memoir printed in our volume of 1785.991

In the first of these Memoirs, I proved, page 168,992

that if a magnetic needle is suspended by its center of gravity, around which it can
move freely in all directions, and if it is moved away from the magnetic meridian, it is
always brought back there, by a constant force, whatever the angle of direction that
the needle forms with the magnetic meridian.993

In this Memoir, I reported some experiments of different authors, from which I had
deduced the above result; but in 1785, volume of the Academy, page 603 and following,994 I
confirmed it by means of my torsion balance, by an experiment which appears decisive, here
is the experiment: we place in the magnetic balance, as it is described in this Memoir, a
magnetic needle suspended horizontally by a copper wire, so that when the needle is pointed
in the direction of the magnetic meridian, the angle of twist of the suspension wire is zero:
the suspension wire is then twisted, by means of the micrometer described in the various

989[Coulomb, 1793] with Portuguese translation in [Assis, 2022]. This work was presented in 1789 to the
French Academy of Sciences and published in 1793.
990[Coulomb, 1780]. This Memoir is translated in Chapter 5.
991[Coulomb, 1788d] with German translation in [Coulomb, 1890e] and with a partial English translation

in [Coulomb, 1935b]. This Second Memoir is fully translated in Chapter 14.
992See page 56 in Subsection 5.0.2.
993A discussion and illustration of this first fundamental principle is found in Section 6.1.
994See page 251 on Subsection 14.5.1.
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Memoirs which precede, and one observes for various angles of torsion, how much the needle
moves away from its meridian, and we find that the force of torsion necessary to retain a
needle at any [angular] distance from its meridian, is exactly proportional to the sine of the
angle which the direction of the needle forms with this meridian, whence it obviously results
that the resultant of the forces which bring the needle back to its meridian, is a constant
quantity parallel to the meridian, which always passes through the same point of the needle.

I also proved, ninth volume of the Savans Étrangers, page 170,995 that the magnetic forces
of the globe of the Earth which solicit the different points of a magnetic needle, act in two
opposite directions; that the part of the needle which, in our climates, points almost towards
the [geographic] North, is drawn towards the North, while the austral part996 of the needle is
drawn towards the South; but however the needle was magnetized, or even for a half or any
portion cut from the needle after being magnetized, the sum of the forces which urges the
needle or portion we detached toward the North, is exactly equal to the sum of the forces
which urge the needle or the cut portion towards the South of the magnetic meridian. I have
deduced this result from several experiments, the simplest of which is that a needle weighed
before and after having been magnetized has in both cases very exactly the same weight.
Mr. Bouguer, in his Voyage au Pérou, page 85 and following,997 had proved before me, by
decisive experiments, this equality of opposite actions.

It is still a fact of experiment, as we have already said in the Memoirs cited, that magnetic
needles are only susceptible to a certain degree of magnetism that they cannot exceed,
however strong the magnets which are used successively to magnetize them.

Finally we have proved, Memoirs of 1786, that the attractive and repulsive actions of
magnetic molecules were in direct proportion to the magnetic intensity and to the inverse of
the square of their distances.998

All these facts being known, here are the principal objects which I have sought to deter-
mine in the Memoir which I am presenting.

1. The ratio of the directive forces999 which bring back needles of different dimensions
but of the same nature to the magnetic meridian when they are magnetized to satura-
tion.1000

2. The magnetic intensity of each point of a needle.

3. What limits must be placed on the hypotheses of attraction and repulsion of magnetic
fluids1001 so that the hypotheses fits with experiment.

4. The most advantageous practical means for magnetizing needles to saturation and for
making artificial magnets of great strength as suggested by experiment and theory.

995[Coulomb, 1780, p. 170]. See page 57 of Subsection 5.0.3.
996In the original: la partie australe. See footnote 127 on page 56.
997Pierre Bouguer (1698-1758) was a French mathematician, physicist and astronomer. See [Bouguer, 1749].
998In the original: les actions attractives et répulsives des molécules magnétiques étaient en raison directe

de l’intensité magnétique et de l’inverse du carré de leurs distances. That is, the attractive or repulsive force
between magnetic particles is directly proportional to the product of the magnetic fluid intensities of these
particles and inversely proportional to the square of the distance between them. See also Section 14.3.
999In the original: forces directrices. See footnote 286 on page 127.

1000That is, Coulomb wants to determine the magnetic torque exerted by the Earth on a cylindrical needle
made of a certain material, magnetized to saturation, as a function of the length and thickness of the needle.
1001In the original: fluides aimantaires.

454



26.2 II

I used, Figure 2,1002 in most of the experiments, a torsion balance exactly similar to the
electric balance described in the various Memoirs that I have already published, Volume of
1787.

0

45

45

Only the shape of the support of the needle, Figure 1, is special as required by the new
type of experiments for which it is intended.

1002This is one of Coulomb’s magnetic balances. I added the numbers 0 and 45 that do not appear in his
Figure. They represent the angles marked on the lateral strip.
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In the drawing of this support, Figure 1, ab, represents the clamp which grasps by its
upper part the [lower end of the] suspension wire ag; this wire, as we have said in the
Memoirs on electricity, is grasped at its upper end by another clamp which forms part of the
micrometer (see the Volume of the Academy, 1785, page 569; 1787, page 421);1003 the clamp
ab seizes at its lower extremity b, a stirrup, 1234, formed with a very light copper blade. In
this stirrup we place a small plane of cardboard PL, covered, in its upper surface, with a
coating of Spanish wax, on which we make an impression of the steel wire that we want to
submit to the experiments,1004 which makes it easy, in the successive tests, to always place
the wire in the same place: under the middle of this stirrup, we weld at its upper extremity
f , a copper wire ef , whose lower extremity e, is also soldered to a copper plane DCR, very
wide and very light. This vertical plane DCR, is submerged in a vase V A, filled with water,
so that the surface of the water is at least five or six lines [1.13 or 1.36 cm] above the vertex
e of the plane. The resistance of the water against the plane is intended to promptly stop
the oscillations of the needle sn; but it is necessary, as we have just said, that the plane
be entirely immersed in the water, otherwise in the oscillations of the needle, the surface of
the water, rising unevenly and adhering to the surface of the plane, could vary the magnetic
direction of the needle.1005,1006

Figure 2 represents the device that we have just described, placed in the magnetic bal-

1003See pages 203 and 327.
1004I added in Figure 1 the letter P that does not appear in the original image.
1005[Note by Coulomb] In the volume of the Academy of 1785, I gave the description of a compass intended
to observe the diurnal variations [of terrestrial magnetism]; in this Memoir I proposed to weld a small plane
with the needle. The reasons exposed here indicate that it is necessary that this small plane is welded to a
copper wire, which is in the same vertical as the wire of suspension, that it is necessary moreover that the
plane is entirely submerged.
1006Coulomb is referring here to the Memoir of 1777 published in 1780 and which is translated in Chapter 5.
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ance. This balance is positioned so that its side ab is directed along the magnetic meridian:
the small band 45, o, 45, drawn on the side of the balance perpendicular to the magnetic
meridian, is the tangent of a circle which would have its center at the wire of suspension,
so that a vertical plane, passing through this wire of suspension and the point o, middle of
the tangent, represents the magnetic meridian, the tangent, o, 45, is divided according to
the degrees of the circle:1007 to operate [the balance], one first places horizontally, in the
stirrup E,1008 a copper wire, and the micrometer being on the point o, one ensures that the
torsion [of the suspension wire] being null, the copper wire is directed along the magnetic
meridian. We have given in our Memoirs for 1787, methods which render this operation
very easy; when the balance is thus arranged, the copper needle is replaced by a magnetic
needle; then, by means of the torsion micrometer, we move this needle 20 to 30 degrees away
from the meridian, and one observes the force of torsion necessary to retain the needle at
a similar distance: when we then want to compare the directive force of this needle with
that of another needle, we substitute this second for the preceding one, and we take care
to move the second away from the magnetic meridian, precisely by as many degrees as we
have moved away the first; it follows that the two needles, forming in the two experiments,
the same angle with the magnetic meridian, the force of torsion will necessarily measure
the moment of their restoring forces.1009 When the angles of direction with the magnetic
meridian are not the same in the two experiments, it is easy to evaluate them by calculation,
according to the principles of the First Section.1010

The reader should be aware that to obtain precise results, it is necessary to proportion the
force of torsion of the wires of suspension to the magnetic force1011 of the needles, so that by
moving the needles away at 30 degrees from their meridian, the force of torsion of the wires
of suspension which retain the needle at this distance, is always at least 25 to 30 degrees:
it is because of this that I have sometimes used silver wires and sometimes harpsichord1012

copper wires of different sizes as they are found in commerce, and sometimes silver wires:
in the needles of a very weak magnetism, where the silver wire would have given me only
2 or 3 degrees of torsion, I suspended the needles by a very fine silk thread, and counting
the number of oscillations they made in a given time, I calculated their directing force, by
means of the formulas of the oscillatory movement which I detailed in the Memoir quoted in
the ninth volume of the Savans étrangers.1013

1007Points 45 and o are not marked in Coulomb’s original Figure. I introduced these points in the Figure
by representing them by the numbers 45 and 0, which indicate the angles 45◦ and 0◦. See also footnote 745
on page 331.
1008The letter E does not appear in the original Figure 2. Coulomb is referring here to the stirrup 1234 of
Figure 1.
1009In the original: “la force de torsion mesurera nécessairement les momentum de leurs forces directrices”.
The word “momentum” here can be understood as torque or moment. In the title of the next Section
Coulomb will explicitly use the expression “momentum magnétique”, see Section 26.4. One of Coulomb’s
objectives in this work is to determine the magnetic torque exerted by the Earth on a magnetized cylindrical
needle, as a function of the length and thickness of the needle. Coulomb’s experimental procedure was
illustrated in Section 16.3.
1010That is, even when two magnetized needles are at different angles to the magnetic meridian, it is easy
to compare their magnetic moments using the principles presented in the First Section.
1011In the original: force aimantaire.
1012In the original: clavecin. See footnote 341 on page 155. Coulomb is referring here to the suspension
wire.
1013[Coulomb, 1780]. This work is translated in Chapter 5.
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26.3 III

The ratio of the unequal forces of torsion of two different wires of suspension is easy to
determine, either by the formulas and the experiments which we have given, Volume of the
Academy of 1784,1014 or more simply by means of the torsion micrometer by suspending
successively the same magnetized needle in a horizontal position on the two wires; because
if, for the two suspensions, we displace the magnetized needle by the same [angular] distance
from its meridian, [the ratio of] the angles of torsion necessary to twist the two wires,
necessarily measures the ratio of their forces of torsion, since they both retain the same
magnetized needle by this degree of torsion at the same angular distance from its meridian.

In the experiments that follow, I mainly used, for the suspensions, a copper wire numbered
12, the thinnest that we find on the market, and a silver wire much finer and whose twisting
force, at the same length, is only a thirtieth part of the copper wire; but all the experiments,
of whatever kind of suspension we have used, have been compared by analysis to those which
would have taken place with the same copper wire numbered 12 in commerce, 14 inches in
length (37.89 cm): this wire weighs 0.83 grains with a length of one foot.1015,1016

26.4 IV. Comparison of the Magnetic Moments of Different

Steel Needles, of the Same Diameter and of Different

Lengths

26.4.1 First Experiment

Steel wire weighing 38 grains per foot (6.21 g per meter).

The steel wire which was used in this experiment, as well as in all those which will follow, is
the steel wire from England, passed through the die,1017 of a diameter, consequently, equal
throughout its length.

The needle magnetized to saturation is placed, in the suspension stirrup, along the imprint
directed along the magnetic meridian. One then twists, in all the tests, the wire of suspension,
until the direction of the needle makes an angle of 30 degrees with the magnetic meridian,
and one observes the angle of torsion: then cutting the steel needle successively at different
lengths, and magnetizing the needle each time to saturation, one observes for each needle,
the angle of torsion which retains them at 30 degrees from their meridian.1018

We used in this experiment, for the suspension, a very fine silver wire, the twisting force of
which was only a thirtieth of the copper wire numbered 12; but by dividing by 30 the angle
of torsion found by experiment, the results have been reduced to the numbers of degrees
which would have been observed if the copper wire numbered 12 had been used. It is good
to warn the reader again, that this scaling reduction took place in all the experiments which

1014[Coulomb, 1787]. This work is translated in Chapter 7.
1015[Note by Potier] One degree of torsion corresponds to a couple of 0.504 (C.G.S.).
1016The linear density of this copper wire is 0.83 grains/foot = (0.83× 0.05311 g)/(0.3248 m) = 0.136 g/m.
According to Potier, a torque of 0.504 dyn · cm due to this pair of forces is required to rotate by an angle of
1◦ the copper wire 37.89 cm long. See also footnotes 365 and 366.
1017See footnote 389 on page 174.
1018Coulomb’s experimental procedure was illustrated in Section 16.3.
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will follow, and we had:

First trial. The length of the magnetized steel wire, being 12 inches (32.48 cm), it
required, to retain it at 30 degrees from its meridian, a twisting force of . . . . . . . . . . . 11.50◦.

Second trial. With a 9 inches long steel wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.50◦.
Third trial. With a 6 inches long steel wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.30◦.
Fourth trial. With a 3 inches long steel wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.30◦.
Fifth trial. With a 2 inches long steel wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.30◦.
Sixth trial. With a 1 inch long steel wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.35◦.
Seventh trial. With a 1/2 inch long steel wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.07◦.
Eighth trial. With a 1/4 inch long steel wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.02◦.

26.5 V. Second Experiment

Steel wire, weighing 865 grains per foot of length (141.52 g per meter), or about 2 lines in
diameter (0.45 cm).

First trial. The length of the steel wire, magnetized to saturation, being 18 inches (48.72
cm), it took, to retain it at 30 degrees from its meridian, a twisting force of . . . . . . .288.00◦.

Second trial. For a length of 12 inches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.00◦.
Third trial. For a length of 9 inches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115.00◦.
Fourth trial. For a length of 6 inches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59.00◦.
Fifth trial. For a length of 41

2
inches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.00◦.

Sixth trial. For a length of 3 inches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13.00◦.
Seventh trial. For a length of 11

2
inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.00◦.

Eighth trial. For a length of 1 inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.46◦.
Ninth trial. For a length of 1/2 inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.32◦.

26.6 VI. Result of These Two Experiments

In the first experiment, it was found that by displacing the steel needle, whose 12 inches in
length weighs 38 grains, 30 degrees from the magnetic meridian, the force of torsion, which
brought it back towards the meridian, was measured to be 11.50 degrees; for a length of
9 inches, this twisting force was 8.50 degrees; thus, in these two tests, the decrease in the
directive force was 3 degrees or one degree per inch. Continuing this operation, we find that
from 9 inches to 6 inches the diminution of the directing force was 3.2 degrees, still very
close to one degree per inch; from 6 inches to 3 inches, the decrease was again 3 degrees;
and from 3 inches to 1 inch it was two degrees, that is to say, still one degree per inch of
decrease, whence it is easy to conclude that until the needle weighed 38 grains, or reduced to
one inch in length, we find a constant ratio between the quantities by which the needles are
diminished and those by which the directing forces diminish; but by comparing the lengths
of the same needle below one inch, it would appear that for needles of length 1 inch to a
quarter of an inch the moment [of the directing force] varies approximately as the square of
the lengths of the needles.

In the second experiment, we find a result similar to that of the first. Because, comparing
in this experiment the first trial with the second, we find that a diminution of 6 inches in
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the needle 18 inches in length, produces in the moment of the directing force, a diminution
of 116 degrees, or 19 one-third of a degree per inch.

By then reducing this same needle from 12 inches to 6 inches, we will still find in the
moment a decrease of 19 degrees per inch: but from 6 inches in length to 4 and a half inches,
the moment of the directing force decreases only 16.6 degrees per inch. Below 4 and a half
inches to half an inch, it would appear that the moment varies approximately as the square
of the lengths of the needles; so that we can, without great error, suppose in this second
experiment, that the moment of steel needles 2 lines in diameter (0.45 cm), from 0 inch to
5 inches in length (13.53 cm), varies approximately as the square of their lengths; and that
for a greater length of the needle, the increases in the moment are roughly proportional to
the increases in the lengths. I say approximately, because when the needles are magnetized
to saturation, we find that the increments of the moments are almost always a little greater
than the increments of the lengths, but this variation is generally too slight to be detected
by experiments of the kind of the two which precede.

26.7 VII. Of the Moment of the Directive Force of the Needles,

Relative to Their Diameter

We have just seen the path followed by the moment of the directing forces of two needles of
different lengths, but of the same diameter: we are now going to try to determine the ratios
of the moment of the directing force of two needles magnetized to saturation, of different
diameters: but I must begin by warning the reader that in the course of the experiments,
I soon recognized that it was almost impossible to obtain two steel needles of different
diameters, which had exactly the same degree of spring,1019 and which were of a homogeneous
nature: thus, to obtain the laws of magnetism in the needles of different diameters, I was
obliged to form bundles of very fine needles drawn from the same wire. What greatly
facilitated this operation was that by twisting around its axis an iron wire of approximately
a half-line diameter [0.113 cm], such as we find in commerce, I saw that by this torsion it
work hardened and [increased its] spring,1020 and that it was susceptible of almost the same
degree of magnetism, as a steel wire of the same diameter: in accord with this observation,
I chose a very pure iron wire, such as it leaves the die1021 before being annealed; it was
about 120 feet long [39 m]; I cut it into different parts, which I twisted about their axes
while holding them in tension in order to straighten them; I formed bundles of them of
different diameters and of different lengths, which I magnetized to saturation. Then placing
these bundles in the magnetic balance, we find from a great number of experiments, some
of which we will describe, that for two needles of the same material and whose dimensions
are homologous,1022 the moment of the directing forces are between them like the cube of
the homologous dimensions. If, for example, I take a [cylindrical] needle one line in diameter
and 6 inches in length, and another needle 2 lines in diameter and 12 inches in length, whose
corresponding dimensions are, therefore, as 1 : 2, the magnetic moments of these two needles
magnetized, one and the other to saturation, will be between them as 1 is to 8, [that is, in
the] ratio of the cubes of their homologous dimensions.

1019In the original: degré de ressort. This expression can also be translated as degree of elasticity.
1020In the original: il prenoit de l’écrouissement et du ressort. See footnote 375 on page 165.
1021In the original: filière. See footnote 389 on page 174.
1022In the original: homologues.
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26.8 VIII. Third Experiment

We twisted around their axes, 36 wires of one foot length (32.48 cm), weighing 48 grains
each one (2.55 g); we formed a bundle of these 36 needles joined together and bound with
thread; this bundle was magnetized to saturation. Then suspending it horizontally in the
stirrup of the magnetic balance, it was found that a torsion angle of 342 degrees was required
to retain this bundle at 30 degrees from the magnetic meridian.

26.9 IX. Fourth Experiment

A second bundle was formed with 9 needles, each 6 inches in length (16.24 cm), but of the
same nature and the same diameter as those which were used in the preceding experiment,
it was found that to retain this bundle at 30 degrees of the magnetic meridian, a twisting
force of 42 degrees was needed.

26.10 X. Result of the Two Previous Experiments

In the two previous experiments, an iron wire was used, such as it leaves the die, the purest
that we could get; all the needles were cut from the same piece, so we are sure that they are
of the same nature and of the same diameter, but the two bundles having their homologous
sides proportional, in the ratio of 2 to 1, the diameters were as the square root of the number
of needles: thus the cubes of the diameters are between them like 8 : 1; but we have just
found that the moment of the directing forces of the two bundles, are [to one another] like
342 : 42 :: 8.14 : 1.00, a ratio which differs very little from that of 8 to 1, or from the [ratio
of the] mass of the two bodies: the two preceding experiments were repeated, with bundles
whose homologous dimensions were like 3 to 1, and like 4 to 1; and we have always found the
same result, that is to say, the directing forces proportional to the cubes of the diameters of
the two bundles.1023

26.11 XI. Remark

The previous result — from which we have learned that the moments of the directing force
of the two needles whose dimensions are homologous were as the cube of their dimensions —
when joined to the first result for needles of the same diameter but different lengths — which
has showed us, if the needles had lengths 40 to 50 times their diameters, that the moments
of the directing force increased in proportion to their increase in lengths — can immediately
give the magnetic moment of all steel wires, of the same nature and at the same degree of
hardness, of any diameter and of any length, provided that we know the moment of the
directing force of a single of these needles, as well as the increase of its moment, relatively
to the increases of its length.

Suppose, for example, that we wish to determine the moment of the directing force of
a needle 48 inches in length and 6 lines in diameter, but of the same steel and of the same
degree of temper as that of the second experiment, which had 2 lines in diameter; the question

1023That is, the magnetic torque exerted by the Earth on a needle magnetized to saturation is proportional
to the volume of the needle.
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consists in finding in the second experiment, the length of a needle 2 lines in diameter, which
would have dimensions homologous with that of 48 inches in length and 6 lines in diameter;
we would find that the needle of 2 lines in diameter would be 16 inches in length; but we
find in the second experiment, that the magnetic moment of a needle 2 lines in diameter
and 16 inches in length, would measure 250 degrees, and since the homologous dimensions
of the two needles that we want compare, are as 3 is to 1, their cubes are :: 27 to 1, so that
the moment of the directing force of the needle 6 lines in diameter and 48 inches in length,
would be represented by 250× 27 = 6750 degrees.

26.12 XII. Of the Action of the Different Points of a Magne-

tized Needle, Depending on Whether These Points Are

More or Less Distant from the End of the Needle

The preceding experiments, and those which we presented in 1785, in the Memoirs of the
Academy,1024 suffice to prove that in steel wires, the diameter of which is not significant
in relation to the length, evidence of action of the magnetic fluid is concentrated towards
the extremities: the first and second experiment even prove, as we will see presently, that
whatever the length of the steel wires, provided that they have at least 40 to 50 times the
length of their diameter, the curve which represents the magnetic action of each point of a
needle, is the same, whatever the length of the steel wire, and that it extends approximately
from the end of the needles, up to a distance from these ends, equal to 25 diameters; beyond
that, to the middle of the needle, the action is very small, that is, the ordinates of the curve
which would express this action almost merge with the axis of the needle.

I tried to confirm this result by direct experiments, by determining the law which the
magnetic action of the different points of a wire follows when the wire is magnetized to
saturation,1025 from its end to the middle of the wire:1026 we can perceive that for the
success of such an experiment, it was necessary to arrange the tests in such a way that by
presenting a steel wire to a very short needle, there was only a very small part of the wire
whose action on the needle was considerable, in order to be able to conclude from it the
magnetic density of the point of the wire presented to the needle.

26.13 XIII

In a box, the section of which is represented in ABCD, Figure 3, No. 1, I suspended from
the crosspiece F a small needle of steel, 2 lines in length (0.45 cm) and a quarter of line of
diameter [0.0565 cm].1027

1024[Coulomb, 1787]. This Memoir is translated in Chapter 7.
1025For a lapse in the original text, d’une aiguille aimantee à saturation appears here. In the next Sections
Coulomb will study the magnetic density along a wire magnetized to saturation.
1026In the original text it appears here jusqu’au milieu de l’aiguille.
1027A better view of the small needle a can be seen in Figure 3, Number 3, on page 465.
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Below this needle, I attached at right angle, with a little wax, a small cylinder of red
copper, 2 lines in diameter [0.45 cm] and one inch in length (2.71 cm), the whole was
suspended horizontally by a silk thread one inch in length, as it emerges from the cocoon;
I have proved elsewhere that the torsion force of such a thread was almost nil. The copper
needle and cylinder are shown in plan in Figure 3, No. 2; [where] 1, 2 represents the steel
needle,1028 and 3, 4 the copper cylinder.

One then places fixedly in the box, Figure 3, No. 1, at 3 or 4 lines from the needle a, a
vertical ruler hi; along this ruler, a steel wire, magnetized to saturation, of one or two lines
in diameter [0.226 or 0.452 cm] is run vertically along the magnetic meridian of the needle

1028For a lapse in the original text it appears here that 1, 2 represents the steel wire.
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a, so that the point b of the axis of this wire is only two or three lines away from it1029

When we want to determine the magnetic action of the point b, we first make the needle
a oscillate, before presenting the steel wire ns to it;1030 we count the number of oscillations
that this needle makes, by virtue of the action of the globe of the Earth alone; then we place
the end s of the magnetized steel wire at b, at the height of the needle a; we count in this
position the number of oscillations which the needle has made in 60”;1031 we successively
lower the end s of the steel wire, from six lines to six lines, and each time we count the
number of oscillations that the needle has made in 60”.

26.14 XIV

From this operation, it follows that if the needle a always remained in the same state of
magnetism,1032 the point b of the steel wire being only three lines away from this needle, there
would be in the wire only the points which are close to b, whose action would be considerable
on the needle a, since the action of the other points decomposed along a horizontal direction,
decreases at equal density, as the [inverse] square ratio of the distances and the obliqueness
of their action: thus by successively making the different points b of the wire1033 slide along
the ruler hi, it would result that the action of the different points b of the wire,1034 would be
approximately proportional to the square of the number of oscillations made by the needle
a, in a constant time.1035

26.15 XV

Figure 3, No. 3 can be used to demonstrate the previous assertion.

1029That is, the point b on the wire axis is located at this distance from the center of the magnetized needle,
see Figure 3, Number 3, on page 465.
1030I added the letter s in Figure 3, Number 3, see page 465. This letter does not appear in the original
image.
1031That is, in 60 seconds.
1032That is, if it maintains the same magnetization throughout the entire experiment.
1033For a lapse in the original text “aiguille” appears here instead of “fil”. Certainly Coulomb was referring
to the points b of the steel wire ns of Figure 3, Number 1.
1034Once more we have here “aiguille” instead of “fil” in the original text.
1035See Section 16.1 on page 267.
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[In Figure 3, No. 3,] ns represents the steel wire whose axis at b is placed 3 or 4 lines
from the middle of the small needle a; if we take above and below the point b, two portions
of wire bc and bc′, very small, relatively to the total length of the wire, the magnetic density
of this portion cc′ can be, without noticeable error, represented by a straight line gkl; so
that gc will be the density of point c; kb, that of point b; and lc′, that of the point c′: if
we now draw through the point k, a line okh, parallel to the axis of the steel wire ns, the
triangle gko, being equal to the triangle khl, it follows that the action of the portion cc′ of
the steel wire ns on the needle a, being decomposed in a horizontal direction, is the same
as if the magnetic density had been uniform from c to c′, and equal to bk, which represents
the density of the center b. We shall see, however, by the experiments which follow, that
the results found by the process which we have just indicated, require a correction, because
the magnetic state of a needle a, whose dimensions are very small, and such as those of our
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experiment, change as the points b presented to it are more or less magnetized.1036

26.16 XVI. Fifth Experiment

Steel wire 2 lines in diameter (0.45 cm) and 27 inches in length (73.08 cm).

We took a wire of excellent steel, 2 lines in diameter and 27 inches in length, of the same
size and nature as that of our second experiment; it was magnetized to saturation by the
method which we will prescribe at the end of this Memoir. Having placed it, as indicated in
the two preceding Sections and by Figure 3, 3 lines away [0.678 cm] from the small needle
a, which is 2 lines long and a quarter of a line in diameter, we made it slide vertically from
6 lines to 6 lines, observing each time the number of oscillations of the needle a.

First trial. The needle a, before the steel wire is presented to it, makes approximately
one oscillation in 60”.1037

Second trial. By placing the end s of the steel wire, at the level of the needle a, this
needle makes 64 oscillations in 60”.

Third trial. The end s lowered by 6 lines, the needle a makes 58 oscillations in 60”.

Fourth trial. The end s lowered by 1 inch, the needle a makes 44 oscillations in 60”.

Fifth trial. The end s lowered by 2 inches, the needle a makes 18 oscillations in 60”.

Sixth trial. The end s lowered by 3 inches, the needle a makes 12 oscillations in 60”.

Seventh trial. The end s lowered by 4 inches and a half, the needle a makes in 60” one
or two oscillations. It is the same until the end s of the steel wire has been lowered, to a
little more than 22 inches, that is to say, to 4 inches and a half (12.18 cm) from the other
end n; in this case the needle a turns its poles by changing position end for end, and it gives
towards this second end and in the corresponding points, approximately the same number
of oscillations as at the other end.

26.17 XVII. Sixth Experiment

Steel wire 2 lines in diameter [0.452 cm] and 10 inches in length (27.07 cm).

By presenting to the needle a, at the same distance as in the preceding experiment, a steel
wire of the same nature and of the same diameter, but only 10 inches in length, we find
that the first three inches from each end of the 10-inch wire, give almost exactly the same
action as the last three inches from the ends of the 27-inch wire, detailed in the previous
experiment.

26.18 XVIII. Seventh Experiment

Wire 5 inches in length (13.53 cm) and 2 lines in diameter [0.452 cm].

1036That is, Coulomb will show that the magnetization of the needle can be affected by the presence of the
magnetized wire ns placed in the vicinity of the needle.
1037That is, in 60 seconds.
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Finally, using a steel wire 5 inches in length, but of the same diameter as the preceding one,
we still find at the ends of these wires, and even up to five or six lines [1.13 or 1.356 cm]
from these ends, very nearly the same degrees of action as at the extremity of the wires1038

of the two preceding experiments.

26.19 XIX. First Remark

The action which causes the needle to oscillate is measured as we know by the square of the
number of oscillations made at the same time;1039 according to this consideration, I have
constructed, Figure 4, [Number 1], taking the square of the number of oscillations, the curve
abcde, which represents the geometric locus of the densities or magnetic actions of all the
points of the half of a needle1040 27 inches long [73.1 cm] and 2 lines in diameter [0.45 cm].

In this Figure, [the segment between] 0 and 131
2
represents half the length of the needle,

and the ordinates represent the magnetic densities: these ordinates decrease, as we see,
rapidly, and are almost zero towards the fifth inch; from this point the curve of the densities
merges with the axis up to the twenty-second inch, and over the five inches from the other
extremity, they follow nearly the same law, but in a contrary direction; so that if the first
extremity has a positive density, or whose action, on a pole of the same nature, is repulsive,
that of the other extremity on the same pole will be attractive: in Figure 4, [Number 1], we
have doubled, at the end of the needle at o, the number which represents the square of the
oscillations; it is easy to see, from the method of Section 26.15, that the true value of this
density must be still greater, since at this point, by the position of the needle, the point b
being Figure 3, No. 1, the end of the wire,1041 there is action only on one side of b, and
not on both sides, as [it happens] in all the other trials; moreover, the density decreases
from the point b, when b is the end of the wire; whereas, in order to be able to compare the
result of the square of the oscillations in this case with the other tests, it would be necessary,
according to the observations of Section 26.14, that the density should be uniform, because
there is no compensation of one side by the other.

1038For a lapse in the original text, “of the needles” appears here instead of “of the wires”.
1039See Section 16.1 on page 267.
1040From now on, when Coulomb is using the word “needle”, it should be understood as being the magnetized
wire of which Coulomb studied how its magnetic density varied along its length.
1041For a lapse in the original text “aiguille” appears here instead of “fil”. Coulomb is discussing here the
situation where the point b, which is at the same height as the small needle a, corresponds to the lower end
of the vertical magnetized wire ns of Figure 3, Number 1.
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26.20 XX. Second Remark

From the sixth experiment, we will draw this interesting consequence, it is that the curve,
Figure 4, [Number 1], which describes the density of the magnetic action at each point of the
wire near its ends, is exactly the same, whatever the length of the wires, provided they are
more than 8 or 9 inches in length [21.66 or 24.36 cm]: from this we cannot yet conclude that
when we measure, relatively to the magnetic meridian, the moment of the directing force of
different steel needles,1042 of different lengths, but of the same nature and of the same size,
that these moments must differ between them by a quantity proportional to the decreases
in the lengths of the needles; for, since the moment of the directing force of each needle,
will be equal to the area which represents the sum of the magnetic densities, multiplied by
the distance from the center of gravity of this area to the middle of the wire, which is the
point of suspension, and moreover the area of the densities, as well as its dimensions are the
same, whatever the lengths of the needles, it is clear that the moment of the directing force
of the globe of the Earth, for each needle, will be represented by this area, multiplied by the
distance from its center of gravity to the middle of the needle; but since the distance from
this center of gravity to the end of the needle is constant, whatever the length of the needles,
it follows that the moment of the needles will be measured by a constant quantity, which
expresses the area of the densities multiplied by the length of the needle, minus the constant
quantity which represents the distance from the center of gravity of the area of densities, to
the tip of the needle. This result is exactly in line with what we found in the first and second
experiments, when seeking the magnetic moment of several needles of the same diameter
and of different lengths; because, we have seen, according to these two experiments, that
the moments of the directing force increase in proportion to the increase in the lengths of
the needles; which must necessarily take place, since by cutting a needle, and magnetizing it
to saturation, the curve which represents the area of the magnetic densities, being the same
for needles of different lengths, the center of gravity of this area approaches the middle of
the needle by half the part of the length that was cut off, and therefore the decrease of the
moment is proportional to that part cut off.

26.21 XXI. [Third Remark]

According to the preceding remark, it is easy, by means of the first and second experiments,
which served us to know the law of the moment of the directing force of different needles of
the same nature and of the same size, but of different lengths, to determine the place of the
center of action, or, what comes to the same thing, the center of gravity of the curve of the
magnetic densities of these needles.1043

Let us first take as an example the needle tested in the first experiment. This needle
weighs 38 grains per foot of length; we found, Section 26.4, that when this needle was 12
inches in length, it required a twisting force of 11.50 degrees to hold it at 30 degrees from its
magnetic meridian and when it was only 5 inches in length, it took a force of 2.30 [degrees]
to hold it at the same [angular] distance. But, according to the preceding remarks, the
area of the densities, Figure 4, [Number 1], is the same for all the lengths of needle of the
same thickness, thus the center of gravity of this area is in the two experiments at the same

1042Again these “different steel needles” should be understood to be “different steel wires”.
1043In the original: “le centre de gravité de la courbe des densités magnétiques de ces aiguilles”.
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distance from the ends of the needle.
Let A be the area of this surface, let x be the distance from the center of gravity of this

area to the end of the needle, naming l half the length of the needle, we will have for its
magnetic moment the quantity1044

2A(l − x) sin 30◦

and taking the two quantities found by the first experiment, for the moment of the directing
forces of the two needles 12 inches and 3 inches in length; we will have the following two
equations:

2A(6− x) sin 30◦ = 11.50

and

2A(1.5− x) sin 30◦ = 2.30 .

Division of one by the other gives:

x = 0.36 inches (0.974 cm) .

By doing the same operation for the steel needle of the second experiment, which weighs
865 grains per foot of length, we will derive its distance from the center of gravity of the area
of the densities to the end of the needle, [namely,] x′ = 1.51 inches (4.088 cm). In these two
experiments, the diameters of the two steel wires are between them like the [square] roots of
the weights, so they are in the ratio

::
√
865 :

√
38 :: 4.8 : 1.0 ;

but we find [the ratio of] the distance from the center of gravity to the ends of the needles
to be :: 1.510 : 0.36 :: 4.2 : 1.0.1045 Thus it would appear, according to these results, that
the distances of the center of magnetic action1046 of two needles, to the end of these needles,
are approximately in the ratio, like the diameters of these needles.

26.22 XXII. Fourth Remark

A difficulty presents itself here which seems to deserve some attention; we have just seen
that the curve, Figure 4, No. 1, which represents the magnetic density, near the end of the
steel wire, 2 lines in diameter, has its center of gravity, at about 1.5 inches from its end.
We saw, fifth experiment, that the magnetic density of this same needle, extends, in a very

1044In the original text, this equation appeared as follows, [Coulomb, 1793, p. 476]:

2A sin 30d(l − x) .

1045That is, the ratio between the distance from the center of gravity to the ends of the needles = 1.510
0.36 = 4.2

1.0 .
For a lapse in the original text, “:: 1.510 : 36 :: 4.2 : 1.0” appeared here instead of “:: 1.510 : 0.36 :: 4.2 :
1.0”.
1046In the original: centre d’action magnétique.
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sensible way, only up to five inches, approximately, from the end of this steel wire: now, as
1.5 inches is the third of 4.5 inches, it would result from this comparison that the curve of
the magnetic densities, would have its center of gravity placed almost at the same distance
from its end, as if the shape of this curve was nearly a straight line: now, we find, from the
fifth experiment, Figure 4, No. 1, that this curve is convex. Although these results are not
contradictory, it must be observed that the fifth experiment shows us only the point where
the magnetic density of the steel wire is insignificant; because, it is equal to 0 only in the
middle of the steel wire. This experiment also indicates to us the points of two wires of
magnetized steel, of the same size, where the magnetic density is the same; but we cannot
draw the exact law of the magnetic densities of all the points of the steel wire from this fifth
experiment, because it gives, for the high [magnetic] densities of the point b, Figure 3, too
large quantities, relatively to the small densities of the other points of the needle, here is the
reason:

When the needle a, Figure 3, is only one or two lines in length, and less than half a line
in diameter, as in the fifth experiment; this needle shows only very weak signs of magnetism
when oscillating freely after having been magnetized without any action foreign to the globe
of the Earth; but if the steel wire ns is presented to it at a distance of 3 lines, as we did
in the fifth experiment, its magnetic state increases as the point b of the steel wire is more
charged with magnetism:1047 so that, from one test to another, the needle a is not in a
constant state of magnetism; but this state changes as the action of the point b is greater or
smaller: whence it follows that in the successive tests of this fifth experiment, the action of
the point b on the needle a, is not proportional to the magnetic density of the point b, but
proportional to the this density and to the magnetic state of the needle a; so that, if the
magnetic state of this needle increased in proportion to the magnetic density of the point
b, then the action or the ordinates found by our curve, Figure 4, No. 1, would be like the
square of the densities of the point b: that is to say, if this supposition could be admitted, it
would be necessary that the ordinates which would represent the [magnetic] densities, were
only proportional to the number of oscillations found by the tests of this fifth experiment.

An experiment which proves in a convincing way the variation of the magnetic state of
the small needle a, during the different tests, consists of presenting for a single moment the
southern extremity, for example, of the needle a at a distance of one or two lines from the
southern extremity of the steel wire ns; in this case, by the action of the wire ns, the South
pole of the needle a becomes in an instant the North pole; moreover, by this operation,
this small needle is magnetized to saturation, which will be easy to prove by the number of
oscillations which it will make freely,1048 that is to say, after having been presented at two
lines of distance from the pole of the steel wire ns, or after having touched the pole of this
steel wire or even a stronger magnet, in both cases, we will find that it makes, in the same
time [interval], the same number of oscillations.

1047That is, the more intense the magnetization of the point b of the steel wire, the greater the magnetization
it will produce in the small needle a placed nearby.
1048Due only to the magnetism of the terrestrial globe.
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26.23 XXIII. Eighth Experiment, Intended to Give More

Approximate Results Than the Fifth Experiment

Informed by the observations of the preceding remark, I sought to determine, by a new
experiment, the densities of the wire ns, in a more approximate way than by the fifth
experiment, of which we have just given the details and its shortcomings. It can be seen
that I had to seek to substitute for the small needle a, whose magnetic state varied from one
test to another, another needle whose magnetic resistance was greater, and at the same time
whose magnetic action on the points b of the steel wire, Figure 3, was not large enough to
alter, in a sensible way, the state of this wire; because the action being reciprocal between
the needle a and the wire ns, the magnetic alteration is equally to be feared on both sides.

Here is how I arrived at an approximate result, after several tests, to determine the most
suitable dimensions. In place of the little needle a, Figure 3, which, in our fifth experiment,
was only two lines in length, and less than half a line in diameter, I hung a steel needle 3 lines
in diameter (0.67 cm) and 6 lines in length (1.35 cm); I placed the point b of the steel wire
ns, 8 lines away (2.03 cm) from the end of the needle a, and I followed all the procedures of
the fifth experiment: by then calculating the action of the different points b of the steel wire
ns on the needle a, according to the square of the oscillations, I found the densities of these
different points as they are observed at Figure 4, No. 2.

In this Figure, the base [between] 0 and 131
2
inches represents half of the needle axis;1049

the ordinates represent the magnetic densities of the corresponding points. The last ordinate

1049Again when Coulomb refers here to the “needle”, the steel wire ns of Figure 3, Number 1, is to be
understood.
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oa, was determined by making ba, relatively to bc, the same angle as bc makes with cd; this
last ordinate should probably be a bit larger, but the others are closer to the truth.

It results from this experiment, that the curve of the densities, Figure 4, No. 2, starting
from the end of the needle, quickly approaches the axis, since in our experiment, the ordinate
which represents the density of the point placed at four and a half inches from the end of
the wire, is at least eighteen times smaller than that of this end: we see again that, from
this point, the curve continues to approach the axis, which it intersects in the middle of the
needle, to form, in an opposite direction at the other end of the needle, a curve absolutely
similar to the first; by calculating the distance from the center of gravity of the curve of
the densities, according to the ordinates of Figure 4, No. 2, we find it placed at 1.3 inches
(3.52 cm) from the extremity o: we found it by the calculation of the second experiment,
Section 26.21, at a distance of 1.5 inches from this extremity, a relation as exact as can be
hoped, in experiments of this kind, which would only seem to indicate that the [magnetic]
density of points placed near the middle of the needle, is a little larger than that indicated
by our figure; which must result, as we proved in Section 26.22, from the magnetic influence
of the strongly magnetized points of the steel wire ns, on the magnetic state of the needle
a; because, although this state is not subject to variations as strong as those of the small
needle of the fifth experiment; there will be, however, in the state of the needle a, an increase
of magnetism all the more sensible, as the action of the point b of the steel wire ns, Figure
3, will be stronger.1050

26.24 XXIV. Recapitulation

Let us sum up in a few words the principal results furnished by the preceding experiments.
1◦. The curve of the magnetic intensities can, in practice, be calculated as a triangle

which extends only from the end of the needles up to a distance from this end, equal to 25
times the diameter of the needle: thus, in the needles which have a length greater than 50
times their diameter, the moment increases as the lengths of the needles increase.

2◦. When the needles are less than 50 times their diameter in length, the moments of the
directive forces can, in practice, be evaluated in a ratio of the square of the lengths of the

1050[Note by Potier] Biot proposed the formula

y = A
(

µx − µL−x
)

to represent the result of Coulomb’s observations; x being the distance in inches from one end of the magnet
of length L, the value µ deduced from the curve abcde, shown above, would be 0.518 (or 0.784, if we take
the centimeter as a unit).
From this formula we deduce for the moment of the terrestrial couple, if H is the horizontal component

[of terrestrial magnetism, the following value:]

2AH

l · µ

[

L

2
(1 + µL) +

1− µL

l · µ

]

.

If we seek to determine the constants 2AH
l·µ and µ, so as to represent the experiments of Section 26.5, we find

(inches and degrees of twist taken as units) 2AH
l·µ = 38.22 and µ = 0.525, numbers very close to the previous

ones.
Applied throughout the first experiment (Section 26.4), the same formula would give 2A′H

l·µ′
= 2 and

µ′ = 0.0433. The values of µ and µ′ satisfy the relation rl · µ = r′l · µ′, being r and r′ the radii of the two
wires, and the ratio A′

l·µ′
: A
l·µ is substantially that of the [cross] sections.
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needles. This result found in the first and second experiment, is confirmed by the fifth, sixth
and seventh, where it is found that, whatever the length of the needles, the magnetic intensity
of their end is substantially the same; thus, if the shape of the curve of the intensities is
represented by a triangle whose tip is at the middle of the needle, and if one names, Figure
4, No. 3,1051,1052 A the magnetic intensity ns at the extremities of the needles, and x half of
the [length of the] needle, we will have, for the moment of the directing force of this needle,

2Ax2

3
.1053

That is to say, that the moments of the directing force, are like the squares of the lengths of
the needles, when [the lengths of] these needles are less than 50 times their diameter, and
when the locus of the magnetic densities is roughly a straight line.

1051In this Figure 4, Number 3, the segment 0n represents the magnetized needle, the point 1 is its midpoint
with the distance 01 being represented by x. The needle is supported by its midpoint. Moreover, 0a and ns
represent the opposing magnetic intensities at the ends of this needle. Coulomb will indicate the absolute
value of this intensity by the letter “A”. The dashed line indicates the magnetic intensity along the length of
the needle, being positive in one half (representing, for example, the boreal or northern fluid) and negative
in the other half (representing, for example, the austral or southern fluid).
1052Among the images of Coulomb’s Seventh Memoir, there is also another image numbered as Figure 4,
Number 3. I don’t know where this Figure should appear. Anyway, I put it in this footnote:

1053Section 27.1 presents a detailed calculation to arrive at this result.
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3◦. When we compare two needles of the same nature, whose dimensions are homolo-
gous, the [magnetic] moments of their directing force are like the cube of the homologous
dimensions.

26.25 XXV. Essay on the Theory of Magnetism, with Some

New Experiments Tending to Clarify This Theory

Physicists have long attributed the effects of magnetism to a vortex of fluid matter which
made its revolution around magnets, whether artificial or natural, entering at one pole and
leaving at the other.1054 This fluid acted, it was said, on iron and steel because of the
configuration of their parts, but it exerted no action on other bodies. As, in this system,
some phenomena appeared which were inexplicable by a single vortex, several were imagined,
or several magnets were combined together; they were given, according to the need, particular
movements. It is on such hypotheses that three Memoirs on the cause of magnetism, crowned
by the Academy in 1746, were based.1055

I believe I have proved, ninth volume of the Savans étrangers, page 137 and 157,1056 how
difficult it was to explain, by means of vortices, the different magnetic phenomena; it must
therefore be seen whether, by simple suppositions of attractive and repulsive forces, these
phenomena will be more easily explained. To avoid any discussion, I warn, as I have already
done in the various Memoirs which precede, that any hypothesis of attraction and repulsion,
according to any law whatsoever,1057 should only be regarded as a formula which expresses a
result of experiment; if this formula is deduced from the action of the elementary molecules of
a body endowed with certain properties; if we can draw from this first elementary action all
the other phenomena; if, finally, the results of the theoretical calculation are found to agree
exactly with the measurements furnished by the experiments, we can perhaps hope to go
further only when we have found a more general law which envelops in the same calculation
bodies endowed with different properties, which, up to now, do not appear to us to have any
connection between them.

Mr. OEpinus appears to be one of the first who sought to explain,1058 by means of
calculation, by attraction and repulsion, the magnetic phenomena. He thinks that the cause
of magnetism can be traced to a single fluid which acts on its own parts by a repulsive
force, and [acts] on the parts of the steel or the magnet by an attractive force. This fluid
once engaged in the pores of the magnet, only moves with difficulty. This system has led
Mr. OEpinus to this conclusion, that in order to explain different magnetic phenomena,
it is necessary to suppose between the solid parts of the magnet a repulsive force. Since
Mr. OEpinus, several physicists have admitted [the existence of] two magnetic fluids; they
supposed that when a steel lamina was in its natural state, these two fluids were combined to
saturation; that by the operation of magnetism, they separated and were carried to the two
extremities of the lamina. According to these authors, the two fluids exert on each other an

1054See Section 4.4.
1055See footnote 301 on page 134.
1056This page numbering seems strange to me. I believe Coulomb is referring to pages 173 and 257 of the
original article: [Coulomb, 1780, pp. 173 and 257], translated in Chapter 5. See, in particular, pages 60 and
134 of this English translation.
1057That is, whatever the variation of the force as a function of the distance between the elementary molecules
of a body that are interacting with one another.
1058See Section 4.1 and footnote 182 on pages 35 and 73, respectively.
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attractive action; but they exert on their own parts a repulsive action; it is easy to perceive
that these two systems1059 must give, by theory, the same results.

It is now a question of seeing if the calculations founded on the hypotheses which precede,
will agree exactly with the experiments; researches which it was not possible to attempt
before knowing the law of attraction and repulsion of the magnetic molecules of magnetized
bodies; law that we found, Memoir of the Academy, for 1785, page 606 and following,1060

directly proportional to the density or to the magnetic intensity and inversely proportional
to the square of the distances. It was equally impossible to verify any hypothesis, before
having employed means which gave exact measurements in the experiments; as we have tried
to do in those which precede.

26.26 XXVI. Example for Determining, by Calculation, the

Distribution of the Magnetic Fluid in a Cylindrical Steel

Needle, According to the Systems Which Have Just Been

Stated

To simplify the results and put the calculations within reach of a greater number of readers,
we are going to apply a method of approximation to a very simple example, but which
will suffice to indicate to us at the same time the main results, given by the experiments
which precede, and the course which we will be able to follow in more complicated examples.
Suppose, Figure 5, that the cylindrical steel needle ab, has a length six times its diameter,
and is divided into six equal parts.1061

Suppose this needle magnetized to saturation, and seek what must be the magnetic
density1062 of each part so that there is equilibrium at the point of the axis of each division;
suppose moreover the magnetic density uniform in each part and different only from one
part to another: according to this supposition, the point 3 being placed in the middle of the
needle, the magnetic densities of the points on the two sides, [located] at equal distances
from point 3, will be equal; but some will be positive and others negative. Let the limit of
the coercive force which prevents the magnetic fluid from flowing from one part of the needle

1059That is, the system with a single magnetic fluid and the system that admits the existence of two magnetic
fluids.
1060See Section 14.2, page 237 and the following.
1061Section 27.2 presents a discussion of this Figure 5.
1062What Coulomb here calls the magnetic density (densité magnétique) must be understood as the volu-
metric density of the magnetic fluid.
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to the other, a force which can be compared to friction in machines, or to coherence,1063 be
represented by the constant quantity A; to have the action of each part on a point of the
axis, it is necessary to determine, by calculation, in Figure 6, [Number 1],1064 the action of
the small cylinder cdfg, whose density is uniform, on the point C of the axis, assuming the
action of all the points in inverse proportion to the square of the distances.

c d

C
f g

ab

(a) (b)

Let the radius of the cylinder ag = r, the distance cb = a, the distance ca = b, the length
of the cylinder ba = a − b, [and] 2π the ratio of the circumference to the radius;1065 the
action of the cylinder cdfg, whose density is δ,1066 acting on the point C of the axis, in the
direction of the axis ac, will be expressed by the formula1067

2πδ
(

a− b+
√
b2 + r2 −

√
a2 + r2

)

.

Here is the type of calculation that gives this formula. The action of a circular zone, which
would have, Figure 6, No. 2, mn = dr in width, and pm = r for radius, far from the point
C on which it acts at the distance pC = x,1068 would be represented by the quantity

2πδxrdr

(r2 + x2)3/2
.

1063In the original: cohérence. See footnote 322 on page 145.
1064Coulomb’s original image appears in letter (a) of the image of this Figure 6, Number 1. In letter (b) I
added the letters a and b which will be mentioned next by Coulomb. These letters a and b are located along
the axis of the cylinder.
1065In the original, [Coulomb, 1793, p. 484], Coulomb represents by the lowercase c “le rapport de la
circonférence au rayon”, that is, the ratio of the circumference to the radius. I am here following Potier,
[Potier, 1884, p. 299], and representing that ratio by 2π. The same substitution was made in the other
formulas of this work.
1066That is, δ is the volumetric density of magnetic fluid, such that the amount of magnetic fluid contained
in an infinitesimal volume dV is given by δdV .
1067In the original text, [Coulomb, 1789, p. 484], Coulomb defines the lowercase letter c to be the ratio of
the circumference of a circle to the radius. Today this ratio is represented by 2π. Potier, [Potier, 1884, p.
299], replaced the letter c with 2π. Moreover, he replaced the expression ab in the first parenthesis of the
next formula with a − b. I followed Potier’s procedure in this translation. The next equation appeared in
the original text as follows:

cδ
(

(ab) + (bb+ rr)1/2 − (aa+ rr)1/2
)

.

1068By an oversight the expression pm = x appears here in the original text. The “action” mentioned by
Coulomb should be understood as the force component along the direction pC.
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This quantity integrated in such a way that it vanishes when r = 0 will give for the action
of the circle of which r is the radius, [the following quantity:]

2πδ

(

1− x√
r2 + x2

)

.

Multiplying by dx and integrating so that the value is complete when x = a, and vanishes
when x = b, we obtain, Figure 6, No. 2, as an expression for the action of the small cylinder
cfgd,1069 on the point C, evaluated in the direction of the axis, the formula

2πδ
(

a− b+
√
b2 + r2 −

√
a2 + r2

)

.

Now applying this formula to our example, where each part of the cylinder [has a length]
equal to 2r, and where, Figure 5, there must be equilibrium at the points 1, 2 and 3 of the
axis, between the magnetic forces and the resistance experienced by this fluid in passing
from one point of the steel wire to another, we will derive the following three equations.

At point 1:

0.77δ1 = 0.74δ2 + 0.06δ3 +
A

2πr
.

At point 2:

0.13δ1 = −0.81δ2 + 0.65δ3 +
A

2πr
.

At point 3:

0.10δ1 = −0.22δ2 − 1.52δ3 +
A

2πr
.

By reducing these three equations, we find, for the magnetic densities, the following
values,

δ1 = 2.41
A

2πr
; δ2 = 0.72

A

2πr
; δ3 = 0.19

A

2πr
.

1069Due to a lapse in the original text, cylinder efgd appears here. Coulomb is certainly referring to the
action of the small magnetized cylinder cfgd of Figure 6, Number 1, acting on a particle placed at point C.
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26.27 XXVII

If we suppose another needle whose coercive force, which depends on the nature and degree
of tempering of the needle, is represented by A′, whose radius is r′, and whose length is
equal to six times its diameter, we would have a needle all the dimensions of which would
be homogeneous, or proportional to the dimensions of the one which has just served as a
tool for our calculation, and naming d1, d2 and d3 the densities corresponding to the three
divisions of the half of this [new] needle, we will have the three values1070

d1 = 2.41
A′

2πr′
; d2 = 0.72

A′

2πr′
; d3 = 0.19

A′

2πr′
.

Thus in the two needles, by comparing the corresponding densities, we will have:1071

δ1 : d1 :: δ2 : d2 :: δ3 : d3 ::
A

r
:
A′

r′
,

that is to say, that the densities of the corresponding portions of the two needles are between
them

::
A

r
:
A′

r′
,

[that is,] in direct proportion to the coercive forces and in inverse [proportion] to the radii.
If the two needles which we wish to compare had, relative to their diameters, a greater

length than the preceding one; but were of homologous dimensions, it is easy to see that we
would obtain, by the method which precedes, as many equations as there would be divisions
in the half of the needle, and as in each corresponding equation the coefficients of the parts
similarly placed are the same, it follows that the densities of the parts similarly placed, will
be in all cases between them

::
A

r
:
A′

r′
.

26.28 XXVIII

It is now easy to calculate according to the theory, the ratio of the magnetic moments of
the actions of the globe of the Earth, which restore two needles magnetized to saturation
of homologous dimensions to the magnetic meridian; consider in these two needles two
homologous parts whose radii are r and r′, the masses of the homologous parts will be
[among themselves as:]

:: r3 : r′
3
,

the masses of the magnetic fluid of these same parts1072 will be like the [volumetric] densities
multiplied by the cube of the radii: but the middle of each needle being, in our experiments,

1070For a lapse in the original text, A appears instead of A′ in the next three equations. I fixed this.
1071That is:

δ1
d1

=
δ2
d2

=
δ3
d3

=
A/r

A′/r′
.

1072That is, the total amounts of magnetic fluid in each of these parts.
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the center of rotation, around which each part solicited by the magnetic force of the Earth
is brought back to its magnetic meridian, it follows that each part has, for the moment
around this point, the product of its density, of the cube of the radius and the distance from
this point to the center of rotation. But as the densities in two corresponding parts of two
homologous needles are between them as

::
A

r
:
A′

r′
;

and as, moreover, for the parts similarly placed in the two homologous needles, the distances
to the middle of the needles are like the radii; it follows that the magnetic moments which
brings back two homologous needles to the magnetic meridian, are to one another in a direct
ratio composed of the coercive force, and of the cube of the radius:1073 but we have seen,
Section 26.10, that it resulted from experiment, that in two needles of the same nature, and
of homologous dimensions, the moments of the directing force were as the cubes of the radii,
which is perfectly in accordance with the theory.

We have also found, Section 26.21, from experiment, that in two steel needles of the same
nature, but of different diameters, the center of gravity of the curve which represented the
densities of the magnetic fluid, was placed relative to the ends of these needles, at distances
proportional to their diameter; the previous formulas give the same result.

26.29 XXIX

The agreement between the fundamental experiments and the calculation which we find here
appears to give a great weight, either to the opinion of Mr. OEpinus, or to the system of
the two fluids, such as we presented it; however, it must be admitted that there are some
phenomena which seem to refute these hypotheses entirely; here is one of the principal ones.

We saw in Section 26.1, that when a magnetic needle was suspended freely, the sum
of the boreal forces which solicited this needle along the magnetic meridian, was exactly
equal to the sum of the austral forces;1074 this result, founded on experiments that cannot be
denied, is valid not only for a needle that has just been magnetized, but [also] if, after having
magnetized it, we cut this needle in different parts; if we cut, for example, the extremity of
the northern part, this suspended part will be solicited by exactly equal boreal and austral
forces; but in the preceding hypotheses, this part would be solely charged with boreal fluid,
and the action of the two magnetic poles of the globe of the Earth would combine to transport
it towards the boreal pole; thus theory here finds itself in contradiction with experiment.1075

26.30 XXX

I believe that we could reconcile the result of the experiments with the calculation, by
making some changes to the hypotheses; here is one which appears to be able to explain
all the magnetic phenomena of which the preceding tests have given precise measurements.

1073That is, the torque exerted by the Earth on a magnetized needle is proportional to the coercive force
acting on the magnetic parts of the needle and is also proportional to the volume of the needle.
1074These two forces act in opposite directions, along parallel lines, composing a pair of forces that generate
a torque on the needle.
1075See the discussion of this argument in Section 4.4.
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It consists in supposing, in the system of Mr. OEpinus, that the magnetic fluid is enclosed
in each molecule or integral part of the magnet or of the steel;1076 that the fluid can be
transported from one end of this molecule to the other, which gives each molecule two
poles; but that this fluid cannot pass from one molecule to another. Thus, for example, if
a magnetized needle were of a very small diameter, or if, Figure 7, each molecule could be
regarded as a small needle whose North extremity would be united to the South extremity
of the needle which precedes it, only the two extremities n and s of this needle would give
signs of magnetism; because it would only be at the two extremities where one of the poles
of the molecules would not be in contact with the opposite pole of another molecule.

If such a needle after having been magnetized were cut in two parts in a, for example,
the end a of the part na, would have the same force as the end s of the entire needle, and
the end a of the part sa, would also have the same force as the end n of the whole needle
had before being cut.1077

This fact is very exactly confirmed by experiment; for, if we cut a very long and very fine
needle into two parts after having magnetized it, each part tested on the [magnetic] balance
is found to be magnetized to saturation, and although we magnetize it again, it will not
acquire a greater directing force.

Every part of our needle, in this new system, however magnetized or cut, will be directed
into the magnetic meridian by perfectly equal austral and boreal forces; which appears to
be one of the principal phenomena which the hypotheses must satisfy.

The hypothesis which we have just made appears very analogous to this well-known

1076In the original: le fluide magnétique est renfermé dans chaque molécule ou partie intégrante de l’aimant
ou de l’acier. See footnote 395 on page 176. Another possible translation would be individual particle,
integral particle or constituent particle, [Gillmor, 1971a, pp. 159, 201 and 217].
1077I will assume here needle 12 in Figure (a) of this footnote to have a North pole at end 1 and a South
pole at end 2. At its center a there is no magnetic pole intensity, since the poles sn at this point cancel out
as they are practically in contact:

n n

n nn nn nn n

n n n n nn nn nns s

s ss sa
1 2 21

a as ss s

s s s s ss ss ss

(a) (b)

By cutting the needle at its midpoint a and separating the two parts, we are left with two needles, 1a and
a2, as shown in Figure (b). The part 1a has a North pole at end 1 and a South pole at end a. The part a2
has a North pole at the end a and a South pole at the end 2, as stated by Coulomb. The intensities of the
magnetic poles at the ends of needle 1a are the same intensities as those of the original needle 12. The same
is true for needle a2 compared to needle 12.
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electrical experiment. When we electrify a glass plate covered with two metallic planes,1078

however thin the planes may be, if they are taken away from the plate, they give signs of
significant electricity: the surfaces of the glass, after the electricity of the fittings has been
discharged, remain impregnated with the two contrary electricities, and form a very good
electrophorus;1079 this phenomenon takes place whatever thickness is given to the glass plate:
thus, the electric fluid, although of a different nature on the two sides of the glass, penetrates
only at an infinitely small distance from its surface; and this [glass] plate looks exactly like a
magnetized molecule of our needle. And if, now, we placed one on the other a series of plates
thus electrified so that, in the union of the plates, the positive side which forms the surface
of the first plate is at a distance of several inches from the negative surface of the last plate;
each surface of the extremities, as experiment proves, will produce, at fairly considerable
distances, effects as perceptible as our magnetized needles; though the [electric] fluid of each
surface of the plates of the extremities penetrates these plates only to an infinitely small
depth, and that the electric fluids of all the surfaces in contact balance each other mutually,
since one of the surfaces being positive, the other is negative.1080

Finally, in any system of attraction and repulsion, we cannot suppose that one of the
two magnetic fluids can pass from one steel bar to another, since the magnetized needles
are always acted upon by exactly equal boreal and austral forces; however, if we fill a small
pipe or a straw with steel filings, and magnetize it, we will find in this pipe a directing force,
very perceptible, and which we will easily measure in our magnetic balance.1081 The filings
within the pipe are covered by our hypothesis, since the magnetic fluid cannot pass from one
steel molecule to another.

Here is one more experiment in support of our opinion; along a wooden ruler, Figure 8, I
place, in a row, five or six parallelepipeds of very soft iron in contact at their ends, forming
together a length of eighteen to twenty inches [48.726 to 54.14 cm].

1078In the original: Lorsque l’on charge un carreau de verre garni de deux plans métalliques. The word
“carreau” can be translated as plate, pane, square or tile. These parallel-plate condensers or capacitors
became known as Franklin squares, [Heilbron, 1999, pp. 317, 333, 334, 368, 407, 408, 418 and 435].
1079For a detailed discussion of the electrophorus see Chapter 6 (The Electrophorus) of [Assis, 2018b],
[Assis, 2018a] and [Assis, 2019].
1080An illustration of this experiment appears in the Figure of this footnote:

+ + + + + + + + + +

_
+ + + + + +_ _ _ _ _ _ + + + + + +_ _ _ _ _ _

+ + + + + +_ _ _ _ _ _

+ + + + + +_ _ _ _ _ _

+ + + + + +_ _ _ _ _ _
+ + + + + +_ _ _ _ _ _

_ _ _ _ _ _ _ _ _

(a) (b) (d)(c)

In letter (a) of the Figure of this footnote we have a neutral glass plate. The glass in this experiment
has to behave as an insulator, see footnote 503 on page 223. In (b) this glass plate is covered with two
conducting planes that are connected to the ends of a battery, remaining there for a certain time. When the
electrified planes are removed, it is observed that the glass plate was electrically polarized, as shown in (c).
When stacking several of these polarized plates, it is observed that the set is also polarized, with charges of
opposite signs on its external faces, (d).
1081For a lapse in the original text, “electric balance” appears here.
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I apply the pole s of a bar magnet to the extremity A, and I slide, Figure 3, [Number
3], the row AB of my parallelepipeds four or five lines away [0.904 or 1.13 cm] from a
little magnetized needle a. Since the magnetic fluid cannot pass from one parallelepiped
to another, each parallelepiped should have two poles. Experience teaches on the contrary,
that the whole line AB gives the same nature of magnetism, as the pole s of the magnet
sn in contact by this pole with the extremity A. This experiment is easily explained by our
hypothesis.

26.31 XXXI

It is easy, from what we have just said, to determine the magnetic state of a magnetized
plate; let abcd, Figure 9, No. 1, represent this lamina, which we suppose formed of an infinity
of longitudinal elements.

In Figure 9, No. 2, hgs is an elementary fiber seen larger, in which 1, 2, 3 represent small
needles or elementary molecules.
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In each molecule the magnetic fluid can be transported from one end to the other, but
cannot leave the molecule: thus, in the first needle, if the magnetic fluid is condensed at
the boreal end by the quantity a, in this same needle it will be dilated at the southern end
beyond the state of neutralization of the quantity a; in needle 2 it may be condensed at the
northern end by a quantity a + b; thus it will be dilated at the other end of the needle by
the same amount a+ b; in needle 3 it will be condensed at the northern end of the quantity
a + b + c; thus at the other extremity of the same needle, it will be dilated by the same
amount; it will be the same for all the other elements of this fiber.

Hence it follows that at the extremity of our fiber, the boreal force will be a; that at the
boreal end of the second element, the boreal force will be reduced to b, the force a being
destroyed by the negative force a of the southern end of element 1; at the northern end of
element 3, the northern force will be reduced to c, the part (a + b) being destroyed by the
negative force of the southern pole of element 2.

It is now easy, by replacing our fiber in Figure 9, No. 1, to see that taking in this fiber,
on the northern side, for example, any point δ, of which the boreal force, reduced, according
to the preceding observation, is represented by δ. If we draw through this point δ, a line
of perpendicular to the length of the lamina; [then,] in the state of stability, the action of
the whole part abfo on the point δ, being decomposed in the direction hδ, must balance the
action of the whole remaining part focd, plus the coercive force that prevents the fluid from
flowing into each element.1082

Thus, in our hypothesis, the calculation of the magnetic actions or the intensity of the
magnetic forces of each point, must give us precisely the same result as that [calculation
based on the assumption] of the transport of the magnetic fluid, from one end of a lamina
to the other. Calculation which gives, as we have seen, the greatest conformity between
experiments and theory, when the needles are magnetized to saturation.

26.32 XXXII

We have hitherto tried to determine by experiment and by theory the principal laws of the
distribution of the magnetic fluid in needles of different lengths, and of different sizes; we

1082I present in the image of this footnote the letters mentioned by Coulomb as they seem to me to be
located in the original Figure 9, Number 1:

a
f c

s

d

h

b o

d
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have seen that by means of a few corrections, it was easy to bring the theory into line with the
magnetic phenomena. We are now going to give some experiments intended to determine,

1. the most advantageous form of magnetized needles, intended to indicate the magnetic
meridian;

2. the degree of quenching and annealing that is best suited for steel blades, to take on
magnetism;

3. the degree of magnetism assumed by a bundle of magnetized plates, as well as [the
degree of magnetism assumed by] each plate of this bundle, when it is detached from
this bundle, and when, without magnetizing it again, its magnetic force is determined;

4. the means which have succeeded best for magnetizing steel needles to saturation, and
for forming artificial magnets.

26.33 XXXIII. Shape and Degree of Quench Hardening of

Magnetized Needles

Most authors have believed that the most advantageous form of magnetized needles was a
steel blade having the shape of a rectangular parallelogram.

Experiment has shown me that at the same length, same weight and same thickness,
an arrow-cut blade, Figure 9, No. 3, has a magnetic moment, greater than a rectangular
parallelogram.

26.33.1 Eighth Experiment

In a steel blade, which we find in commerce under the name of steel sheet from England,1083

we cut three needles of the length of six inches (16.24 cm).

The first a rectangular parallelogram of 91
2
lines wide (2.14 cm), weighing 382 grains

(20.10 g).

The second, also a rectangular parallelogram, was 43
4
lines wide [1.07 cm], and weighing

191 grains [10.14 g].

The third one, cut like an arrow, was 91
2
lines wide [2.15 cm] in the middle and weighed

191 grains like the second one.

We successively suspended these three needles in the magnetic balance, after having
magnetized them, and we obtained the following results:

1083In the original: tole d’acier d’Angleterre.
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First trial. The three needles tempered, red white.

The parallelogrammatic needle, weighing 382 grains, was held at 30 degrees from its magnetic
meridian, by a twisting force, measured as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 degrees.

The parallelogrammatic needle, weighing 191 grains, . . . . . . . . . . . . . . . . . . . . . . . 49 degrees.
The arrow needle, weighing 191 grains, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 degrees.

Second trial. Needles annealed to the consistency of a purple spring.

The parallelogrammatic needle, weighing 382 grains, was retained at 30 degrees from the
magnetic meridian, by a twisting force of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 degrees.

The parallelogrammatic needle, weighing 191 grains, of . . . . . . . . . . . . . . . . . . . . .65 degrees.
The arrow-shaped needle, weighing 191 grains, of . . . . . . . . . . . . . . . . . . . . . . . . . . 68 degrees.

Third trial. The annealed needles, water color.

The parallelogrammatic needle, weighing 382 grains, was held at 30 degrees from the mag-
netic meridian, by a twisting force of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
degrees.

The parallelogrammatic needle, weighing 191 grains, of . . . . . . . . . . . . . . . . . . . . .68 degrees.
The arrow needle weighing 191 grains, of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 degrees.

Fourth trial. The needles annealed to a degree of heat, dark red.

The parallelogrammatic needle, weighing 382 grains, was retained at 30 degrees from the
magnetic meridian, by a force of torsion measured as . . . . . . . . . . . . . . . . . . . . . . . . . 134 degrees.

The parallelogrammatic needle, weighing 191 grains, as . . . . . . . . . . . . . . . . . . . . 70 degrees.
The arrow-shaped needle, weighing 191 grains, as . . . . . . . . . . . . . . . . . . . . . . . . . . 79 degrees.

Fifth trial. Needles reddened to white and not tempered.

By reddening the needles to white,1084 and allowing them to cool slowly without quenching
them, it was found that the degree of magnetism they could take on was about the same as
when the needles were quenched red-white, as in the first trial.

26.34 XXXIV. Remark on This Experiment

We learn from this experiment that, in the first place, lamina quenched to great rigidity1085

take on the least magnetism and that in this state, the magnetism is approximately the
same as when the needle is annealed red-white: that starting from the state of the strongest
hardening, the magnetism of the blades always increases through all the degrees of annealing,
until the annealing is of a very dark red, and then the magnetism decreases as the blade is
annealed at a greater degree of heat, that once it has reached the red-white state and cooled
slowly, the blade being then magnetized, will take about the same degree of magnetism as
after the hardest tempering without annealing .

1084In the original: en faisant rougir les aiguilles à blanc.
1085In the original: dans les lames, l’état de trempe très-roide. See footnote 405 on page 178.
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This experiment also shows that in blades of the same thickness and of the same weight,
the magnetic moment of that cut as an arrow, is a little greater than in parallelogrammatic
needles.

Finally, it is easy to see from this experiment that in a parallelogram of the same thickness
and length, but twice the width of another, the magnetic moment is not twice as large. This
result was indicated by theory.

26.35 XXXV. Magnetic State of a Bundle Composed of Sev-

eral Blades

26.35.1 Ninth Experiment

From1086 the same sheet of steel which was used in the preceding experiments, we cut 16
rectangular parallelogrammatic needles, 6 inches long [16.24 cm], and 9 lines and a half wide
[2.15 cm], each weighing 382 grains [20.29 g]. They have all been annealed to white without
tempering them to be sure they are in the same state; because, as we have just seen, the
magnetism varies according to the degree of quenching and annealing, and it would have
been difficult to ensure that the state of spring would have been the same in all the blades
if we had used a lower degree of annealing; each needle was magnetized to saturation in
particular, and we then united them by joining together the poles of the same name,1087 we
formed, by this means, bundles of a certain number of needles, which were tied together with
a very fine silk thread, strong enough to press them together. In each test, we placed the
bundle in the magnetic balance, moving it away from its magnetic meridian by 50 degrees,
we observed the force of torsion necessary to keep it at this [angular] distance.

First trial. To hold a single needle at 30 degrees from its magnetic meridian, required a
twisting force of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82◦.

Second trial. Two needles joined together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125◦.
Third trial. Four needles joined together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150◦.
Fourth trial. Six needles joined together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172◦.
Fifth trial. Eight needles joined together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182◦.
Sixth trial. Twelve needles joined together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205◦.
Seventh trial. Sixteen needles joined together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229◦.

26.36 XXXVI. Tenth Experiment. Decomposition of the

Previous Needle

I separated1088 the 16 needles from the seventh trial of the previous experiment; I placed
them successively in the magnetic balance, displacing them 30 degrees from the magnetic

1086For a lapse in the original text, this Section was numbered with the same number as the previous Section,
namely, 34. Due to this fact, I changed the numbering of this Section and the following Sections so that
they follow the ascending order, without repetitions and without gaps.
1087That is, they were placed side by side with all the North poles at one end and with all the South poles
at the other end.
1088By a lapse in the original text, this experiment appeared with the same number as the previous one,
that is, as the ninth. Because of this, I changed the numbering of this experiment and the next ones so that
they followed the ascending order, without repetitions and without gaps.
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meridian, and naming the “first needle” that one taken from one of the surfaces of the bundle,
and in succession to the “sixteenth” taken from the other surface, I found:

First trial. The first needle is held at 30 degrees from its meridian, by a twisting force of
46◦.

Second trial. Second needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39◦.
Third trial. Third needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

2

◦
.

Fourth trial. Fourth needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
2

◦
.

Fifth trial. Fifth needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31◦.
Sixth trial. Sixth needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

2

◦
.

Seventh trial. Seventh needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
2

◦
.

Eighth trial. Eighth needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301
2

◦
.

Ninth trial. Ninth needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30◦.
Tenth trial. Tenth needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26◦.
Eleventh trial. Eleventh needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

2

◦
.

Twelfth trial. Twelfth needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34◦.
Thirteenth trial. Thirteenth needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26◦.
Fourteenth trial. Fourteenth needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32◦.
Fifteenth trial. Fifteenth needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30◦.
Sixteenth trial. Sixteenth needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48◦.

All the needles were again bundled, without changing anything in their magnetic state,
nor in the order in which they were in the seventh trial of the eighth experiment;1089 placing
the bundle in the magnetic balance, and displacing it 30 degrees from its meridian, it required,
to retain it at this distance, a force of torsion of 229 degrees, exactly the same as before the
disunion of the needles.

26.37 XXXVII. Result of the Last Two Experiments

The eighth experiment1090 proves that the magnetic force of each bundle increases in a much
smaller ratio than the number of blades, or than the thickness of the bundle. A single
blade has, for the moment of its directing force, 82 degrees of torsion, while for 16 needles
together, the mean magnetic moment of each has the measure 229

16
degrees or 14.3 degrees,

that is to say, approximately the sixth part of 82 degrees, [which is the] directing force of
a single insulated blade magnetized to saturation. I have already drawn from this result a
very important conclusion, in the ninth volume of Savans étrangers,1091 relative to compass
needles intended to indicate the meridian, and carried on caps and pivots:1092 it is that the
moment of the friction at the pivots increases, as I have then proved, in a greater ratio than
the pressures, while the magnetic moment grows in a much less ratio than the masses or the
pressures of the pivots, [therefore,] needles thin and very light are preferable to all the others
at the same length. We see indeed by our experiment, that by supposing even the moment
of the frictions proportional to the pressures, if the friction could produce on a single blade

1089Probably Coulomb was referring here to the ninth experiment.
1090Probably Coulomb was referring here to the ninth experiment.
1091[Coulomb, 1780]. See, in particular, Section 5.5 on page 101.
1092In the original: portée sur des chapes et des pivots. See footnote 141 on page 58.
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magnetized to saturation, an error of 4’ in its position relatively to the magnetic meridian,
[then,] according to our experiment, it would produce an [error] six times greater, or about
24’, if a bundle of sixteen blades had been used.

It is useless to examine here the laws which follow the magnetic moment of the bundles
of blades which we subjected to the experiments; it would be necessary, to have this law, to
extend the work that we have done, eighth experiment, for a particular case, to blades of
different lengths and different widths: but it seems easy to us to predict these results in a
sufficiently exact manner in practice, by following the research methods which we presented
at the beginning of this Memoir, in similar cases, for steel cylinders of different sizes and
lengths.

By now examining the Table given by the ninth experiment, we see that the two blades
at the surfaces of the decomposed bundle have a greater magnetic force than the others. The
first being measured by 46 degrees, and the sixteenth by 48 degrees, we also see that the
average moment of all the other blades is approximately equal and measured by 30 degrees.
For although the magnetic moment of the third blade in this experiment was found to be
only 14 and a half degrees, this decrease is compensated by the moment of the neighboring
needles; the second having as measure of its directing force 39 degrees, and the fourth 44
degrees;1093 so that the mean moment of these three needles is1094

39 + 141
2
+ 44

3
= 31

1

6
.

By repeating this experiment, and replacing the third blade by another, I no longer found
any irregularity, and this third blade had a directing force measured by 32 degrees like the
others.

But a very curious observation presented by this ninth experiment is that the sum of
the particular moments of all the blades gives us a quantity more than double that of the
compound bundle. If indeed we add together the moments of all the blades of the ninth
experiment, we find this sum equal to 516 degrees; while by uniting all the needles, the
bundle thus composed gives us only 229 degrees.

This last result could be explained, in our theory, by the constrained state of the magnetic
fluid, repelled from the extremities of each element in the compound bundle, by the action
of all the blades united, and above all by that of the surfaces; action which takes place in
a sensible manner only at the extremities of the bundle. When the bundle is decomposed,
the action of the parts remote from the extremities, which remains nearly the same as in
the compound blades, pushes the magnetic fluid towards the extremities; whence results the
increase in moment which we have just found by experiment.

26.38 XXXVIII. Eleventh Experiment

Decomposition of a bundle of four blades.

1093In the tenth experiment it appears that the twisting force of the fourth needle was 44.5◦.
1094The correct result of this calculation is

39 + 14 1
2 + 44

3
= 32.5 .

I have the impression that Coulomb arrived at the result 31 1
6 by using, by an oversight, the value 40 instead

of 44 in the third term of the numerator.
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I collected only four of the previous needles, after having magnetized them to saturation;
the bundle, displaced 30 degrees from its meridian, was brought back [to the meridian] by a
force measured as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150◦.

These separated needles were brought back to the meridian: The first, by a force of
moment, measured by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70◦.

The second, by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44◦.

The third, by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44◦.

The fourth, by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60◦.

26.39 XXXIX. Twelfth Experiment

Decomposition of a bundle of eight blades.

Eight united needles were brought back to the magnetic meridian, from which they were
displaced 30 degrees, by a force of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183◦.

The needles were separated.

The first was brought back by a force measured by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48◦.

The second, by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36◦.

The third, by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35◦.

The fourth, by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33◦.

The fifth, by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34◦.

The sixth, by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38◦.

The seventh, by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35◦.

The eighth, by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51◦.

It is useless to dwell on these two experiments. They give results analogous to those
we have developed in the preceding Sections: we are going to pass to the methods for
magnetizing the blades to saturation, and for forming artificial magnets.

26.40 XL. How to Magnetize

I am going to present the means that have been most successful for me, to construct, with
little expense, artificial magnets of very great strength; it will be easy to see that I have been
guided by the preceding experiments and observations.

When we want to magnetize a steel wire or blade, we note that the advantage, when we
use two bars to magnetize, to make the action of the two poles of these bars cooperate. This
is what led to the idea of the double touch method.1095 Figure 10 shows how it was first
practiced.

1095See Section 4.6.

489



On the needle ns that we wanted to magnetize, we placed two bars SN and S ′N ′ vertically
at approximately 7 or 8 lines apart [1.58 or 1.81 cm] depending on the strength of the
magnets: the points S and S ′ represent the South poles, and N and N ′ the North poles.
The two bars in this configuration are moved from one end of the needle ns to the other.1096

Mr. OEpinus1097 has noticed that in this method the center of action1098 of the two
magnets NS and N ′S ′, being necessarily located at some distance from their extremities, at
the point µ, for example, the action on the points of the needle, located between the two
[magnetized] bars, are made very obliquely, and consequently do not give to this needle the
degree of magnetism which it might receive. Thus, instead of placing the two bars vertically
in this operation, Mr. OEpinus advises to incline them on the needle, as in Figure 11, and
to slide them in this configuration from one end of the needle to another.

I actually found, by means of the magnetic balance, which I described at the beginning
of this Memoir, that the method of Mr. OEpinus was preferable to the first; but at the same
time, I have found that it does not quite produced magnetic saturation in the needles; more
often, when the needle is long, several poles form in the intermediary parts, whose action
was, in truth insignificant, but still perceptible. I attribute the cause to the particular action
of each magnet, which tends to produce on the points passed by the two magnets, an effect

1096The two magnets NS and S′N ′ are moved together maintaining a fixed separation between them. When
the procedure is finished, the left end of the needle acquires a North pole, n, while the right end acquires a
South pole, s.
1097See footnote 182 on page 73.
1098See footnote 568 on page 243.
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contrary to that sought. In our Figure 11, the pole S, for example, placed on the needle,
tends to give at the same time to the point q which is placed under the pole S,1099 the
same nature of magnetism, as to the point u;1100 that is to say, in the hypothesis of the two
magnetic fluids, which can be transported towards the two extremities of the needles, if the
point u1101 is drawn towards the point n, the neighboring point q will be drawn towards the
point s, after this point q will have been passed by the two magnets: in our hypothesis, where
the magnetic fluid can only move in the integral parts,1102 the molecules u1103 and q, which
are adjacent, tend to magnetize each other in the opposite manner; which must produce a
diminution of magnetism towards the extremities of the needles, where the magnetic fluid
must be the most condensed, and which may, in very long needles, as experiment proves,
give rise to several poles. This observation, which could only be the fruit of the exact
measurements given by our experiments, obliged me to change the method of magnetizing
of Mr. OEpinus; and here, after several attempts, is the method which, according to the
magnetic balance, has appeared to be the most advantageous.

I make use, for my operation, of four very strong magnets, made according to a method
which I will presently detail. I place, Figure 12, my two strongest magnets NS and NS in a
straight line, on a horizontal plane so that they are separated from each other by a few lines
less than the length of the needle ns, which I want to magnetize.

m

I then take the two magnets N ′S ′, and tilting them as in the method of Mr. OEpinus,
I place them down first, almost joining their poles on the middle m of the needle;1104 I
then pull each magnet, without changing its inclination, to the end of the needle, and I
repeat this operation five or six times on the different faces of the needle. It is clear that
in this operation, the poles of the needle ns remain fixed and invariable at the extremities
of the needle, by means of the two strong magnets NS, on which this needle is placed: the
effect produced, by these two magnets, can only be increased by the action of the two upper
magnets which combine to magnetize all the molecules of the needle in the same direction.

As with the preceding operation, the needle ns, placed between the two large magnets,
acquires, through the action of the four magnets, a stronger polar force than that which
it can retain when separated from these magnets, it follows that at the moment of this
separation, the needle loses a part of the magnetism which it owes to these forces, and that
its magnetism decreases until the magnetic action of the whole needle, at each of its points,
is in equilibrium with the coercive force. Thus, by separating the needle from the magnets,

1099I replaced “under the pole s” with “under the pole S”.
1100In the original text, µ appears here instead of u.
1101In the original text, µ appears here instead of u.
1102That is, in which the magnetic fluid can only move within each molecule of the bar, without passing from
one molecule to another. See further [Gillmor, 1971a, pp. 159, 201 and 217] and footnote 395 on page 176.
1103In the original text, µ appears here instead of u.
1104I added in Figure 12 the letter m that does not appear in the original image.
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it is magnetized to saturation.

I also found that by magnetizing by our method, we were more certain to give to the
surfaces of the blades intended to form needles, to indicate the magnetic meridian, an equal
degree of magnetism; a point which should receive great attention if the needle is suspended
sideway in the construction of compasses.

26.41 XLI. Construction of Artificial Magnets

I took, Figure 13, about thirty steel blades quenched and tempered to spring consistency,
5 or 6 lines wide (1.1 to 1.3 cm), by 2 or 5 lines thick (0.45 to 0.68 cm), and 36 inches in
length (97.45 cm).

Foil blades, such as are found in the commerce, make fairly good magnets. English steel
sheet, cut in one inch [2.7 cm] wide strips, quenched and annealed to spring consistency, to
the grades given in Section 26.33, is preferred. When I use only 15 or 20 pounds (7 to 10 kg)
of steel for each magnet, it suffices to make the blades 50 to 56 inches long (81 to 97 cm).

I magnetize each blade singularly, according to the method prescribed in the preceding
Section: I then take two rectangular parallelepipeds of very soft and very well polished iron,
six inches long (16.24 cm), 20 to 24 lines wide (4.5 to 5.4 cm), and from 10 to 12 lines thick
(2.2 to 2.7 cm); I form, with these two parallelepipeds, represented, Figure 13, in N and
S, the armor of my magnet, by wrapping one end of each parallelepiped with a layer of my
magnetized steel blades, so that the end of the parallelepipeds exceeds the end of the blades,
by 20 to 24 lines, and such that the other end of the parallelepipeds is surrounded by the
end of the blades. On this first layer of steel blades, 3 to 4 lines thick [0.68 to 0.90 cm], I
place a second [layer] which is 3 inches [8.12 cm] less in length than the first, so that the first
exceeds this second by 18 lines [4.07 cm], of each side; the whole is fixed at the extremities,
by means of two copper rings which press the blades against each other and which prevents
the armor from escaping.

Figure 13 represents two artificial magnets, composed according to the method which we
have just prescribed; N and S, are the two extremities of the two iron parallelepipeds; the
two other extremities, engaged between the steel blades, are shown as dotted lines in this
same Figure. Each magnet thus composed, is firmly fixed by copper rings which are marked
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on the two magnets at a, b, a′, b′, the contacts placed at A and B,1105 unite the poles of the
armors.

Experiment has taught me that with a device of this shape, each magnet weighing 15
or 20 pounds [7 to 10 kg], requires a force of 80 to 100 pounds to separate the contacts:
that by placing ordinary compass needles on the two ends of our two bars, composed as in
Figure 12, they magnetized each other to saturation, without it being necessary to rub them
with superimposed magnets; needless to say, when we wish to obtain magnets of a greater
force, it will be necessary, as we multiply the number of steel blades, to increase their length,
and the dimensions of the iron parallelepipeds, which serve as armor. It would be easy to
estimate the different dimensions that magnets must have in a sufficiently exact manner in
practice, according to the laws of magnetism and the position of the center of action of steel
wires of different lengths and thicknesses, all of which we have presented in the course of
this Memoir.

1105In Figure 13, the letter R appears instead of the letter B.
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Chapter 27

Remarks on Coulomb’s Seventh
Memoir

A. K. T. Assis

27.1 Calculation of the Magnetic Moment of a Magne-

tized Needle When the Density of the Magnetic

Fluid Varies Linearly Along Its Length

In Section 26.24 Coulomb presented the result of the magnetic moment of a magnetized
needle when he assumed the density of the magnetic fluid to vary linearly along the length
of the needle, see footnote 1053 on page 473. I will detail here how Coulomb arrived at this
result.

Initially I suppose a magnetic dipole composed of two particles separated by a distance
2x along the ℓ axis. One of these particles has a North fluid of intensity µ and is located at
ℓ = x, while the other particle has a South fluid of intensity −µ and is located at ℓ = −x,
Figure 27.1.

m-m

x0-x ℓ

Figure 27.1: Magnetic dipole.

This configuration is called a magnetic dipole. The magnetic dipole moment m is defined
by

m =
2
∑

i=1

ℓi · µi = (−x)(−µ) + xµ = 2xµ . (27.1)

Figure 27.2 presents a magnetized needle sn of length 2x. Coulomb assumed in Sec-
tion 26.24 a density of magnetic fluid varying linearly along the length of the needle and
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having maximum intensity A at the tip of the needle. Representing this linear density of
magnetic fluid by the letter λ, its variation along the ℓ axis is given by Figure 27.2.

0

A

-A

l

ns
x-x

ℓ

Figure 27.2: Magnetized needle with a density of the magnetic fluid varying linearly along its
length.

Considering this needle along the ℓ axis, with its center at the origin 0 of this axis, we
can assume that λ varies linearly as a function of ℓ as follows:

λ =
Aℓ

x
. (27.2)

According to Equation (27.2) we have λ = −A when ℓ = −x, λ = 0 when ℓ = 0 and
λ = A when ℓ = x. The unit of λ and A is the unit of magnetic fluid per unit of length. The
magnetic dipole moment of this needle is obtained by Equation (27.1) by replacing the sum
with an integral along the needle:

m =
∫ x

ℓ=−x
ℓ · dµ =

∫ x

ℓ=−x
ℓ(λdℓ) , (27.3)

where λ = dµ/dℓ is the linear density of magnetic fluid. Using Equation (27.2) and integrat-
ing we get:

m =
∫ x

ℓ=−x
ℓ
Aℓ

x
dℓ =

A

x

∫ x

ℓ=−x
ℓ2dℓ =

A

x

[

ℓ3

3

]x

ℓ=−x

=
2Ax2

3
. (27.4)

This was the equation presented by Coulomb on page 473, see footnote 1053.

27.2 Figure 5 Reworked

Figure 5 that appears on page 475 of Section 26.26 represents a magnetized cylindrical needle.
I have reworked this image in Figure 27.3 to indicate the letters more clearly.

Also, I have included the letters α, β, γ, σ, φ, and θ to distinguish the needle parts.
Points 1, 2 and 3 are along the axis of the cylinder. Point 1 is at the junction between the
parts α and β, as well as at the junction between the parts φ and θ. Point 2 is at the junction
between the parts β and γ, as well as at the junction between the parts σ and φ. Point 3
located in the center of the cylinder is at the junction between the parts γ and σ.

This cylindrical needle ab is magnetized to saturation along its axis. Coulomb assumes
that the density of magnetic fluid in each part is uniform. By symmetry, he further assumes
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d1 d2 d3

-d3 -d2 -d1

g s f q

Figure 27.3: A new Figure 5.

that the magnetic density in the first part, α, is equal and opposite to the magnetic density
in the last and sixth part θ. That is, if the magnetic density of the first part is δ1, then the
magnetic density of the sixth part will be −δ1. Likewise the density δ2 in the second part,
β, is equal and opposite to the density of the fifth part φ. The density δ3 of the third part,
γ, is equal and opposite to the density of the fourth part σ. For this reason, I replaced in
this new Figure the densities of the parts σ, φ and θ with −δ3, −δ2 and −δ1, respectively,
instead of utilizing the densities δ3, δ2 and δ1 that appeared in Coulomb’s original Figure.
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Chapter 28

Theoretical and Experimental
Determination of the Forces that
Bring Different Magnetic Needles
Magnetized to Saturation Back to
Their Magnetic Meridian

Coulomb1106

1. In the various Memoirs that I presented to the former Academy of Sciences, I found,
by means of my torsion balance, by experiments which appear to be decisive, the principal
laws of action of the elements of the magnetic fluid.

2. It follows from these experiments that, whatever the cause of magnetic phenomena,
all these phenomena could be explained and subjected to calculation, assuming in the steel
laminae or in their molecules, two magnetic fluids,1107 the parts of each fluid repelling each
other in direct proportion to their density, and in inverse proportion to the square of their
distance, and attracting the molecules of the other fluid in the same ratio; so that each lamina
of iron or steel contains in each molecule, before being magnetized, a sufficient quantity of
both fluids to saturate or balance each other, that the two fluids thus combined no longer
exert any action on each other.1108

3. It follows from this supposition that the whole art of magnetizing a lamina consists in
separating the two fluids, and I have proved in the Memoirs I have just cited that whether
they are only separated in each molecule of the steel, or whether they are transported from
one end of the lamina to the other, the results are the same as regards the calculation.

4. But as these two supposedly separate fluids in the magnetized laminae, act to reunite
each other; they would indeed come together, if there were not in the magnetized laminae

1106[Coulomb, 1801a] with Portuguese translation in [Assis, 2022]. This work was read in 1799 to the French
Institute of Sciences and published in 1801.
1107In the original: fluides aimantaires. See also [Gillmor, 1971a, p. 216].
1108[Note by Bucciarelli] I was struck by Coulomb’s reference to molecules, both of steel and of the magnetic
fluid(s) and how the latter adhere to the former unless separated by the action of the magnetic fluid itself.
I conjecture that Coulomb was influenced by the work of Laplace who set out to explain “all terrestrial
phenomena” by means of “sensible forces at insensible distances” among molecules (in all kinds of stuff).
See [Bucciarelli and Dworsky, 1980, Chapters 1 and 6] for a discussion on the subject.
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some force which prevented this reunion. The simplest supposition to satisfy this condition,
is a force of adhesion1109 of this fluid to the molecules of the steel, which prevents it from
moving. But if this force of adhesion exists, it has a limit: so whenever the action of the
magnetic fluid on a molecule of this fluid, will be more considerable than its adhesion to
the steel, this molecule will move, and this displacement will continue until there is equality
between the forces that act on each magnetic molecule1110 to move it, and the force of
adhesion opposed to this displacement.

5. It follows from the preceding Article that the distribution of magnetic fluid in a
magnetized lamina, offers to the calculation an indeterminate problem; because this fluid
can be distributed in any way possible, provided there is no point in the lamina where the
action which tends to move it is greater than the adhesion of the fluid to the steel molecules.
Among all assumptions that can be made for the distribution of this fluid, and which make
this problem determined, there is one where we can say that the needle is magnetized to
saturation: it is the one where each point of the fluid experiences from all the fluid of the
lamina an action which tends to move it, precisely equal to the one that the cohesion opposes
to this displacement. This condition determines, as we see, the disposition of the fluid, and
for this case the question can be submitted to calculation.

6. We manage to magnetize to saturation, or at least to approach this state in steel
laminae, either by the method of the double touch,1111 or by the one which I have used.1112 ,1113

By this last method, the magnetic fluid is transported from one end of the lamina to the
other, and is consequently separated by the combined forces of the opposite poles of four
strong magnets. When we then separate the magnetized lamina from the magnets, the fluid
is found to have, at the ends of the lamina, more density than in the state of saturation,
that is, all the fluid spread in the lamina acts on each of its molecules with a force greater
than the resistance of the adhesion: thus the magnetic fluid moves from each point of the
needle, until there is equality between the action that tends to move it and the adhesion
which opposes this movement.

It sometimes happens in laminae that are very long relatively to their other dimen-
sions, and especially in those which are strongly tempered, that several magnetic centers are
formed;1114 or that the magnetic center is not located in the middle of the needle. We will
report on this effect in another Memoir; we will only say that it is due to this difficulty of
placing the magnetic center in the center of gravity of the laminae, which we must attribute
a fact absolutely necessary to know in the construction of compass needles. Here is what it
consists of. When a long thin steel lamina, which would, for example, be 330 millimeters
in length, 10 millimeters wide and 1 millimeter thick, is white tempered, we find that the
directive force which brings it back into its meridian is much less than when the needle has
returned to spring-like consistency. The opposite takes place in the small needles: it is neces-
sary, for the moment of the directive force to be a maximum, that it be tempered red-white.

1109In the original: force d’adhérence.
1110In the original: molécule aimantaire. This magnetic molecule would be a particle containing only one
of the magnetic fluids. It would be equivalent to the modern concept of a magnetic monopole. See also
Section 4.5.
1111See Section 4.6 on page 48.
1112[Note by Coulomb] Volume of the Academy of Sciences for 1789, p. 504.
1113[Coulomb, 1793, p. 504]. See Section 26.40 on page 489.
1114See footnote 146 on page 59.
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I had already discovered some of these facts;1115,1116 but I had, at the same time, went too
far in generalizing the results. I will have to come back to it in one or two Memoirs that will
follow immediately this one, and which will complete the work which I have undertaken on
the laws of magnetism and their uses in the construction of magnetic needles.

7. I return to the subject of the Memoir that I am submitting today to the judgment
of the Institute. In one of the experiments described in the Memoir that I have just cited,
I bundled together several needles of iron wire into a bundle, and by magnetizing them to
saturation thus united, I found that by forming similar bundles, or, which comes to the same
thing, one whose corresponding dimensions were proportional, these bundles were brought
back to the magnetic meridian by forces whose moment1117 was like the cube of the similar
dimensions.1118 I then tried to prove, by a method of trial and error, that, relatively to the
axis of two cylinders magnetized to saturation, the theory gives the same result.

I have today for my object to prove that, whatever the shape of two magnetized needles,
as long as the figures are similar, that is to say the corresponding parts are proportional to
each other, it results from the experiment that the moment of their directive force towards
the magnetic meridian is like the cube of their corresponding dimensions.

I will prove then, by a rigorous method, that, according to the theory that I have just
explained, this result must take place. Together, these two proofs leave no doubt — not
about the causes of magnetism, which still provides a wide open field [of questions] to all
systems — but on the laws according to which we must rigorously calculate and determine
all magnetic phenomena.

28.1 First Experiment

8. I obtained from the same sheet of laminated steel two parallelogram needles; they were
250 millimeters long, 30 millimeters wide, and about one millimeter thick.

These two needles have been united by their plane, strongly binding the two ends in such
a way as to keep them in contact; we then magnetized them to saturation, we placed them
[together] in the torsion balance of which we will speak presently, and we have found that
to keep them 27 degrees away from their meridian, a force of torsion of 332 degrees was
necessary.

28.2 Second Experiment

9. I cut from the same steel plate a third lamina, which had precisely half the length and
width of the first. As it had been obtained from the same plate, it had necessarily half the
thickness of the two laminae combined. This lamina being magnetized to saturation, a force
of torsion of 42 degrees was needed to keep it, like the first, at 27 degrees from its magnetic
meridian.

1115[Note by Coulomb] Volume of the Academy for 1789, p. 494.
1116[Coulomb, 1793, p. 494]. See Section 26.33, page 485.
1117In the original: momentum. This word can be translated as “moment”, “moment of a force” or “torque”.
See also Section 4.5 and footnote 150 on page 60.
1118That is, the magnetic torque exerted by the Earth was proportional to the volume of the magnetized
needle.
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28.3 Explanation and Result of This Experiment

10.1119 I explained, in the Memoirs of the Academy for 1789,1120 all the details of the
construction of a torsion balance based on the laws of the force of torsion of metal wires.
Here is the precise details of this construction. When a cylinder is suspended from a very fine
metal wire, so that the axis of this cylinder is in the extension of the thread and the point
of attachment, there will be a position where this cylinder will stop, and this orientation
is that where the torsion of the thread is null; but if, without disturbing the axis of the
vertical situation where the cylinder is located, we make this cylinder turn around this axis,
the wire will be twisted, and the force of torsion, when the cylinder is released, will force it
to rotate and oscillate around this axis. However, if we observe with a seconds watch the
times of the oscillations, we will find that no matter if the torsion angle is only of a few
degrees or of several circles,1121 the oscillations will be isochronous; whence it follows, by a
theory known to all geometers, that the forces of torsion of the same wire are proportional
to the angle of torsion. The absolute value of this force of torsion is then determined in
weight in an exact way, according to the time of the oscillations of the cylinder, of which
we know the weight and the radius. I have proved1122 ,1123 that by determining the force
of torsion of a metal wire, from the oscillations of a suspended cylinder to this wire, and
rotating around its axis by means of this force of torsion, I found that the moment of this
force was equal to

(

Pa2

2λ

)

multiplied by the angle of torsion, where P is the weight of the
cylinder, a its radius, and λ the length of the pendulum that beats oscillations isochronous
with the oscillations of the cylinder. We find in the volume of the Memoirs of the Academy
for 1784, all the experimental details and calculation necessary to determine the force of
torsion of the threads of suspension relative to their length, size and nature.

11. Now, to use the force of torsion of a metal wire to determine the ratio of the force
that brings two needles back to their magnetic meridian, we only need to know that the
force of torsion for the same wire is proportional to the angle of torsion. Accordingly, we
suspend in a box, horizontally and successively by means of a metal wire, the two magnetized
needles, making sure that, when the needles are in their magnetic meridian, the torsion is
null. We then twist the wire at its top by means of a clasp which holds it tight and which
carries a pointer which measures the angle of twist, making sure, in our two experiments,
that the twist be such that the magnetized lamina [at the bottom], in each case, forms the
same angle with respect to the magnetic meridian, then the moment of the force [tending to]
bring back the two needles to the meridian is proportional to the angle of twist. To obtain
the true angle of torsion, it is necessary to subtract from the angle of twist measured by
the pointer [at the top], the angular displacement [at the bottom] of the magnetized lamina
from the meridian caused by the torsion.1124 We will find in the volume of the Mémoires de
l’Académie for 1789, all the details according to which we can determine the magnetic laws
by means of the torsion balance: it is only necessary to warn [the reader] that, in the use

1119Articles 10 and 11 were not included in the reprint of Coulomb’s works edited by Potier, [Potier, 1884].
1120[Coulomb, 1793]. This Memoir is translated in Chapter 26.
1121That is, the angle of torsion can be that of a few degrees, or a large one of several complete turns around
the axis of the cylinder.
1122[Note by Coulomb] Mémoires de l’Académie for 1784.
1123[Coulomb, 1787]. This Memoir is translated in Chapter 7.
1124That is, the true angle of torsion is given by the angle indicated by the pointer attached to the top of
the wire, minus the angle of the needle in relation to the magnetic meridian. I present in Section 16.3 an
illustration of this procedure.
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of this instrument, we must observe the needles to the right and to the left of the meridian,
and take an average to correct the error that may result, either from the uncertainty of the
meridian line drawn on the middle of the needle, or of the initial angle of torsion relative to
this meridian.

12. Here is the result of the experiment which precedes. The needle, made up of two
large laminae, in the first experiment, had all the dimensions double the size of the small
lamina of the second experiment: thus the cubes of these dimensions were between them ::
8 : 1. We find, for the forces of torsion, the numbers 322 and 41; which are very close to
each other :: 81 : 10. Thus the moments of the forces which bring back the two needles to
their magnetic meridian, are between them as the cube of their homologous dimensions.

28.4 Third Experiment

13. I put together three laminae similar to the two of the first experiment, and to move this
needle thus composed, away of 21 degrees from its meridian, I found that a torsion of 340
degrees was necessary.

28.5 Fourth Experiment

14. A lamina taken from the same plate, but which had only a third of the width and length
of the three previous ones, was held at 21 degrees from its meridian by a force of about 13.5
degrees.

15. In the last two experiments, the cubes of homologous dimensions are between them
:: 27 : 1. The forces of torsion are in a ratio slightly greater than 25 to 1, quantities which
can be considered as very approximate in experiments of this kind.

16. Finally, to have no doubt about the continuity of this law, I wanted to compare
needles, either parallelogram or cylindrical, whose ratio of cubes was represented by a very
large number like, for example 150 to 1. Moreover, in the preceding experiments, my first
needles were of several pieces, and I wanted to compare needles of a single piece, to know
if the needles or magnets, composed of one or more pieces, had the same strength as the
others; but I realized, according to the results of the preceding experiments, that by placing
very small needles in the yoke of the magnetic balance1125 which is intended to carry these
needles, I would have, by moving these small needles of 20 to 30 degrees from their meridian,
only very small angles of torsion, and that the errors of observation would then introduce
uncertainty into the results. I decided, in this case, to use the method of oscillations which
is suitable for this kind of experiment, and the calculation of which is very easy when we
only want to compare simple shapes which have the same number of equal fibers throughout
their length.

17. Here is what this method consists of. Euler1126 had found before me, and I developed
this theory in the ninth volume of the Mémoires des Savans étrangers,1127 that when a
magnetic needle, either parallelogram or cylindrical in shape, oscillates forming small angles

1125In the original: en plaçant de très petites aiguilles dans la chape de la balance magnétique. The word
“chape” can also be translated here as cover, cap or frame.
1126See footnote 164 on page 66.
1127[Coulomb, 1780]. This work is translated in Chapter 5.
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with the magnetic meridian, the moment of the forces which bring it back to this meridian
was quite exactly represented by the formula1128

1128[Note by Coulomb] Here is the proof of this result. In Figure 4, ab represents the magnetic meridian;
ACB = A, the angle that the needle forms with its meridian, when it begins to oscillate around its center
C, angle that we suppose very small; ϕ the magnetic force of the Earth which acts on point µ parallel to the
magnetic meridian; NC the position of the needle at the end time t:

ACN = s ; NCa = (A− s) ; Cµ = r .

Being µ a magnetic molecule placed at µ, we have for the moment of the action of the Earth which brings
the needle back to its meridian CA, [the following expression:]

(A− s)dt

∫

ϕµr ;

and u being the angular velocity, we will have rdu for the acceleration of point µ, and du ·
∫

µr2 for the
moment of acceleration of the whole needle; from which results

(A− s)

∫

ϕµr · dt = du

∫

µr2 ,

or

(A− s)dt

∫

ϕµr
∫

µr2
= du .

But if an ordinary pendulum swings, we have [by assuming L to be the length of this simple pendulum:]

(a′ − s′)dt
g

L
= du .

Thus, if we suppose, which is very permitted, that the two equations are identical, the needle and the
pendulum will make their oscillation at the same time, and we will have in this case
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P l2

3λ
, 1129

multiplied by the angle from which it is distant from this meridian, where P is the weight
of the needle, l half of its length, and λ the length of a pendulum swinging with oscillations
isochronous to that of the needle.

So if, in the experiments where we want to compare two similar needles, we make P the
weight of the first, l its length, and λ the [length of the] pendulum which beats oscillations
isochronous to the vibrations of this needle; P ′, l′ and λ′ the corresponding quantities of the
second needle; if we call ϕ the magnetic moment of the first, and ϕ′ that of the second, we
will have

ϕ

ϕ′
=
P l2 · λ′
P ′l′2 · λ .

But since the length of two pendulums is in the ratio of the square of the time of the
oscillations, if T is the time when the first needle makes a certain number of oscillations, and
T ′ the time where the second does the same number of oscillations, we will have λ

λ′
= T 2

T ′2 .
Therefore

ϕ

ϕ′
=
P l2 · T ′2

P ′l′2 · T 2
.

But since we want to compare needles here, either parallelogram or cylindrical, of similar
dimensions, it follows that P

P ′
= l3

l′3
. Thus

ϕ

ϕ′
=
l5 · T ′2

l′5 · T 2
.

And if ϕ/ϕ′ were, as we found it, by the previous experiments, proportional to l3/l′3, we
would have, according to this formula,

∫

ϕµr
∫

µr2
=

g

L
.

But if h is the surface which represents the section of the needle, section of which the dimensions are assumed
to be very small relatively to the length of the needle, we will have

∫

µr2 =
∫

hr2 · dr, the integral of which

is
(

hr3

3

)

, and R being half of the length of the needle, we will have for the whole needle 2hRR2

3 . Therefore

∫

ϕµr = g2hR
R2

3L
;

and as g2hR represents the weight of the needle, we have

∫

ϕµr =
PR2

3L
,

quantity that represents the moment of the magnetic action that the Earth’s magnetic force exerts to bring
the needle back to its magnetic meridian.
1129Footnote 1128 was not included by Potier in the reprint of Coulomb’s works, [Potier, 1884, p. 326]. Due
to a slip in that footnote, Coulomb wrote ACB = A instead of ACa = A. I fixed this bug in Coulomb’s
Note.
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l3

l′3
=
l5 · T ′2

l′5 · T 2
, or

l′

l
=
T ′

T
;

that is, assuming that the moments of the magnetic forces of two needles of similar dimensions
be, as previous experiments have shown us, proportional to the cube of these dimensions,
we must find the times of the oscillations proportional to the lengths of the laminae.

It will therefore be easy to verify, by this very simple relation, whether the law which
has been indicated to us in the previous experiments, is still valid when the number that
represents the ratio of the cubes of these dimensions is very big.

28.6 Fifth Experiment

18. I took two rectangular parallelogrammatic laminae of cast steel: the first weighed 100.31
grams; the second, 0.61 grams. The cubic roots of these weights are between them :: 5.5 : 1.0;
it is also the ratio that we gave to their similar dimensions. The first one had 321 millimeters
of length, the second had 58 millimeters;1130 the other dimensions were in the same ratio.
These laminae were both magnetized to saturation, the first one made 30 oscillations in 300”,
the second one made 30 oscillations in 55”.1131

28.7 Result of This Experiment

19. If we take the cubic root of the weight of the two needles, we find these roots very
approximately :: 55 : 10; the lengths, widths and thicknesses being in the same proportions,
we will find the [ratio of the] time of the same number of oscillations :: 300 : 55, [that is,]
very approximately :: 55 : 10. Thus the times of the same number of oscillations being like
the length of the needles, it results from the calculation of the preceding Article that the
moments of the directive forces are between them like the cubes of the dimensions.

The [ratio of the] cubes of the dimensions, and consequently the ratio of the forces, is
found here :: 164 : 1; which leaves no doubt about the truth of the result that we established
according to the experiment.

28.8 Sixth Experiment

20. I took two cylindrical needles of excellent cast steel, such as are commonly found in
commerce.

The first one weighed 46.388 grams; its length was of 322 millimeters. The small one
weighed 2.159 grams; it was 115 millimeters long.

The big needle made 10 oscillations in 90”; the small needle made 10 oscillations in 32”.

1130The ratio of these lengths was 321/58 = 5.5/1.0.
1131That is, the first lamina performed 30 oscillations in 300 seconds, the second in 55 seconds.
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28.9 Result of This Experiment

21. The ratio of the cubic roots of the weights of the two needles is approximately :: 28 :
10; that of the lengths of the needles :: 28 : 10; that of the same number of oscillations :: 90
: 32 :: 28 : 10.

These three rigorously calculated ratios, using a larger number of digits, are so close that,
in experiments of this kind, they can be regarded as equal.

22. I will not unnecessarily lengthen this Memoir by including a number of experiments
which all gave me the same result; I only warn [the reader] that, to make them succeed, it
is absolutely necessary that the needles be in the same state, that is to say, either annealed
red-white, or tempered red-white. The first state is preferable;

• in the first place, because in needles so annealed, unless they have a very great length
relative to their other dimensions, it is very rare that their magnetic center do not
coincide with the midpoint, or that they have several centers.1132 This is what must
always be verified before making the comparison of the experiments.

• In the second place, if it is very difficult to give, by tempering two needles, precisely
the same degree of temper, it is even more difficult, by annealing them to the state of
a spring, to give them the same degree of annealing: and therefore, the state of the
steel not being the same in the two needles, the adhesion of the magnetic molecules to
that of the steel, is not the same.1133

22*.1134 It remains for me, to fulfill the object of this Memoir, to show the agreement of
the theoretical calculation with the experiments which precede.1135

Figures 1 and 2 represent two parallelepipeds whose sides are homologous.

1132See footnote 146 on page 59.
1133See footnotes 375 and 405 on pages 165 and 178, respectively.
1134By a lapse in the original text, this Article received the same number 22 as the previous Article. I
changed its number to 22*.
1135The remainder of this Article until the end of Article 24 was not included by Potier in the reprint of
Coulomb’s works, [Potier, 1884].
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I choose these figures because of their simplicity. We will soon see that, whatever bodies
are compared to each other, provided that the two figures are similar, the demonstration
that follows can be applied to them.

I relate any point c1136 to its three coordinates perpendicular to each other, and parallel
to the faces of the parallelepiped. I make cp = x, pq = y and qµ = z.

I then take in the parallelepiped A′B′D′F ′ a point c′, placed in a position homologous to
the first one.

I divide each parallelepiped into an infinite number of parallelepipeds similar to the
parallelepipeds ABDF and A′B′D′F ′; so that each parallelepiped contains an equal number
of them.1137

According to these assumptions, the action of an elementary molecule placed at µ on
point c, will be represented by the mass of this molecule multiplied by its density,1138 and
divided by the square of its distance [up to point c].

And if we decompose this force parallel to the axis cP , we will have the force decomposed
along the direction of this axis, equal to

δdxdydzx

(x2 + y2 + z2)3/2
,

where δ is the density of the magnetic fluid in µ. We will have for the small parallelepiped,
by naming the same letters with an accent, the corresponding quantities:

δ′dx′dy′dz′x′

(x′2 + y′2 + z′2)3/2
.

But since the molecules are assumed, in the two parallelepipeds, in equal number and similar
to the parallelepipeds which they compose, it results from this assumption that

x

x′
=
y

y′
=
z

z′
=
l

l′
=
dx

dx′
=
dy

dy′
, etc.,

where l and l′ are the lengths of the two parallelepipeds. Thus the force which acts in the
second parallelepiped becomes

δ′l′

l

(xdxdydz)

(x2 + y2 + z2)3/2
.

Whence it results that the action of a magnetic molecule, in the first parallelepiped on point
c, is to the corresponding action, in the second parallelepiped on a point c′, similarly placed
:: δ : δ′l′

l
.

But we will observe that the two parallelepipeds each contain the same number of similar
parallelepipeds and placed similarly, relative to points c and c′, and that the adhesion being
the same in the two parallelepipeds, the sum of the actions of all the magnetic molecules
which act along pc in the large parallelepiped, are equal to the magnetic action which acts

1136By an oversight in the original text, here appears point µ instead of point c.
1137That is, the parallelepipeds ABDF and A′B′D′F ′ will be composed of the same number of similar small
parallelepipeds.
1138Coulomb is referring here to the magnetic force exerted by a magnetic particle µ acting on another
magnetic particle located at point c. The amount of magnetic fluid in the particle µ is given by its volumetric
density of magnetic fluid, δ, multiplied by the infinitesimal volume dxdydz occupied by the particle µ.
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similarly on point c′ in the small parallelepiped: which will take place if we suppose that the
corresponding molecules in the two parallelepipeds, exert on points c and c′ an equal action;
from which results δ′l′ = δl.

Thus the magnetic densities of the corresponding points in two similar parallelepipeds,
are between them inversely proportional to the lengths of these two parallelepipeds.

23. It is now necessary to prove that, according to this ratio of densities, the moments
of the magnetic forces which bring back two similar needles to their meridian, are between
them like the cubes of homologous dimensions.

In Figure 3, NS represents the magnetic meridian, ag a longitudinal fiber taken in the
length of the needle, µ a molecule of this fiber, on which the magnetic force of the Earth
acts along µf , parallel to the magnetic meridian.

However, as the center of action from the Earth is at a distance that we can consider
as infinite, relative to the length ga of the needle, it follows that it1139 will be everywhere
proportional to the fluid density of the molecule µ, multiplied by its volume. The moment
of this force, if the needle forms the angle AcN with its magnetic meridian, will be equal to
δµcµ · sin aCN .1140

If we compare this first result with what would have happened for a corresponding fiber,
and similarly placed in the small parallelepiped, we would have for this corresponding fiber
[the torque given by:]1141 δ′µ′c′µ′ · sin aCN .

Thus the moments of the two corresponding molecules in the two parallelepipeds,1142 are
between them for the same angle aCS :: δ · cµ ·µ : δ′ · c′µ′ ·µ′. However, the molecules being
similar to parallelepipeds,

µ

µ′
=
l3

l′3
and

cµ

c′µ′
=
l

l′
.

We have found just now that δl = δ′l′. Therefore we will have δcµ ·µ : δ′c′µ′ ·µ′ :: δl4 : δ′l′4 ::
l3 : l′3,1143 as originally we have learned from experiment.

1139That is, the magnetic force exerted by the Earth.
1140That is, the torque will be given by the volumetric density of magnetic fluid, δ, multiplied by the volume
of the particle, µ, multiplied by the distance cµ and the sine of the angle aCN .
1141Due to a printing error, in the original text we have here: δ′µ′cµ′ · sin aCN .
1142That is, the magnetic torques exerted by the Earth on the two corresponding molecules located on the
two parallelepipeds.
1143That is,
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Thus it also results from experiment and theory, that the moments of the driving forces
of two steel parallelepipeds, of the same nature and with the same degree of annealing and
tempering, are in the same proportion as the cubes of their homologous dimensions.1144

24. We thought it necessary to present the theory which precedes in a particular example
where the elementary calculations are very simple; but it is easy to see, and this remark is not
for those who are accustomed to deal with these kinds of questions, that the same result takes
place in all the bodies of similar figures, since we can always take points similarly placed
in the two similar bodies, and suppose each body divided into molecules whose mass is
proportional to the total mass of the body; what will give at the same time an equal number
of molecules in every body, and all the preceding results. This is again what experiment
proves: for by comparing between them magnetic needles of similar figures, such as those
used in compasses, which are usually, or parallelepipeds of long and flattened rectangles, or
cylindrical needles, or arrow needles, flat or conical, I have always found that the moments
of their directive forces were like the cube of homologous dimensions.1145

25. When comparing two similar needles, but which are not of the same nature, in this
case the adhesion of the fluid in the molecules of the two steel needles, is not the same, and,
in the results of Article 23, instead of making δl = δ′l′, it is necessary, so that the balance
remains, to make δl : δ′l′ :: A : A′, or δlA′ = δ′l′A, assuming that A is the force adhesion
in the first needle, and A′ that of the second;1146 and in this case, to have the ratio of the
moments of the directive force, it will be necessary, instead of δ′l′ = δl, to put δ′l′ = A′δl

A
;

which gives the ratio of the moments of the magnetic forces of the two similar needles, but
of a different nature

:: δl4 :
A′

A
δll′

3
:: Al3 : A′l′

3
.

Thus, in two similar needles, but of different nature, the moments of the directive force are
between them in a composed ratio of the adhesion of the magnetic fluid to the molecules of
the steel and of the cube of one of the dimensions.

26. The analytical method that I have just submitted to the eyes of the Institute is,
in all respects, elementary; it leads to this observation. Most topics of physics exhibit
phenomena of attraction, of repulsion and of cohesion, concerning which it is nearly always
more intriguing than useful to determine the causes, and we rarely succeed in this; but it is
not the same with respect to the laws of attraction and of repulsion according to which bodies
act one upon the other. These laws once known, whatever the position of the molecules,
if this position is given, the question is reduced to a problem of analysis most often very
difficult to solve, especially when many elements act on each other according to different
laws; but there are almost always in every question points of view which simplify them, and
which are sufficient to verify the laws which serve as a basis for the calculations, and in
which an often elementary analysis can be made.

δcµ · µ
δ′c′µ′ · µ′

=
δl4

δ′l′4
=

l3

l′3
.

1144That is, the magnetic torques exerted by the Earth on these two parallelograms are proportional to the
cubes of their similar dimensions, that is, they are proportional to their volumes.
1145That is, the torques exerted by the Earth were proportional to the cubes of similar dimensions.
1146The remainder of this work was not included by Potier in the reprint of Coulomb’s works, [Potier, 1884,
p. 329].
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Chapter 29

Result of the Different Methods
Employed to Give Steel Blades and
Bars the Greatest Degree of
Magnetism

Coulomb1147

1. We have seen1148 in the various Memoirs that I have successively presented, either to
the Academy of Sciences or to the Institute, that the bars and blades of steel, magnetized
by certain methods, soon acquire a magnetic force that they could not exceed. This state
is that of magnetic saturation; it takes place when the resultant of the magnetic action of
all magnetized points which tend to neutralize the magnetism of each magnetized point1149

is in equilibrium with the coercive force, or with the adhesion of the magnetic fluid to each
molecule of steel of the magnetized blade.

2. I proved in volume III of the Memoirs of the Institute, p. 176 and following,1150 that
when bars or blades of homologous dimensions are magnetized to saturation, it follows from
experiment, as well as from theory, that the moments of the magnetic forces which direct
them toward the magnetic meridian are in the ratio of the cube of one of their dimensions,
or, if you like, as [the ratio of] their volume or as [the ratio of] their weight.

Experiment as early as 1789 (Mém. de l’Académie des sciences, p. 466),1151 had given
me this result — one easy to verify by the relevant analysis which shows that the times
required for the same number of oscillations are in the ratio of one of the dimensions; so that
if the corresponding dimensions of the two bars that we want to compare are to each other
as 2 is to 1, the times of the duration of the same number of oscillations will also be to each
other as 2 is to 1.

3. This result, as well as all those of the different experiments that I communicated,
either to the former Academy of Sciences, or to the Institute, proves, as I have already
said several times, that all magnetic phenomena can be calculated, supposing two magnetic

1147[Coulomb, 1806] with Portuguese translation in [Assis, 2022]. This work was read in 1802 to the French
Institute of Sciences and published in 1806.
1148Potier did not include Articles 1 to 13 of this paper in his reprint of Coulomb’s works, [Potier, 1884].
1149Magnetic fluids of opposite types attract each other. Therefore they tend to neutralize each other.
1150[Coulomb, 1801a]. This work is translated in Chapter 28.
1151[Coulomb, 1789, p. 466], see Section 22.34 on page 368.
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fluids whose molecules attract each other reciprocally in inverse proportion to the square of
the distances [between them], and repel their own molecules in the same ratio;1152 and by
further assuming that the two fluids, separated by any means, can be retained in this state
of separation by their adhesion to steel: the limit of this adhesion determines the maximum
[level] of magnetism, that is, the state of saturation. I do not pretend, as I have already said
several times, to explain the cause of magnetism, but a law certainly exists, whatever the
cause which produces it.

4. To be sure that a needle is magnetized to saturation, it is necessary to have recourse
to a means of determining exactly the magnetic intensity of this needle, by magnetizing it
according to the various methods in use until now. This is the subject of the Memoir that I
am presenting today to the Institute.

5. For a long time, we have been content to measure magnetic intensity by supporting,
at the tip of a magnetized bar, a piece of iron that one loads successively with different
weights; but this method, which only determines the adhesion of the iron at the point of
the bar with which it is in contact, and which varies according to whether the iron and
the bar are polished — more or less — cannot be admitted in precise investigations which
need to be verified by calculation. The most exact method for determining the magnetic
intensity by experiment consists in suspending the magnetic bar horizontally, by means of
an untwisted silk thread; one counts the time taken by a certain number of oscillations, and
one deduces the force which directs the bar along its magnetic meridian, from the duration
of each oscillation.

Here is the basis of this method: the globe of the Earth being a natural magnet, whose
center of action on the oscillating bar is at an infinite distance relatively to the length of the
bar, the frequency of the oscillations1153 will necessarily increase as the magnetic intensity of
each point of the bar increases. We can see, volume III of the Mémoires de mathématiques et
de physique de l’Institut, p. 186,1154 that when a bar or blade of the same size throughout its
entire length oscillates about its magnetic meridian, the moment of the force which directs
it in this meridian is expressed by the formula P l2

3λ
, where P is the weight of the bar, l half

of its length, and λ the length of a pendulum which would make oscillations of the same
duration as those which the magnetic force causes the bar to make.

Thus, if we magnetize the same bar by two different methods, and if we observe the
times of the duration of the same number of oscillations of the bar magnetized by these two
methods; the lengths of two pendulums being in the same ratio as the square of the times
of the same number of oscillations,1155 the moments of the forces which will direct the bar
in the magnetic meridian will be like the inverse ratio of the length of the pendulums, and
consequently the moments of the forces will be like the inverse ratio of the square of the times
of the same number of oscillations; which, as we see, makes the evaluation of the directing
force depend on a very simple calculation.

6. Today, because not all physicists have a torsion balance at their disposal — the method
which I used in my first Memoirs, and whose use is absolutely necessary in various researches
of the same kind — I prefer to determine the magnetic force by [the method which counts]
the oscillations of the bar, and by observing a very large number of oscillations we have a
degree of precision which it would be difficult to hope for by any other means. Besides, to

1152That is, repelling molecules that have the same type of magnetic fluid.
1153In the original: la vitesse des oscillations. Coulomb is referring here to the frequency of the oscillations.
1154[Coulomb, 1801a, p. 186], see footnote 1128 on page 504.
1155See Section 16.1 on page 267.
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determine the directing force by means of oscillations, only a band of cloth or paper, into
which the bar is introduced and supported by an untwisted silk thread is required to have
it oscillate — a device which can always be procured without care or a workman. I pass on
to the various methods in use for magnetizing the blades and the bars.

7. In the first method, which was the only one in use for a long time, the plate or the
bar which we wanted to magnetize was made to slide at right angles to one of the poles of
a natural or artificial magnet;1156 we shall presently see that this method can magnetize to
saturation only needles of very small thickness.

8. After various attempts, the method which seems to have approached the theory is due
to Mr. Knigth. We find the details of it in the Philosophical Transactions, in 1745.1157 This
physicist placed two strongly magnetized bars in a straight line, joining the North pole of
one of the bars to the South pole of the other; he then placed a small bar tempered [to the
color] light cherry1158 along the large bars, the middle of the small bar meeting the junction
of the other two; then by sliding the large bars each on their side to the ends of the small
bar, the small bar was charged with a greater magnetic force than was previously possible.

By this method, if the large bars which have been used are very strongly magnetized, the
small bars, when they are very short and have little thickness, will attain, approximately,
the level of magnetic saturation; but it will be impossible by this means to give a somewhat
longer bar the state of saturation, whatever its thickness.

9. The little bars of Mr. Knigth, which populate the offices of physicists, induced
several physicists at this time to seek other means of providing bars with the same degree
of magnetism. Mr. Duhamel, member of the Academy of Sciences, having joined with M.
Antheaume in this research, succeeded in doing so by the following means.1159

He formed (Figure 1, [Number 1]) a rectangular parallelogram with two steel bars and
two parallelepipeds of soft iron which were much shorter than the bars.1160

Taking afterwards two bundles of bars already magnetized, he places the poles of different
names onto the middle of one of the bars of the parallelogram; then tilting these bundles as
seen in Figure 1, No. 2, he slides them slowly, each on their side, to the end of the bars.1161

1156See Figure 4.11 on page 51.
1157See Section 4.6 on page 48. See also [Knight, 1744a], [Knight, 1744b] and [Knight, 1746].
1158In the original: un petit barreau trempé cerise clair.
1159See Section 4.6 on page 48. See also [Du Hamel, 1745], [Du Hamel, 1750] and [Antheaulme, 1760].
1160On the bars it is written from top to bottom and from left to right: North, South, South and North.
However, at the beginning of the process these long steel bars are not yet magnetized. This is how the bars
will become magnetized at the end of the process described in Figure 1, Number 2.
1161That is, the left-angled bundle moves from the center to the left end of the lying bar, while the right-
angled bundle moves from the center to the right end of the lying bar. At the end of the process, the left
end of this lying bar will be magnetized with a North pole and its right end will be magnetized with a South
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The first Figure indicates the position of the poles and the detail of the operation much
better than a longer description.

We will see presently that this slightly modified method is the best that can be used to
magnetize the needles of compasses and the blades which are not more than 2 or 3 millimeters
thick, provided that we employ, for the bundles which magnetize, bars strongly magnetized.

10. About the same time as Mr. Duhamel occupied himself in Paris with this research,
Messrs. Michel and Canton took the same approach in England.1162

Mr. Michel made use of two bundles of strongly magnetized bars, connected parallel to
each other, the poles of different names united at each extremity, in such a way, however,
that there remained between them an interval of 7 to 8 millimeters; he then placed several
equal bars in a straight line, and he caused one of the extremities of the bundle to slide
at right angles along the line formed by the bars he wanted to magnetize. He found by
this method, that the intermediate bars in the line took on a great magnetic force, which
is true, although this degree of magnetism never gives the maximum [value] or the point of
saturation.

11. Mr. Canton placed the bar which he wanted to magnetize in a parallelogram similar
to that which we have described in relating the process of Mr. Duhamel; to magnetize his
bars, he first used Mr. Michel’s method; then separating the two bundles, he inclined them
on the bar, like Mr. Duhamel, and made them slide like him to its extremities. This last
method, which increased, he said, the magnetic force of the bar, was; as we see, precisely
that of Mr. Duhamel; and the process which preceded it, which never gives the degree of
saturation, was useless.

12. I do not think it necessary to speak of several other means which all relate to the
preceding ones; but we must not confuse with these methods that of Mr. OEpinus, which
is, according to the author, a correction of that of the double touch of Mr. Canton.1163 This
method is founded on a theory on electricity analogous to that of Mr. Franklin.1164 It has a
very great advantage over all the other methods, when it is required to magnetize very large
bars with bundles which do not have a very great magnetic force: here is what it consists of.

After having formed the parallelogram of Mr. Duhamel with the magnetic bars and
two small iron parallelepipeds, one inclines two bundles of magnetic bars, so that they form
each on their side an angle of 15 or 20 degrees on the bar that we want to magnetize; their
South and North poles are placed at a very short distance from each other; and in this state,

pole.
1162See Section 4.6 on page 48. See also [Michell, 1750], [Canton, 1752a] with German translation in
[Canton, 1752b], [Michell and Canton, 1752], [Fara, 1995] and [Reich and Roussanova, 2022].
1163See Section 4.6 and [Aepinus, 1979].
1164See footnote 80 on page 36.
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without changing the distance from these poles, the two bundles are made to slide together
alternately from the middle of the bar to its extremity, always starting, at each operation,
from the middle of the bar.1165

We see that by this method not only is the action of the two poles of the bundles combined
to transport or separate the magnetic fluids from one end of the bar to the other, as by the
methods of Messrs. Michael and Canton; but even that by inclining the bundles a great
deal, this action is brought about in the most advantageous manner. This method has the
advantage over all the others, when we want to magnetize very large bars with weak magnetic
bundles, although it never produces in any case precisely the point of saturation: because,
if we place blades or bars magnetized by this method, under a sheet of paper, on which
we spread [iron] filings, we will see that the magnetic center1166 will never be placed in the
middle of the blade, but always moved a few millimeters closer to the end of the blade which
was last magnetized.1167

However, as the bars magnetized by this method have, according to experiment, a direct-
ing force along their meridian which differs barely by a thirtieth part from that which gives
the state of saturation, it is, as we will soon see, preferable to all the others, if we magnetize
very large bars, and if we do not have at our disposal bundles of a great magnetic intensity.

13. After familiarizing myself with the preceding methods, and aligning myself as much
as possible with the dictates of theory, here is the apparatus which I use to magnetize with
facility the bars and the blades of all the dimensions. I have already described this device
in the Memoirs of the Academy of Sciences of Paris, year 1789.1168

By means (Figure 2), of ten steel bars tempered light cherry, each 5 to 6 decimeters long,
15 millimeters wide and 5 millimeters thick, I form two layers of five bars each, separated
at the two ends by a parallelepiped of very soft iron, which is 75 millimeters wide, that is
to say a width equal to that of the five bars united flat, 80 millimeters long and 7 to 8
millimeters thick. This parallelepiped [of soft iron] is sandwiched between the two layers of
bars at about half its length;1169 so that the bars having been each magnetized separately
before being united, these parallelepipeds of iron form a kind of shield of these bars.

Figure 2, No. 1, represents this magnet with its armors, top view.1170

1165The word “alternately” here means that the two bundles are rubbed together against the blade, sliding
together from the center to one end of the blade, then sliding together from the center to the second end of
the blade, sliding together again from the center to the first end of the blade, and so on.
1166See footnote 146 on page 59.
1167In Aepinus’ method, the previously magnetized bundles are rubbed together against the blade to be
magnetized, sliding together from the center of the blade to one of its ends. Then the bundles are placed
back in the center of the blade, sliding together to the other end. This procedure is alternated until the
blade reaches the desired magnetization. The problem with this method is that the magnetic center of the
blade, that is, the neutral point where it is not magnetized between its North and South poles, is not located
exactly in the center of the blade, being a little closer to the end of the blade whose portion was last rubbed.
1168[Coulomb, 1793]. This Memoir is translated in Chapter 26. See, in particular, Section 26.40.
1169In the original: sur la moitié de sa longueur. I think here it should be “about half of its width,” instead
of “about half of its length”.
1170On the left side, we see 5 bars side by side, already magnetized, with their poles S at the left end and
their poles N at the right end. Below them, another 5 bars are placed side by side, also with their poles S
at the left end and their poles N at the right end. This set of 10 bars is going to be one of the magnets
Coulomb is going to mention next.
On the right side, we see another 5 bars side by side, already magnetized, with their poles S at the left

end and their poles N at the right end. Below them, another 5 bars are placed side by side, also with their
poles S at the left end and their poles N at the right end. This other set of 10 bars is going to be one of the
other magnets Coulomb is going to mention next.
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Figure 2, No. 2, is the cross-section along its length.1171

The two magnets,1172 as well as the two bundles, are placed as they should be when
starting to magnetize a bar or a blade. The letters N , S and n, s, represent the nature
and position of the different poles. Thus, during the operation, the large magnets remain
motionless, placed in a straight line, separated by a distance approximately equal to the
length of the blade that is being magnetized,1173 and this blade should extend only 4 or 5
millimeters over the ends of the shields.

If we employ the method of Mr. OEpinus, the lower poles of the bundles intended to
slide on the plate which we wish to magnetize, must not be separated from each other more
than 5 to six millimeters. They are maintained at this constant distance, during the whole
operation, by means of a small lead blade which separates them; but again, I note that
when the blade which we magnetize is at most only 2 or 3 millimeters thick, like almost all
compass needles, we can, with more certainty, obtain the degree of magnetic saturation of
these blades by placing, as in the Figure, the two North and South poles of the two bundles
in the middle of the blade, and by sliding, each on their side, the two bundles to its ends,

The armors are represented by the white parallelograms, two of them in each set of 10 bars, separating
the top 5 bars from the bottom 5 bars.
Between these two sets, there is a long horizontal dotted rectangle that represents the blade to be mag-

netized. The poles s and n indicated on this blade represent the magnetic poles that it will acquire after
magnetization.
1171The horizontal central blade is the steel blade that will be magnetized. The letters s and n above it
indicate how it will become magnetized at the end of the process.
We have two inclined bundles in this Figure, already magnetized, with their inverted poles placed on the

central horizontal blade that will be magnetized. The left bundle has an upper pole s and a lower pole n.
The right bundle has an upper pole n and a lower pole s. There is a small square between these bundles that
represents a lead blade that will hold them together, with a constant separation between them, as they are
slid together from the center of the horizontal blade to its left end, or else from the center of the horizontal
blade to its right end, in the cases where Coulomb will use Aepinus’ magnetization method.
On the left side of this Figure 2, Number 2, the letters S and N represent the first set of 10 magnet bars

seen from above in Figure 2, Number 1. On the right side of this Figure, the letters S and N represent the
second set of 10 bars viewed from above in Figure 2, Number 1.
The four armors separating the upper bars from the lower bars of each magnet are represented by the four

small horizontal rectangles with internal scattered dots.
1172Each magnet is made up of a set of the previously mentioned 10 horizontal magnetized bars.
1173The distance Coulomb refers to here is the distance between the right end of the left magnet and the
left end of the right magnet, that is, between the central points N and S in Figure 2, Number 2. In Figure
2, Number 2, it is possible to see that this distance is a little greater than the length of the central blade
that will be magnetized.
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under an inclination of 20 to 30 degrees.1174

Each of the sliding bundles which I use are composed, in the ordinary operations, of four
bars 400 millimeters long, 5 [mm] thick and 15 [mm] wide. After having strongly magnetized
them, I join two of them together on the width1175 and two on the thickness;1176 which makes
each bundle 30 millimeters wide and 10 millimeters thick.

Before joining them [to form the two bundles], they are tempered light cherry, and mag-
netized to saturation. When I want to magnetize large bars, I have to form my bundles with
a greater number of bars placed on top of each other in steps, set back 10 or 12 millimeters
in the direction of the thickness. Figure 3 shows the end of such a bundle.

The steel of these bundles is from a steel graded as seven stars; its quality is mediocre;
but I have observed, as has already been noted, that tempered steels, unless they were of a
very poor quality, all took on nearly the same degree of magnetism.

Having sufficiently described the different magnetizing methods used up to the present,
I will submit them to experiment and compare them.

29.1 First Experiment

14. A steel wire 300 millimeters in length, one millimeter in diameter, sliding at right angles
over the pole of a single bar magnet, 400 millimeters in length, 15 millimeters in width and
5 millimeters in thickness, being placed in oscillation in a horizontal plane, and suspended
on a very fine silken thread, made ten oscillations in 74”.1177

Sliding at right angles on the pole of four and ten bars joined together, it also makes ten
oscillations in 74”.

By magnetizing this wire by the method1178 of Mr. Duhamel or that of OEpinus, it also
makes ten oscillations in 74”.

1174In this last case, in which the bundles separate from one another, going from the center to the ends of
the blade to be magnetized, Coulomb is using the improved Duhamel’s method. This procedure does not
use the lead blade which, in the case of Aepinus’ method, keeps the lower ends of the bundles at a constant
distance from each other during the process.
1175That is, placed side by side.
1176That is, with two bars placed side by side joined on top of two bars placed side by side.
1177That is, in 74 seconds. It should be remembered that each oscillation for Coulomb lasts half the time of
the modern definition of the period of oscillation, see Section 6.3 on page 141.
1178[Note by Coulomb] I will always call, in the continuation of this Memoir, method of Mr. Duhamel, that
where, by placing a blade on my apparatus described in Article 13, the two bundles are made to slide in
opposite directions as far as the shield; I will call the method of Mr. OEpinus that where the poles of the
bundles which slide on the plate which we magnetize, always remain at a [fixed] distance of 5 or 6 millimeters.
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Thus all the methods for steel wires of such a small diameter, give the same degree of
magnetism, which is that of saturation.

29.2 Second Experiment

15. An annealed steel blade, 300 millimeters in length, 8 [mm] in width, 6
10

millimeter thick,
sliding at right angles on the pole of a single bar, made ten oscillations in 77”.

[Sliding] on the poles of two joined bars, [made] ten oscillations in 75”.

[Sliding] on the poles of ten joined bars, [made] ten oscillations in 75”.

[Sliding] with a single [magnetized] bar on each side, by the methods of Messrs. Duhamel
and OEpinus, [made] ten oscillations in 75”.1179

29.3 Third Experiment

16. A steel blade 164 millimeters in length, 9 [mm] in width, 6
10

[mm] thick, tempered
light cherry, after sliding at right angles on the poles of two bars joined together, made ten
oscillations in 51”.

[After sliding] on the poles of four bars joined together, [made] ten oscillations in 49”.

[After sliding] on the poles of eight and of ten bars joined together, [made] ten oscillations
in 47.5”.

But, using only two [magnetized] bars joined together, and sliding them under an angle
of inclination of 15 to 20 degrees on the blade, it also made ten oscillations in 47.5”.

By the methods of Messrs. Duhamel and OEpinus, the magnetized blade with a single
bar on each side, also made ten oscillations in 47.5”.

I need only remark that, by the method of Mr. OEpinus, we find a duration of half a
second and sometimes a second longer than in that of Mr. Duhamel.

29.4 Remark on the Three Preceding Experiments

17. In the first two experiments, the steel wire, as well as the blade, were annealed light
cherry; in this state, two bars united by the same poles, and even a single bar, sliding at
right angles to the steel wire or the blade, were enough to magnetize them to saturation;
but in the third experiment, where the blade was tempered light cherry, it was only with
a bundle of eight or ten bars that we were able to magnetize this blade to saturation, by
sliding the blade at a right angle to the end of the bundle; but by giving the direction of
the action of the bundle a more advantageous position, that is to say, by inclining it from 15
to 20 degrees to the blade, two bars united by the same pole sufficed to give the saturation
degree.

18. In the last two experiments the blades had only 6
10

millimeter of thickness: they
were easily penetrated by the magnetic action of a single bundle throughout their thickness.
We should not therefore be surprised if all the methods are equally good, provided that we

1179When Coulomb says that he has a single bar on each side, I believe he is referring to the horizontal
magnetized bars that are on each side of the steel blade that he wishes to magnetize, as shown in Figure 2,
Numbers 1 and 2.
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employ bundles of strong magnetic intensity. In the following experiments, the blades and
the bars have a greater thickness, and are tempered light cherry.

29.5 Fourth Experiment

19. A blade 202 millimeters long, 14 millimeters wide, 1 millimeter thick, after sliding several
times at right angles on the pole of a single bar, made ten oscillations in 73”.

[After sliding] on the pole of four bars joined together, [made] ten oscillations in 62”.

[After sliding] on the pole of ten bars joined together, [made] ten oscillations in 59”.

But with a single bundle of two [magnetized] bars, sliding under an inclination of 15
degrees with the blade, it made ten oscillations in 53”.

[A bundle with the] same inclination with four [magnetized] bars joined together, [the
blade made] ten oscillations in 49”.

[A bundle with the] same inclination with eight and ten [magnetized] bars [joined to-
gether, the blade made] ten oscillations in 49”.

[After being magnetized] by the methods of Messrs. Duhamel and OEpinus, with a single
[magnetized] bar on each side, or [with] a greater number [of magnetized bars on each side,
the blade made] ten oscillations in 49”.

29.6 Remark on This Experiment

20. As it is here the same blade magnetized by different methods, the force which directs it
along its meridian is measured by the inverse of the square of the times [required to make] the
same number of oscillations.1180 Thus we see that, even by bringing together ten [magnetized]
bars and making them slide at right angles, it is far from being magnetized to saturation;
but this [state of saturation] is easily achieved with a single bundle [composed] of four bars,
by giving its magnetic action on the blade a more advantageous direction, that is to say, an
inclination of 15 to 20 degrees. Two bars suffice, employing the methods of Messrs. Duhamel
and OEpinus, to give this blade the state of saturation: but a very important observation
is that, as there is almost always disadvantage, as I have often noticed in different Memoirs
which preceded this one, to use blades more than a millimeter thick to form compass needles;
provided that four or six strongly magnetized bars are united, they will always suffice to give
these needles [up to 1 mm thick] the degree of magnetic saturation.

21. Wanting to magnetize several blades similar to the preceding one, by joining them
together before magnetizing them, I believe that one ought not use any other process than
that of Messrs. Duhamel and OEpinus to give them a degree of saturation in accord with
the results which I have just found. In the following experiments, the blades are each 302
millimeters long, 28 millimeters wide and 1.07 millimeters thick: they are tempered light
cherry.

1180See Section 16.1 on page 267.
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29.7 Fifth Experiment

22. A single blade, magnetized with [two] bundles of two [previously magnetized] bars each,
made, by the two methods,1181 ten oscillations in 72”.

Same result with bundles of a greater number of bars. There have been some small
variations when using the method of Mr. OEpinus; but there have never been any when
using that of Mr. Duhamel.

29.8 Sixth Experiment

23. Two blades united and forming a thickness of 2.14 millimeters, magnetized by the method
of Mr. Duhamel, with two bundles of two bars each, made ten oscillations in 80”.

[Magnetizing these two blades] with two bundles of four bars each, [the two united blades
made] ten oscillations in 78”.

[Magnetizing them] with two bundles of ten bars each, [the two united blades made] ten
oscillations in 78”.

[Magnetizing them] by the method of Mr. OEpinus, with bundles of two, four or ten bars
each, [the two united blades made] also ten oscillations in 78”.

29.9 Seventh Experiment

24. Four blades similar to the preceding ones, were joined together and formed a bundle 300
millimeters in length, 28 millimeters in width and 4.28 millimeters in thickness.

I only succeeded in magnetizing such a bundle of blades by the method of Mr. Duhamel,
by employing eight bars in each bundle. By suspending the four blades thus joined, they
made ten oscillations in 91”.

By the method of Mr. OEpinus, two bundles of two bars each suffice to magnetize these
blades to saturation. Thus, when we have to magnetize blades or bars more than 4 to 5
millimeters thick, unless we make use of two bundles of very great magnetic intensity to
magnetize them, the method of Mr. OEpinus is still preferable to all the others despite the
small defect of this method, which we have pointed out, Article 13.1182,1183

29.10 Eighth Experiment

25. I wanted, in this experiment, to magnetize one of the bars which make up the bundles
which I use to magnetize [the blades]: they are, as I have already said, 400 millimeters in
length, 14 [mm] in width and 5 [mm] thick; they are tempered light cherry.

I only managed to magnetize this bar by Mr. Duhamel’s method with two bundles of
four bars each.

1181That is, both by Duhamel’s method and by Aepinus’ method.
1182Coulomb is referring to the defect mentioned in Article 12 and not in Article 13, see footnote 1167 on
page 515.
1183[Note by Potier] The neutral line always approaches the pole that was rubbed last.
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But by that of Mr. OEpinus, a single bar on each side produces the state of saturation
in the bar which one magnetizes, because it makes in this case ten oscillations in 110”.1184

And by bringing together, to magnetize this bar, a greater number of bars,1185 it also
makes ten oscillations in 110”.

29.11 Ninth Experiment

26. After having magnetized blades and bars 5 millimeters thick, I tried to magnetize thicker
ones. That of this experiment was 400 millimeters in length, 25 [mm] in width, and 9 [mm]
in thickness. This bar was tempered light cherry. It is about the size of the largest bars
which are usually used for magnetizing [other blades]. It was impossible for me to magnetize
this bar by the method of Mr. Duhamel, even by employing two bundles of ten bars each.
Using this method, the degree of magnetism of the bar was such that it made ten oscillations
in 162”.

It is not possible to magnetize it, by the method of Mr. OEpinus, with bundles of two
bars each; but, magnetized with two bundles of four or ten bars each, it also makes ten
oscillations in 153”.

Thus, to magnetize such bars, only Mr. OEpinus’ method should be used. But we will
see presently that when we want to obtain artificial magnets of great strength, there is no
case where we must use tempered bars of such great thickness, and that there is always a
very great advantage in forming coarse magnets by the union of a large number of bars of a
lesser thickness.

29.12 Tenth Experiment

27. In this experiment I wanted to learn what would be the difference in the results by
magnetizing several bars separately, and then bringing them together; or by magnetizing
them after having united them. As I had in this experiment to magnetize bars of a greater
thickness than in most of the preceding experiments, I contented myself with employing the
method of Mr. OEpinus. We can add, if we want, a thirtieth part to the directing force, to
obtain, according to the note of Article 13, the state of saturation.1186

A single bar 400 millimeters long, 14 [mm] wide and 5 [mm] thick, magnetized with two
bundles of ten bars each, made ten oscillations in 108”.

Two such bars joined together, forming a bundle 28 millimeters wide by 5 [mm] thick, each
magnetized separately before being joined together, made, after their joining, ten oscillations,
in 115”.

Thus united, I magnetized them in the opposite direction, changing the poles end for end,
and, after this operation, the bundle composed of the two bars also made ten oscillations in
115”.

1184That is, Coulomb places a single horizontal magnetized bar on each side of the horizontal bar to be
magnetized, as illustrated in Figure 2. After the central bar has been magnetized, it performs ten oscillations
in 110 seconds.
1185On each side of the bar to be magnetized.
1186This last sentence was not included by Potier in his reprint of this paper, [Potier, 1884, p. 367]. Again
Coulomb is referring here to Article 12 and not to Article 13. The note mentioned by Coulomb appears in
the last two paragraphs of Article 12, see, in particular, page 515 of this English translation.
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Thus, since I have the same result by magnetizing the two bars separately before joining
them, or by magnetizing them in the opposite direction after having joined them, the two
processes are here perfectly equal.

29.13 Eleventh Experiment

28. Four bars similar to the preceding ones, forming a bundle of the same length, but 28
millimeters wide by 10 [mm] thick, each magnetized separately before being united; the
bundle, after the joining together of the four bars, made ten oscillations in 130”.

Having wanted, in this state of reunion, to change the poles end for end, I had [after this
inversion] ten oscillations in 133”.

I have never been able, by changing the poles of four bars thus united, to succeed in
giving them precisely the same degree of directing force as by reuniting them after having
magnetized each one separately. The result was nearly the same, although the four bars
joined together had not been magnetized before their union.

29.14 Twelfth Experiment

29. I joined four other bars to those which had been used in the preceding experiments:
magnetized each one separately, the eight bars joined together formed a bundle 28 millime-
ters wide, 20 [mm] thick. This bundle suspended horizontally, like the preceding ones, by
untwisted silk threads, and glued together with a little gum, made ten oscillations in 166”.

29.15 Remarks on These Experiments

30. If we compare here the different results given by the preceding experiments, and if we
want to deduce from them the directing force which returns the same bar to its magnetic
meridian, when it is alone or when it is united in a bundle of several bars, we will find that
in the state of saturation:

An isolated bar makes ten oscillations in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108”.
Two bars together, [make] ten oscillations in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115”.
Four bars together, [make] ten oscillations in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130”.
Eight bars together, [make] ten oscillations in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166”.
Thus, considering a single bar, either alone or joined to several others, since the force

which holds it aligned with its magnetic meridian follows the inverse of the square of the
times of the same number of oscillations, we will have, letting 1000 represent the directing
force of the isolated bar, the following Table:

Directing force
For the isolated bar 1000

For the same bar joined to another one 882
The same bar joined with three others 692
The same bar joined with seven others 433

I have given in another Memoir, the law in accord with theory and experiment that the
directing force follows for each bar of a bundle of a given thickness and width. All that
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we ought to conclude from the preceding result, relative to the object of this Memoir, is
that there are very few advantages to be hoped for in increasing the thickness of artificial
magnets, when this thickness exceeds 10 or 12 millimeters.

29.16 Second Remark

Finally there is a very interesting result to be drawn from the preceding experiments: it is
the ratio of the directing force of a large bar magnetized to saturation, and of a bundle of
the same dimensions.

We have just seen, eleventh experiment, that four bars joined together, forming a bundle
400 millimeters long, 28 millimeters wide and 10 millimeters thick, magnetized to saturation,
makes 10 oscillations in 130”; but we saw, in the ninth experiment, that a single bar of the
same length, but 25 millimeters wide and 9 [mm] thick, made 10 oscillations in 153”. Thus,
although the width and thickness of the bundle are greater than those of the bar, the lengths
being approximately equal, we find, for each part of the large bar reduced to the same
dimensions as a single bar of the bundle, a smaller directing force than in the bundle. The
ratio of the directing forces is as the inverse of the square of the times for the same number
of oscillations, we find this ratio is 153

2
to 130

2
, [that is,] approximately 14 to 10, in favor

of the bundle, although of larger dimensions than those of the large bar.
As this Memoir is only intended to direct physicists and artisans who wish to manufacture

artificial magnets of very great force, or to magnetize compass needles to saturation, for all
theoretical analyses, I refer [the reader] to the various Memoirs that I have already published,
either in the collection of Memoirs of the Academy of Sciences of Paris, or in those of the
Institute.
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Associazione per l’Insegnamento della Fisica, Parma. La Fisica nella Scuola, Anno L, n. 2
Supplemento, Quaderno 26. Translated by P. Cerreta, A. Cerreta and R. Cerreta. Edited
by P. Cerreta, R. Serafini and R. Urigu. Available at www.ifi.unicamp.br/~assis.

[Assis, 2018a] Assis, A. K. T. (2018a). The Experimental and Historical Foundations of
Electricity, volume 2. Apeiron, Montreal. Available at www.ifi.unicamp.br/~assis.

[Assis, 2018b] Assis, A. K. T. (2018b). Os Fundamentos Experimentais e Históricos da
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ume II. Deterville, Paris.
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−” de Franklin aux lois de l’électricité. Available at www.ampere.cnrs.fr/histoire/

parcours-historique.

[Blondel and Wolff, 2013d] Blondel, C. and Wolff, B. (2013d). La proportionnalité de la
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été faites. Charles-Antoine Jombert, Paris.

[Brewster, 1837] Brewster, D. (1837). A Treatise on Magnetism, forming the article under
that head in the seventh edition of the Encyclopaedia Britannica. Adam and Charles Black,
Edinburgh.

[Brugmans, 1765] Brugmans, A. (1765). Tentamina Philosophica de Materia Magnetica
Eiusque Actione in Ferrum et Magnetem. Willem Coulon, Franeker.

[Bucciarelli and Buchwald, 2001] Bucciarelli, L. and Buchwald, J. (2001). STS.023J/SP.706
Historic Experimentation. Available at http://web.mit.edu/sts.023/www/.

[Bucciarelli, 2001] Bucciarelli, L. L. (2001). Outline and notes on: Coulomb’s theoretical
and experimental research on the force of torsion, and on the elasticity of metal wires.
Available at https://web.mit.edu/llbjr/Public/www/Coulomb1784_notes.pdf,
https://dspace.mit.edu/handle/1721.1/143552 and https://dspace.mit.edu/

bitstream/handle/1721.1/143552/Coulomb_1784_w.Notes_llbjr.pdf?sequence=1&

isAllowed=y.

[Bucciarelli and Dworsky, 1980] Bucciarelli, L. L. and Dworsky, N. (1980). Sophie Germain:
An Essay in the History of the Theory of Elasticity, volume 6 of Studies in the History of
Modern Science. D. Reidel, Dordrecht. Edited by R. S. Cohen, E. N. Hiebert and E. I.
Mendelsohn.

531

www.ampere.cnrs.fr/histoire/parcours-historique
www.ampere.cnrs.fr/histoire/parcours-historique
http://histoires-de-sciences.over-blog.fr/article-31138255.html
http://histoires-de-sciences.over-blog.fr/article-31138255.html
www.ampere.cnrs.fr
www.ifi.unicamp.br/~assis
www.culturaacademica.com.br/catalogo/stephen-gray-e-a-descoberta-dos-condutores-e-isolantes/
www.culturaacademica.com.br/catalogo/stephen-gray-e-a-descoberta-dos-condutores-e-isolantes/
http://web.mit.edu/sts.023/www/
https://web.mit.edu/llbjr/Public/www/Coulomb1784_notes.pdf
https://dspace.mit.edu/handle/1721.1/143552
https://dspace.mit.edu/bitstream/handle/1721.1/143552/Coulomb_1784_w.Notes_llbjr.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/143552/Coulomb_1784_w.Notes_llbjr.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/143552/Coulomb_1784_w.Notes_llbjr.pdf?sequence=1&isAllowed=y


[Bueno and Assis, 1998] Bueno, M. and Assis, A. K. T. (1998). Cálculo de Indutância e de
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l’année 1777. Partially reprinted in A. Potier (ed.), Collection de Mémoires relatifs a la
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Physiques, 3:176–197. Lu le 26 prairial an VII (14 Juin 1799). Partially reprinted in
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2:389–399. Available at https://www.raco.cat/index.php/ActesHistoria/article/

view/246461.

[Heering, 2022] Heering, P. (2022). Das Coulombsche Gesetz und die Coulombsche Torsion-
swaage. In Heering, P., editor, Kanonische Experimente der Physik, pages 49–65. Springer
Spektrum, Berlin. Doi: 10.1007/978-3-662-64646-5 4.

[Heering and Osewold, 2005] Heering, P. and Osewold, D. (2005). Ein Problem, zwei Wis-
senschaftler, drei Instrumente. Centaurus, 47:115–139.

[Heilbron, 1976] Heilbron, J. (1976). Robert Symmer and the two electricities. Isis, 67:7–20.

[Heilbron, 1979] Heilbron, J. L. (1979). Electricity in the 17th & 18th Centuries. University
of California Press, Berkeley.

[Heilbron, 1981a] Heilbron, J. L. (1981a). Aepinus, Franz Ulrich Theodosius. In Gillispie,
C. C., editor, Dictionary of Scientific Biography, Vol. 1, pages 66–68. Charles Scribner’s
Sons, New York.

[Heilbron, 1981b] Heilbron, J. L. (1981b). Dufay (Du Fay), Charles-François de Cisternay. In
Gillispie, C. C., editor, Dictionary of Scientific Biography, Vol. 4, pages 214–217. Charles
Scribner’s Sons, New York.

[Heilbron, 1981c] Heilbron, J. L. (1981c). The electrical field before Faraday. In Cantor,
G. N. and Hodge, M. J. S., editors, Conceptions of Ether: Studies in the History of Ether
Theories 1740-1900, pages 187–213. Cambridge University Press, Cambridge.

[Heilbron, 1982] Heilbron, J. L. (1982). Elements of Early Modern Physics. University of
California Press, Berkeley.

[Heilbron, 1994] Heilbron, J. L. (1994). On Coulomb’s electrostatic balance (commentary).
In Blondel, C. and Dörries, M., editors, Restaging Coulomb: Usages, Controverses et
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& Vie, 26:14–22.

[Lima, 2018] Lima, F. M. S. (2018). What exactly is the electric field at the surface of a
charged conducting sphere? Resonance, 23:1215–1223.

[Lima, 2020] Lima, F. M. S. (2020). A proper integral for the electric field at the sur-
face of a conducting sphere. Revista Brasileira de Ensino de F́ısica, 42:e20200182. Doi:
10.1590/1806-9126-RBEF-2020-0182.

[Magnaghi and Assis, 2008] Magnaghi, C. P. and Assis, A. K. T. (2008). Sobre a eletricidade
excitada pelo simples contato entre substâncias condutoras de tipos diferentes — Uma
tradução comentada do artigo de Volta de 1800 descrevendo sua invenção da pilha elétrica.
Caderno Brasileiro de Ensino de F́ısica, 25:118–140.

[Martinez, 2006] Martinez, A. A. (2006). Replication of Coulomb’s torsion balance experi-
ment. Archive for History of exact Sciences, 60:517–563.

[Martins, 2017] Martins, R. d. A. (2017). O estudo experimental sobre o magnetismo na
Idade Média, com uma tradução da carta sobre o magneto de Petrus Peregrinus. Revista
Brasileira de Ensino de F́ısica, 39:e1601–1 — e1601–30. Doi: 10.1590/1806-9126-RBEF-
2016-0181.

[Mascart, 1876] Mascart, M. E. (1876). Traité d’Électricité Statique, volume I. G. Masson,
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des corps conducteurs. Journal de Physique, de Chimie, d’Histoire Naturelle et des Arts,
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at https://cref.if.ufrgs.br/?contact-pergunta=bobina-de-tesla-funciona-no-

vacuo.

544

https://www.gsjournal.net/Science-Journals/Research%20Papers-Mechanics%20/%20Electrodynamics/Download/3817
https://www.gsjournal.net/Science-Journals/Research%20Papers-Mechanics%20/%20Electrodynamics/Download/3817
http://philsci-archive.pitt.edu/11048/
http://philsci-archive.pitt.edu/11048/
www.sbf1.sbfisica.org.br/eventos/epef/x/sys/resumos/T0150-1.pdf
www.sbf1.sbfisica.org.br/eventos/epef/x/sys/resumos/T0150-1.pdf
https://www.researchgate.net/publication/315130099
www.if.ufrgs.br/~lang
www.youtube.com/watch?v=GhYKeb99OgA
www.if.ufrgs.br/cref/?area=questions&id=1652
www.if.ufrgs.br/cref/?area=questions&id=1652
https://cref.if.ufrgs.br/?contact-pergunta=bobina-de-tesla-funciona-no-vacuo
https://cref.if.ufrgs.br/?contact-pergunta=bobina-de-tesla-funciona-no-vacuo


[Sparavigna, 2016] Sparavigna, A. C. (2016). Petrus Peregrinus of Maricourt and the me-
dieval magnetism. Mechanics, Materials Science & Engineering, January:1–8.

[Symmer, 1759] Symmer, R. (1759). New experiments and observations concerning electric-
ity. Philosophical Transactions, 51:340–389.

[Thomson, 1906] Thomson, J. J. (1906). Conduction of Electricity Through Gases. Cam-
bridge University Press, Cambridge, 2nd edition.

[Thomson, 1845] Thomson, W. (1845). Note sur les lois élementaires de l’électricité statique.
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