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We study the oscillation of a charged particle near a capacitor in four different models: Oassical me

chanics, Weber's electrodynamics plus classical mechanics, relativistic mechanics, and Weber's electrodynamiCS 

plus the mechanics of Erwin Schrodinger. We show that only the third and fourth models yield physically rea

sonable results. 
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Introduction 

In this work, we analyze a charged particle oscillating near a 
Glpacitor. We shall show that, depending on the theoretical 
model used to analyze the situation, the frequency of oscillation 
may depend upon the difference of electrostatic potential in the 
capacitor. Other theoretical models do not predict this effect, so 
in principle it allows a possible experimental distinction be
tween all the approaches. This problem is also important in the 
context of possible experimental tests of a potential-dependent 
inertial mass [1, p_ 189]; [2], [3], and [4]_ 

We analyze the problem in four different models to highlight 
the different approaches and predictions. The first one is based 

on classical mechanics (kinetiC energy = mv2 12) and Lorentz's 
force (which in this case reduces to Coulomb's law). It will be 
called the classical (C) model. The second one is based on classi
cal mechanics and Weber's electrodynamics, [1]. It will be called 
the classical-Weber model (iAl). The third model is based on 
relatIVistic mechanics (relativistic kinetic energy) and Lorentz's 
force_ It will be called the relativistic model (R). And the fourth 
model IS based on Schr6dinger's mechanics, [5] and [1, pp 220-
221], and Weber's electrodynamiCS. It will be called Schrb
dinger's model, (5). There is conservation of energy for this 
situation in all four models. This property will be employed in 
this work. 

The geometry of the problem is presented in Figure 1. There 
is an ideal capaCltor at rest relative to an inertial frame. Its infi
rute plates are parallel to the yz plane with the center of the ca-

pacitor on the origin of the coordinate systeIn The positive 
(negative) plate is located at XC (-XC) and has a uniform surface 
charge density 0-0 (-0-0)' A charge q oscillates orthogonally 

to the plates of the capacitor along Ire x axis. It is outside the 
capacitor, on its left side. The oscillation is supposed to be due to 
an elastic force F=-kr. This force may be generated by a 
spring or by any other source not related with the capacitor. We 
want to analyze the velOCity of the charge as a function of its en

ergy, the velocity as a function of the difference of potential in the 
capacitor plates, and the period of oscillation as a function of 

this voltage. 

q "0 

o 
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figure 1: Geometry of the problem. 

The goal of this work is to discuss conceptual differences be

tween several theoretical models. An analySiS fully taking into 
account the possible compliGltions of electrostatic induction is 
beyond the scope of this paper. In order to avoid induction, we 
suppose the charged plates of the capabtor to be composed of a 
dielectric material. In this way, they are not influenced by the 
test charge, regardless of its motion. So even when the test 
charge is oscillating near a surface, the charge is distributed uni
formly over it . 
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The Classical Model 

Classical electrodynamics is based on Lorentz's force 
F= qE + qv x B. As the charges in the capacitor are at rest, they 
produce no magnetic field and this force reduces to Coulomb's 
law. For x < -Xo or x> XQ the capacitor generates only a con

stant potential, so that there is no electric field or force acting on 
the test charge in this model. In all models discussed here, the 
zero of the potential is defined at the negative plate of the capaci
tor. The enerey E of the charge is given by 

(1) 

where m is the inertial mass of the particle, v =1 v I is its veloc
ity relative to the capacitor, k is the elastic constant, x its posi
tion, xe the position of the charge when it feels no elastic force. It 
is eaSily seen that the maximal velocity, Urn, is obtained when 

x = xe' so that: u;;' / c2 = 2E I mc2. The value of E can be varied 

uccording to the initial conditions. H E is bigger than mc2 12 
(if the test charge is an electron, this means E2:0.5Mev/2 

'= 4x 1O-14 J),then the maximal velOCity will be greater than c. 
Tills has never been observed and indicates a limitation of the 
modeL 

With an initial condition given by x - Xe '" b and v = 0, the 

solution of Eq. (1) utilizing conservation of enerzy is giVE'n by 

(2) 

where Wc =:..j kIm is the classical fre:juency of oscillation. The 
maximal velOCIty is given by vm = bwc' This can be bigger than 
c dcpending on the values of b and wc' 

The period of oscillation will be calculated in all models as 

(3) 

where b IS the amplitude of oscillation: xe - b s x S xe + b. In 

this classical situation the period is easily found to be equal to 

T=:2n:..jmlk. 

The Classical-Weber Model 

In this case the energy of the test charge moving orthogonally 
to the plates of the capacitor is given by [1, p. 189]; [2J, [3] and [4]: 

(4) 

Here V = 2aoxo I EO is the voltage or difference of potential be
tween the plates of the capacitor. 

The fJla.ln difference relative to the previous result is that now 
the electromagnetic energy outside the ideal capacitor depends 
on the velOcity of the test charge relative to the plates. This does 
not happen with classical electrodynamiCS based on Lorentz's 
force. 

In classical Newtonian mechanics the kinetic energy of the 
2 2 2 particle is T = mll 12 or T = me,v 12. The coefficient of v 12 

appears also in front of the acceleration in Newton's second law 
of motion, as in rna or mda [Ref. 1, Sec 7.3]. 

We can combine the coefficients of v2 12 in (4) yielding 

(m -qV 12c2 )v2 12. This indicates that we can define an effec

tive inertial mass m - q V / 2c2. That is, Weber's electrodynam
ics combined with Newtonian mechanics is equivalent to classi
cal electrodynamics with an effective inertial mass which de
pends on the electrostatic potential energy of the test charge. Tn 
the Weber model, the test charge will behave as if it had an effec

tive inertial mass givcu by m -qV 12c2. 

Defining a dimensionless constant a by qV l2mc2 (relating 

the electrostatic energy of the test charge to its rest energy) we 
obtain for u < 1 that the maximal velocity when x = xe is given 

by 

v;'lc2 =2Elmc2(I-a) (5) 

When u = 0 we recover the classical model. The classical-Weber 
model also predicts a maximal velOCity for the test charge bigger 

than c. Now this happens when E 2: mc2(1_ 0:)/2. If 0: ....,.1, this 

should be easily obtained for small values of E. Again there is 
no experimental indication of this effect. 

For 0: < 1 and an initial condition given by x - xe = band 

v = 0 the solution of Eg. (4) utilizing conservation of energy is 
given by 

(6) 

where ww=:~klm(1-o:)=wc/..jl-a. The maximal velOCity 

is given by Um ::: bww = bWe / ..jl- a. Even for broc < c the 

maximal velOCity can become bigger than c for a close to I. 

The period of oscillation for 0: < 1 is given by Tw =: ..jl- aT,,_ 

For 0:=1 Eg. (4) yields E=k(x-xe)2 /2 = constant. This 

means that x WIll be a constant at any time and v = 0_ That is, 

with an effective inertial mass going to zero the test charge will 
not interact with the spring. 

For a> 1 and an initial condition given by x - Xe = band 

v = 0 the solution oiEq. (4) is given by 

(7) 

where ww2 =: roc /..ja -1. The motion is not oscillatory any

more. Now x and v increase indefinitely with time. Once ex
tended, the spring will continue extending itself to infinity in this 
modeL Instead of a restoring force, the spring will enlarge all 
perturbations of the equilibrium position. 

The Relativistic Model 

We now have a relativistic kinetic energy mc2 /~1- v2 / c2 

_mc2 and lorentz's or Coulomb's force. This means that the 
energy of the test charge will be given by 
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E (8) 

When v2 «c2 we recover the classical model. The :maximal 
velOCity when x = Xe as a function of E is given by 

(9) 

Even when E tends to infinity, vrn ~ c. TItis indicates that the 
velOcity of the test charge cannot increase beyond c in this 
model. 

We can integrate Eq. (8) to obtain the period s~ oscillation in 
terms of elliptic integrals; namely, 

(10) 

where b is the amplitude of oscillation and "( = kb2 12mc2 is a 
dimE'nsionless parameter relating the elastic energy to the rest 
energy of the test particle. 

We now expand this result in powers of"( (that is, supposing 

"«< 1, which is equivalent to v2 «c2 ). Going until first order 

in "{ (or until v4 Ie 4) and utilizing Tc '" 2rt.Jm I k yields 

(11) 

This means that for the same initial conditions the relativistic 
hannomc oscillator has a larger period than the classical one. 
This can be understood observing that the relativistic inertial 
mass increases with the velocity of the particle. This means that 
dunng a period of oscillation the particle will behave as if it had 
a larger inertial mass than the classical one. The average relativ
istic inertial mass during one period is then given by 
<m>=m(1+3"(/4). 

Schrodinger's Model 

We now have a kinetic energy similar to the relativistic one, 
although derived in compJiance with Nfach's prindple, [5], and a 
Weberian electromagnetiC energy. Apart tram an unimportant 
constant, the energy of the test particle is given by 

(12) 

With V = 0 we recover the relativistic situation. Once more we 
can see that when E -t _, then U -t c. This shows that with 
Schrodinger's mechanics and Weber's electrodynamics, we have 
the velocity of the test particle limited by c, as in the relativistic 
model. 

We now utilize the conservation of energy and the fact that 
when v=O we have X-Xe =b. TItis equation can then be writ

ten as 

(13) 

The maximal velocity vrn is obtained when X= Xe. This equa
tion shows that even when a -t <» we have Vrn -t c, no matter 

the value of E. That is, the velocity is always limited by c, oot 
only for high total energies of the particle, but also for high volt
ages in the capadtor. 

In order to calculate the period of oscillation we expand this 

last result in powers of vZ 
I e Z

• Retaining terms oruy up to 

v4 I c4 yields 

(1-1) 

With a« 1, the period is found to be 

T =T.~I+~ __ 1_] 
5 c-v"'-Ul 8 (1_a)Z 

(15) 

For a:<: 1 the motion is not oscillatory anymore. The velocltv 

will tend to the critical velOCity Vc == ~1_aZf3e which for 0: > ~ 
is smaller than c. TItis result is reasonable because now the 
effective inertial mass depends not only on the potential but also 
on the velocity. The equation of motion can be written as 

(16) 

where a = d 2x I dt 2 and mei is the effective inertial mass given 

by 

mei ==m[ :0 1 23/2 0:] 
(I-v Ie) 

(17) 

Discussion and Conclusion 

We have obtained that the classical and classical-Weber 
models do not correspond to reality. Both models predict that 
the velocity of the test charge can reach velocities larger than c, 
depending on initial conditions. The relativistic and Schrb
dinger's models do not have this problem. There is, however, a 
difference between these two last models: The period of osdlla
tion does not depend on the voltage in the capadtor according to 
relativity, but should depend according to Schriidinger's model 
with Weber's electrodynamics. Only careful experiments can 
decide this question. To our knowledge there has never been any 
experiment designed to test this property. 

All the results of this paper could be maintained if the test 

charge oscillated parallel to the plates of the capadtor, prOVided 

that we change the sign in front of a = q V 12mc2 in all fonnulas 
where it appears, [1]. This means that on average the result will 

be independent of a in the classical-Weber and Schrodinger's 
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models jf we have a particle moving in a circular orbit in a plane 
orthogonal to the plates of the capacitor. On the other hand if we 
have a circular orbit in a plane parallel to the plane of the capaci
tor the results of this paper might be maintained provided we 

changed the sign of ex.. The same would happen if the charge 

were OSCillating orthogonally to the plates of the capacitor, but 
now on the right of the positive plate; see Figure L 

It should be emphasized that in this study we are neglecting 
radiation losses, the currents induced in the plates of the capaci
tor due to the oscillation of the test charge, border effects, etc. 
Moreover, we are assuming an elastic constant k independent 
of the voltage in the capacitor. With Weber's theory this might be 
questioned due to the fact that the inertial mass depends on the 
polential. As the elastic force may be due to a microscopic el€<:
tromagnetic force, it could also be influenced by the voltagB in 
the capacitor. Only carefully deSigned eXperiments could d€<:ide 
this question 
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Correspondence 

Magnetic Field Outside a Current-Carrying Solenoid 

Since the solenoid plays in magnetism a role identical to the 
role played by the capacitor in ele(:tricity, it deserves a thorough 
comprehension at the undergraduate level. Customary mathe
matical descriptions of the flux density of a current-carrying 
solenoid focus on the magnetic flux density, B i , inside the sole

noid, using universally accepted prinCiples to calculate it. Less 
commonly, it is noted that a linear solenoid also has an equally 
understandable external azimuthal magnetic field Be;d. And it 

is ll.lmost never noted that with toroidal current-carrying coils, 
there can exist an external nux density Bell' resembling that due 
to a circular loop. 

Our considerations can be valuable in dealing with the so
called leakage or disperse flux. It is common to resort to random 
or unknown causes in order to explain such leakage or disperse 
lIux. But here we discuss a possible causal origin for the observ
able effect, an origin understandable within the framework of 
dasslcal electrodynamiCS. 

Analysis 

Let us consider a long linear solenoid, centered on the z axis 
of an orthogonal frame, with n turns per unit length, carrying 
steady current of I amperes (Fig. 1). In the International (mksa) 
~ystem [1], the ilUler magnetic flux on the axis has value 

Now, we must recognize that current, while traveling drcu
larly along each loop, also moves upwards along the z axis (if 
the coil were infinitely long. from z = --= to Z = +<»). Therefore, 
far enough from the axis, the above component of current behaves 
as a linear, upward current I. According to classical eJ€<:trody
narnics, the above current is responsible for an external az-

imuthal magnetic nux density Bexl = (~oI /2m-)u~, with u~ 

being the unit vector along 1/1 (cylindrical coordinates) and r is 
measured from the z axis. 

I 

FiguIe 1. 

The same argument remains valid when dealing with a 
toroidal current-carrying coil (Fig. 2). If the coil is centered on 
thezaxisandhasN turns,weget, 

Bini = (~oNI 12m-)u~ (1) 

Viewed from the outSide, the coil behaves as a drcular loop 
carrying a counterclockwise current I (Fig. 3). In mksa units, the 
r comp:ment of the external magnetic flux has value [2J, 

~oIa2 • 2a2 + 2r2 + ar sin e 
Br =---cos 2 2 2 

4 (a +r +2ar sine )5f 

continued on page 110 


