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The Electric Field Outside a Stationary Resistive Wire
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We present the opinion of some authors who believe there is no force between a
stationary charge and a stationary resistive wire carrying a constant current. We
show that this force is different from zero and present its main components: the
force due to the charges induced in the wire by the test charge and a force propor-
tional to the current in the resistive wire. We also discuss briefly a component of
the force proportional to the square of the current which should exist according to
some models and another component due to the acceleration of the conduction
electrons in a curved wire carrying a dc current (centripetal acceleration). Finally,
we analyze experiments showing the existence of the electric field proportional to
the current in resistive wires.

1. INTRODUCTION

Consider a circuit like that in Fig. 1, where a stationary resistive wire con-
nected to a battery carries a constant current I. Will it exert a force on a
stationary charge q located nearby?

One force which will be there regardless of the value of the current is
that due to the induced charges in the wire. That is, the point particle q
induces a distribution of charges in the conducting wire and the net result
will be an attraction between the wire and q. Most authors know about
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Fig. 1. A resistive stationary wire connected
to a battery and carrying a dc current I, with
a stationary point charge q nearby.

this fact, although forgetting to mention it. Moreover, they do not consider
it in detail nor give its order of magnitude.

Is there any other force between the wire and the stationary charge?
Many physicists believe that the answer to this question is no, and this
opinion has been held for a long time. There are three main ideas leading
to this belief. We analyze each of them here.

(A) The first idea is related to the supposition that a stationary
resistive wire carrying a constant current is essentially neutral in its interior
and along its surface. And this leads to the conclusion that a resistive
current carrying wire generates only a magnetic field outside it. For more
than a century scientists have been used to believing this statement.
Clausius, for instance, based all his electrodynamics on this belief. In 1877
he wrote, `̀ We accept as criterion the experimental result that a closed con-
stant current in a stationary conductor exerts no force on stationary elec-
tricity’’ (quoted in Ref. 1, p. 589). Although he affirmed that this is an
experimental result, he did not cite any experiments which tried to find this
force. His electrodynamics led to this prediction: `̀The law formulated by
me leads to the result that a constant stationary closed circuit exercises no
force on a stationary charge’’ (Clausius statement in 1880, quoted in Ref. 1,
p. 589). As we will see, he based his electrodynamics on an incorrect prin-
ciple, as there is a force between a stationary charge and a stationary wire
carrying a constant current. This force has been shown by Jefimenko’s
experiment (Refs. 2 and 3, pp. 299± 319, and 509± 511). We confirm the
existence of this force by the calculations of this work.

Even in electromagnetic textbooks we can find statements like this. As
we will see, the electric field inside and outside a resistive wire carrying a
constant current is due to surface charges distributed along the wire. On
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the other hand, Reitz et al., for instance, seem to say that no steady surface
charges can exist in resistive wires (Ref. 4, pp. 168± 169):

Consider a conducting specimen obeying Ohm’s law, in the shape of a straight
wire of uniform cross section with a constant potential difference, DQ , main-
tained between its ends. The wire is assumed to be homogeneous and charac-
terized by the constant conductivity g. Under these conditions an electric field
will exist in the wire, the field being related to DQ by the relation DQ = ò E

® . dl
®
.

It is evident that there can be no steady-state component of electric field at right
angles to the axis of the wire, since by Eq. J

®
= gE

®
this would produce a con-

tinual charging of the wire’s surface. Thus, the electric field is purely
longitudinal.

Although this criticism had already been made by Russell related to the
second edition of 1964, ( 5) the third and fourth editions of this book did not
change greatly on this point.

In Jackson’s book, ( 6) the following statement appears in exercise 14.13
(p. 697):

As an idealization of steady-state currents flowing in a circuit, consider a system
of N identical charges q moving with constant speed v (but subject to accelera-
tion) in an arbitrary closed path. Successive charges are separated by a constant
small interval D . Starting with the Lienard± Wiechert fields for each particle, and
making no assumptions concerning the speed v relative to the velocity of light
show that, in the limit N ® ¥ , q ® 0, and D ® 0, but Nq= constant and
q/D = constant, no radiation is emitted by the system and the electric and
magnetic fields of the system are the usual static value. (Note that for a real
circuit the stationary positive ions in the conductors will produce an electric
field which just cancels that due to the moving charges.)

Anyone reading this statement, especially the sentence in parentheses, will
conclude that Clausius was right. However, we will see here that there is
a net electric field different from zero outside a stationary resistive wire
carrying a steady current. Despite the words in this exercise, it must be
stressed that Jackson himself is aware of this electric field outside wires
carrying steady currents ( see Ref. 7).

Here are the words of Edwards et al., ( 8) related to first-order terms,
that is, to forces proportional to vd /c or to the drifting velocity of the
moving charges in the wire divided by c: `̀ It has long been known that the
zero- and first-order forces on a charged object near a charge-neutral,
current-carrying conductor at rest in the laboratory are zero in magni-
tude.’’ Jefimenko’s experiment and our calculations show that a normal
resistive wire carrying a constant current cannot be charge neutral at all
points, although the integrated charge over the wire may be zero. More-
over, it will generate zero-order and first-order forces on a charged object
at rest near it, namely, the force due to electrostatic induction Fo and the
first-order force F1 ( see below).
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One of us also assumed in previous works that a conducting wire is
essentially neutral at all points ( see Refs. 9, 10, and 11, pp. 85, 161). Here
we show in detail that this is not valid for normal resistive wires carrying
constant currents.

(B) The second idea leading to the conclusion that a normal resistive
current carrying wire generates no electric field outside it arises from the
supposition that magnetism is a relativistic effect. A typical representative
of this position can be found in The Feynman Lectures on Physics ( 12) ( see
specifically Section 13-6, `̀The Relativity of Magnetic and Electric Fields,’’ ( 11)

p. 13-7; our emphasis):

We return to our atomic description of a wire carrying a current. In a normal
conductor, like copper, the electric currents come from the motion of some of the
negative electrons± ± called the conduction electron± ± while the positive nuclear
charges and the remainder of the electrons stay fixed in the body of the material.
We let the density of the conduction electrons be r 2 and their velocity in S be
v. The density of the charges at rest in S is r + , which must be equal to the
negative of r 2 , since we are considering an uncharged wire. There is thus no
electric field outside the wire, and the force on the moving particle is just
F = qvo 3 B.

In Purcell’s Electricity and Magnetism we can find the same ideas.( 13)

In Section 5.9 of that book, which considers magnetism as a relativistic
phenomenon, he models a current carrying wire by two strings of charges,
positive and negative, moving relative to one another. He then considers
two current carrying metallic wires at rest in the frame of the laboratory
and says (p. 178) , `̀ In a metal, however, only the positive charges remain
fixed in the crystal lattice. Two such wires carrying currents in opposite
directions are seen in the lab frame in Fig. 5.23a. The wires being neutral,
there is no electric force from the opposite wire on the positive ions which
are stationary in the lab frame.’’ That is, he believes that there will be no
electric field generated by the stationary current-carrying resistive wire in
any point outside itself.

Other books present similar statements, so we do not quote them here.

(C) The third kind of idea related to this widespread belief is con-
nected with Weber’s electrodynamics. As we shall see, even if a resistive
current-carrying wire were neutral at all points in its interior and along its
surface, Weber’s electrodynamics predicts that it would exert a net force on
a point charge at rest outside it. This force is proportional to v2

d /c2, where
vd is the drifting velocity of the conduction electrons and c = 3 3 10 8 ms 2 1 .
Based on the incorrect belief ( see below) that this wire exerts no force on
a stationary charge nearby, unware even of the larger first-order electric
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field proportional to vd , many authors condemned Weber’s law as
experimentally invalidated.

This goes back at least to Maxwell’s Treatise on Electricity and
Magnetism. He was considering the force between a conducting wire carrying
a constant current and another wire carrying no current, both of them at
rest in the laboratory. He said ( see Ref. 14, Vol. 2, Article 848, p. 482),

Now we know that by charging the second conducting wire as a whole, we can
make e¢ + e ¢1 [net charge on the wire without current] either positive or
negative. Such a charged wire, even without a current, according to this formula
[based on Weber’s electrodynamics], would act on the first wire carrying a
current in which v2e + v2

1 e1 [sum of the positive and negative charges of the
current carrying wire by the square of their drifting velocities] has a value dif-
ferent from zero. Such an action has never been observed.

As with Clausius comment, Maxwell did not quote any experiments which
tried to observe this force (and which failed to find the effect) , the upper
limit of this effect etc.

Writing in 1951, Whittaker criticized Weber’s electrodynamics along
the same lines (Ref. 15, p. 205; our emphasis):

The assumption that positive and negative charges move with equal and
opposite velocities relative to the matter of the conductor is one to which, for
various reasons which will appear later, objection may be taken; but it is an
integral part of Weber’s theory, and cannot be excised from it. In fact, if this
condition were not satisfied, and if the law of force were Weber’s, electric
currents would exert forces on electrostatic charges at rest . . . .

Obviously he is expressing the view that there are no such forces. In conse-
quence, Weber’s electrodynamics must be wrong according to Whittaker’s
view, because we now know that only the negative electrons move in met-
allic wires. And applying Weber’s electrodynamics to this situation ( in
which a current in a metallic conductor is due to the motion of conduction
electrons, while the positive charges of the lattice remain stationary)
implies that a conducting wire should exert force on a stationary electric
charge nearby. Whittaker could not be aware, at the time, of the experi-
mental fact that electric currents exert forces on electrostatic charges at rest,
see the experiments by Jefimenko discussed below.

Other examples of this widespread belief are as follows. In 1969
Skinner said, relative to Fig. 2, in which the stationary closed circuit carries
a constant current and there is a stationary charge at P (Ref. 16, p. 163):
`̀According to Weber’s force law, the current of Fig. 2.39 [our Fig. 2]
would exert a force on an electric charge at rest at the point P. . . . And yet
a charge at P does not experience any force.’ ’ As with Clausius’ and
Maxwell’s generic statements, Skinner did not quote any specific experi-
ment which tried to find this force. Amazingly the caption of his Fig. 2.39
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Fig. 2. A constant current flows
in the closed wire and there is a
point charge at P.

states, `̀A crucial test of Weber’s force law.’’ To most readers sentences like
this convey the impression that the experiment had been performed and
Weber’s law refuted. But the truth is just the opposite.

Pearson and Kilambi, in a paper discussing the analogies between
Weber’s electrodynamics and nuclear forces, made the same kind of
criticisms in a section called `̀ Invalidity of Weber’s Electrodynamics.’’ ( 17)

They consider a straight wire carrying a constant current. They calculate
the force on a stationary charge nearby due to this wire with classical
electromagnetism and with Weber’s law, supposing the wire to be electri-
cally neutral at all points. According to his calculations, classical elec-
tromagnetism does not yield any force on the test charge and he interprets
this as (our emphasis): `̀The vanishing of the force on the stationary charge
q corresponds simply to the fact that a steady current does not give rise to
any induced electric field.’’ With Weber’s law he finds a second-order force
and interprets this as meaning (our emphasis) `̀ that Weber’s electrodynamics
give rise to spurious induction effects. This is probably the most obvious
defect of the theory, and the only way of avoiding it is to suppose that the
positive charges in the wire move with an equal velocity in the opposite
direction, which of course they do not.’’ As we will see, the fact is that a
steady current gives rise to an induced electric field, as shown by Jefimenko’s
experiment.

In this work we argue that all of these statements were misleading.
That is, we show the existence of a force on the stationary charge propor-
tional to the current in a resistive stationary wire carrying a constant
current. We also compare our calculations with Jefimenko’s experiment
( see below) which proved the existence of this force.

2. GEOMETRY OF THE PROBLEM

In this work the frame of reference is always the laboratory. The situa-
tion considered here is that of a cylindrical conducting resistive wire of
length l and radius a << l (Fig. 3). The axis of the wire coincides with the
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Fig. 3. A cylindrical wire of length l and radius a << l carrying a
constant current I. A point charge q is at a distance r to the axis
of the wire, with a longitudinal component z relative to the center
of the wire.

z direction, with z = 0 at the center of the wire. A battery maintains con-
stant potentials at the extremities z = 2 l/2 and z = + l/2 of the wire, given
by w L and w R , respectively. The wire carries a constant current I, has a
finite conductivity g and is at rest relative to the laboratory. There is air or
vacuum outside the wire. At a distance r to the axis of the wire there is a
stationary point charge q. We want to know the force exerted by the wire
on q in the following approximation:

l >> r > a and l >> |z| ( 1)

where z is the longitudinal component of the vector position of q. We
utilize throughout this paper cylindrical coordinates (r, Q , z ) with
r = Ï x2 + y2 and unit vectors r̂, Q̂ , and ẑ.

This wire must be closed somewhere. The calculations presented here
with this approximation should be valid for the circuit in Fig. 4 ( square
circuit of side l with a wire of radius a << l, with a point charge close to the
middle of one of its sides and far from the battery). That is, the three other
sides will not contribute significantly to the potential and field near the
center of the fourth side. Alternatively, it should also give approximate
results for a circular loop of larger radius R = l/2p and smaller radius
a << R ( a ring) if the point charge is at a distance R + r to the center of the
wire, such that a < r << R. It might even be utilized as a first gross
approximation for the force on the point charge in Fig. 1 considering a
generic circuit of large length and small curvatures ( that is, with radii of
curvature much larger than the diameter of the wire and also much larger
than the distance of the point charge to the wire).

We consider separately three components of the force exerted by the
wire on q: that due to the charges induced in the wire by q, that due to the
surface charges which exist in resistive current carrying wires (proportional
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Fig. 4. Square circuit of
side l made of a cylindrical
wire of radius a << l, with
a point charge close to the
middle of one of its sides.

to the current or to the drifting velocity vd of the electrons) , and that due
to v2

d /c2.

3. FORCE DUE TO ELECTROSTATIC INDUCTION

Consider a neutral conductor carrying no current. If we put a point
particle q nearby, it will induce a distribution of charges in the conductor
such that the potential anywhere inside it will reach a constant value in
equilibrium. The net effect of these induced charges is an attraction
between q and the conductor. We can estimate the value of this attraction
for the situation in Fig. 3 in the case l >> r >> a without any calculation.
We also do not need to know the exact value of the equilibrium distribu-
tion of surface charges induced in the wire, s i (a, Q , z) .

This situation is equivalent to the force between a point charge at a
distance r to an infinite conducting line. As there are only one charge and
one distance involved in this problem, dimensional analysis requires the
force between the point charge and the infinite conducting line to be given
by

F
®

o = 2 aL
q2

4peo

r̂
r2 , 0 < aL < 1 (2)

where r̂ is the unit vector pointing away from the line to the charge q and
aL is a positive dimensionless constant of the order of unity. It would be
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1 if all the induced charge were located at the origin, that is, at a distance
r to q. As part of the induced charge will be distributed along the wire with
a linear charge density li (z) , which means at a distance to q greater than r,
we conclude that aL must be smaller than 1. Although we do not need to
know the exact value of aL or of li (z ) , we know the order of magnitude
of the force due to electrostatic induction.

An analogous analysis might be performed for the induction force
between a point charge q at a distance r from an infinite plane. As before,
there are only one charge and one distance involved in this problem, so
that the force must be given by Eq. ( 2) with a dimensionless constant aP

replacing aL (as we now have an infinite plane instead of an infinite line,
the dimensionless constant does not need to be the same). But in this case
we can solve the problem exactly by the method of images. The final solu-
tion in this case yields an image charge 2 q at the other side of the plane,
also at a distance r to it. As the distance between q and 2 q is 2r, this yields
aP = 1/4. This shows that our reasoning without performing any calculation
was correct.

Suppose now we have the case in Fig. 3, but with r being of the same
order of magnitude as a. As there are only one charge and two distances
involved in the problem (considering l going to infinity), the force must be
given by F

®
o = 2 h( r, a) q2r̂/4peo . Here h(r, a) is a function of r and a such

that if r >> a, it will be proportional to 1/r2 and, if r ® a, it diverges to
infinity, as this is the general behavior of induction forces ( if the charge
approaches an infinite plane or the surface of a conducting sphere, the
induction force always goes to infinity).

We have then estimated the value of the induction force in the case of
Fig. 3, for l >> r >> a, as given by Eq. ( 2). This estimate is ours, as we were
unable to locate it anywhere in the literature. This force will be there
whether or not there is current in the wire. For an order of magnitude,
suppose a charge generated by friction of 10 2 9 C, at a distance of 10 cm
from a long, thin wire ( length, 1 m; diameter, 1 mm). The force Fo due
to electrostatic induction it this case should be of the order of 10 2 6 N.
The electric field Eo due to electrostatic induction should be of the order
103 V/m.

In the sequel we consider the influence of the current on the net force
exerted by the wire on q.

4. FORCE PROPORTIONAL TO THE CURRENT

When a constant current flows in a resistive wire connected to a bat-
tery, the electric field driving the conduction electrons against the resistive
friction of the wire is due to free charges distributed along the surface of the
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wire. This was first pointed out by Kirchhoff.(18± 20) (English translation of
Ref. 20 in Ref. 21). We represent this surface charge density by s f (a, Q , z) .
For dc currents, s f is constant in time but varies along the length of the
wire ( is a function of z) . The battery is responsible for this distribution of
surface charges due to the chemical forces which maintain its terminals at
different potentials but does not generate the electric field in all points
along the circuit. These surface charges generate not only the electric field
inside the wire but also an electric field outside it.

To see that the battery does not generate the electric field at all points
along the wire, consider Fig. 1. We know that the electric field driving the
constant current will in general follow the geometry of the wire. When we
bend a portion of the wire, the electric field will follow this bending.
If something changes inside the battery when we bend the wire, the electric
field at points closer to the battery would also change. However, the elec-
tric field changes its path or direction only in the portion which was bent,
maintaining the previous values and directions in the other points. As the
electric field inside the wire changed only in the bent portion, it is some-
thing local which created this change in its direction. The geometry of the
wire has obviously changed, but as the geometry does not create an electric
field, the reason must be sought somewhere else. We then arrive at
Kirchhoff ’s idea that the electric field inside a wire carrying a constant
current is due to free charges spread along the surface of the wire. The role
of the battery is to maintain this distribution of free charges along the sur-
face of the wire ( constant in time for dc currents but variable along the
length of the wire). There will be a continuous gradient of surface charges
along the length of the wire, being more positive toward the positive ter-
minal of the battery, decreasing in magnitude until reaching a zero value
in an intermediary point, and becoming increasingly negative toward the
negative terminal. If there were no battery, there would be zero density of
charges at all points along the surface of the wire. It is the distribution of
these surface charges in space which creates the electric field inside the wire
driving the current. When we bend a portion of the wire, the free charges
redistribute themselves in space along the surface of the wire, creating the
electric field which will follow the new trajectory of the wire. Supposing the
wire to be globally neutral, the integration of the surface charges along the
whole surface of the wire must always go to zero, although s f is not zero
at all points along the surface.

However, most authors are not aware of these surface charges and the
related electric field outside the wire, as we can see from the quotations
above. Fortunately this subject has again been considered in some impor-
tant works: Heald, Jefimenko, Griffiths, Jackson, and those quoted by
them (see Ref. 22, Ref. 3, pp. 299± 319, 509± 511, Ref. 23, pp. 279, 336,
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Ref. 7). As none of them considered the geometry in Fig. 3, we decided to
analyze it here.

Our approach in this paper is the following: we consider the cylindri-
cal wire carrying the constant current I and calculate the potential w 1 and
electric field E

®
1 inside and outside the wire due to these surface charges in

the absence of the test charge q. When we put the test charge at a distance
r from the wire, the force on it due to the surface charges will then be given
by F

®
1 = qE

®
1 , supposing that it is small enough so that it does not disturb

the current or the wire (except from the induction charges already con-
sidered above). We begin calculating the potential due to the surface
charges.

As there is a constant current in the wire, the electric field inside it and
driving the current must be constant over the cross section of the wire,
neglecting the small radial Hall effect inside the wire due to the poloidal
magnetic field generated by the current. This means that the potential and
surface charge distribution must be a linear function of z. This was proved
in an important paper by Russell, ( 5) so that we do not go into further detail
here. Due to the axial symmetry of the wire, it cannot depend on the
poloidal angle either. This means that

s f (a, Q , z) = s A
z
l

+ s B ( 3)

where s A and s B are constants.
Before proceeding we wish to discuss this expression. We are assuming

the wire to be globally neutral, that is to have no net charge as a whole.
When we integrate the free charge density s f over the whole surface of the
wire, we need to obtain a zero net value. This will happen with Eq. ( 3) only
in the symmetrical case in which s B = 0. This might represent, for instance,
the top side in Fig. 4. On the other hand, we perform the calculations with
a generic value of s B so that the calculation might be applicable, for
instance, to the left half of the top side in Fig. 4. The integration of s f over
this left side ( from z = 2 l/2 to 0) will yield a positive value, as it is closer
to the positive terminal. This positive charge will be balanced by the
negative charge lying on the right half of the top side in Fig. 4 (z going
from 0 to + l/2). With a generic s B we might also consider, for instance,
the left side in Fig. 4 with a positive charge, which will be balanced by the
negative charge in the right side in Fig. 4. It should be emphasized that the
zero of s f is specified by the battery. The battery itself also specifies where
s f will be positive (portions of the wire closer to the positive terminal of the
battery) or negative (portions of the wire closer to the negative terminate
of the battery).
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Due to the axial symmetry of s f , we can calculate w at Q = 0 and then
generalize the solution to all Q . The potential inside or outside the wire is
then given by

w 1(r, z) =
1

4peo
#

2p

Q 2 = 0
#

l/2

z2 = 2 l/2

s f a dQ 2 dz2

Ï r2 + a2 2 2ra cos Q 2 + (z2 2 z ) 2

=
1

4peo
#

2p

Q 2 = 0 #
l/2

z2 = 2 l/2

( s A z2 /l + s B ) dQ 2 dz2

Ï (1 2 2(r/a) cos Q 2 + (r2/a2) ) + ( (z2 2 z)/a) 2

( 4)

Defining the dimensionless variables s2 º 1 2 2(r/a) cos Q 2 + (r2/a2 ) and
u º (z2 2 z )/a, we are then led to w 1(r, z) = (a/4peo )[ ( s A a/l ) I1 +
( s A z/l + s B ) I2] , where

I1 º #
2p

Q 2 = 0 #
l/2a 2 z/a

u = 2 ( l/2a + z/a )
u

dQ 2 du

Ï s2 + u2
( 5)

and

I2 º #
2p

Q 2 = 0
#

l/2a 2 z/a

u = 2 ( l/2a + z/a )

dQ 2 du

Ï s2 + u2
( 6)

These integrals can be solved with approximation (1), where we now
allow r to be smaller or greater than a, yielding ( see Appendix)

w 1( r, Q , z) =
aQ f (z)

eo

ln
l
a

=
a( s A z/l + s B )

eo

ln
l
a

if r < a ( 7)

w 1( r, Q , z) =
aQ f (z)

eo
ln

l
r

=
a( s A z/l + s B )

eo
ln

l
r

if r > a ( 8)

The coulombian force on a test charge q located at ( r, Q , z) is then
given by (with F

®
1 = 2 q $ w 1 )

F
®

1 = 2
qa
eo

¶ s f (z)

¶ z 1 ln
l
a 2 ẑ = 2

qa s A

leo 1 ln
l
a 2 ẑ if r < a ( 9)

F
®

1 =
qa s f (z )

eo

r̂
r

2
qa
eo

¶ s f (z)

¶ z 1 ln
l
r 2 ẑ

=
qa( s A z/l + s B )

eo

r̂
r

2
qa s A

leo 1 ln
l
r 2 ẑ if r > a ( 10)
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We can relate these expressions with the current I flowing in the wire.
Figure 3 and the fact that w 1 is a linear function of z yield

w1( r < a, z ) =
w R 2 w L

l
z +

w R + w L

2
(11)

Equating this with Eq. (7) and utilizing Ohm’s law w L 2 w R = RI,
where R = l/gpa2 is the resistance of the wire, with g being its conductivity,
yields s A = 2 Reo I/a ln( l/a) and s B = eo(w R + w L )/2a ln ( l/a) = eo(RI + 2w R ) /
2a ln( l/a). The density of free charges along the surface of the wire can then
be written as

s f (a, Q , z) = 2
Reo I

a ln( l/a)
z +

eo(w R + w L )
2a ln( l/a)

( 12)

This means that the potential and the force on the test charge q are given
by

w 1 = 2
RI
l

z +
w R + w L

2
if r < a ( 13)

w 1 = 2
RI
l

ln( l/r)
ln( l/a)

z +
w R + w L

2
ln( l/r)
ln( l/a)

if r > a ( 14)

F
®

1 = qE
®

1 = q
RI
l

z® if r < a ( 15)

F
®

1 = qE
®

1 = q 3 2 1
ln( l/a) 1 RI

l
z 2

RI + 2w R

2 2 r̂
r

+
RI
l

ln( l/r)
ln( l/a)

ẑ 4 if r > a ( 16)

Now that we have obtained the potential outside the wire, we might
also revert the argument. That is, we might solve Laplace’s equation
$ 2

w = 0 in cylindrical coordinates inside and outside the wire ( for a < r < l )
by the method of separation of variables imposing the following boundary
conditions: finite w(0, Q , z ) , w(a, Q , z) = (w R 2 w L ) z/l + (w R + w L )/2 and
w( l, Q , z) = 0. The latter condition is not a trivial one and was obtained
only after we found the solution in the order presented in this work. The
usual boundary condition that the potential goes to zero at infinity does
not work in the case of a long cylinder carrying a dc current. By this
reverse method we obtain the potential inside and outside the wire, then
the electric field by E

®
= 2 $ w and, finally, the surface charge density by eo
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times the normal component of the electric field outside the wire in the
limit in which r ® a. In this way we checked our calculations.

If we put w L = w R = w o or I= 0 in Eqs. (13) to (16), we recover the
electrostatic solution ( long wire charged uniformly with a constant charge
density s B , with total charge Q B = 2pal s B , namely,

w (r < a) = w o =
as B

eo

ln
l
a

( 17)

w (r > a) = w o
ln( l/r)
ln( l/a)

=
as B

eo
ln

l
r

( 18)

E
®

1(r < a) = 0 (19)

E
®

1(r > a) =
w o

ln( l/a)
r̂
r

=
a s B

eo

r̂
r

( 20)

We can also obtain the capacitance per unit length of this long, thin cylin-
drical wire as C/l = (Q B /w(a) )/l = 2peo /ln( l/a).

This is the first time in the literature the potentials, (8) and (14), and
the forces and electric fields, (10) and 16) , outside a cylindrical wire have
been calculated. Kirchhoff obtained Eq. (7) but did not consider the fields
and forces outside the wire (see Ref. 19, especially the last equation on
p. 400). Our analysis confirms and refines the previous work of Coombes
and Laue, who in 1981 discussed the limiting case of an infinitely long
wire. ( 24) They arrived at the same uniform electric field both inside and out-
side the wire. This is correct for an infinitely long wire. In our case we
arrived at a uniform electric field inside the wire and at an electric field out-
side the wire with longitudinal and radial components depending on r, as
we were considering a large but finite length l.

These expressions show that this force is proportional to the current
in the wire. Moreover, there will be not only a tangential component of the
electric field outside the wire but also a radial one. In the symmetric case
in which w L = 2 w R = RI/2, the ratio of the radial component of F

®
1 to the

tangential component is given by z/( r ln( l/r) ) . For a wire of 1-m length and
z = r = 10 cm we have this ratio as 0.4, indicating that these two com-
ponents are of the same order of magnetude.

Schaeffer ( cited in Ref. 7), Sommerfeld, Marcus, Griffiths, and Jackson
considered the electric field due to a long coaxial cable of length l carrying
a constant current along the inner wire of resistivity g and radius a, returning
along a hollow cylinder with inner radius b such that l >> b > a [Ref. 25,
pp. 125± 130, Eq. ( 8), Ref. 26, Ref. 23, pp. 336± 337, Ref. 7, Eq. (A17)]. In
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Sommerfeld’s case the return conductor had finite conductivity and an
external radius tending to infinity, while in Marcus, Griffiths, and Jackson’s
case the return conductor was a cylindrical shell of radius b and zero
resistivity. For all these authors the potential and electric field went to zero
for r > b. Their solution in the region a < r < b and considering the zero of
the potential at z = 0 is given by

w coaxial = 2
I

gpa 2

ln(b/r)
ln(b/a)

z ( 21)

We now compare this solution with our Eq. (14) in this particular
case, in which w R + w L = 0. The main difference is the appearance in our
case of ln( l/r)/ ln( l/a) , instead of ln(b/r)/ ln(b/a). That is, while the potential
and electric field outside the resistive current carrying wire (and also the
force exerted by this wire on a point charge) depend on the length of the
long wire, the same does not happen in the interior region of the coaxial
cable near z = 0. If we keep a, g, and I constant ( and also b for the coaxial
cable) and double the length of the wire ( coaxial cable) , the potential out-
side the wire will change but not that inside the coaxial cable. The two
solutions will only coincide if we fix b = l. As this is not the general case,
the two solutions are not equivalent to one another in all situations.

In the sequel we consider a force due to the square of the current.

5. FORCE PROPORTIONAL TO THE SQUARE OF THE CURRENT

Up to now we have considered only the force due to electrostatic
induction and the force of the surface charges on the stationary test charge.
We have not yet taken into account the force of the stationary lattice and
mobile conduction electrons on the stationary test charge. We consider it
here in this section, analyzing two theoretical models. We first consider
Lorentz’s law or LieÂ nard± Schwarzschild’s force. In this case there are also
components of the force exerted by a charge q2 belonging to the current
carrying circuit on q which depend on the square of the velocity of q2 , v 2

d ,
and on its acceleration. If we have a constant current, the acceleration of
q2 will be its centripetal acceleration due to any curvature in the wire,
proportional to v2

d /rc , where rc is the radius of curvature of the wire in each
point. This might lead to a force proportional to v 2

d or to I2. However, it
has been shown that if we have a closed circuit carrying a constant current,
there is no net effect of the sum of all these terms on a stationary charge
outside the wire. For a proof see Ref. 6, p. 697, exercise 14.13) or Ref. 8.
In conclusion, we might say the following: according to Lorentz’s force,
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the stationary lattice creates an electric field which is just balanced by the
force due to the free electrons inside the closed wire, even when there is
a constant current along the resistive wire. This might be interpreted as
considering the wire to be electrically neutral in its interior ( the radial Hall
effect is considered later).

We now consider Weber’s electrodynamics.( 11) As stated above, we are
neglecting the small radial Hall effect inside the wire due to the poloidal
magnetic field generated by the current. This means that the interior of the
wire can be considered essentially neutral. Despite this fact, Weber’s elec-
trodynamics predicts a force exerted by this neutral wire in a stationary
charge nearby, even for closed circuits carrying constant currents. The
reason for this effect is that the force exerted by the mobile electrons on the
stationary test charge is different from the force exerted by the stationary
positive ions of the lattice on the test charge. One of us has already per-
formed these calculations in related situations, so that we present here only
the final result. For the calculations see, for instance, Refs. 10 and 11
(Sec. 6.6, pp. 161± 168). Once more, we assume (1). For the situation in
Fig. 3, with a uniform current density J

®
= (I/pa2 ) ẑ, the force on the test

charge is given by

F
®

2 = 2 q
Ivd

4peo c2

r̂
r
= 2

mo

4p
2

qI2

a2en
r̂
r

if r > a ( 22)

where vd is the drifting velocity of the electrons. We also utilized
mo = 4p 3 10 2 7 kg m C 2 2 , c2 = 1/eo mo , and vd = I/pa2en, where e = 1.6 3
10 2 19 C elementary charge and n is the number of free electrons per unit
volume.

This force is proportional to the square of the current. The electric
field E

®
2 = F

®
2 /q points toward the current, as if the wire had become

negatively charged. Sometimes this second-order field is called motional
electric field.

If we have a bent wire carrying a constant current, Weber’s electro-
dynamics predicts another component of the force exerted by this current
on a stationary charge outside it, proportional to the acceleration of the
conduction electrons. As we are supposing a constant current, the relevant
acceleration here is the centripetal one proportional to v2

d /rc , where rc is
the radius of curvature of the wire at that location. This means that also
this component of the force will be proportional to v2

d or to I2. The order
of magnitude is the same as the previous one. In Refs. 10 and 11 (Sec. 6.6,
pp. 161± 168), we calculated the net second-order force on a stationary
charge due to a circular closed circuit with Weber’s force. We showed that
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its net value had the order of magnitude of Eq. ( 22), taking into account
the v2

d component of the force and also that due to the centripetal accelera-
tion of the conduction electrons. That is, Weber’s second order force does
not go to zero even for closed circuits, contrary to Lorentz’s force.

6. RADIAL HALL EFFECT

Another simple question which might be asked is the following: Is a
stationary resistive wire carrying a constant current electrically neutral in
its interior and along its surface?

Most authors quoted in Section 1 would answer positively to this
question as this was their reason for believing this wire would not generate
any electric field outside itself. However, we already showed that there
will be a longitudinal distribution of surface charges which will give
rise to the longitudinal electric field inside the wire and also to an electric
field outside it. Here we show that there will also be a radial electric field
inside the wire due to the fact that its interior is negatively charged. As we
saw in Section 1, Reitz et al. rejected explicitly this charge. But they were
not alone in this. See, for instance, Griffiths’ statements in Ref. 23
(p. 273)± ± `̀Within a material of uniform conductivity, $ . E = ( $ . J )/ s = 0
for steady currents (equation $ . J = 0) , and therefore the charge density is
zero. Any unbalanced charge resides on the surface ’’± ± or Coombes and
Laue ( 24) `̀For a steady current in a homogeneous conductor, the charge
density r is zero inside the conductor.’’ The same can be said of Lorrain
et al. (Ref. 27, p. 287): `̀ A wire that is stationary in reference frame S
carries a current density J. The net volume charge density in S is zero:
r = rp + rn = 0.’’

We here consider the radial Hall effect due to the poloidal magnetic
field inside the wire. As is usually considered (Ref. 15, p. 90), we suppose
the constant total current I to flow uniformly over the cross section of the
cylindrical wire with a current density J= I/pa2. With the magnetic circui-
tal law $ C B

®
dl

®
= mo IC , where C is the circuit of integration and IC is the

current passing through the surface enclosed by C, we obtain that the
magnetic field inside and outside the wire is given by

B
®
(r < a) =

mo Ir
2pa 2 Q̂ ( 23)

B
®
(r > a) =

mo I
2pr

Q̂ ( 24)
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The magnetic force on a conduction electron of charge q = 2 e inside
the wire, at a distance r < a from the center and moving with drifting
velocity v® = 2 |vd | z® , is given by

F
®
= qv® 3 B

®
= 2

|mo evd Ir|
2pa 2 r̂ ( 25)

This radial force pointing inward will create a concentration of
negative charges in the body of the conductor. In equilibrium there will be
a radial force generated by these charges which will balance the magnetic
force, qE = qvB. That is, there will be inside the wire, beyond the longitu-
dinal electric field E1 driving the current, a radial electric field pointing
inward given by

E
®

r( r < a) = 2
|mo vd Ir|

2pa 2 r̂ ( 26)

The longitudinal electric field inside the wire driving the current is
given by E1 = RI/l. In order to compare it with the magnitude of the radial
electric field E r due to the Hall effect, we consider the maximum value of
this last field very close to the surface of the wire, at r ® a: E r ® |mo vd I|/
2pa . This means that (with R = l/gpa2)

|Er |
|E1 |

=
|mo vd ga |

2
(27)

For a typical copper wire (vdf 4 3 10 2 3 ms 2 1 and g = 5.7 3 10 7
V m) with

1-mm diameter, this yields E r /E1f 7 3 10 2 5 . This shows that the radial
electric field inside the wire is negligible compared to the longitudinal one.

By Gauss’ law $ . E = r/eo , we obtain that inside the wire there will be
a constant negative charge density r 2 given by r 2 = 2 |Ivd |/pa 2c2. The
total charge inside the wire is compensated by a positive charge spread
over the surface of the wire with a constant surface density s + = |r 2 a/2 | =
|Ivd |/2pac 2. That is, the negative charge inside the wire in a small segment
of length dz, r 2 pa 2 dz, is equal and opposite to the positive charge along
its surface, s + 2pa dz. This means that the radial Hall effect will not
generate any electric field outside the wire, only inside it. For this reason
it is not relevant to the experiments discussed here. In any event it is
important to clarify this effect.

Contrary to the surface density of free charges s f (a, z) , this constant
charge density s + does not depend on the longitudinal component z.
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In our analysis of the radial Hall effect, we are not considering the
motional electric field discussed above, as it is not yet completely clear
whether it exists or not.

In conclusion, we may say that the total surface charge density along
the wire, not taking into account the motional electric field and the induc-
tion of charges in the conductor due to external charges, is given by the
constant s + added to the s f given by Eq. (12).

We now compare all three components of the electric field outside the
wire with one another and discuss an important experiment related to this
subject.

7. DISCUSSION AND CONCLUSIONS

Although many authors forget about the force due to electrostatic
induction when dealing with a current carrying wire interacting with an
external charge, there is no doubt it exists. Comparing the three forces
above, it is the only one which diverges as we approach the wire. If we are
far away from the wire, it falls as 1/r2, while the radial component of F1

and F2 fall as 1/r.
We now compare the three components of this force in a particular

example: copper wire ( g = 5.7 3 10 7
V m, n = 8.5 3 10 28 m 2 3 ) with a length

l = 1 m and a diameter of 1 mm (a = 5 3 10 2 4 m) The resistance of the wire
is then given by R = l/gpa2 = 0.022 V. With a potential difference between
its extremities of w L 2 w R = 1 V, this yields a current of I= 44.8 A. The
drifting velocity in this case amounts to vd = I/pa2en = 4 3 10 2 3 ms 2 1 . We
suppose, moreover, the symmetrical case in which w R = 2 w L = 2 0.5 V.
The test charge will be a typical one generated by friction, q = 10 2 9 C, at
a distance of r = 10 cm = 0.1 m to the wire. The magnitude of each one of
the forces and their ratios are then given by ( considering only the radial
component of F

®
1 and z = r = 10 cm): Fof 10 2 6 N, F1f 10 2 10 N, F2f

10 2 16 N ( in terms of electric field: Eof 103 V/m, E1f 10 2 1 V/m, and E2f
10 2 7 V/m), so that Fo /F1f 104, Fo /F2f 1010, and F1 /F2f 106. This means
that, in this case, Fo >> F1 >> F2 or Eo >> E1 >> E2 .

Despite this fact, the force F
®

1 has already been observed in the
laboratory by Jefimenko. He had an ingenious idea of utilizing grass seeds
as test particles near current carrying wires. They are electrically neutral in
normal state so that they do not induce any charges in the conductor. On
the other hand, they are easily polarized in the presence of an electric field,
aligning themselves with it. The lines of electric field are then observed in
analogy with iron fillings generating the lines of magnetic field. What we
consider here is the result of his experiment as presented in Plate 6 of Ref. 3
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( see also his Section 9± 6, `̀ Electric Field Outside a Current-Carrying
Conductor,’’ pp. 299± 305) and Fig. 1 of Ref. 2. The current was flowing in
a circuit like that in our Fig. 3, with symmetrical potentials: w R = 2 w L . He
performed the experiment but did not make the calculations for this case.
These calculations have been presented here. In order to compare our
results with his experiments, we need to obtain the lines of electric field. We
obtain this in the plane xz ( y = 0). Any plane containing the z axis will
yield a similar solution. We are looking for a function j(r, z ) such that

$ j( r, z ) $ w (r, z) = 0 (28)

For r < a we have w as a linear function of z, such that j can be found
proportional to r. We write it as j( r < a, z) = 2 Alr, with A as a constant.
The equipotential lines w(r, z) = constant can be written as z1( r) = K1 , where
K1 is a constant ( for each constant we have a different equipotential line) .
Analogously the lines of electric force will be given by z2(r) = K2 , where K2

is another constant ( for each K2 we have a different line of electric force) .
From Eq. ( 28) we get dz2 /dr = 2 1 /(dz1 /dr) = ( ¶ w/ ¶ z) /( ¶ w/ ¶ r) . Integrating
this equation we can obtain j(r, z) . With Eq. (8) this yields the solution for
r > a. We are then led to

j( r, z) = 2 Alr, if r < a ( 29)

j( r, z) = Ar2 ln
r
l
2 A

r2

2
2 Az2 2 2Bz, if r > a ( 30)

where A = (w R 2 w L )/l = 2 I/pga2 and B = (w R + w L )/2. From these equa-
tions we can easily verify Eq. ( 28).

In order to compare these results with Jefimenko’s experiment, we
need essentially the value of l/a. From his Plate 6 we get l/af 40/3. The
plot of the equipotentials between z = 2 l/2 and l/2 given by Eqs. ( 7) and
(8) is given in Fig. 5. A plot of the lines of electric force given by Eqs. ( 29)
and (30) is given in Fig. 6. This is extremely similar to Jefimenko’s experi-
ment (Plate 6 of Ref. 3 or Fig. 1 of Ref. 2), showing the correctness of our
approach.

There is also an interesting experiment by Sansbury in which he detected
directly a force between a charged metal foil and a current-carrying con-
ductor by means of a torsion balance. (28) He placed a neutral silver foil
which was at the extremity of a torsion balance close to a U-shaped neutral
conductor without current. When he charged the foil with a charge of
approximately 0.5 3 10 2 9 C, he observed an attraction between the vane
and the wire. This was due to the force of electrostatic induction Fo
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Fig. 5. Equipotentials as given by Eqs. ( 7) and (8) with
Jefimenko’s value l/af 40/3 and with s B = 0 (or wR = 2 w L ).

discussed above. He then passed a dc current of 900 A in the wire and
observed an extra attraction or repulsion between the charged foil and the
wire, depending on the sign of the charge in the foil. This force was of the
order of 10 2 7 N, although he was not able to make precise measurements.
Although he analyzed the possibility that this extra force might be the force
F1 discussed here, he only considered the longitudinal electric field outside
the wire. He then concluded that this force would be three orders of
magnitude smaller than the effect he measured. However, he was not aware
of the radial component of E

®
1 , which can be larger than the longitudinal

component, as we showed here. Moreover, his U-shaped wire was bent
close to the foil and the approximation of a long straight wire may not use
applicable. Close to a corner the electric field outside the wire is even larger
than the longitudinal one inside it.( 29 ) Maybe what Sansbury detected

Fig. 6. Lines of electric force as given by Eqs. (29) and (30)
with wR = 2 w L .
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directly was the force F1 discussed here. It would be important to repeat his
experiment carefully taking this into account. Further discussions of his
experiment with different approaches can be found in Refs. 30± 32 and
Ref. 33 (Sec. 6.10).

The example discussed here is important to show clearly the existence
of the electric field outside a resistive wire carrying a constant current.
It does not depend on a variable current ( longitudinal acceleration of the
electrons along the wire) or on a centripetal acceleration of the electrons
(due to any curvature in the wire). That is, this electric field will be there
even if there is not any acceleration of the conduction electrons. In the case
of a coaxial cable discussed by Sommerfeld and many others (see above),
they have found an electric field only in the region between the cables, but
not outside the return conductor. The reason for this is that they were
considering a return conductor of infinite area (Sommerfeld) or of zero
resistivity (Marcus, Griffiths, and Jackson) . For this reason it may not
have been clear to many people that usually any current carrying resistive
wire should generate an electric field outside it. We hope that the calcula-
tions presented in this paper, coupled with Jefimenko’s experiments, will
make people aware of this electric field.

As regards those who consider magnetism as a relativistic effect, we
have shown here that a resistive current carrying wire generates not only
a magnetic field but also an electric field. As Jackson has shown, it is
impossible to derive magnetic fields from Coulomb’s law and the kinematics
of special relativity without additional assumption (Ref. 6, pp. 578± 581, and
Ref. 34).

It should also be mentioned that the magnetic field in this case is the
usual poloidal field in the direction QÃ , proportional to r for r < a and to 1/r
for r > a. It is orthogonal to E

®
1 at all points in space. This means that

Poynting’s vector S
®
= E

®
3 B

®
/mo will follow the equipotential lines represented

in Fig. 5 when w R = 2 w L . This general behavior of the lines of Poynting’s
vector was pointed out by Heald. ( 22) As we can see from Fig. 5, just outside
the wire S

®
is orthogonal to it only at z = 0. At all other points it is inclined

relative to the z axis, at an angle h with a tangent given by the ratio of the
radial and longitudinal components of E

®
1 . As we have seen, just outside

the wire this is given by tan h = z/(a ln(l /a) ) . Many textbooks consider an
electric field outside the current-carrying wire only when discussing bound-
ary conditions. As the longitudinal component of E

®
is continuous at a

boundary and must exist inside a resistive wire carrying a current, it must
also exist just outside the wire. These authors then present Poynting’s vec-
tor pointing radially inward toward the wire ( see, e.g., Ref. 35, pp. 180± 181,
and Ref. 12, p. 27± 8). This goes back to Poynting himself in 1885, as
pointed out by Marcus.( 26) There are two main things to comment on here.
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First, these drawings and statements suggest that this electric field should
exist only close to the wire, while as a matter of fact it exists at all points
in space. Second, they indicate that these authors are not aware of the sur-
face charges generating the field. As we have seen, it is only at one point
that S

®
will be orthogonal to the wire just outside it. This point is an excep-

tion and not the rule. The rule is that there will be a radial component
which may be larger than the longitudinal one, pointing toward the wire
or away from it. One of the effects of this radial component is that S

®
will

usually be inclined just outside the wire and not orthogonal to it.
The verification of the existence or not of the second-order electric

field is much more difficult due to its small order of magnitude (compared
with Eo and E1 ). However, if the resistance of the wire goes to zero, s A also
goes to zero. This means that in a superconductor there should not be an
external electric field proportional to the current. Avoiding also the induc-
tion force, there remains in this case only the second-order electric field.
This was the approach utilized by Edwards et al. in their experiment, (8 )

which is the best one known to us analyzing this effect. They found an elec-
tric field proportional to I2, independent of the direction of the current,
pointing toward the wire and with an order of magnitude compatible with
that predicted by Weber’s law. Despite this positive evidence, more
research is necessary before a final conclusion may be drawn related to this
second-order electric field (Ref. 36 and Ref. 11, Sec. 6.6, pp. 161± 168).

As we have seen, usually Fo >> F1 >> F2 . Moreover, Fo and F1 have
been shown to exist experimentally. We can then disregard the criticisms of
Maxwell, Whittaker, and Skinner presented above against Weber’s elec-
trodynamics. That is, there is a force between the wire and q proportional
to the current I, contrary to their statements. Their argument against
Weber’s electrodynamics is then invalid. It is much more difficult to deter-
mine if there is or is not a second-order component of this force propor-
tional to v 2

d /c2. Only future experiments taking into account all of these
effects as Fo and F1 can decide this matter.

In conclusion, we can say that despite the widespread belief that a
stationary resistive wire carrying a constant current exerts no force on a
stationary charge, there will certainly be a component of this force due to
the induced charges and another one proportional to the current in the
wire, as proved by these calculations and Jefimenko’ s experiment. The
existence or not of a second-order force still needs to be confirmed.
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APPENDIX

We now show how to calculate integrals ( 5) and (6).
Applying approximation (1) in the limits of integration of I1 and

integrating it in u yields a zero value (as it is an odd function integrated
between symmetric limits).

Integrating I2 in u yields, applying (1) in its limits of integration

I2 = #
2p

0
dQ 2 ln Ï s2 + (l /2a) 2 + ( l /2a)

Ï s2 + (l /2a) 2 2 ( l /2a)
( 31)

Once more with approximation (1) this can be written

I2 = #
2p

0
dQ 2 ln

( l /a) 2

s2 = 4p ln
l

a
2 #

2p

0 3 ln 1 1 2 2
r
a

cos Q 2 +
r2

a2 2 4 dQ 2 ( 32)

This last integral is equal to zero if r < a. If r > a, we can put r2/a2 in
evidence and utilize this result once more to solve the last integral, namely,

#
2p

0 3 ln 1 1 2 2
r
a

cos Q 2 +
r2

a2 2 4 dQ 2 = 0, if r < a ( 33)

#
2p

0 3 ln 1 1 2 2
r
a

cos Q 2 +
r2

a2 2 4 dQ 2 = 2p ln
r2

a2 , if r > a ( 34)

This means that the final value of I2 is found to be

I2 = 4p ln
l

a
if r < a, ( 35)

I2 = 4p ln
l

r
if r > a, ( 36)
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- Equation (12) should be replaced by: 

 

𝜎𝑓(𝑎, 𝜑, 𝑧) = −
𝑅𝜀0𝐼

𝑎ln(𝑙/𝑎)

𝑧

𝑙
+
𝜀0(𝜙𝑅 +𝜙𝐿)

2𝑎ln(𝑙/𝑎)
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