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Abstract
Archimedes calculated the centre of gravity of the cone but the proof of this
theorem is not extant in his works. Knorr made a reconstruction of this proof
utilizing geometrical arguments. This paper proves this theorem by means of
a physical demonstration utilizing the law of the lever, and by adapting from
Archimedes the method of mechanical theorems that he described in his letter
to Eratosthenes.

1. Introduction

Archimedes (287–212 BC) was born in Syracuse, where he spent most of his life. He is
considered one of the greatest scientists of all time, the greatest mathematician of antiquity
and is one of the founders of statics and hydrostatics. Although the works that have come down
to us are related to mathematics and theoretical physics, his fame in antiquity was due to his
work as an engineer and builder of war machines (catapults, burning mirrors, etc), connected
with the second Punic war between Rome and Carthage, when he participated actively in the
defense of Syracuse, allied with Carthage.

His extant works include studies of the centre of gravity of geometrical figures, the law
of the lever, comparison of the area and volume of a sphere with those of the circumscribed
cylinder and the properties of spiral lines, conoids and spheroids. The fundamental principle
of hydrostatics is known today as Archimedes’ principle in recognition of his ground-breaking
proof.

The titles of his main surviving works are as follows: On Spirals, On the Equilibrium of
Planes, Quadrature of the Parabola, Measurement of a Circle, On the Sphere and Cylinder,
On Conoids and Spheroids, On Floating Bodies and The Sand-Reckoner.

In these works, Archimedes employed the theory of proportions and the application of
areas as his main mathematical techniques. For the purpose of making Archimedes’ work
accessible to readers of this journal, his mathematics is transposed into algebraic notation in
the discussion below.
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Until 100 years ago, the oldest and most important manuscripts containing works of
Archimedes in Greek were mainly of the 15th and 16th centuries, housed in libraries located
in Europe. They had been copied from two other 9th and 10th century Greek manuscripts. One
of these manuscripts belonged to the humanist George Valla, who taught at Venice between
1489 and 1499. This manuscript disappeared between 1544 and 1564, and it is not known if
it still exists. The last record of the second manuscript was in the Vatican library in the years
1295 and 1311.

2. The method of Archimedes and the centre of gravity of the cone

In 1906, the Danish classical scholar L Heiberg discovered a medieval palimpsest containing
many works of Archimedes in mid-10th century AD Greek, thus significantly predating the
manuscripts referenced above. This collection includes the only source to survive into the
modern era of The Method of Mechanical Theorems, dedicated to Eratosthenes. The method
provides a core of our argument below. Heiberg produced transcriptions of the palimpsest,
on which the standard translations are based. For most of the century following Heiberg’s
discovery, the whereabouts of this palimpsest were unknown. Now on loan at the Walters
Museum in Baltimore, MD, it has undergone a decade of conservation and multispectral
imaging, yielding new finds, as displayed in a recent exhibition there and other records1.

There are 15 propositions in this work in which Archimedes presented a method showing
how to calculate areas, volumes and centres of gravity of geometric figures. He premised the
propositions with several lemmas. The eighth lemma reads as follows [1]:

The center of gravity of any cone is (the point which divides its axis so that) the
portion (adjacent to the vertex is) triple (of the portion adjacent to the base).

There is no demonstration of this lemma in his extant works. Knorr outlined a proof of
this result following the geometrical reasoning of Archimedes [2]. A different approach is
taken below, namely a physical demonstration of the centre of gravity of the cone utilizing the
method of Archimedes.

3. The centre of gravity and the law of the lever

Although the centre of gravity is mentioned and utilized in many works of Archimedes, it is
not defined in any extant memoir. Heath [1, 3], Duhem [4], Stein [5], Dijksterhuis [6], Assis [7]
and many others have studied how Archimedes implicitly utilized this concept to calculate the
centre of gravity of many figures. They also studied other authors such as Heron, Eutocius and
Pappus, who had access to other works of Archimedes no longer extant. From these studies,
the centre of gravity might be defined as follows:

The center of gravity of any rigid body is a point such that, if the body be conceived
to be suspended from that point, being released from rest and free to rotate in all
directions around this point, the body so suspended will remain at rest and preserve
its original position, no matter what the initial orientation of the body relative to the
ground.

Archimedes demonstrated the law of the lever in propositions 6 and 7 of his work On the
Equilibrium of Planes or Centers of Gravity of Planes [6]. These propositions are as follows.

Proposition 6. Commensurable magnitudes are in equilibrium at distances reciprocally
proportional to the weights.

1 The Archimedes Palimpsest http://thewalters.org/exhibitions/archimedes/

http://thewalters.org/exhibitions/archimedes/
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Proposition 7. However, even if the magnitudes are incommensurable, they will be in
equilibrium at distances reciprocally proportional to the magnitudes.

The word ‘commensurable’ here refers to rational fractions. Proposition 5 of the 10th book
of The Elements by Euclid (flourished circa 300 BC) states the following [8]: ‘Commensurable
magnitudes have to one another the ratio which a number has to a number’. According to Heath,
Euclid was alive between the first pupils of Plato and Archimedes [9, p 2].

Heath combined these two propositions in his paraphrase of Archimedes’ work [1]:
‘Propositions 6, 7. Two magnitudes, whether commensurable (Prop. 6) or incommensurable
(Prop. 7), balance at distances reciprocally proportional to the magnitudes’.

Suppose we have weights WA and WB on two sides of a lever supported by their centres of
gravity located at distances dA and dB from the fulcrum F . According to the law of the lever,
equilibrium will prevail if

WA

WB
= dB

dA
. (1)

To demonstrate the law of the lever, Archimedes utilized the famous sixth postulate of
his work On the Equilibrium of Planes, namely [6] ‘If magnitudes at certain distances be
in equilibrium, other (magnitudes) equal to them will also be in equilibrium at the same
distances’.

Stein [5], Dijksterhuis [6] and Assis [7] understood Archimedes to interpret ‘magnitudes
equal to other magnitudes’ as ‘magnitudes of the same weight’ and ‘magnitudes at the same
distances’ as ‘magnitudes the centers of gravity of which lie at the same distances from
the fulcrum’. This interpretation conferred a reasonable meaning to this sixth postulate and
legitimated his demonstration of the law of the lever [10].

4. Physical calculation of the centre of gravity of the cone

The proof of the centre of gravity of the cone outlined here is similar to the second proposition
of the work Archimedes sent to Eratosthenes, The Method of Mechanical Theorems. In this
second proposition, he proved that the volume of any sphere is four times that of the cone
which has its base equal to the greatest circle of the sphere and its height equal to the radius of
the sphere, and that the volume of the cylinder which has its base equal to the greatest circle
of a sphere and its height equal to the diameter of the sphere is one-and-a-half times that of
the sphere.

The same physical method is applied here to the calculation of the centre of gravity of the
cone. Figure 1 employed here is a simplified version of the figure of the second proposition of
the work Archimedes sent to Eratosthenes.

In figure 1, let αβγ δ be the greatest circle of the sphere, and αγ and βδ be its two
diameters at right angles to each other intersecting at η, the centre of the sphere. Consider the
cone with vertex α, whose base is the greatest circle in the plane through βδ at right angles to
αγ . The extended surface of this cone intersects the plane through γ at right angles to αγ in a
circle on ζε as the diameter. A variable plane λκ at right angles to αγ intersects it at the point
π . It also intersects the cone and sphere in circles whose diameters are successively oρ and
λκ . The segment αγ is extended to the left passing from ν and θ up to μ; it is also extended
to the right up to ι, such that μθ = θν = να = αη = ηγ = γ ι. That is, all these segments are
equal to the radius of the sphere.

The method begins obtaining a simple mathematical relation from figure 1. By the
similarity of the triangles αλπ and αλγ ,

αγ

αλ
= αλ

απ
, (2)
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Figure 1. A sphere and a cone seen face on.

or

αγ = αλ · αλ

απ
. (3)

This last equation is also equivalent to
αγ

απ
= αλ · αλ

απ · απ
. (4)

A square with side αλ will be represented by αλ · αλ. Analogously, squares with sides
απ and λπ will be represented by απ · απ and λπ · λπ , respectively. By the theorem of
Pythagoras applied to the triangle αλπ of figure 1,

αλ · αλ = απ · απ + λπ · λπ. (5)

Substituting equation (5) into equation (4) yields
αγ

απ
= απ · απ + λπ · λπ

απ · απ
. (6)

By the construction of figure 1, θα = αγ . The triangle αoπ of figure 1 is isosceles.
Therefore, απ = oπ . Utilizing these two relations at the left and right sides of equation (6),
respectively, yields

θα

απ
= oπ · oπ + λπ · λπ

oπ · oπ
. (7)

The area of a circle is proportional to the square of its radius, or to the square of its
diameter. Therefore, this equation can also be expressed as
θα

απ
= area of the circle with diameter oρ + area of the circle with diameter λκ

area of the circle with diameter oρ
. (8)

This is the basic mathematical relation necessary for the application of the physical
method. Consider μι as a lever with fulcrum α. Suppose geometric figures with weights
uniformly distributed, that is, with weights proportional to the areas. A lever in equilibrium
follows equation (1), which is similar to equation (8). This means that the circles λκ and oρ,
remaining where they are, with their centres acting at π , balance the circle oρ with its centre
placed at θ . This situation of equilibrium is represented in figure 2(a). Figure 2(b) presents
the same situation with circles suspended by weightless strings with their centres of gravity
vertically below the points of suspension.
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(b)(a)

Figure 2. Lever in equilibrium. (a) Circles acting on the lever at their centres of gravity. (b) Circles
suspended by weightless strings.

Figure 3. There is a cone suspended at θ , while the sphere and another cone are distributed over
one arm of the lever.

This equilibrium is valid no matter the location of the variable plane λκ between α and γ .
By considering all planes together, with the distance απ going from zero to αγ , the circles λκ

fill up the sphere αβγ δ, while the circles oρ fill up the cone αζε. Consequently, by equation (8),
there will also be equilibrium between the sphere αβγ δ and cone αζε distributed over one
arm of the lever, remaining where they are, together with another cone αζε acting only in θ .
This is represented in figure 3 with the second cone αζε suspended by a weightless string at
θ in such a way that its centre of gravity is vertically below θ .

By the sixth postulate of On the Equilibrium of Planes, quoted in section 3, equilibrium
will remain when the sphere is suspended only by its centre of gravity, that is, by its centre η,
figure 4.

In the second proposition of The Method of Mechanical Theorems, Archimedes proved
that the volume of the sphere αβγ δ of figure 1 is four times that of the cone αβδ:

sphere αβγ δ = 4(cone αβδ). (9)

The volume of the cone αζε is eight times that of the cone αβδ which has half its height,
because the diameter ζε is twice the diameter βδ:

cone αζε = 8(cone αβδ). (10)
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Figure 4. The sphere of figure 3 is now suspended at η by a weightless string.

Figure 5. The sphere of figure 4 has been replaced by four cones αβδ, while the large cone acting
at θ has been replaced by eight cones αβδ.

Accordingly, equilibrium will remain, replacing in figure 4 the sphere by four cones αβδ

and the large cone suspended at θ by eight cones αβδ, as in figure 5.
In the fourth proposition of On the Equilibrium of Planes, Archimedes proved that [1]

‘If two equal weights have not the same center of gravity, the center of gravity of both taken
together is at the middle point of the line joining their centers of gravity’. This means that we
can replace in figure 5 the eight cones αβδ acting at θ by four cones αβδ acting at μ, together
with four cones αβδ acting at ν, without disturbing the equilibrium of the lever, figure 6.
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Figure 6. The eight cones acting at θ of figure 5 have been replaced by four cones acting at μ,
together with other four cones acting at ν.

Figure 7. The equilibrium of the lever of figure 6 is not disturbed by simultaneously removing the
four cones acting at ν and the four cones acting at η.

Equilibrium will remain by removing simultaneously the four cones αβδ acting at ν and
the four cones αβδ acting at η, as να = αη, figure 7.

By the sixth postulate of On the Equilibrium of Planes, the equilibrium of the lever of
figure 7 will not be disturbed by replacing the cone αζε distributed over the arm of the lever
by another cone αζε of the same weight, but acting only at its centre of gravity ξ . The goal is
to find the distance αξ . This equilibrium is represented in figure 8, with the cone suspended at
ξ by a weightless string.

According to the law of the lever, equation (1),

4 (cone αβδ)

cone αζε
= αξ

μα
. (11)



644 C P Magnaghi and A K T Assis

Figure 8. The equilibrium of the lever of figure 7 is not disturbed by replacing the cone distributed
over one arm of the lever by the same cone acting only at its centre of gravity ξ .

By the construction of figure 1, we have

μα

αγ
= 3

2
. (12)

Combining equations (10)–(12) yields

1

2
= αξ

(3/2)αγ
. (13)

That is,

αξ = 3
4αγ . (14)

This is the final result which Archimedes expressed in the following words [1]:

The center of gravity of any cone is (the point which divides its axis so that) the
portion (adjacent to the vertex is) triple (of the portion adjacent to the base).

5. Insights into the essence of Archimedes method

From what has been seen in this work, it is possible to identify features in our proof that
correlate with the ways Archimedes applied geometry in his extant works. These features
provide us with insight regarding how he might haven proven the lemma that we discuss.

(1) By geometrical considerations, we can obtain a proportion stating the equality of two
ratios. One ratio is that of two distances. The other ratio can be that of lengths belonging
to certain figures, or that of areas belonging to certain figures, as in equation (8).

(2) Weight is assumed to be uniformly distributed in the geometric figures. In particular, the
weight of each figure will be supposed proportional to its length, area or volume.

(3) These magnitudes are imagined to be suspended upon a lever in equilibrium, according
to equation (1). The configuration of the lever in equilibrium is represented here by
figure 2.

(4) Each plane figure is considered as being filled up by all straight segments contained in it
parallel to a certain direction. Analogously, each solid figure is considered as being filled
up by all planes contained in it orthogonal to a certain direction.

(5) This analysis produces a lever in equilibrium with one or more bodies suspended on one
arm of the lever by their centres of gravity, while other bodies are distributed along the
second arm of the lever. This configuration is represented here by figure 3.
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(6) By the crucial sixth postulate of his work On the Equilibrium of Planes, quoted in section 3,
Archimedes could then replace the bodies distributed along the second arm of the lever by
bodies of the same weight suspended only by their centres of gravity. The sixth postulate
guarantees that the lever will remain in equilibrium when these substitutions are made.
These configurations of equilibrium are represented here by figures 4 and 8.

(7) The combination of the law of the lever, equation (1), yields then the area, volume or
centre of gravity of a geometric figure when the area, volume or centre of gravity of
another figure is known.

6. Pedagogical value of the analysis

The letter of Archimedes addressed to Eratosthenes, The Method of Mechanical Theorems,
may be considered one of the earliest works on mathematical physics. It utilizes the physical
law of the lever to calculate the area, volume or centre of gravity of bodies. This paper illustrates
the law of the lever by using it to calculate the centre of gravity of the cone. While Archimedes
correctly calculated the location of the centre of gravity of the cone, his demonstration is no
longer extant. What we did was to apply the method of Archimedes as we understood it, to
construct a proof in the spirit of the physical analysis that distinguishes his work, setting it
apart from others which employ mathematics without a physical grounding for the argument.
The analysis presented here, concentrating on the main aspects of the method, may help to
illustrate the power of his reasoning. The figures included in this presentation aim to make the
method more intuitive from the physical point of view.

In this demonstration, the physical lever is used to cancel and redistribute equal
weight quantities in balance. By thinking about the lever construction in analogy with
algebraic operations, students might further their awareness of how mathematical methods
and demonstrations interpret physical behaviours. There is a great educational potential in this
analogy which might be explored by undergraduate-level physics teachers. It is also possible
to utilize physical demonstrations to accompany this analysis.

In fact, one of our undergraduate students took on the project of building balances and
levers in equilibrium reproducing the steps leading to the proofs of theorems 1 of 2 of the
Archimedes method (area of a parabola and volume of a sphere) [11]. He utilized metal rods
of appropriate lengths, triangular and parabolic plane sheets made of hard rubber, together
with spheres, cones and cylinders made of gypsum. All these heavy bodies had lengths, areas
and volumes following the values presented by Archimedes. The student observed that when
these bodies were suspended at the required distances from the fulcrum of the lever, the lever
always remained in equilibrium. These physical demonstrations of levers in equilibrium could
accompany the geometrical proofs of these theorems, lending support to Archimedes amazing
reasoning.

The educational advantages of employing physical properties in the argument are evident
in the figures utilized in this work, as the mathematics is kept to a minimum. The physical
properties of the lever in equilibrium, together with the crucial sixth postulate of his work On
the Equilibrium of Planes, are the key to solving a mathematical problem, as illustrated in this
paper.
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