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In this work we analyze the case of resistive conductor plates carrying constant
currents, utilizing surface charge distributions. We obtain the electric potential in
the plates and in the space surrounding them. We obtain a non-vanishing electric
field outside the conductors. We compare the theoretical results with experimental
data present in the literature.

1. INTRODUCTION

The existence of an electric field outside stationary resistive conductors
carrying constant currents is an important subject neglected by most
authors. In this work we calculate this field theoretically in a simple
geometry, comparing our results with experimental data.

Consider a metallic circuit and a test charge placed near it. The
stationary test charge will induce an electrostatic surface charge distribu-
tion on the circuit located next to it. This will give rise to an induced
electrostatic electric field yielding an attraction between the circuit and the
test charge. This electrostatic field is a zeroth-order effect, since it does not
depend on the velocity (nor acceleration) between the free charge and the
circuit. If the circuit is a large metallic plate and the test charge q is close to
its center at a distance d from the plate then by the method of images the



electrostatic force between them is given by F=q2/(16peo d2), where eo=
8.85×10−12 C2N−1m−2 is called the permittivity of free space.

What happens when we now pass a constant current through the
stationary resistive plate connected to a battery? The electric field that
maintains the current against Ohmic resistance is generated by a surface
charge distribution on the plate. This surface charge distribution is main-
tained by the battery, and generates as well an electric field outside the
conductor. This electric field is called of first-order (it is proportional to the
current—or to the drifting velocity of the conduction charges). This last
effect is the aim of this article. That is, our goal is to calculate the potential
and electric field in the plate and in the space surrounding it when a
constant current flows through the resistive plate.

There is already a number of cases presented in the literature discus-
sing these surface charges: [1, pp. 125–133; 2; 3, pp. 336–337; 4–11]. Here
we present other cases not considered in all their details previously.

We wish to emphasize here that this electric field outside a resistive
current carrying wire exists according to standard (Maxwell’s) theory. Here
we obtain it utilizing the usual formulas for the potential and electric field
found in most classical textbooks.

2. SINGLE PLATE

We consider the case of conducting plates from the point of view of
surface charge distributions generating the electric fields.

The geometry we are considering is that of a rectangular plate of
length 2Lx in the x direction and 2Lz in the z direction. The geometric
center of the plate is located at (x, y, z)=(0, y0, 0), where y0 is a constant.
The plate is parallel to the xz plane, passing through y=y0. We assume
that the current flows uniformly from −Lx to+Lx. We also assume that
the surface charge density is linear along x, (12)

s(x)=ax+b (1)

Note that in general the surface charge is a general function of the x
and z coordinates, s=s(x, z). We neglect the dependence on z as an
approximation for Lz ± |rF |, where rF is the observation point.

The electric potential is readily given from the surface charge s
above by:

f(rF)=
1
4pE0

FF
s daŒ
|rF−rFŒ|

1502 Assis, Hernandes, and Lamesa



where the integral is evaluated over the whole charge distribution. We are
interested in the potential at the symmetric plane z=0:

f(x, y, 0)=
1
4pE0

F
Lz

−Lz
F
Lx

−Lx

axŒ+b

`(x−xŒ)2+(y−y0)2+zŒ2
dxŒ dzŒ (2)

We solve these integrals utilizing the approximation Lz ± Lx ±
`x2+y2. The final result is as follows:

f(x, y, 0)=
1
E0
5(ax+b) 1 Lx

p
−
|y−y0 |
2
2+bLx

p
ln
2Lz
Lx

−
x2

2pLx
12ax
3
+b2+(y−y0)

2

2pLx
(2ax+b)6 (3)

We define the constants l1 and l2: l1=Lx/p and l2=(Lx/p) ln(2Lz/Lx).
With these constants we can write the electric potential for this single plate
situated at the y=y0 plane as given by:

f(x, y, 0)=
1
E0
5(ax+b) 1l1−

|y−y0 |
2
2+bl26 (4)

In order to test the coherence of our procedure we revert the argu-
ment. From the electric potencial (4) we obtain the electric field by
EF=−Nf. Applying Gauss’s law to a small cylinder centered on the plate
we obtain the usual boundary condition relating the normal component
of the electric field, Ey, to the surface charge density, s, namely:
e0Ey(lim yQ y+o )− eoEy(lim yQ y−o )=s. And this yields exactly the same
charge distribution on the plates as that given by our starting point,
Eq. (1). We checked our calculations by a similar procedure in the other
cases.

3. TWO PARALLEL PLATES

With this result we are now able to analyze Jefimenko’s experiments
which proved the existence of an electric field outside stationary resistive
conductors carrying constant currents.(13, 14) In his experiments he could
show the existence of electric fields outside conductors by utilizing grass
seeds as test-particles. These seeds, neutral in natural state, polarize them-
selves in the presence of an electric field and align along the electric field
lines (in analogy with iron fillings which map magnetic fields). This was an

Surface Charges in Conductor Plates Carrying Constant Currents 1503



ingenious idea. With this procedure he could overcome the large electro-
static force mentioned above, which would arise if he had placed a charged
body near the conductor (the zeroth-order electrostatic force is usually
much larger than the first-order one(8)). With the grass seeds the zeroth-
order force does not appear and he was able to show conclusively the
existence of the first-order electric field outside the conductor. We first
consider Fig. 1 of [13] and Plate 6 of [14]. In these cases we have a
constant current flowing uniformly along the x axis of a conductor of
resistivity g in the form of a parallelepiped of lengths 2Lx, 2a and 2Lz.
Accordingly there will be free charges only along its outer surfaces located
at y=±a (considering the thick conductor centered at (x, y, z)=(0, 0, 0)).
At both sides the free charges will be given by Eq. (1). The superposition of
the two charged planes situated in y=a and y=−a, utilizing Eq. (3) and
replacing y0 by a or by −a, yields the potential in the plane z=0 as given
by:

f(x, y, 0)=
1
E0
5(ax+b) 12l1−

|y−a|+|y+a|
2
2+2bl26 (5)

The electric field is readily given by EF=−Nf. The lines of electric field
k(x, y) such that Nk ·Nf=0 can be obtained by the method described in
Sommerfeld’s book, [1, p. 128]. They are given by the following equation:

k(x, y, 0)=˛
x2+2bx/a−y2+4l1 y, y > a

−ay −a < y < a

x2+2bx/a−y2−4l1 y y < −a

(6)

In Fig. 1 we plot this function with the approximation Lz/Lx=
Lx/a=6, in order to have similar dimensions as in Jefimenko’s experiment.
This theoretical figure is very similar to Jefimenko’s experimental one,
giving support to our calculation.

Given Eq. (5) and the following boundary conditions:

f(x=−Lx, y=±a)=V/2 and f(x=Lx, y=±a)=−V/2

we can relate a and b with the given potential difference V, if necessary.
In Fig. 2 we plotted the equipotential lines for the two plates as given

by Eq. (5) in the approximation Lz/Lx=Lx/a=6. This can be compared
with another experiment in which equipotential lines outside resistive
conductors carrying constant currents were mapped utilizing an electronic

1504 Assis, Hernandes, and Lamesa



Fig. 1. Electric field lines for two thin plates separated by a distance 2a, or for a
single plate with thickness 2a. The current goes from left (at potential f=V/2) to
right (f=−V/2).

electrometer [15 and 14, p. 301]. A radioactive alpha-source was utilized to
ionize the air at the point where the field was to be measured. The alpha-
source acquired the same potential as the field at that point. The potential
was measured with an electronic electrometer connected to the alpha-source.
There is a striking analogy between our theoretical Fig. 2 and Fig. 3a of [15]
(or Fig. 9.11a of [14]). This lends support to our calculation.

Fig. 2. Equipotentials for two thin plates separated by a distance 2a, or for a single
plate with thickness 2a. The current goes from left (at potential f=V/2) to right
(f=−V/2).
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4. FOUR PARALLEL PLATES

We now wish to model Figs. 5 and 6 of [13], or the second result of
Plate 6 of [14]. We have essentially a transmission line in which the current
flows uniformly along the x axis of a parallelepiped of conductivity g1 and
thickness b−a, returning uniformly along another parallel parallelepiped of
the same thickness but conductivity g2. The centers of the two conductors
are separated by a distance b+a. In this case there will be free charges in
the four planes situated at y=±a and y=±b.

4.1. Opposite Potentials

In this case both conductors have the same finite conductivity
g1=g2=g. We assume that the potentials are exactly opposite in the
two thick plates, for any x. We define two new constants, namely:
o1=1/(pLx/4a−1) and o2=1/(pLx/2a−1).

With s(y=±a)=±ax±b, s(y=±b)=±2aaxl2/(1−2bl1) (so
that the potential doesn’t depend on y in the regions a < y < b and
−b < y < −a) and utilizing Eq. (3) with appropriate y0’s for each of the
four plates, the potential becomes:

f(x, y, 0)=˛
[(ax+b)+(b−y)(axo1+bo2)]/E0, y > b

a(ax+b)/E0, a < y < b

y(ax+b)/E0 −a < y < a

−a(ax+b)/E0 −b < y < −a

−[(ax+b)+(b+y)(axo1+bo2)]/E0 y < −b

(7)

The electric lines of force are listed below, for each region.

k(x, y, 0)=˛
x2+2bxo2/ao1−y2+2y(b+a/o1) y > b

−ay a < y < b

x2+2bx/a−y2 −a < y < a

ay −b < y < −a

x2+2bxo2/ao1−y2−2y(b+a/o1) y < −b

(8)
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Fig. 3. Electric field lines for four thin plates, or for two plates with thickness
b−a. The current goes from left (f=V/2) to right (f=0) in the upper thick plate,
and returns in the bottom one (from f=0 to f=−V/2, right to left).

In Fig. 3 we plot this function in the approximation Lz/Lx=
Lx/a=2Lx/b=6, in order to have similar dimensions as in Jefimenko’s
experiment. The upper plate has the potential at its boundaries given by
f(−Lx, a < y < b)=V/2 and f(Lx, a < y < b)=0, while the lower plate
has the potential at its boundaries given by f(−Lx, −b < y < −a)=−V/2
and f(Lx, −b < y < −a)=0. There is a striking analogy with Jefimenko’s
experimental result.

4.2. Perfect Conductor Plate

Now, suppose that the lower plate is a perfect conductor. That is,
suppose it is submitted to the same constant potential f(x, −b < y < −a)
=F in it’s whole extension along the x axis. This experimental result
is shown in Fig. 6 of [13] (in his case, g1 ° g2). To model this case
we consider four planes, located at y=b, y=a, y=−a and y=−b, such
that they have the following surface charges, respectively, sb=abx+bb,
sa=aax+ba, s−a=a−ax+b−a and s−b=a−bx+b−b.
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The potential must not depend on y in the region a < y < b, and must
be a constant in the region −b < y < −a. From this we find:

aa=ab
2l1−b
a

ba=
bb(2l1+2l2−b)−FE0

a

a−a=−aa b−a=−ba (9)

a−b=ab b−b=bb

With Eq. (3) and the appropriate replacements of y0’s we get:

f(x, y, 0)=˛
[(abx+bb)(4l1−b−y)+4l2bb]/E0−F y > b

2a(aax+ba)/E0+F a < y < b

(aax+ba)(a+y)/E0+F −a < y < a

F −b < y < −a

(abx+bb)(b+y)/E0+F y < −b
(10)

The lines of electric field are given by:

k(x, y, 0)=˛
x3+2bbx/ab−y2+2(4l1−b) y y > b

−ay a < y < b

x2+2bax/aa−y2−2ay −a < y < a

−a2 −b < y < −a

x2+2bbx/ab−y2−2by y < −b

(11)

They are shown in Fig. 4 with the approximation above and the
same dimensions as in Fig. 3. The constant potential in the lower plate is
F=−V/2. Once more there is a striking analogy with Jefimenko’s exper-
imental result.

5. DISCUSSION AND CONCLUSION

The theoretical results presented in this paper have never been
obtained before. The only calculation which had been given in the litera-
ture for these geometries is that of Eq. (7) and even so only for the region
between the plates [14, pp. 303–304]. He also obtained the free charges but
only at the internal surfaces y=±a. He did not analyze the free charges at
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Fig. 4. Electric field lines for two thick plates, the bottom one being a perfect
conductor. The current goes from left (f=V/2) to right (f=−V/2) in the upper
thick plate, and returns in the bottom one (at a constant potential f=−V/2).

the external surfaces y=±b nor the potential and electric field outside the
plates (y > |b+a|).

The case treated by Heald(2) can also be compared to Jefimenko’s
results, Fig. 4 of [13]. Heald’s geometry consisted of an infinite cilinder
with poloidal current (the battery was a thin line parallel to the axis of the
cylinder). Then he calculated the solution to Laplace’s equation for the
electric potencial and obtained also the electric field and the surface charge
distribution as function of the polar angle.

The theoretical plots presented here are in excellent agreement with
Jefimenko’s experiments. The calculations presented in this paper may be
considered as a complement to his brilliant work. We mapped theoretically
the electric field in different geometries and compared our results with his
grass seeds experiments. We also mapped theoretically the equipotentials
and compared our result with his measurements utilizing an electronic
electrometer.

The only published experiment known to us which tried to measure
directly a force between a stationary resistive wire carrying a constant

Surface Charges in Conductor Plates Carrying Constant Currents 1509



current and a charged metal foil placed nearby is due to Sansbury.(16) He
utilized a torsion balance with a foil charged to approximately 0.5×10−9C
and when a current of 900 A was passed in the conductor he could detect a
force of approximately 10−7N, although he was not able to make precise
measurements. We suspect that what he observed was due to the first-order
electric field being discussed here. Further discussions of his experiment
with different approaches can be found in [17–20; 21, Sec. 6.10; 22–25; and
8].

The most important fact to emphasize here is the existence of an
electric field outside stationary resistive conductors carrying constant
currents.
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