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We present Helmholtz's argument against Weber's electrodynamies. It is related 
with a f ixed charged nonconducting spherical shell and a charged particle moving 
inside it. Then we utilize Weber's eleetrodynamies plus Schr6dinger's expression 
for gravitational interactions in order to obtain the equation of  motion and to 
study this situation. We show that this approach avoids the problems pointed out 
by Helmholtz. Moreover, it indicates' that the effective inertial mass of  the charged 
particle will depend not only on the electrostatic potential of  the shell but also on 
its velocity. This is a relevant aspect of  Weber's theory. 

1. I N T R O D U C T I O N  

There has been a renewed interest in Weber's electrodynamics recently; see 
Refs. 1-5, Ref. 6, Chap. 6, Refs. 7-9 etc. Some of these works discuss 
Helmholtz's argument against Weber 's  theory. ~1~ In this paper  we present 
a solution of the paradox pointed out by Helmholtz utilizing Schr6dinger's 
potential energy for gravitational interactions ~H) (English translation in 
Ref. 12). This has never been done before. 

Weber's potential energy between two point charges ql and q2 is 
given by 

g w q l q 2  1 1 - - ~ c  2 (1) 
4~z~ o r 
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Here g 0 = 8 . 8 5 •  lm 2 is the vacuum permittivity,  r is the 

distance between the charges, ~: = dr/dt,  and  c = 3 • 108 ms 
Helmholtz 's  a rgument  was briefly summarized by Maxwell  as follows 

(Ref. 13, Vol. 2, Chapter  23, p. 485): 

A fixed nonconducting spherical surface, of radius a, is uniformly charged 
with electricity to the surface-density a. A particle, of mass m and carrying a 
charge e of electricity, moves within the sphere with velocity v. The elec- 
trodynamic potential calculated from the formula 

+ <e--I,_ r 2c 2 \OtJ J 

and is independent of the position of the particle within the sphere. Adding to 
this V, the remainder of the potential energy arising from the action of other 
forces and mv2/2, the kinetic energy of the particle, we find as the equation of 
energy 

1/ 4.a e5 
+ V=const 

Since the second term of the coefficient of /)2 may be increased indefinitely by 
increasing a, the radius of the sphere, while the surface density a remains con- 
stant, the coefficient of v 2 my be made negative. Acceleration of the motion of 
the particle would then correspond to diminution of its vis viva, and a body 
moving in a closed path and acted on by a forcelike friction, always opposite in 
direction to its motion, would continually increase in velocity, and that without 
limit. This impossible result is a necessary consequence of assuming any formula 
for the potential which introduces negative terms into the coefficient of v 2. 

We discussed in detail this criticism by Helmhol tz  in (Ref. 2, Sect. 7.3: 
charged spherical shell). Before consider ing this a failure of Weber 's  
e lectrodynamics (as was the po in t  of view of Helmhol tz  and  Maxwell),  this 
predict ion should be tested experimentally.  Al though this negative mass 
behavior  is unusua l ,  na ture  may  behave like this. We don ' t  know any 
experiments devised to test this prediction. Even supposing that  na ture  will 

no t  behave like this, there are ways ou t  of this paradox  as po in ted  out  by 
Phipps/7  9) He supposed Weber ' s  potent ia l  energy as an approx imat ion  
valid up  to second order  in f/c. For  high velocities he proposed:  

t: 2 
q lq2_ l  1 c2 (2) 

Ue = 4roe ~ r 
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Expanding the square root up to second order in ( / c  yields Weber's 
potential energy. With this new electromagnetic potential energy Phipps 
succeeded in overcoming Helmholtz's criticism. 

In this work we present an alternative approach. Instead of changing 
Weber's potential energy, we consider a modification of Newton's law 
of gravitation and of his second law of motion, as first suggested by 
Schr6dinger. 

2. SCHR()DINGER'S MECHANICS 

Helmholtz and Maxwell assumed that the classical kinetic energy was 
valid to slow and high velocities. Nowadays we know that a better expres- 
sion in agreement with experiments involving electrons moving near light 
velocity is given by 

me 2 
Ek -- t- const (3) 

x / 1  - v2/c 2 

Schr6dinger has an extremely important work of 1925 where he could 
derive this expression from a modified Newton's law of gravitation. (1~" 12) 
Essentially, he proposed an interaction gravitational potential energy U s  
between two gravitational point masses m~ and m2 given by 

2 

An analogous expression has been obtained independently by Wesley. (5) 
When Schr6dinger integrated this expression for a test mass m interacting 
gravitationally with a homogeneous and isotropic universe, he was able to 
derive Eq. (3) with a gravitational mass m and with the velocity v being the 
velocity of the test particle relative to the distant universe. He also derived 
the following Lagrangian describing the gravitational interaction of this 
test mass with the distant universe: L -- - m c  2 ~ / 1  - v2/c  2 + const. 

It must be remarked that this choice of the relativistic-like kinetic 
energy makes both (electrodynamic energy and kinetic energy) to be basi- 
cally of the same level or degree from the point of view of a relativistic con- 
sideration. This is a reasonable reason to adopt Schr6dinger's approach. 

Weber's Lagrangian for the test charge q interacting with the charged 
spherical shell is given by L=-(qaa /eo) (1  +V2/6C 2) (Ref. 2, Secs. 3.5: 
Langrangian and Hamiltonian Formulations of Weber's Electrodynamics 
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and 7.3: Charged Spherical Shell). The Lagrangian for the test particle 
interacting with the charged spherical shell and the distant universe is then 
given by 

L= - m c  2 x/1 --1;2/r 2 - q a a  1 +~5c2 +const  (5) 
8O 

Helmholtz mentioned in his analysis that the test body is acted on by 
a forcelike friction, always opposite in direction to its motion. For this 
reason we include in the analysis a frictional force of the form -bg,  where 
b > 0 is the coefficient of friction. The equation of motion then becomes 

d ( O L )  8L OF 0 (6) 

Here L is given by Eq. (5) and F is Rayleigh's dissipation function given by 
(Ref. 14, p. 24): 

by 2 
F =  - -  (7) 

2 

We will analyze here the situation in which the charged particle moves 
in a circle of constant radius P0 due to a radial constraint. Its velocity is 
then given by 6=poO0. With this condition and Eqs. (5) and (7) we 
have 

[ 1 ] bs 
(1--s 3/2 ~ f + m  (8) 

where s =poO/c is the normalized velocity, Ji =poO/c, and ~ = qtra/3eomc 2 
is a dimensionless parameter. The solution of this equation is given by 
(with s being the normalized initial velocity) 

m + ~ / - ( 1 - ~ ) l n s  o ~ f l _ s  2 + x / 1 _ s  2 
(9) 

There are two situations to analyze: ~ < 1 and ~/> 1. For ~ < 1 we 
see that 1 -~ (1  _s 0. In this case the acceleration has the opposite 
sign of the velocity. Figure 1 shows a qualitative analysis of Eq. (8) for 
~<1.  



A Critical Analysis of Helmholtz's Argument 1449 

(a) 

a < l  

[ 

Xo 

0 

( b )  

t ~ 

Fig. 1. (a) Behavior of Eq. (8) for c~ < 1. The accelera- 
tion is zero for 2 =  1 and for 2 = 0 .  (b) The normalized 
velocity of the charged particle moving inside a charged 
spherical shell for c~ < 1. We can see that the velocity 
goes to zero when t--, ~ .  Here 2 0 is the normalized 
initial velocity. 

From Eq. (8) we can see that 1 - ~ ( 1  --)~2)3/2 =0  for ~>~ 1 when 

•/ 1 (10) 2c = 1 0~2/3 

Here ~c is the normalized critical velocity. In these cases the acceleration 
diverges when ~ ~ )~c. Figure 2 presents a qualitative graphical analysis of 
Eq. (8) for 0~>~1. When ~ c  the acceleration goes to infinity, ~_+oo. 
When the normalized initial velocity, 9~0, is greater than the critical 
velocity, the velocity decreases, tending to the critical velocity; see Fig. 2. 
When ~0 < ~c, the velocity increases, tending also to the critical velocity. 
After reaching the critical velocity, the charged particle remains at this 
velocity. 

825/27/10-11 
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Fig. 2. (a) Behavior of Eq. (8) tbr cc~>l. The 
acceleration goes to infinity when the velocity tends 
to the critical velocity, .f,, given by Eq. (10). For 

= 1 the critical velocity is zero, 2, = 0. (b) Situa- 
tion for ~ ~> !. 

3 DISCUSSION AND C O N C L U S I O N  

Helmholtz and Maxwell concluded from their analysis that the velocity 
of the charged particle would increase indefinitely by increasing the radius 
of the charged sphere. Their conclusion was based not only on Weber's 
electrodynamics but also on Newton's mechanics. Here we have shown that 
this does not happen anymore even maintaining Weber's electrodynamics, 
if we utilize the appropriate kinetic energy as obtained by Schr6dinger and 
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Wesley. In this case for any initial velocity smaller than c, the final velocity 
goes to zero if e < 1, as in the classical or relativistic theories. 

Even for e/> 1 the velocity does not increase indefinitely anymore. 

With 0 < v0 < c the final velocity will be given by vc = c ~ / 1 -  1/e 2/3. It  is 
easily seen that ultimate velocity will always be in the range 0 ~< vc ~< c, no 
matter  the value of ~ ~> 1. 

It  must  be remarked that Eq. (8) can be written as 

meiJr .-}- b~c -= O (11) 

This equation is similar to the equation of motion of classical mechanics 
but now with an effective inertial mass given by 

mei=mI( l l .~2)3/2  0~] (12) 

The relativistic equation of mot ion would be the same as Eqs. ( 11 ) and 
(12), but with 0c = 0. 

Figure 3 presents a qualitative graphical analysis of Eq. (12) for ~ >/1. 
When 0 < 2 < 2c the effective inertial mass is negative. This means that the 
velocity increases in the presence of friction up to 2c. For  2c < 20 < 1 the 
effective inertial mass is positive, so that the velocity decreases toward 2c. 

mei  / m  a t> I 

J 
I 

Fig. 3. The normalized effective inertial 
mass as a function of the normalized velocity 
for a given ~ ~> 1. 
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W i t h  this  c o n c e p t  o f  a n  effective iner t ia l  mass  d e p e n d i n g  o n  the  electro-  
s ta t ic  energy  a n d  o n  the  ve loc i ty  of  the  part icle ,  it is easy  to  u n d e r s t a n d  the  
b e h a v i o r  of  the  test  charge.  

A C K N O W L E D G M E N T S  

The  a u t h o r s  wish  to  t h a n k  C N P q  for f inanc ia l  s u p p o r t  in  the  pas t  few 
years.  
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