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On the Propagation of Electromagnetic Signals in
Wires and Coaxial Cables According to Weber's
Electrodynamics
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We derive the equation describing the flow of a variable current in straight wires
and in coaxial cables from Newton`s second law of motion plus Weber`s electro-
dynamics. We show that in both cases the signal propagates at light velocity.

1. INTRODUCTION

Our goal is to derive the equation describing the flow of a variable current
in conducting wires like those of Figs. 1 to 4 from Weber's electrodynam-
ics.(1) In Fig. 1 we have a cylindrical wire of radius a and length l>>a
carrying a current I(z, t) over its cross section ?a2. In Fig. 2 the symmetri-
cal surface current K9 =K(z, t) ẑ flows only along the periphery 2?a of the
cylindrical shell of radius a, I(z, t)=2?aK(z, t). In Figs. 3 and 4 we have
coaxial cables with inner conductors like those of Fig. 1 and 2, respectively,
but with an outer cylindrical shell of radius b>a carrying the return
current. As we are supposing symmetrical currents which do not depend on
the polar angle ., the source of the signal (closing a switch, an ac power
supply,...) must have this property. The wires and cables are always sup-
posed at rest in the laboratory.

In order to arrive at the desired equation we first calculate the force on
a test charge q1 located at r� 1 , moving with velocity v� 1 and acceleration a� 1 ,
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Fig. 1. Conducting cylindrical wire of radius a and length
l>>a carrying a current I(z, t) over its cross section.

Fig. 2. Conducting cylindrical shell of radius a and length
l>>a carrying a surface current density K9 =K(z, t) ẑ over
its periphery: I(z, t)=2?aK(z, t).

Fig. 3. Coaxial cable with inner wire of radius a carrying a
current Ia(z, t) over its cross section of area ?a2, with an outer
cylindrical shell of radius b and length l>>b>a carrying the
return current Ib(z, t)=&Ia(z, t) over its periphery of length 2?b.

Fig. 4. Coaxial cable with inner cylindrical shell of radius a
carrying a current Ia(z, t) over its periphery 2?a, with an outer
cylindrical shell of radius b and length l>>b>a carrying the
return current Ib(z, t) over its periphery 2?b.
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relative to the center of the wire (origin of the coordinate system, with the
z axis along the axis of the wire). There are three kinds of source charges
in the wire exerting electromagnetic forces on the test one: (A) Free charges
over the surface of the wire, (B) the stationary positive lattice making the
body of the wire, and (C) the moving conduction electrons along the body
of the wire which constitute the current. We consider separetely each one
of them.

(A) When a current flows in a resistive wire connected to a battery
or other power supply, the electric field driving the conduction electrons
against the resistive friction of the wire is due to free charges distributed
along the surface of the wire. The battery creates and maintains this
distribution of charges but does not generate the electric field along the
circuit. This was first pointed out by Kirchhoff and further analysed by
Sommerfeld, Jefimenko, Heald, Jackson and many others: Refs. 2�4 with
English translation in Ref. 5, Ref. 6, pp. 125�130, Refs. 7�9. We illustrate
these surface charges in Fig. 5. The surface density of these free charges is
represented by _f (z, t). We need to integrate the force exerted on a test
charge q1 by a charge element dqf=_f (z2 , t) a d.2 dz2 over the surface of
the wire of radius a. Here .2 is the poloidal angle varying from 0 to 2?,
a d.2 is an element of arc and dz2 is an element of length along the wire.

(B) The stationary positive lattice also exerts force on the test
charge. A charge element dq2+ of the lattice located at r� 2 is represented in
Fig. 6. Its volume charge density for the case of Fig. 1 is represented by \+

and its surface charge density for the case of Fig. 2 is represented by _+ .
For the homogeneous wire considered here, \+ and _+ are constant over
the wire and do not depend on time. We need to integrate the force on q1

Fig. 5. Qualitative representation of the free surface charges with generate the electric field
inside and outside the wire. They exert a force on a test charge q1 located at r� 1 and moving
with velocity v� 1 and acceleration a� 1 relative to the center of the wire.
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Fig. 6. Charge element of the lattice dq2+ located at r� 2 .

due to dq2+=\+r2 d.2 dr2 dz2 located at a distance r2 from the axis of the
wire over its volume in the case of Fig. 1 (or dq2+ =_+ a d.2 dz2 over the
surface of the cylindrical shell of Fig. 2).

(C) The moving conduction electrons also exert force on the test
charge. Their volume charge density for the case of Fig. 1 is represented by
\c& and their surface charge density for the case of Fig. 2 is represented
by _c& . For the homogeneous wires considered here \c& and _c& are con-
stant over the wires and do not depend on time, as it happened with for
\+ and _+ . The velocity and acceleration of the conduction electrons at a
time t in a cross section located at z2 are represented by v� 2&=v2&(z2 , t) ẑ
and a� 2& =a2&(z2 , t) ẑ, respectively, Fig. 7. We need to integrate the force
on the test charge q1 exerted by a charge element dqc& =\c& r2 d.2 dr2 dz2

located at a distance r2 from the axis of the wire over its volume in the case
of Fig. 1 (or dqc&=_c& a d.2 dz2 over the surface of the cylindrical shell of
Fig. 2).

As a first approximation we assume that the charge density of the con-
duction electrons is equal and opposite to the charge density of the positive
lattice, namely,

\c& =&\+ and \c&=&_+ (1)

In order to integrate these three forces we utilize Weber's electro-
dynamics. Accordingly the force exerted by a charge element dq2 located
at r� 2 , moving with velocity v� 2 and acceleration a� 2 on a point charge q1

Fig. 7. Conduction charge element dqc& located at r� 2 , moving with velocity v� 2&=v2&(z2 , t) ẑ
and acceleration a� 2&=a2&(z2 , t) ẑ.
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located at r� 1 , moving with velocity v� 1 and acceleration a� 1 is given by [Ref. 1,
Chapter 3]:

dF9 =
q1 dq2

4?=o

r̂12

r2
12 _1+

1
c2 \v� 12 } v� 12&

3
2

(r̂12 } v� 12)2+r� 12 } a� 12+& (2)

where =o=8.85_10&12 C2 } N&1 } m&2 is the permittivity of vacuum, c=
3_108 m } s&1, r� 12=r� 1&r� 2 , v� 12=v� 1&v� 2 , a� 12=a� 1&a� 2 , r12=|r� 12 | and
r̂12=r� 12 �r12 is the unit vector pointing from 2 to 1.

We begin with the cases of Figs. 1 and 2 and later on consider a
coaxial cable. We follow essentially Kirchhoff 's approach, (1) Sec. 3.1. After
calculating the force on a generic test charge we consider it to be a conduc-
tion electron. With Newton's second law of motion F=ma we get one
equation with two unknowns, the current and the surface density of free
electricity. The other equation connecting these two unknows is that for the
conservation of charges. With these two relations we then obtain the equa-
tion describing the propagation of electromagnetic signals in wires and
coaxial cables according to Weber's electrodynamics.

2. STRAIGHT WIRE

The first situation to be considered here is that of a straight wire
of radius a and length l>>a, Fig. 1. We suppose a symmetrical current
density J9 =J(z, t) ẑ, where the z axis has been chosen along the axis of the
wire with z=0 at its center. We consider cylindrical coordinates (r, ., z),
with r being the distance of the charge to the axis of the wire and not to
the origin of the coordinate system (we do not employ the usual notation
\ to avoid confusion with the charge density). As pointed out above, our
procedure will be to integrate Eq. (2) for the force acting on the test charge
q1 due to the coulombian, velocity and acceleration terms. The charges
exerting the force will be the surface charges with density _f , the positive
lattice with density \+ and the conduction electrons with density \c& . We
begin with the force exerted by the free surface charges on the test charge.

As we are considering only the symmetrical situation in which the
surface current does not depend on ., the same will happen with the free
surface charge density: _f=_f (z, t). Accordingly the force on the test
charge q1 cannot depend on its poloidal angle .1 . To simplify the calcula-
tions without any loss of generality we consider it located at .1=0, so that
r� 1=r1 x̂+z1 ẑ, with velocity v� 1=x* 1 x̂+ y* 1 ŷ+z* 1 ẑ and acceleration a� 1=
x� 1 x̂+ y� 1 ŷ+z� 1 ẑ.
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Instead of integrating directly the coulombian force it is easier to
integrate the electric potential and then obtain the force by taking the
gradient of this potential. This was the approach employed by Kirchhoff
and we follow it here.

The coulombian potential ,(r1 , z1 , t) where this test charge is located,
due to the free surface charges in the current carrying wire, is then given
by (with dq2=_f a d.2 dz2 located at r� 2=a cos .2 x̂+a sin .2 ŷ+z2 ẑ):

,(r1 , z1 , t)

=
1

4?=o
|

2?

.2=0
|

l�2

z2=&l�2

_f (z2 , t) a d.2 dz2

- r2
1+a2&2r1a cos .2+(z2&z1)2

=
1

4?=o
|

2?

.2=0
|

l�2

z2=&l�2

_f (z2 , t) d.2 dz2

- (1&2(r1 �a) cos .2+(r2
1�a2))+((z2&z1)�a)2

(3)

Defining s2#1&2(r1 �a) cos .2+(r2
1 �a2)�0 and u#(z2&z1)�a this

can be written as

,(r1 , z1 , t)=
a

4?=o
|

2?

.2=0
|

(l&2z1)�2a

u=&(l+2z1)�2a

_f (au+z1 , t) d.2 du

- s2+u2

Kirchhoff was able to solve these integrals utilizing the approxima-
tions

l>>a, l>>r1 , and l>>|z1| (4)

We present here the main ideas behind his approach although not
repeating his steps and derivation. For any given r1 and .2 the maximum
value of 1�- s2+u2 is at u=0 (or z2=z1). For z2 far from z1 the value of
u will be of the order l�a>>1 due to the approximation (4). This means
that 1�- s2+u2 will be close to zero if z2 is far from z1 , as s is of the order
of unity. Kirchhoff could then remove _f (z2 , t) from the integrand taking
its value at z2=z1 . We are then led to the approximate result

,(r1 , z1 , t)=
a_f (z1 , t)

4?=o
|

2?

.2=0
|

(l&2z1)�2a

u=&(l+2z1)�2a

d.2 du

- s2+u2
(5)
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These integrals can be solved with the approximations (4) utilized
here, yielding (see Appendix):

,(r1 , z1 , t)=
a_f (z1 , t)

=o
ln

l

a
if r1�a (6)

,(r1 , z1 , t)=
a_f (z1 , t)

=o
ln

l

r1

if r1�a (7)

The coulombian force is then given by (with F9 =&q1{1 ,):

F9 =&
q1a
=o

�_f

�z1 \ln
l

a+ ẑ if r1<a (8)

F9 =
q1a_f

=o

r̂1

r1

&
q1a
=o

�_f

�z1 \ln
l

r1 + ẑ if r1�a (9)

Later on we consider the contribution to this force due to the motion
of the test charge and of the free surface charges showing that they are
negligible. These two last equations are then the expression for the force on
the test charge due to the free surface charges.

We turn now to the force on the test charge due to the positive
stationary lattice and to the conduction electrons. As the lattice is at rest
we have v� 2+=0 and a� 2+ =0. According to Eq. (2) the force of the lattice
of Fig. 1 on the test charge q1 is then given by:

F9 =|
a

r2=0
|

2?

.2=0
|

l�2

z2=&l�2

q1 dq2+

4?=o

r̂12

r2
12 _1+

1
c2 (v� 1 } v� 1&

3
2

(r̂12 } v� 1)2+r� 12 } a� 1+&
(10)

Before integrating this force we consider the force on the test charge
due to the moving conduction electrons (with velocity v� 2& and accelera-
tion a� 2& ). From Eq. (2) this is given by:

F9 =|
a

r2=0
|

2?

.2=0
|

l�2

z2=&l�2

q1 dqc&

4?=o

r̂12

r2
12

__1+
1
c2 (v� 12& } v� 12& &

3
2

(r̂12 } v� 12& )2+r� 12 } a� 12& +& (11)

We need to integrate these two forces over the volume of the wire of
Fig. 1. To this end we replace dq2+ by \+r2 d.2 dz2 dr2 and dq2& by
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\c& r2 d.2 dz2 dr2 . Due to our approximation (1) that the wire is essen-
tially neutral, except for the surface charges considered above, we can then
add Eqs. (10) and (11). The coulombian term and the terms proportional
to v2

1 , to (r̂12 } v� 1)2 and to r� 12 } a� 1 cancel out. The remaining terms are (with
c2=1�+o =o and taking out of the integral the constant \c&):

F9 =
+oq1\c&

4? |
a

r2=0
|

2?

.2=0
|

l�2

z2=&l�2

r̂12

r2
12 _v2

2& &2v� 1 } v� 2&

+3( r̂12 } v� 1)(r̂12 } v� 2&)&
3
2

(r̂12 } v� 2&)2&r� 12 } a� 2& & r2 d.2 dz2 dr2 (12)

The terms proportional to v2
2& and to (r̂12 } v� 2&)2 are usually small

compared to the coulombian forces (8) and (9). Moreover, they point
towards the radial direction r̂1 .(10) As we are interested only in the
longitudinal propagation of the signal we will neglect these terms.

The terms depending on v� 1 } v� 2& and ( r̂12 } v� 1)(r̂12 } v� 2&) give rise to the
magnetic force q1v� 1_B9 , (10�12) [1, Secs. 6.6 and 7.4].(13) As the current is
in the longitudinal direction ẑ, the magnetic field will be in the poloidal
direction .̂. The test charge considered here will be a conduction electron
moving in the ẑ direction, so that q1v� 1_B9 will be in the radial direction r̂1 .
As we are interested only in the longitudinal propagation of the signal
along the z direction, we will not consider these terms either.

We then need to take into account the acceleration term. As we are
considering a straight wire with v� 2& =v2&(z2 , t) ẑ and a� 2&=a2&(z2 , t) ẑ,
this term will appear when there is alteration of the strength of the current
(acceleration of the conduction electrons). With r� 1=r1 x̂+z1 ẑ and r� 2=
r2 cos .2 x̂+r2 sin .2 ŷ+z2 ẑ this term can be written as:

F9 =
+oq1\c&

4? |
a

r2=0
|

2?

.2=0
|

l�2

z2=&l�2
r2 d.2 dz2 dr2

_
(r1&r2 cos .2) x̂&r2 sin .2 ŷ&(z2&z1) ẑ

[r2
1+r2

2&2r1 r2 cos .2+(z2&z1)2]3�2 (z2&z1) a2&(z2 , t) (13)

Integrating in .2 the y component goes to zero. Once more with
Eq. (4) and Kirchhoff 's great idea of approximation we remove a2&(z2 , t)
from the integrand taking its value at z2=z1 , yielding

F9 =
+oq1\c& a2&(z1 , t)

4? |
a

r2=0
|

2?

.2=0
|

l�2

z2=&l�2
r2 d.2 dz2 dr2

_
(r1&r2 cos .2) x̂&(z2&z1) ẑ

[r2
1+r2

2&2r1 r2 cos .2+(z2&z1)2]3�2 (z2&z1) (14)

1114 Assis



Integrating in z2 the x component goes to zero, as we are supposing
l>>|z1|. Calling z2&z1#m and r2

1+r2
2&2r1r2 cos .2#n2 we are then

led to:

F9 =&
+oq1\c& a2&(z1 , t)

4?
ẑ |

a

r2=0
|

2?

.2=0
|

l�2

m=&l�2
r2 d.2 dm dr2

m2

(n2+m2)3�2

(15)

These integrals can be solved utilizing (4), see Appendix, yielding

F9 = &
q1+oa2\c& a2&(z1 , t)

2 \ln
l

a+ ẑ if r1�a (16)

F9 = &
q1+oa2\c& a2&(z1 , t)

2 \ln
l

r1 + ẑ if r1�a (17)

These equations can be written as

F9 =&q1

�A9
�t

(18)

where

A9 (r1 , z1 , t)=
+o

2?
I(z1 , t) \ln

l

a+ ẑ if r1�a (19)

A9 (r1 , z1 , t)=
+o

2?
I(z1 , t) \ln

l

r1+ ẑ if r1�a (20)

and

I(z1 , t)=?a2\c& v2&(z1 , t) (21)

�I
�t

=?a2\c& a2&(z1 , t) (22)

Here I(z1 , t) is the total current through the cross section ?a2 in z=z1 , at
the time t.

Up to now we included the forces on a test charge due to the free elec-
tricity considered at rest and to the motion of the conduction electrons. We
might think that the free electricity is moving together with the conduction
electrons, so that we would need to calculate the force of this free electricity
on a test charge taking into account the acceleration of _f . If this is done,
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we obtain essentially Eqs. (16) and (17) with _f replacing a\c& �2. The den-
sity of conduction electrons in a typical metallic conductor is of the order
of one electron per atom, yielding: |\c& |r1010 C } m&3. We can estimate
_f observing that in linear conductors it is a linear function of the axial
coordinate.(8) For instance, consider a coaxial cable of inner radius a and
outer radius b, with conductivity g. Then the surface charge density of the
inner conductor _a

f when it is flowing a current I is given by (see Ref. 6,
pp. 125�130): _a

f =&=oIz�?ga3 ln(b�a). With a copper wire of inner radius
1 mm, outer radius 2 mm, carrying a current of 100 A the charge density
at the large distance of 100 m is only |_a

f |r10&7 C�m2. We then have
_a

f r10&7 C�m2<<a\c& �2r107 C�m2. This means that in these calcula-
tions it does not matter if this free electricity is moving or not with the con-
duction electrons. The effect of their motion is negligible compared with the
effect of the moving conduction electrons. We can then say that all relevant
electromagnetic effects have been taken into account here.

We now suppose the test charge to be a conduction electron: q1=
&e=&1.6_10&19 C, v� 1=v2&(z1 , t) ẑ and a� 1=a2&(z1 , t) ẑ. In this case
we must also include the frictional force due to its collisions with the
lattice. The average value of this force can be represented by &bv� 1 , where
the coefficient of friction b is given by b=\+e�g=&e\c& �g, g being the
conductivity of the wire, (14) Sec. 7.7. Writing the resistance R of the wire of
radius a as R=l�g?a2 this can also be written as b=&e\c& ?a2R�l.

We can now write down the z component of the equation of motion
for a conduction electron applying Newton's second law of motion
Fz=maz . Considering the frictional force plus Eqs. (8), (16) and dropping
the subscript 1 yields:

ea
=o \ln

l

a+
�_f (z, t)

�z
+

e+o a2\c&

2 \ln
l

a+ a2&(z, t)

+
e?a2R\c&

l
v2&(z, t)=ma2&(z, t) (23)

Usually |e+oa2\c&(ln(l�a))�2|>>m, (15) so that we can neglect the
term ma2& in this equation. For instance, for a one meter wire with one
millimeter diameter we have, with e=1.6_10&19 C and \c& r&1010

C } m&3, |e+o a2\c&(ln(l�a))�2|r2_10&21 kg, which is much greater than
the electron mass m=9_10&31 kg.

With Eqs. (21) and (22) this equation can then be written as (multi-
plying it by =o �ea ln(l�a) and utilizing c2=1�+o =o):

�_f

�z
+

1
2?a

1
c2

�I
�t

=&
=oR

al ln(l�a)
I (24)
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There are two unknowns in this equation, _f and I. In order to relate
them we utilize the equation for the conservation of charges, { } J9 =
&�\f ��t. For the case considered here of a current flowing in the z direc-
tion over the cross section ?a2 of the wire of radius a this is equivalent to:

�I
�z

=&2?a
�_f

�t
(25)

Applying ���t in Eq. (24), multiplying it by &2?a, and utilizing Eq. (25)
yields:

�2I
�z2&

1
c2

�2I
�t2 =

2?=o R
l ln(l�a)

�I
�t

(26)

This is the equation of telegraphy, which will also be satisfied by _f ,
by ,(a, z, t) and by the z component of A9 at r=a, Az(a, z, t).

If we had performed the calculations with the surface current K
flowing over the periphery 2?a of the cylindrical shell of radius a, then the
longitudinal equation of motion, instead of Eq. (23), would be:

ea
=o \ln

l

a+
�_f

�t
+e+o a_c& \ln

l

a+ a2&+
2?aeR_c&

l
v2&=ma2& (27)

The equation for the conservation of charges in this case would read

�K
�z

=&
�_f

�t
(28)

The final equation for K, for I=2?aK, for _f , for ,(a, z, t) and for
Az(a, z, t) would also be given by (26).

If the resistance of the wire is negligible, Weber's electrodynamics plus
Newton's second law of motion predicts a current flow obeying the wave
equation. That is, with a signal propagating at light velocity.

3. COAXIAL CABLE

We now perform the same calculations as above but considering a
coaxial cable composed of two cylindrical shells of radii a and b>a, with
currents flowing longitudinally along the z axis, Fig. 4. The return conduc-
tor at \=b is supposed to have zero resistivity. The length l of the cable
is supposed to be much larger than b and a. This case was not considered
by Kirchhoff and has never been treated by Weber's electrodynamics.
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Beyond the conditions above, we need only two further relations
connecting the free surface charge densities (_a

f and _b
f ) and surface current

densities (Ka and Kb) in the inner and outer conductors. The most
reasonable conditions are that (see Ref. 6, pp. 125�130):

dQa(z, t)=&dQb(z, t) or 2?adz_a
f (z, t)=&2?bdz_b

f (z, t) (29)

Ia(z, t)=&Ib(z, t) or 2?aKa(z, t)=&2?bKb(z, t) (30)

The approximations utilized here are

l>>b>a, l>>r and l>>|z| (31)

With these conditions, integrating for both shells as in the previous
section and utilizing Kirchhoff 's approximation method yields:

a_a
f ln(b�a)�=o , if r�a

,(z, t)={a_a
f ln(b�r)�=o , if a�r�b (32)

0, if l>>r�b

+oIa ln(b�a) ẑ�2?, if r�a
A9 ={ +oIa ln(b�r) ẑ�2?, if a�r�b (33)

0, if l>>r�b

0, if r<a
B9 ={ +oIa .̂�2?r, if a�r�b (34)

0, if l>>r>b

According to Weber's electrodynamics the force on a test charge is
then given by (with Ia(z, t)=2?aK a(z, t)):

F9 =&q {,&q
�A9
�t

+qv� _B9 (35)

If we have r<a, a�r�b or l>>r>b this yields, respectively:

F9 = &
qa
=o

ln
b
a \

�_a
f

�z
+

1
c2

�Ka

�t + ẑ (36)

F9 =
qa
=o

_a
f

r
r̂&

qa
=o

ln
b
r \

�_a
f

�z
+

1
c2

�Ka

�t + ẑ+qv� _
+oIa

2?r
.̂ (37)

F9 =0 (38)
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If we apply Newton's second law of motion to a conduction electron
at r=a we must include Eq. (35) and also the resistive force &bv� 2& due
to its collision with the lattice (at \=b there is no resistive drag as we are
supposing a superconducting return conductor). With the equation for the
conservation of charges (28) and considering only the z component of the
total force this yields, by a similar reasoning as in the previous section
(considering now |e+o a_c& ln(b�a)|>>m which is the case for most coaxial
cables):

�2!
�z2&

1
c2

�2!
�t2 =

2?=o Ra

l ln(b�a)
�!
�t

(39)

where Ra is the resistance of the internal wire and ! represents any one of
the following quantities: _a

f , _b
f , Ka , Kb , Ia , Ib , ,(a) or Az(a).

These results are essentially the same as for a straight wire, but now
replacing ln(l�a) with ln(b�a).

If the current were flowing all over the cross-section ?a2 of the inner
conductor the result would be essentially the same.

In conclusion we may say that the equation describing the current
flow in a conducting wire or in a coaxial cable according to Weber's
electrodynamics plus Newton's second law of motion is given by Eqs. (26)
or (39), respectively.

APPENDIX

We now show how to calculate the integrals of Eq. (5) for |z1|<<l:

I#|
2?

.2=0
|

l�2a

u=&l�2a

d.2 du

- s2+u2
(40)

where s2#1&2(r1 �a) cos .2+(r2
1 �a2).

Integration with respect to u yields

I=|
2?

0
d.2 ln

- s2+(l�2a)2+(l�2a)

- s2+(l�2a)2&(l�2a)
(41)

With approximation (4) this can be written as

I=|
2?

0
d.2 ln

(l�a)2

s2

=4? ln
l

a
&|

2?

0 _ln \1&2
r1

a
cos .2+

r2
1

a2+& d.2 (42)
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This last integral is equal to zero if r1�a. If r1>a we can put r2
1 �a2

in evidence and utilize once more this result to solve the last integral,
namely:

|
2?

0 _ln \1&2
r1

a
cos .2+

r2
1

a2+& d.2=0 if r1�a (43)

|
2?

0 _ln \1&2
r1

a
cos .2+

r2
1

a2+& d.2=2? ln
r2

1

a2 if r1�a (44)

This means that the final value of I is found to be

I=4? ln
l

a
if r1�a (45)

I=4? ln
l

r1

if r1�a (46)

We now solve Eq. (15):

J#|
a

r2=0
|

2?

.2=0
|

l�2

m=&l�2

m2 dm
(n2+m2)3�2 r2 d.2 dr2 (47)

where n2#r2
1+r2

2&2r1r2 cos .2 .
The indefinite integral in m yields

&
m

- n2+m2
+ln(- n2+m2+m)

From approximation (4) and taking the two limits of the integral in
m we are then led to

J=|
a

r2=0
|

2?

.2=0 \&2+ln
l2

n2+ r2 d.2 dr2

=2?a2(ln l&1)&|
a

r2=0
|

2?

.2=0
ln(r2

1+r2
2&2r1r2 cos .2) r2 d.2 dr2 (48)

From Eqs. (43) and (44) we can solve this last integral, yielding
2?a2 ln a+?(r2

1&a2) if r1�a or 2?a2 ln r1 if r1�a. Utilizing once more the
approximation (4) we are then led to:
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J=2?a2 ln
l

a
if r1�a (49)

J=2?a2 ln
l

r1

if r1�a (50)
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